
ast-erisk

A<Z)

9 UNDER THE HOOD

Lees stop for a chapter to lift FORTH's hood and see what goes
on inside.

Some of the information contained herein we've given earlier,
but, at the risk of redundancy, we're now going to view the FORTH
"machine" as a whole, to see how it all fits together.

Inside

Back in the first ohar.li-er we learned that the text interpreter,
whose name is Oa picks words out of the input stream and
tries to fin0 eiL uefinitions in the dictionary. If it finds a
word, INTERI.] has it executed.

We can perform these separate operations ourselves btr using
words that perform the component functions of IINTERP_JI. For
instance, the word M (an apostrophe, but pronounced tick) finds a
definition in the dictionary and returns its address. If we have
defined GREET as we did in Chap. 1, we can now say

' GREET U. 25520 ok

and discover the address of GREET (whatever it happens to be).

216 	 ,Staxting FORTH

We may also directly use 'EXECUTE 	EXECUTE' will execute a
definition, given its address on the stack. Thus we can say

' GREET EXECUTE HELLO I SPEAK FORTH ok

and accomplish the same thing as if we had merely said GREET,
only in a more roundabout way.

If tick cannot find a word in the dictionary, it executes 'ABORT"
and prints a question mark.

FORTH's text interpreter uses a word related to tick that returns
a zero flag if the word is found. The name and usA0P.evF the word
varies, but the conditional structure of the n . phrase
always looks like this:

(find the word) 	IF 	(convert to a number)
ELSE (execute the word)

s_\7

that is. if the string is not a defined word in the dictionary,
INTERP • tries to convert it as a number. If it is a defined
word,] . ;RPRET executes it.

The word 	has several uses. For instance, you can use the
phrase

GREET .

to find out whether GREET has been defined, without actually
having to execute it (it will either print the address or respond
"?"). In systems that only save the first three characters of 4
name, you can also use the above phrase to determine whether 3
name that you want to give to a new definition will conflict wit!,
a predefined name.

tFORTH-79 Standard

The word 'FIND' attempts to find the next word in the input strer!
in the dictionary and then returns its address or, if not found,
zero.

IFor polyFORTH Users

The word pi attempts to find the next word in the input strea7
the dictionary. If the search is successful, 1.--1 leaves
parameter field address and false; if unsuccessful, leaves !HE,'._
and true.

	

9 UNDER THE HOOD 	 217

You can also use the address to IDUMP1 the contents of the
definition, like this:

' GREET 12 DUMP

Or you can change the value of a constant by first finding its
address, then storing the new value into it, like this:

110 ' LIMIT 1

Or you can use tick to implement something called "vectored
execution." Which brings us to the next section ...

Vectored Execution

While it sounds hairy, the idea of vectored execution is really
quite simple. Instead of executing a definition directly, as we
did with the phrase

' GREET EXECUTE

we can execute it indirectly by keeping its address in a
variable, then executing the contents of the variable, like this:

' GREET POINTER
POINTER @ EXECUTE

The advantage is that we can change the pointer later, so that a
single word can be made to perform different things at different
times.

Here is an example that you can try yourself:

	

: HELLO 	." HELL0 "
2 : GOODBYE 	." GOODBYE "
3 VARIABLE 'ALOHA

	

4 : ALOHA 	'ALOHA @ EXECUTE ;
5
6 ' HELLO 'ALOHA !

In the first two lines, we've simply created words which print the
strings "HELLO" and "GOODBYE." In line 3, we've defined a
variable called 'ALOHA. This will be our pointer. In line 4,
we've defined the word ALOHA to-execute the definition whose
address is in 'ALOHA. In line 6, we store the address of HELLO
into 'ALOHA.

Now if we execute ALOHA, we will get

210 	 Starting FORTR
.4.1,4 A 	 • 	 4.41A

ALOHA HELLO ok

Alternatively, if we execute the phrase

GOODBYE 'ALOHA

--to store the address of GOODBYE into 'ALOHA, we will get

__ALOHA GOODBYE ok

—Thus the same word, ALOHA, can do two different things.

Notice that we named opr pointer 'ALOHA (which we would
""-pronounc'e tick-aloha). Since tick provides an address, we use it

as a prefix to suggest "the address of" ALOHA. It is a FORTH
naming convention to use this prefix for vectored execution
pointers.

Tick always goes to the next word in the input stream.t What if
we put tick inside a definition? When we execute the definition,
tick will find the next word in the input stream, not the next
word in the definition. Thus we could define

: SAY "ALOHA ;

then en'ter

SAY HELLO ok
ALOHA HELLO ok

or

SAY GOODBYE ok
ALOHA GOODBYE ok

to store the address of either HELLO or GOODBYE into 'ALOHA.

But what if we want tick to use the next word in the definition?,
 We must use the word (bracket-tick-bracket) instead of tick.'

For example:

: COMING 	pi HELLO 'ALOHA ! ;

	

GOING 	[I] GOODBYE 'ALOHA ! ;

tFORTH-79 Standard

The behavior of tick as described by the Standard differs
somewhat from that explained here. See Appendix 3.

+For Some Small-system, Non-polyFORTH, Users

If your keyboard doesn't have a "{" or "]" key, the documentation
that came with your FORTH system should indicate substitutes.

9 UNDER THE HOOD 	 219

Now we can say

COMING ok
ALOHA HELLO ok
GOING ok
ALOHA GOODBYE ok

Here's an example of vectored execution that can be found on
certain FORTH systems. When FORTH is first loaded, the word

can only convert single-length numbers. But after
double-length routines are loaded, 1NUMBER can convert
double-length or single-length numbers. It would not be enough
to simply redefine 1\71.1MBERI, because then you would also have to
redefine [INTERPRET) and an other word which uses NUMBERL.

 Instead, the definition of F,v . Kg is something like

: NUMBER 'NUMBER @ EXECUTE ;

where l'NUMBER. is the variable used as a pointer. When FORTH is
first loaded, this variable contains the address of the
single-length version. But when the dc --e-length routines are
loaded, a new definition called r(T13-1,11_,I, with double-length
capability, is added to the dictionary. On the line below the
definition in the load block is the phrase

' (NumBER) 'NUMBER

When NUMBER! is executed in the future, whether by !INTERPRET) or
whomever, the contents of LNUNTTI7P1 are fetched and this
definition is executed, giving 1='.' .__... new-found double-length
capability.

Here are the commands we've covered so far:t

' xxx 	 (adr) 	 Attempts to find the
address of xxx (the
word that follows in
the input stream) in the
dictionary.

['l compile time:
—)

run time:
(adr)

Used only in a colon
definition, compiles
the address of the
next word in the
definition as a literal.

t FORTH-79 Standard

See Appendix 3.

NUMBER1

220
	

Starting FORTH

The Structure of a Dictionary Entry

All definitions, whether they have been defined by 0, by
, by 'CREATE', or by.any other "defining word," share

these basic parts:

name field
link field
code pointer field
parameter field

Using the variable DATE ..as an example, here's how these
components are arranged within each dictionary entry in systems
that have a three-character-maximum name field. In this diagram,
each horizontal line represents one cell in the dictionary:

'VARIABLE]

precedence
bit

(previous definition)

name /

link

code pointer

parameter
field

V 4
rrn

Systems that allow thirty-one-character-maximum name fields
usually follow the same pattern, but the name field may take
anywhere from two to thirty-two bytes, depending on the name.
The order of the four components may also vary.t

t FORTH-79 Standard

The FORTH-79 Standard allows thirty-one-character-maximum name
fields, but does not specify the order of the field within the
dictionary entry. The order is considered implementation-
dependent.

UGH

ME

CAVE

YOU

PLOW

CITY

NATION

CAR

CUISINART

9 UNDER THE HOOD 	 221

In this book, we're only concerned with the functions of the four
components, not with their order inside a dictionary entry.
We'll use the three-character version as our example because it's
the simplest.

Name

In our example, the first byte contains the number of characters
in the full name of the defined word (there are four letters in
DATE). The next three bytes contain the ASCII representations of
the first three letters in the name of the defined word. In a
three-character system, this is all the information that tick or
bracket-tick-bracket have to go on in matching up the name of a
definition with a word in the input stream.

(Notice in the diagram that the sign bit of the "count" byte is
called the "precedence bit." This bit is used during compilation
to indicate whether the word is supposed to be executed during
compilation, or to simply be compiled into the new definition.
More on this matter in Chap. 11.)

Link

The "link" cell contains the address of the previous definition
in the dictionary list. The link cell is used in searching the
dictionary. To simplify things a bit, imagine that it works this
way:

Each time the compiler adds a
new word to the dictionary, he
sets the link field to point to
the address of the previous
definition. Here he is setting
the link field of CUISINART to

_point to the definition of CAR.

cf

	7

-

UGH

CAVE

YOU

PLOW

CITY

NATION

CAR

CUISINART

(-6-irk)

222 Starting_FORTH
'

At search time, tick (or
bracket-tick-bracket, etc.) starts
with the most recent word and
follows the "chain" backwards,
using the address in each link
cell to locate the next defini-

-tion back.

The link field of the first definition in the dictionary contains
a zero, which tells tick to give up; the word is not in the
dictionary.

Code pointer

Next is the "code pointer." The address contained in this
pointer irs. what distinguishes a var.iable from_a constant or a
colon "d-e-finition. It is 'the ad'dreS's 'of the instruction th-at• is
executed first when the particular type of word is executed. For
example, in the case of a variable, the pointer points to code
that pushes the address of the variable onto the stack. In the
case of a constant, the pointer points to code that pushes the
contents of the constant onto the stack. In the case of a colon
definition, the pointer points to code that executes the rest of
the words in the colon definition.

The code that is pointed to is called the "run-time code"
because it's used when a word of that type is executed (not when
a word of that type is defined or compiled).

4

A
link

code pointer

12

Aw•■•ii

link

code pointer

220

7

6

A
link

code pointer

2AE4

(rest of definition)

9 UNDER THE HOOD

VARIABLE DATE

CONSTANT LIMIT

: EGGSIZE

VARIABLE 'ALOHA

223

' .ABLE1
r, 	ame code
(when executed,
pushes the
address of a
variable onto
the stack).

ICONSTANTI
run-time code
(when executed,
pushes the
contents of a
constant onto
the stack).

0 run-time code
(when executed,
executes the
words that
comprise the
definition).

All variables have the same code pointer; all constants have the
same code pointer of their own, and so on.

Parameter field

Following the code pointer is the parameter field. In variables
and constants, the parameter field is only one cell. In a
12CONSTANTI or '2VARIABLE1, the parameter field is two cells. In
an array, the parameter field can be as long as you want it. In
a colon definition, the length of the parameter field depends on
the length of the definition, as we'll explain in the next
section.

The address that is supplied by tick and expected by 'EXECUTE is
the address of the beginning of the parameter field, called the
parameter-field address (pfa).

count — 	- --
2

1 — --
3

link

code 	pointer

_ 	parameter 	—
field

pia [>

224 	 Starting-FORTH

By the way, the name and link fields are often called the "hea'''
of the entry; the code pointer and parameter fields are callot!
the "body."

The Basic Structure of a Colon Definition

While the format of the head and code pointer is the same for a-
types of definitions, the format of the parameter field varic.
from type to type. Let's look at the parameter field of a color.
definition.

The parameter field of a colon definition contains the addressr:r
 of the previously defined words which comprise the definition.'

Here is the dictionary entry for the definition of PHOTOGRAPH,
which we defined as:

: PHOTOGRAPH SHUTTER OPEN TIME EXPOSE SHUTTER CLOSE ;

When PHOTOGRAPH is executed, the definitions that are located at
the successive addresses are executed in turn. The mechani:-.
which reads the list of addresses and executes the definitions
each address is called the "address interpreter."

tFor Experts

The addresses that comprise the body of a colon definition are
usually code-field addresses (cfa), not parameter-field addresses.

5 parameter
field

10

0
link

code pointer

adr of SHUTTER

adr of OPEN

adr of TIME

adr of EXPOSE

adr of SHUTTER

adr of CLOSE

adr of EXIT

"A:R.
link

code f.r

a4r of
sOUP
odr

ENTREE
• 	• 	•f

DE:;sERT
. 	of

ExiT

DINNER

Interpreter

pointer

9 UNDER THE HOOD
	

225

The word E at the end of the
definition compiles the
address of a word called
E X IT I . As you can see in the
figure, the address of iEXTT
resides in the last cell of
the dictionary entry. The
address interpreter will
execute EXIT when it gets to
this address, just as it
executes the other words in
the definition. IEXITI
terminates execution of the
address interpreter, as we
will see in the next section.

Nested Levels of Execution

The function of [EXIT! is to return the flow of execution to the
next higher-level definition that refers to the current
definition. Let's see how this works in simplified terms.

Suppose that DINNER consists of three courses:

: DINNER SOUP ENTREE DESSERT ;

and that tonight's ENTREE consists simply of

: ENTREE CHICKEN RICE ;

We are executing DINNER and we have
just finished the SOUP. The pointer
that is used by the address
interpreter is called the "interpreter
pointer" (El). Since the next course
after SOUP is the ENTREE, our
interpreter pointer is pointing to the
cell that contains the address of
ENTREE.

DINNER

226 	 _ 	 Startin-r

-rr • -, • 	 r

Before we go off and execute F.1{711'
we first increment the interpt'l
pointer so that when we come LAzt
will be pointing to DESSERT,

Now we begin to execute
ENTREE. The first thing we
execute is ENTREE' s
"code," i.e., the code that
is pointed to by the "code
field," common to all colon
definitions.

This code does two things:

First, it saves the con-
tents of the interpreter
pointer on the return stack

... then it put- '
address of its
parameter f!,,'
address (pf_a.
interpreter
Now the interprct-
pointer is poiry.:i,
to CHICKEN. 5,- "-
address interp!.
gets ready to st:,•
up the chicken.

pfct

1 ; n k 	j
7 CHICKEN

code

CHICKEN
RICE
EXIT

ENTREE

E X ITI take s th e
number off the top of
the return stack and
puts it in the inter-
preter pointer. Now
the address inter-
preter continues with
the execution of
RICE.

9UNDER THE HOOD 	 227

But first, as we did with ENTREE, we increment the pointer so that
when we return it will be pointing to RICE. Then CHICKEN's code
saves this pointer on the return stack and puts CHICKEN's own pfa
into the interpreter pointer.

Finally we have our chicken, as the above process contiunes all
down the line to the lowest-level definition involved in the
ling of the succulent poultry. Sooner or later we come to the
	 in CHICKEN.

DINNER

228
	

Starting FORTH

DESSERT
EXIT

One Step Beyond

Eventually, of course, the [EXIT] in
ENTREE will put the value on the return
stack into the interpreter pointer. At
last we're ready for DESSERT.

Perhaps you're wondering: what happAns
when we finally execute the rfyppl in
DINNER? Whose return address is on the
stack? What do we return to?

Well, rememhAr that DINNER has just been
executed by ..F.CUTEL which is a component
of IENTERPRE.H. IINTERPRETI is a loop which
checks the entire input stream. Assuming
that we entered 1711771 after DINNER, then
there is nothing more to interpret. So
when we exit INTERPRET], where does that
leave us? In the outermost definition for
each terminal, called QUI%

, in simplified form, looks like this:

QUIT

INTERPRET

EXECUTE

DINNER

: QUIT BEGIN (clear return stack) (accept input)
INTERPRET ." ok" CR 0 UNTIL ;

(The parenthetical comments represent words and phri 	not yet
covered.) We can see that after the word INTERPF , comes a
dot-quote message, "ok," and a ICR, which of course are what we
see after interpretation has been completed.

Next is the phrase

0 UNTIL

which unconditionally returns us to the beginning of the loop,
where we clear the return stack and once again wait for input.

If we execute QUITI at any level of execution, we will

9 UNDER THE HOOD 	 229

-

immediately cease execution of our application and re—enter
...11's loop. The return stack will be cleared (regardless of how
mauy levels of return addresses we had there, since we could
never use any of them now), and the system will wait for input.
You can see why QUIT can be used to keep the message "ok" from
appearing at our terminal.

The definition of 'ABORT" uses 'QUIT'

Abandoning The Nest

Ies possible to skip one level of execution simply by removing
one return address from the return stack. For example, consider
the three levels of execution associated with DINNER, shown here:

DINNER

def. 	 /---.\
of 	SOUP 	ENTREE 	 DESSERT EXIT

DINNER 	V 	 \.)

def 	 \ 	/---- 	7---
of 	 CHICKEN 	RICE 	EXIT

ENTREE 	 V 	 ■.)

Now suppose that the definition ENTREE is changed to:

: ENTREE CHICKEN RICE R> DROP ;

The phrase "R> DROP" will drop from the return stack the return
address of DESSERT, which was put on just prior to the execution
of Er.. If we reload these defdnitions and execute DINNER,
the ,..._ on the third level will take us directly back to the
first level. We'll get SOUP, CHICKEN, and RICE but we'll skip
DESSERT, as you can see here:

MNNER
	

EXIT

SOUP ENTREE
	

DESSERT EXIT
■./

CMCKEN RICE R> DROP EXIT

230
	

Starting

We're not necessarily suggesting that you use "R> DROP" in an
application, just illuutratiny a point.

We've mentioned that the word PXIT1 removes a return address from
,atop. the return ,stack and puts it into the interpreter pointer.
The address interpreter, which gets its bearings from the
interpreter pointer, be_gins looking at the next level up. It's
possible to include in the middle of a definition. For
e_xample, if we were to redefine ENTREE as follows:

: ENTREE CHICKEN EXIT RICE ;

then when we subsequently execute DINNER, we will exit right
after CHICKEN and return to the next course after'the ENTREE,
i.e., DESSERT.

DMNER
	

EXIT

SOUP ENTREE 	 DESSERT 	EXIT
_)

CHICKEN 	EXIT 	RICE EXIT

This time we get DESSERT but no RICE.

EXIT is commonly used in a disk block to keep the remainder of
the block from being loaded. For example, if you edit !EXIT into
the end of line 5 of a block and load it, any definitions in line
6 and beyond will not get compiled.

EXIT 	 () 	 When compiled within a
colon definition,
terminates execution of
that definition at that
point. When executed from
a load block, terminates
interpretation of the block
at that point.

QUIT 	 () 	 Clears both stacks and
returns control to the
terminal. No message is
given.

PRE-COMPILED
FORTH

SYSTEM
VARIABLES

ELECTIVE
DEFINITIONS

USER
DICTIONARY

PAD

PARAMETP A qTACK
INPUT 	3E

RI

LOW
MEMORY

HIGH
MEMORY

RETURN STACK
USER

VARIABLES

BLOCK

BUFFERS

THE HOOD 	 231

FORTH Geography

This is a "memory map"t of a
typical single-user FORTH system.
Multiprogrammed systems such as
polyFORTH are more complicated, as
we will explain later on. For now
let's take the simple case and ex-
plore each region of the map, one
at a time.

Pr ecompiled Portion

In low memory resides the only
precompiled portion of the system
(already compiled into dictionary
form). On some systems this code is
kept on disk (often blocks 1 - 8) and
automatically loaded into low RAM
when you start up or "boot" the
computer. On other systems the
precompiled portion resides per-
manently in PROM, where it is active
as soon as you power up the com-
puter.

The precompiled portion usually
includes most of the single-length
math operators and number-
formatting words, single-length
stack manipulation operators, editor
commands, branching and structure-
control words, the assembler, all
the defining words we've covered so

t For Beginners

A ''memory map" depicts how computer
memory is divided up for various
purposes in a particular system.
Here, low-numbered addresses begin
at the top ("low memory") and in-
crease as the map goes down. Memory
space is measured in groups of 1,024
bytes. This quantity is called a
"K" (from "kilo-," meaning a
thousand, which is close enough).

232 	 Starting FORTH
,

far, and, of course, the text and address interpreters.t

System Variables

The next section of memory contains "system variables" which are
, .created by the precompiled portion and used by the entire
system. They are not generally used by the user. ['NUMBER,
wnich we discussed earlier, is a system.variable.

Elective Definitions

The portion of the FORTH system that is not precompiled is kept
on disk in source-text form. You can elect to load or not to load
any number of these definitions to better control use of your
computer's memory space. The load block for all "electives" is
called the "electives block," usually block 9. To compile the
electives after you "boot," simply enter

9 LOAD

(or whichever block is the electives block for your system).

For example, in polyFORTH electives include double- and
mixed-length operators, extended editor commands, date and time
commands, and the ability to add new multiprogrammed tasks
including additional terminals. You can mask any of these
electives out of the electives block simply by inserting
parentheses.

If your electives block contains this line:

(32-BIT ARITHMETIC) 30 LOAD 31 LOAD 32 LOAD

you can avoid loading the double-length routines by changing the
line to

(32-BIT ARITHMETIC 30 LOAD 31 LOAD 32 LOAD)

If you want to change the electives block after you have already
loaded it, you must reload the system (by rebooting) before you
can reload the electives. (The word available on some
systems, will reload the system and not LHe electives.)

iFor Experts

To give you an idea of how compact FORTH can be, all of
polyFORTH's precompiled portion resides in less than 8K bytes.

9 UNDER THE HOOD 	 233

User Dictionary

The dictionary will grow into higher memory as you add your own
definitions within the portion of memory called the "user
dictionary." The next available cell in the dictionary at any
time is pointed to by a variable called During the process
of compilation, the pointer la is adjusted cell-by-cell (or
byte-by-byte) as the entry is being added to the dictionary.
Thus is the compiler's bookmark; it points to the place in the
dictionary where the compiler can next compile.

is also used by the word [ALLOT, which advances 	by the
number of bytes given. For example, the phrase

10 ALLOT

adds ten to gj so that the compiler will leave room in the
dictionary for a ten-byte (or five-cell) array.

A related word is 	which is simply defined

: HERE 	H @ ;

to put the value of 111 on the stack. The word a (comma), which
stores a single-length value into the next available cell in the
dictionary, is simply defined

: , 	HERE ! 2 ALLOT ;

that is, it stores a value into [HERE(and advances the dictionary
pointer two bytes to leave room for it.

You can use Ei . 	to determine how much memory ary ?art of your
applicatior --Liuires, simply by comparing the 11-1E.1..-, from before
with the E. 	after compiling. For example:

HERE 220 LOAD HERE SWAP - . 196 ok

indicates that the definitions loaded by block 220- filled 196
bytes of memory space in the dictionary.

234
7.777:4 	 I 	z.

Starting FORTH
. 	 i

The Pad

_At a certain distance from LHEREj. in your dictionary, you will find
a small region of memory called the "pad." Like a scratch pad,
it is usually used to hold ASCII character strings that are being
manipulated prior to being sent out to a terminal. For example,
the number-formatting words use the pad to hold the ASCII
numerals during the conversion process, prior to TYP

The size of the pad is indefinite: In most systems there are
hundreds or even thousands of bytes between the beginning of the

—pad and the top-of the parameter stack.

—Since the pad's beginning address is defined relative to the last
dictionary entry, it moves every time you add a new definition or
execute iFORGET or IEMPTY1. This arrangement proves safe,
however, because the pad is never used when any of these events
are occurring. The word IPAD1 returns the current address of the
beginning of the pad. It is defined simply:

: PAD HERE 34 + ;

that is, ". returns an address that is a fixed_ number of byte,s
beyond E 	(The actual number may vary.)

Parameter Stack

Far abovet the pad in memory is the area reserved for the
parameter stack. Although we like to imagine that values
actually move up and down somewhere as we "pop them off" and
"push them on," in reality nothing moves. The only thing that
changes is a pointer to the "top" of the stack.

- 	 .

As you can see below, when we "put a number on the stack," what
really 'happens is that the pointer is "decremented" (so that it
points to the next location toward low memory), then our number
is stored where the pointer is pointing. When we "remove a
number from the stack," the number is fetched from the location
where the pointer is pointing, then the pointer is incremented.
Any numbers above the stacl< pointer on our map are meaningless.

tFor Beginners

"Above" refers to the higher memory addresses, which are "lower"
on our map.

i `j

23qC

0

13
2

.064stack
pointer

after enterinj

'stack
pointer)

after enterin3

lg
stack.'
pointer

emptj stack. 1

)„, r"mory

botto fri poinLeri
stack

:8
2 44 Ci J

987
0

.sistack
pomteri

..:;;DER THE HOOD
	

235

As new values are added to the stack, it "grows toward low
memory."

The stack pointer is fetched by the word ma (pronounced tick-S).
 Since I'S provides the address of the top stack location, the

phrase

'S @

fetches the contents of the top of the stack. This operation, of
course, is identical to that of IDUP . If we had five values on
the stack, we could copy the fifth one down with the phrase

'S 8 + @

(but this is generally not considered good programming practice).

code

• 	'-
III Oil

OW

f2CO'ZTANT a

236
	

SLar Ling PORTII

The
by a
always
cell

For
ol ,

bottom
variable

contains
below the

of the stack is pointed to
called ISO] 	(S-zero). 	TO1 IS

the address
"empty stack"

of good uses
the definitions

that we gave in
end of Chap. 3.

of the next
cell.

of 7 and

2
examples
review
of 7.-fi
at the

of IDE,PTH stack
`Vipointer and

Hint
the Handy

SO
Notice that with double-length numbers,,
the high-order cell is stored at 'the'
lower memory address whether on the
stack or in the dictionary. The
operators 7 and 7 keep the order of

_c.ells consistent, as you can see here.

low
memory

hish
memory

Input Message Buffer

FS7 also contains the starting address for the "input message
buffer," which grows toward high memory (the same direction as
the pad). When you enter text from the terminal, it gets stored
into this buffer where the text interpreter will scan it.

Return Stack

Above the buffer resides the return stack, which operates
identically to the parameter stack. There are no high-level
FORTH words analogous to l'SI or that refer to the return
stack.

Returns the address of
the dictionary pointer.

Returns the next
available dictionary
location.

Returns the beginning
address of a scratch
area used to hold
character strings for
intermediate pro-
cessing.

Returns the addr.ess of
the top of the stack
before 'S is executed.

Contains the address o
the bottom of the
parameter stack.

(adr)

HERE 	 (adr)

PAD 	 (adr)

Ts 	 (adr)

SO 	 (--adr)

9 UNDER THE HOOD 	 237

User Variables

The next section nif -:mory contains "user variables." These
variables include '._, IS0j, and many others that we'll cover in
an upcoming section.

Block Buffers

At the high end of memory reside the block buffers. Each buffer
provides 1,024 bytes for the contents of a disk block. Whenever
you access a block (by listing or loading it, for example) the
system copies the block from the disk into the buffer, where it
can be modified by the editor or interpreted by ILOADI. We'll
discuss the block buffers in Chap. 10.

This completes our journey across the memory map of a typical
single-user FORTH system. Here are the words we've just covered
that relate to memory regions in the FORTH system.t

tFoRTH-79 Standard

and ISOI are not required by the Standard.

-USER-
DICTIONARY

USER
VARIABLES

PAD

_ —
PARAMETER STACK

INPUT MESSAGE
BUFFER

User Area -
(Terminal task)

PARAMETER STACK ! .- 1 User Area -
(Control task)

RETURN STACK

238
	

S tar tiny l'01:T11

The Geography of a Multi-tasked FORTH system

LOW
MEMORY

HIGH
MEMORY

. __
PRE-COMPILED

FORTH

SYSTEM
VARIABLES

ELECTIVE
DEFINITIONS

,

USER AREA 1
(terminal task)

USER AREA 2
(terminal task)

_. —

USER AREA 3
(terminal task)

USER AREA 4
(control task)

OPERATOR

BLOCK

BUFFERS

Some FORTH systems (suc h as polyFORTH) can be multitasked,t so
that any number of additional tasks can be added. A task may be

tFor Beginners

The term "multitasked " describes a system in which numerous tasks
operate concurr ently on the same computer without interference
from one another.

9 UNDER THE HOOD 	 239

either a "terminal task," which puts the full interactive power of
FORTH into the hands of a human at a terminal, or a "control
task," which controls a hardware device that has no terminal.

Either type of task requires its own "user area." The size and
contents of a user area depends on the type of task, but typical
configurations for the two types of tasks are shown in the figure.

Each terminal task has its own private dictionary, pad, parameter
stack, input message buffer, return stack, and user variables.
This means that any words that you define at your terminal are
normally not available to other terminals. Similarly, each task
has its own copies of the user variables, such as

Each control task has a pair of stacks and a small set of user
variables. Since a control task uses no terminal, it doesn't need
a dictionary of its own; nor does it need a pad or a message
buffer.

Following the initial boot there is only one task., called
lOPERATORI Loading the electives block will allocate space for
the various terminal and control-task partitions. Thus it is
possible to reconfigure the subtasks within a system by altering
the electives block and reloading it. But it's beyond the scope
of this book to explain how.

1
SO 	 Pointer to the bottom of the parameter stack

and, for terminal, tasks, the start of the input
message buffer.

SCR 	For the- editor, a pointer to the current block
number (set by LIST and used by L).

R# 	Current character position in the editor. 	Yr
tnoer

Dictionary pointer. Pointer to the next
available byte.

CONTEXT 	Contains up to four indexes for vocabularies
to be searched.

CURRENT 	Contains the index of the vocabulary to which
new definitions will be linked.

>IN 	Pointer to the current position in the input
stream.

BLK 	If non-zero, a pointer to the block being
interpreted by LOAD. A zero indicates
interpretation from the terminal (via the

. 	 ,

input message buffer).

OFFSET 	Block offset to disk drives. The content of
OFFSET is added to the stack number by BLOCK.

BASE 	Number conversion base.

0-1-k

240 	 StartingiFORTH--7
RifIrii.•.00trft

User Variables

The following list shows most of the user variables. Some we
won't ever mention again. Don't try to memorize this table. Just
remember where you can find it.

User variables are not like ordinary variables. With an ordinary
variable (one defined by the word VARIABLEI), the value is kept
in the parameter field of the dictionary entry.

USER 	 USER Table
run-time
code

0 	

2

4

6

8

10 value of H

9 UNDER THE HOOD 	 241

Each user variable, on the other hand, is kept in an array called
the "user table." The dictionary entry for each user variable is
located elsewhere; it contains an offset into the user table.
When you execute the name of a user variable, such as Mg, this
offset is added to the beginning address of the user table. This
gives you the address of JEIC in the array, allowing you to use la
or 11 in the normal way.

VARIABLE
run-time
code

YEAR

link

code

1981

The main advantage of user variables is that any number of tasks
can use the same definition of a variable and each get its own
value. Each task that executes

BASE @

gets the value for BASE from its own user table. This saves a lot
of room in the system while still allowing each task to execute
independently.

User variables are defined by the word USER. The sequence of
user variables in the table and their offset values vary from one
system to another.

To summarize, there are three k-inds of variables: System
variables contain values used by the entire FORTH system. User
variables contain values that are unique for each task, even
though the definitions can be used by all tasks in the system.
Regular variables can be accessible either system-wide or within
a single task only, depending upon whether they are defined
within [OPERATOR or within a private task.

QUARTERBACK

COURT

DRIBBLE

INNING

CENTER

GOALPOST

UMP

STRIKE

CENTER

CENTER

PLACEKICK

SHORTSTOP

DUNK

HUDDLE

FR r:ET-17-1011V

9

242 	 Starting,

Vocabularies

Earlier we mentioned that the reason the El in the editor doesn't
conflict with the used in a 'DOI loop is that they belong to
separate "vocabularies." In a simple FORTH system there are

-three standard vocabularies: FORTH, the editor, and the
assembler.

All the words that we've covered so far belong to the FORTH
vocabulary, except for the editor commands which belong to the
editor vocabulary. The assembler vocabulary contains commands
that are used to write assembly-language code for your particular
computer. Since assembly code varies from computer to computer,
and since assembly-language programming is a whole different
subject, we won't cover it in this book.t

All definitions are added
to the same dictionary in
the order in which they
are compiled, regardless of
which vocabulary they
belong-tdc. So voca-bularies
are not subdivisions of the
dictionary; rather they are
independently linked lists
that weave through it.

For example, in the figure
shown here, there are three
vocabularies: football,
baseball, and basketball.
All three are co-resident
in- the same dictionary, but
when tick follows the
basketball chain, for
instance, it only finds
words in the basketball
vocabulary. -Even though
each vocabulary has a word
called CENTER, tick will
find whichever version is
appropriate for the
context.

tFor the Curious

See Appendix 2.

9 UNDER THE HOOD 	 243

There is another advantage besides exclusivity, and that is speed
of searches. If we are talking about basketball, why waste time
hunting through the football and baseball words?

You can change the context in which the dictionary is seArnhed
,n111-ing any of the three commands IFORTH , 'EDIT(.• , or
.. : .. . For example, if you enter

FORTH

you know for sure that the search context is the FORTH
vocabulary.

Ordinarily, however, the FORTH system automatically changes the
context for you. Here's a typical scenario:

The system starts out with FORTH being the context. Let's say
you start entering an application into a block. Certain editor
commands switch the context to the editor vocabulary. You will
stay in the editor vocabulary until you load the block and begin
compiling definitions. The word will automatically reset the
context to what it was before--FORTH.

Different versions of FORTH have different ways of implementing
vocabularies. Still, we can make a few general statements that
will cover most systems.

The vocabulArv to be searched is specified by a 	- variable
c " Ed 	. As we said, the commands (FORTH, 	 and
Z. 	change the search context.

There is another kind of vocabulary "context": the vocabulary
to which new definitions will be linked:. The link vocabulary is
specified by another variable called Because ICUF •: '.]
normally specifies the FORTH vocabulaLy, new definitiolm .Le
normally linked to the FORTH vocabulary.

But how does the system compile words into th,- --litor and
assembler vocabularies? By using the word IDEFINITI.:„:, as in

EDITOR DEFINITIONS

We know that +-h., word 	ITORI sets 'CONTEXT' to "EDITOR." The
word IDEFINITI1 	copie whatever is in ICONTEXTI into
The definition 	DEFINITIONS is ,simply

: DEFINITIONS CONTEXT @ CURRENT ! ;

Having entered

EDITOR DEFINITIONS

any words that you compile henceforth will belong to the editor

244
	

Starting 1.001(T11

vocabulary until you enter

FORTH DEFINITIONS

to reset ICURF 	to "FORTH."t

We've presented this introduction to'vocabularies mainly to
satisfy your curiosity, not to encourage you to add new

-v-oc-abul-a-ries-of-your own. The problem of defining different•
subsets of application words with conflicting names is better
handled by the use of overlays, which we discussed in Chap. 3.

tFor Curious polyFORTH Users

polvFORTH allows several vocabularies to be chained in sequence.
'CONTEXT' specifies the search order.

The polyFORTH dictionary is comprised of eight "linked lists"
which do not correspond with the vocabularies. At compile time a
hashing function, based on (usually) the first letter of the word
being defined, computes a "hashing index." This index is
combined with the "current" vocabulary to produce an index into
one of the eight lists.

Thus a single list may contain words from many vocabularies, but
any words with identical names belonging to separate
vocabularies will be linked to separate lists. The distribution
of entries in each chain is balanced, and an entire vocabulary
can be searched by searching only one-eighth of the dictionary.

9 UNDER THE HOOD
	

245

A Handy Hint

How to ILOCATE a Source Definition

Some FORTH systems, such as polyFORTH, feature a very useful
word called 1LOCATEI. If you enter

LOCATE EGGSIZE

FORTH will list the block that contains the definition of
EGGSIZE. The only requirements are that the word must be
resident (currently in the dictionary) and that the word must
have been loaded from a block. You therefore can locate
system electives and words in your application, but you can't
locate words in the precompiled portion.

246 	 Starting FORTH

' xxx 	 (acir)_ 	 Attempts to find the
address of xxx (the word
that follows in the input
stream) in the dictionary.

INTERPRET 	() 	 Interprets the input
stream, indexed by >IN ,
until exhausted.

EXECUTE 	(adr --) 	 Executes the dictionary
entry whose parameter
field address is on the
stack.

EXIT 	 () 	 When compiled within a
colon definition, termi-
nates execution of that
definition at that point.
When executed from 'a load
block, terminates inter-
pretation of the block at
that point.

QUIT () Clears both stacks and
returns 	control to 	the
terminal. 	No message is
given.

HERE (adr) Returns the next available
dictionary location.

PAD (adr) Returns 	the 	beginning
address of a scratch area
used to hold character
strings for intermediate
processing.

FORTH 	 () 	 Makes FORTH the CONTEXT
vocabulary.

EDITOR 	 () 	 Makes the editor
vocabulary the CONTEXT
vocabulary.

ASSEMBLER 	() 	 Makes the assembler
vocabulary the CONTEXT
vocabulary.

DEFINITIONS 	 Sets CURRENT to the
CONTEXT vocabulary so that
subsequent definitions will
be linked to this

vocabulary.

9 UNDER THE HOOD
	

247

Common User Variables
(Some not required by the FORTH-79 Standard.)

SO 	Pointer to the bottom of the parameter stack and,
for terminal tasks, the start of the input message
buffer.

SCR 	For the editor, a pointer to the current block
number (set by LIST and used by L).

R# 	Current character position in the editor.

BASE 	Number conversion base.

Dictionary pointer. Pointer to the next
available byte.

CONTEXT 	Contains up to four indexes for vocabularies to be
searched.

CURRENT 	Contains the index of the vocabulary to which new
definitions will be linked.

>IN 	Pointer to the current position in the input
stream.

BLK
	

If non-zero, a pointer to the block being
interpreted by LOAD. A zero indicates
interpretation from the terminal (via the input
message buffer).

OFFSET 	Block offset to disk drives. The content of
OFFSET is added to the stack number by BLOCK.

Additional Words Available in Some Systems

' compile time:
()

run time:
(adr)

Used only in a colon
definition, compiles
the address of the
next word in the definition
as a literal.

'S 	 (adr) 	 Returns the address of the
top of the stack before 'S
is executed.

240
	

S t Li 	loaRTI1

Review of Terms

Address
interpreter 	the second of FORTH's two interpreters, the one

which executes the list of addresses found in
the dictionary entry of a colon definition.
The address interpreter also handles the
nesting of execution levels for words within
wordc.

Body 	 the code and parameter fields of a FORTH
dictionary entry.

Boot 	 simply, to load the precompiled portion of
FORTH into the computer so that you can talk to
the computer in FORTH. This happens
automatically when you turn the computer on or
press "Reset."

Cfa 	 code field address; the address of a- dict-ionary
entry's code pointer field.

Control task
	

on a multitasked system, a task which cannot
converse with a terminal. Control tasks usually
run hardware devices.

-Code pointer
field 	 the cell in a dictionary entry which contains

the address of the run-time code for that
particular type of definition. For example, in
a dictionary entry created by 0, the field
points to the address interpreter.

Defining word 	a FORTH word which cr• L.• • .dictionary entry.
Examples include E, 	". , VARIABLE, etc.. -

Electives the set of FORTH definitions that come with a
system but not in the precompiled portion. The
''electives block" loads the blocks that
contain the elective definitions; the block can
be modified as the user desires.

Head 	 the name and link fields of a FORTH dictionary
entry.

Input message
buffer the region of memory within a terminal task

that is used to store text as it arrives from a
terminal. Incoming source text is interpreted
herP.

9 UNDER THE HOOD 	 249

Link field

Name field

the cell in a dictionary entry which contains
the address of the previous definition, used in
searching the dictionary. (On systems which
use multiple chains, the link field contains the
address of the previous definition in the same
chain.)

the area of a dictionary entry which contains
the name (or abbreviation thereof) of the
defined word, along with the number of
characters in the name.

Pad 	 the region of memory within a terminal task
that is used as a scratch area to hold
character strings for intermediate processing.

Parameter field 	the area of a dictionary entry which contains
the "contents" of the definition: for a

, the value of the constant; for a
, the value of the variable; for a

colon definition, the list of addresses of
words that are to be executed in turn when the
definition is executed. Depending on its use,
the length of a parameter field varies.

Pfa 	 parameter field address; the address of the
first cell in a dictionary entry's parameter
field (or, if the parameter field consists of
only one cell, its address).

Precompiled
portion

Run-time code

the part of the FORTH system which is resident
in object form immediately after the power-up
or boot operation. The precompiled portion
usually includes the text interpreter and the
address interpreter; defining, branching, and
structure-control words; single-length math and
stack operators; single-length number
conversion and formatting commands; the
editor; and the assembler.

a routine, compiled in memory, which specifies
what happens when a member of a given class of
words is executed. The run-time code for a
colon definition is the address interpreter;
the run-time code for a variable pushes the
contents of the variable's pfa onto the stack.

System variable one of a set_of variables provided by FORTH
which are referred to system-wide (by any
task). Contrast with "user variable."

ILONSTAN1

250 	 Starting FORTH

Task

Terminal task

User variable

in FORTH, a partition in memory that contains
at minimum a parameter and a return stack and a
set of user variables.

on a multitasked system, a task which can
converse with a human being using a terminal;
i.e., one which has a text interpreter,
dictionary, etc.

one of a set of variables provided by FORTH,
whose values are unique for each task.
Contrast with "system variable."

Vectored
execution 	the method of specifying code to be executed

by providing not the address of the code itself
but the address of a location which contains
the address of the code. This location is
often called the "vector." As circumstances
change within the system, the vector can be
reset to point to some other piece of code.

Vocabulary 	an independently linked subset of the FORTH
dictionary.

9 UNDER THE HOOD 	 251

Problems -- Chapter 9

1. First review Chap. 2, Prob. 6. Without changing any of those
definitions, now write a word called COUNTS which will allow
the judge to optionally enter the number of counts for any
crime. For instance, the entry

CONVICTED-OF BOOKMAKING 3 COUNTS TAX-EVASION
WILL-SERVECIEMD 17 YEARS ok

will compute the sentence for one count of bookmaking and
three counts of tax evasion.

2. What is the beginning address of your private dictionary?

3. In your system, how far is the pad from the top of your
private dictionary?

4. Assuming that DATE has been defined by VARIABLE, what is
the difference between these two phrases:

DATE .

and

' DATE .

What is the difference between these two phrases:

BASE .

and

' BASE .

5. In this exercise you will cre,ate a "vectored execution
array," that is, an array which contains addresses of FORTH'
words. You will also create an operation word which will
execute one word stored in the array when the operation
word is executed.

Define a one-dimensional array of two-byte elements which
will return the nth element's address when given a preceding
subscript n. Define several words which output someEging—it-
your terminal and take no inputs. Store the addresses of
these output words in various elements of the array. Store
the address of a do-nothing word in any remaining elements

252, 	 Starting FORTH

of the array. Define a word which will take a valid array
index and execute the word whose address is stored in the
referenced element.

For example,

1 DO-SOMETHING HELLO, I SPEAK FORTH. ok
2 DO-SOMETHING 1 2 3 4 5 6 7 8 9 10 ok
DO-SOMETHING

**********.
4 DO-SOMETHING ok
5 DO-SOMETHING ok

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38

