
8 VARIABLES, CONSTANTS, AND ARRAYS

As we have seen throughout the previous seven chapters, FORTH
programmers use the stack to store numbers temporarily while they
perform calculations or to pass arguments from one word to
another. When programmers need to store numbers more
permanently, they use variables and constants.

In this chapter, we'll learn how FORTH treats variables and
constants, and in the process we'll see how to directly access
locations in memory.

Variables

Let's start with an example of a situation in which you'd want to
use a variable--to store the day's date.t First we'll create a
variable called DATE. We do this by saying

VARIABLE DATE

If today is the twelfth, we now say

12 DATE !

that is, we put a twelve on the stack, then give the name of the
variable, then finally execute the word B, which is pronounced
store. This phrase stores the number twelve into the variable
DATE.

Conversely, we can say

tFor Beginners

Suppose your computer generates bank statements all day, and
every statement must show the date. You don't want to keep the
date on the stack all the time, and you don't want the date to be
part of a definition that you'd have to redefine every day. You
want to use a variable.

183

1114 	 Starting 1.01al1

DATE @

that is, we can name the variable, then execute the word U,
which is pronounced fetch. This phrase fetches the twelve and
puts it on the stack. This the phrase

DATE @ . 12 ok

prints the date.

To make matters even easier, there is a FORTH word whose
definiti6n is this:

: ? 	@ . ;

_So_instead of "DATE-fetch-dot," we could simply type

DATE ? 12 ok

The value of DATE will be twelve until we change it. To change
it, we simply store a new number:

13 DATE ! ok
DATE ? 13 ok

Conceivably we could define additional variables for the month
and y.ear:,_

VARIABLE DATE VARIABLE MONTH VARIABLE YEAR

then define a word called !DATE (for "store - the-date") like this:

: !DATE YEAR ! DATE I MONTH ! ;

to be used like this:

7 31 80 !DATE ok

then define a word called .DATE (for "print-the-date") like this:

.DATE MONTH ? DATE ? YEAR ? ;

Your FORTH system already has a number of variables defined; one
is called IBASEl. :BASE' contains the number base that you're
currently worki 	in. In fact, the definitions of 	and

IMALI (and FO-C".=,), if your system has it) are simply

: DECIMAL 10 BASE ! ;
: HEX 	16 BASE !
: OCTAL 	8 BASE ! ;

ALRIABLES, CONSTANTS, AND ARRAYS
	

185

can work in any number base by simply storing it into [BASE(t

:4newhere in the definitions of the system words which perform
and output number conversions, you will find the phrase

BASE @

:ecause the current value of ISASE is used in the conversion
,;:ocess. Thus a single routine can convert numbers in any base.
'This leads us to make a formal statement about the use of

Urn 1111 1
s,

■no

■11..

dd.

41111.

111111 1 1111111111111111111111111111W

In FORTH, variables are appropriate for any
c=„c value that is used inside a definition

which may need to change at any time after
the definition has already been compiled.

■■
■■
■■
■■
■■
■■
■■
■■
■■

A Closer Look at Variables

When you create a variable such as DATE by using the phrase

VARIABLE DATE

you are really compiling a new word, called DATE, into the
dictionary. A simplified view would look like this:

tFor Experts

A three-letter code such as an airport terminal name, can be
stored as a single-length unsigned number in base 36. For
example:

: ALPHA 36 BASE I ; ok
ALPHA ok
ZAP U. ZAP ok

DATE

instruction code
appropriate for

variables

space for the
actual value
to be stored

186 	 Starting FORTH

DATE is like any other word in your dictionary except that you
defined it with the word VARIABLE instead of the word E. As a
result, you have to define what your definition would do;
the word IVA1,.-:—L—E1 itself spells out what is supposed to happen.
And here is what happens:

When you say

12 DATE !

Twelve goes onto
the stack,

then the text
interpreter looks
up DATE in the
dictionary

and, finding it,
poinfe it out
to 7 	uTEI.

'For Experts

In the next chapter we'll show you what a dictionary entry really
looks like in memory.

DATE

code for
variables

2076

8 VARIABLES, CONSTANTS, AND ARRAYS 	 187

DATE

code for
variables

empty
cell

2076

EXECUTE executes a variable by copying the address of the
variab e s "empty" cell (where the value will go) onto the stack.t

The word 8 takes the ad-
dress (on top) and the value
(underneath), and stores the

value into that location.
Whatever number used to be
at that address is replaced
by the new number.

(To remember what order the arguments belong in, think of setting
down your parcel, then sticking the address label on top.)

tFor Beginners

In computer terminology, an address is a number which identifies
a location in computer memory. For example, at address 2076
(addresses are usually expressed as hexadecimal, unsigned
numbers), we can have a 16-bit representation of the value 12.
Here 2076 is the "address"; 12 is the "contents."

188
	

Starting FORTH_ ,
. 	 '

The word EE expects one argument only: an address, which in this
case is supplied by the name of the variable, as in

DATE @

r 20 76

Using the value on the stack as an address, the word 	pushes
the contents of that location onto the stack, "dropping" the
address. (The contents of the location remain intact.)

Using •a Variable as a Counter

In FORTH, a variable
is ideal for keeping
a count of something.
To reuse our egg-
packer example, we
might keep track of
how many eggs go
down the conveyor
belt in a single day.
(This example will
work at your terminal,
so enter it as we go.)

First we can define

VARIABLE EGGS

to keep the count in. To start with a clean slate every morning,
we would store a zero into EGGS by executing a word whose -
definition looks like this:

: RESET 	0 EGGS ! ;

Then somewhere in our egg-packing application, we would define a
word which executes the following phrase every time an egg

8 VARIABLES, CONSTANTS, AND ARRAYS 	 189

passes an electric eye on the conveyor:

1 EGGS +!

The word H!! adds the given value to the contents of the given
address.t (It doesn't bother to tell you what the contents are.)
Thus the phrase

1 EGGS +!

increments the count of eggs by one. For purposes of
illustration, let's put this phrase inside a definition like this:

: EGG 1 EGGS +! ;

At the end of the day, we would say

EGGS ?

to find out how many eggs went by since morning.

Let's try it:

RESET ok
EGG ok

 EGG ok
EGG ok
EGGS ? 3 ok

Here's a review of the words we've covered in the chapter so far:

tFor the Curious

FT is usually defined in assembly language, but an equivalent
high-level definition is

: +1 	DUP @ ROT + SWAP 1 ;

1.90 	 LI IL O ': Ling 1 01I1'I I

VARIABLE xxx ()

xxx: (adr)

(n adr)

(adr 	n)

(adr Prints the contents of quest
the address, followed---
by one space.

+! riJ Adds a 16-bit number to (n adr) 	
P ks' the contents of the stor e

address.

Creates a variable vary:: ■
named xxx;
the word xxx returns
its address when
executed.

Stores a 16-bit number stare
into the address.

Replaces the address fetch'
with its contents. 	 r-

Constants

While variables are normally used for
values that may change, constants are used
for values that won't change. In FORTH, we
create a constant and set its value at the
same time, like this:

220 CONSTANT LIMIT

Here we have defined a constant named
LIMIT, and given it the value 220. Now we
can use the word LIMIT in place of the
value, like this:

LIMIT

instruction code
appropriate for

constants

220

: ?TOO.HOT LIMIT > IF ." DANGER -- REDUCE HEAT " THEN ;

If the number on the stack is greater than 220, then the warnin7
message will be printed.

Notice that when we say

LIMIT

we get the value, not the address. We don't need the "fete::

8 VARIABLES, CONSTANTS, AND ARRAYS 	 191

This is an important difference between variables and constants.t
The reason for the difference is that with variables, we need the
address to have the option of fetching or storing. With
constants, we always want the value; we almost never store.

One use for constants is to name a hardware address. For
example, a microprocessor-controlled camera application might
contain this definition:

: PHOTOGRAPH SHUTTER OPEN TIME EXPOSE SHUTTER CLOSE ;

Here the word SHUTTER has been defined as a constant so that
execution of SHUTTER returns the hardware address of the
camera's shutter. It might, for example, be defined:

HEX
3E27 CONSTANT SHUTTER
DECIMAL

The words OPEN and CLOSE might be defined simply as

: OPEN 	1 SWAP ! ;
: CLOSE 0 SWAP ! ;

so that the phrase

SHUTTER OPEN

writes a "1" to the shutter address, causing the shutter to open.

Here are some situations when it's good to define numbers as
constants:

1. When it's important that you make your application more
readable. One of the elements of FORTH style is that
definitions should be self-documenting, as is the
definition of PHOTOGRAPH 'above.

t For People Who Intend to Use polyFORTH's Target CompilerTm•

In your case the difference is more profound. A constant's value
will be compiled into PROM; a variable compiles into PROM a
reference to a location in RAM.

192
	

Starting FORTH

2 	When it's more convenient to use a name instead of the
number. For example, if you think you may have to
change the value (because, for instance, the hardware
might get changed) you will only have to change the
value once--in the block where the constant is
defined--then recompile your application.

3 	When you are using the same value many times in your
	 application. In the compiled form of a definition,

reference to a constant requires less memory space.t

CONSTANT xxx (n)

	

xxx: (n)
Creates a constant named
xxx with the value n; the
word xxx returns n when
executed.

tFor polyFORTH Users

Because of reason 3, polyFORTH includes constant-definitions of
two often-used numbers:

0 CONSTANT 0
1 CONSTANT 1

VARIABLES, CONSTANTS, AND ARRAYS 	 193

Double-length Variables and Constantst

You can define a double-length variable by using the word
!2VARIABLE. For example,

2VARIABLE DATE

Now you can use the FORTH words En (pronounced two-store) and
2@ (two-fetch) to access this double-length variable. You can
store a double-length number into it by simply saying

800,000 DATE 2!

and fetch it back with

DATE 29 D. 800000 ok

Or you can store the full month/date/year into it, like this:

7/16/81 DATE 2!

and fetch it back with

DATE 28 .DATE 7/16/81 ok

assuming that you've loaded the version of .DATE we gave in the
last chapter.I

man dafine a double-length constant by using the FORTH word
.. 	 like this:

200,000 2CONSTANT APPLES

Now the word APPLES will place the double-length number on the
stack.

APPLES D. 200000 ok

tFORTH-79 Standard

The words described in this section are not required except in
the Double Number Word Set.

For polyFORTH Users

polyFORTH uses an even-more-clever arrangement to store the date
as one single-length integer.

194 	 VORTil

Use of j2CC': 'PANT becomes necessary when you need to include a
double-lent',i, value inside a definition. In FORTH the only way
to '- this is by first defining the double-length value as a
12CC •: CANTI. For example, to define a word which adds 400,000 to

- - a duuole-length value on the stack, we must define

	400,000 2CONSTANT MUCH
: MUCH-MORE MUCH D+ ;

in order to be able to say

APPLES MUCH-MORE D. 600000 ok t

--A"'g—Eh-e- prefix "2" reminds us, We can also use 12CONSTAN'Iq to
define a pair of single-length numbers. The reason for putting
two numbers under the same name is a matter of convenience and
of saving space in the dictionary.

As an example, recall (from Chap. 5) that we can use the phrase

355 113 */

to multiply a number by an Pnoroximation of pi. We could store
these two integers as a I2C-1 '. 	 as as follows:

355 113 2CONSTANT PI

then simply use the phrase

PI */

as in

10000 PI */ . 31415 ok

Here is a review of the double-length data-structure words:

tFor polyFORTH Users

polyFORTH includes the following definition for a double-length
zero for convenient use inside a colon definition:

O. 2CONSTANT O.

VARIABLES, CONSMNT2S,

2VARIABLE xxx () 	 Creates a double-length r two: \
variable named xxx; 	variabilt

	

xxx: (adr) 	the word xxx returns
its address when exe-
cuted.

2CONSTANT xxx (d) 	 Creates a double-length two-
constant named xxx constont
with the value d;

xxx: (d) 	the word xxx returns
the value d when exe-
cuted.

2! 	 (d adr) 	Stores a double-length two-
number into the ad- Store
dress.

2@ 	 (adr 	d)
	

Returns the double- two-
length contents of the fetch
address.

Arrays

As you know, the phrase

VARIABLE DATE

creates a definition which conceptually looks like this:

DATE

code

room for a
single-length value

Now if you say

2 ALLOT

an additional two bytes are allotted in the definition, like this:

code

room for a
single-length value

ditto

room for two single length values
(or one double-length value)

DATt

c\L) 	1,

(77

196 	 S Lou Ling FORTH

The result is the same as if you had used 2VARIABLE[. By
changing the argument to !ALLOT', however, you can define any
number of variables under the same name. Such a group of
variables is called an "array."

For example, let's say that in our laboratory, we have not just
one, but five burners that heat various kinds of liquids.

We can make our word ?TOO-HOT check that all five burners have
not exceeded their individual limit if we define LIMIT using an
array rather than a constant.

Let's give the array the name LIMITS, like this:

VARIABLE LIMITS 0 ALLOT

The phrase "8 ALLOT" gives the array an extra eight bytes or
four cells (five cells in all).

340

340
E_.

316 2

340

LIMITS

3162

2+

3 ■ 64

3166

340

340 LIMITS 2+ !

8 VARIABLES, CONSTANTS, AND ARRAYS 	 197

LIMITS

code

room for
burner-0's limit

room for
burner-"I's limit

room for
burner-2's limit

room for
burner-3's limit

room for
burner-4's limit

addresses

3162

3164

3166

3168

316A

Suppose we want the limit for burner 0 to be 220. We can store
this value by simply saying

220 LIMITS !

because LIMITS returns the address of the first cell in the array.
Suppose we want the limit for burner 1 to be 340. We can store
this value by adding 2 bytes to the address of the original cell,
like this:

198 	 Starting FORTH

We can store limits for burners 2, 3, and 4 by adding the
"offsets" 4, 6, and 8, respectively, to the original address.
Since the offset is always double the burner number, we can
define the convenient word

: LIMIT 2* LIMITS +

to take a burner number on the stack and compute an address that
reflects the appropriate offset.t

Now if we want the value 170 to be the limit for burner 2, we
simply say

170 2 LIMIT 1

or similarly, we can fetch the limit for burner 2 with the phrase

2 LIMIT ? 170 ok

This technique increases the usefulness of the word LIMIT, so
that we can redefine ?TOO.HOT as follows:

: ?TOO.HOT 	(burner# temp --)
LIMIT @ > IF ." DANGER -- REDUCE HEAT " THEN ;

which works like this:

210 0 ?TOO.HOT ok
230 0 ?TOO.HOT DANGER -- 	HEAT ok
300 1 ?TOO.HOT ok
350 1 ?TOO.HOT DANGER -- REDUCE HEAT ok

etc.

tFor Beginners

a) Some people call the "offset" an "index," and some people
say that one uses an offset to "index into" an array.

b) The reason we number our burners 0 through 4 instead of 1
through 5 is so that we can use the burner number itself
(doubled for byte addressing) as the offset.

A thing which most people would call the "first" in a series,
programmers think of as the "zeroth." Still, if you need to
call the burner on the left "burner 1," you can simply
change LIMIT to say

: LIMIT 1- 2* LIMITS + ;

8 VARIABLES, CONSTANTS, AND ARRAYS 	 199

Another Example — Using an Array for Counting

Meanwhile, back at the egg ranch:

Here's another example of an array. In this example, each
element of the array is used as a separate counter. Thus we can
keep track of how many cartons of "extra large" eggs the machine
has packed, how many "large," and so forth.

Recall from our previous definition of EGGSIZE (in Chap. 4) that
we used four categories of acceptable eggs, plus two categories
of "bad eggs."

0 REJECT
1 SMALL
2 MEDIUM
3 LARGE
4 EXTRA LARGE
5 ERROR

So let's create an array that is six cells long:

VARIABLE COUNTS 10 ALLOT

The counts will be incremented using the word 711, so we must be
able to set all the elements in the array to zero before we begin
counting. The phrase

COUNTS 12 0 FILL

will fill twelve bytes, starting at the address of COUNTS, with
zeros. If your FORTH system includes the word IERASEI,t it's
better to use it in this situation. 'ERASE' fills the given number
of bytes with zeroes. Use it like this:

COUNTS 12 ERASE

FILL

ERASE

(adr n b)

(adr n)

Fills n bytes of memory,
beginning at the address,
with value b.

Fills n bytes of memory,
beginning at the address,
with zeroes.

t FORTH-79 Standard

...•ASEI is included in the optional Reference Word Set.

___The "1" serves as the increment for 1+1
arguments for 1±1.1 in the order they belong,

, and ISWAPI puts the
i.e., (n adr).

200
	

Starting FORTH__

--For—convenience, we can put the phrase inside a definition, like'
this:

: RESET COUNTS 12 ERASE ;
..„

Now let's define a word which will give us the address of one of
the counters, depending on the category number it is given (0,
through 5), like this:

: COUNTER 2* COUNTS + 7

—and—another word which will add one to the counter whose' numbei
is given, like this:

: TALLY COUNTER 1 SWAP +! ;

Now, for instance, the phrase

3 TALLY

will increment the counter that corresponds to large eggs.

Now let's define•aword which converts the weight per dozen into
a category number:

CATEGORY 	DUP 1II < IF 0 ELSE
DUP 2 1 < IF 1 ELSE
DUR 24 < IF 2 ELSE
DUP 27 < IF 3 ELSE
DUP 30 < IF 4 ELSE

5
THEN THEN THEN THEN THEN SWAP DROP -;'t

(By the time we get to the phrase "SWAP DROP," we will have two
values on the stack: the weight which we have been IDUPling and
the category number, which will be on top. We want only the
category number; "SWAP DROP" eliminates the weight.)

t For Experts

We'll see a simpler definition at the end of this chapter:

8 VARIABLES, CONSTANTS, AND ARRAYS 	 201

For instance, the phrase

25 CATEGORY

will leave the number 3 on the stack. The above definition of
CATEGORY resembles our old definition of EGGSIZE, but, in the
true FORTH style of keeping words as short as possible, we have
removed the output messages from the definition. Instead, we'll
define an additional word which expects a category number and
prints an output message, like this:

: LABEL 	DUP Or. IF ." REJECT " 	ELSE
DUP 1 = IF ." SMALL " 	ELSE
DUP 2 = IF ." MEDIUM " 	ELSE
DUP 3 = IF ." LARGE " 	ELSE
DUP 4 = IF ." EXTRA LARGE " ELSE

." ERROR "
THEN THEN THEN THEN THEN DROP ;

For example:

1 LABEL SMALL ok

Now we can define EGGSIZE using three of our own words:

: EGGSIZE CATEGORY DUP LABEL TALLY ;

Thus the phrase

23 EGGSIZE

will print

MEDIUM ok

at your terminal and update the counter for medium eggs.

How will we read the counters at the end of the day? We could
check each cell in the array separately with a phrase such as

3 COUNTER ?

(which would tell us how many "large" cartons were packed). But
let's get a little fancier and define our own word to print a
table of the day's results in this format:

1For Experts

We'll see a more elegant version of this definition in the next
chapter.

202
	

Starting FORTH

QUANTITY 	SIZE

	

1 	 REJECT

	

112 	 SMALL

	

132 	 MEDIUM

	

143 	 LARGE

	

159 	 EXTRA LARGE

	

0 	 ERROR

Since we have already devised category numbers, we can simply
use a 00 loop and index on the category number, like this:

	

: 	REPORT 	PAGE 	." QUANTITY 	SIZE" CR CR
. 	6 0 DO I COUNTER 0. 5 U.R

7 SPACES I LABEL CR 	LOOP ;

(The phrase

I COUNTER @ 5 U.R

takes the category number given by 1j, indexes into the array,
and prints the contents of the proper element in a five-column
field.)

Factoring Definitions

This is a good time to talk about factoring as it applies to
FORTH definitions. We've just seen an example in which factoring
simplified our problem.

Our first definition of EGGSIZE, from Chap. 4, categorized eggs by
weight and printed the name of the categories at the terminal.
In our present version we factored out the "categorizing" and the
"printing" into two separate words. We can use the word
CATEGORY to provide the argument either for the priffting word or
the counter-tallying word (or both). And we can use the printing
word, LABEL, in both EGGSIZE and REPORT.

As Charles Moore, the inventor of FORTH, has written:

A good FORTH vocabulary contains a large number of small
words. It is not enough to break a problem into small
pieces. The object is to isolate words that can be reused.

For example, in the recipe:

8 VARIABLES, CONSTANTS, AND ARRAYS 	 203

Get can of tomato sauce.
Open can of tomato sauce.
Pour tomato sauce into pan.
Get can of mushrooms.
Open can of mushrooms.
Pour mushrooms into pan.

you can "factor out" the getting, opening, and pouring, since
they are common to both cans. Then you can give the
factored-out process a name and simply write:

TOMATOES ADD
MUSHROOMS ADD

and any chef who's graduated from the Postfix School of Cookery
will know exactly what you mean.

Not only does factoring make a program easier to write (and fix!),
it saves memory space, too. A reusable word such as ADD gets
defined only once. The more complicated the application, the
greater the savings.

Here's another thought about FORTH style before we leave the egg
ranch. Recall our definition of EGGSIZE

: EGGSIZE CATEGORY DUP LABEL TALLY ;

CATEGORY gave us a value which we wanted to pass on to both
LABEL and TALLY, so we include the IDUP. To make the definition
"cleaner," we might have been tempted to take the IDUF1 out and
put it inside the definition of LABEL, at the beginning. Thus we
might have written

: EGGSIZE CATEGORY LABEL TALLY ;

where CATEGORY passes the value to LABEL, and LABEL passes it on
to TALLY. Certainly this approach would have worked. But then,
when we defined REPORT, we would ha-ve had to say

I LABEL DROP

instead of simply

I LABEL

FORTH programmers tend to follow this convention: when possible,
words should destroy their own parameters. In general, it's
better to put the IDUP1 inside the "calling definition" (EGGSIZE,
here) than in the "called" definition (LABEL, here).

20/1
	

S tar Ling 1CORTI1
• 	7 :f

Another Example — "Looping" through an Array

We'd like to introduce a little technique that is relevant to
arrays. We can best illustrate this technique by writing our own
definition of a FORTH word called IDUMPI.t rDUMPI is used to print
out the contents of a series of memory addresses. The usage is.•

adr count DUMP

For instance, we could enter

COUNTS 12 DUMP

to print out the contents of our egg-counting array called
—COUNTS. Since IDUMPI is primarily designed as a programming tool

to print out the contents of memory locations, it prints either
byte-by-byte or cell-by-cell, depending on the type of
addressing the computer uses. Our version of 1DUMP[will print
cell-by-cell.

Obviously our 1DUMP will involve a [DOI loop. The question is:
what should we use for an index? Although we might use the count
itself (0 - 6) as the loop index, it's better to use the address as
the index.

The address of COUNTS will be the starting index for the loop,
while the address plus the count will serve as the limit, like
this:

- - - 	- 	-
: DUMP OVER + SWAP DO CR I @ 5 U.R 2 /LOOP ; +

The key phrase here is

OVER + SWAP

which immediately precedes the ID Ol

tFORTH-79 Standard

The Standard does not require 'DUMP)

i."For Those Whose Systems Do Not Have /LOOP

Substitute H- Loo P]

Count

startin3
address

startins
address

count

start-1.15
address

1

SWAP

Siarti'm
address

end ing
address

VARIABLES, CONSTANTS, AND ARRAYS 	 205

end tr13
address

Starting
address

L 1

C

The ending and starting addresses are now on the stack, ready to
serve as the limit and index for the DO loop. Since we are
"indexing on the addresses," once we are inside the loop we
merely have to say

I @ 5 U.R

to print the contents of each element in the array. Since we are
examining bytes in pairs (because E fetches a 16-bit value), we
increment the index by two each time, by using

2 /LOOP

C!

C@

(b adr)

(adr 	b)

Stores an 8-bit
value into the
address.

Fetches an 8-bit
value from the
address.

206 	 Starting FORT!!
. 	. 	.

—Byte-Arrays

FORTH lets you create an array in which each element consists of
—a single byte rather than a full cell. This is useful any time

you are storing a series of numbers whose range fits into that
which can be expressed within eight bits.

qj

co
cV

tri
'N

--The-range of an unsigned 8-bit number is 0 to 255: Byte arrays
are ,also used to store ASCII character strings. The benefit of
using a byte array instead of a cell array is that you can get
the same amount of data in half the memory space.

The mechanics of using a byte array are the same as using a cell
array except that

1. 	you don't have to double the offset, since each element
corresponds to one address, and

-2. -you must-use--the words [671 and FCTI i.ntead-of B an-d
These words, which operate on byte values only, have
been given the prefix "C" because their typical use is
accessing ASCII characters.

CV
"'") N

I-CREATE' LIMITS

4 LIMITS

2200 340

LIMITS
code -For
CREATE

220

LIMITS
code For

CREATE

220
340

code for

CREATE

d ict ionary

8 VARIABLES, CONSTANTS, AND ARRAYS 	 207

Initializing an Array

Many situations call for an array Whose values never change
during the operation of the application and which may as well be
stored into the array at the same time that the array is created,
just as CONSTANT s are. FORTH provides the means to accomplish
this through the two words CREATE! and 0 (pronounced create and
comma).

Suppose we want permanent values in our LIMITS array. Instead of
saying

VARIABLE LIMITS 8 ALLOT

we can say

CREATE LIMITS 220 , 340 , 170 , 100 , 190 ,

Usually the above line would be loaded from a disk block, but it
also works interactively.

Like the word (VARIABLE , ICREATEI puts a new name in the
dictionary at compile time and returns the address of that
definition when it is executed. But it does not "allot" any
bytes for a value.

The word N takes a number off the stack and stores it into the
array. So each time you express a number and follow it with [1],
you add one cell to the array.t

t For Newcomers

Ingrained habits, learned from English writing, lead some
newcomers to forget to type the final p in the line. Remember
that 2 does not separate the numbers, it compiles them.

208 Starting FORTH
-• 	• 	.■ 	 .

You can access the elements in a
the elements in a VARIABLE array.

CREATE array just as you would' '
For example:

LIMITS 2+ @ 340 ok

You can even store new values into the array, just as you would
into a 'VARIABLE] array, as long as you don't do this in an
application that you someday hope to target compile.t

To initialize a byte-array that has been defined with KT"'Fq,
you can use the word 1C,1 (c-comma)..1. For instance, we could yore
each of the values used in our egg-sorting definition CATEGORY as
follows:

CREATE SIZES 18 C, 21 C, 24 C, 27 C, 30 C, 255 C,

This would allow us to redef: . ra.TEGORY using a [-DOI loop rather
than a series of nested Pl... _ 	statements, as follows

CATEGORY 6 0 DO DUP SIZES I + C@
< IF DROP I - LEAVE THEN LOOP ;

Note that we,,have.added a maximumA255) to : the array-7to.simplify
our definition regarding category 5.

Including the initialization of the SIZES array, this version
takes only three lines of source text as opposed,to six_and takes,
less sPaceinth6'dictiOnary, too.

tFor People Who Intend to Use polyFORTH's Target Compiler

In a target-compiled application, VARIABLE] arrays will reside
 tables defined by CREATE and initialized by n or 1Cfli

reside, fixed, in PROM-

+FORTH-79 Standard

El is included in the optional Reference Word Set.

For People Who Don't Like Guessing How It Works

The idea here is this: since there are five possible categories,
we can use the category numbers as our loop index., Each time
around, we compare the number on the stack against the element
in SIZES, offset by the current loop index. As soon as the
weight on the stack is greater than one of the elements in the
array, we leave the loop and use to tell us how many times we
had looped before we "left." Since this number is our offset
into the array, it will also be our category number.

8 VARIABLES, CONSTANTS, AND ARRAYS 	 209

Here is a list of the FORTH words we've covered in this chapter:

CONSTANT xxx (n)

	

xxx: (n)
Creates a constant named
xxx with the value n; the
word xxx returns n when
executed.

VARIABLE xxx () 	 Creates a variable named
xxx; the word xxx returns

xxx: (adr) 	its address when executed.

CREATE xxx 	() 	 Creates a dictionary entry
(head and code pointer

xxx: 	adr) 	only) named xxx; the word
xxx returns its address when
executed.

(n adr) 	Stores a 16-bit number into
the address.

(adr 	n) 	 Replaces the address with its
contents.

(adr) 	 Prints the contents of the
address, followed by one
space.

(n adr) 	Adds a 16-bit number to the
contents of the address.

ALLOT 	 (n) 	 Adds n bytes to the para-
meter field of the most
recently defined word.

(n) 	 Compiles n into the next
available cell in the dic-
tionary.

Cl 	 (b adr) 	Stores an 8-bit value into
the address.

C@ 	 (adr 	b) 	 Fetches an 8-bit value from
the address.

FILL 	 (adr n b) 	Fills n bytes of memory,
beginning at the address,
with value b.

BASE 	 (n) 	 A variable which contains
the value of the number base
being used by the system.

Additional Words

0

1

O.

Available in Some Systems

(0)

(1)

(--0 0)

Returns the constant zero.

Returns the constant one.

Returns the double-length

210 	 Starting FORTH

Double-length Operators (Optional in FORTH-79 Standard)

2VARIABLE xxx () 	 Creates a double-length
variable named xxx;

	

xxx: (adr) 	the word xxx returns its
address when executed.

2CONSTANT xxx (d) 	 Creates a double-length
constant named xxx with
the value d;

	

xxx: (d) 	the word xxx returns the
value d when executed.

2! 	 (d adr) 	Stores a double-length
number into the address.

2@ 	 (adr 	d) 	 Returns the double-length
contents of the address.

Words Included in the FORTH-79 Standard Reference Word Set

C, (b) Compiles b into the next
available byte in the
dictionary.

DUMP
	

(adr u) 	Displays u bytes of memory,
starting at the address..

ERASE (adr n) Stores zeroes into n bytes
of memory, beginning at
adr.

constant zero.

KEY

n, 	nl 	... 16-bit signed numbers b 8-bit byte
d, dl, 32-bit signed numbers f Boolean flag
u, ul, 16-bit unsigned numbers c ASCII character

value
ud, udl, 	... 32-bit unsigned numbers adr address

VARIABLES, CONSTANTS, AND ARRAYS 	 211

Review of Terms

Array

Constant

Factoring

a series of memory locations with a single
name. Values can be stored and fetched into
the individual locations by giving the name of
the array and adding an offset to its address.

a value which has a name. The value is stored
in memory and usually never changes.

as it applies to programming in FORTH,
simplifying a large job by extracting those
elements which might be reused and defining
those elements as operations.

Fetch 	 to retrieve a value from a given memory
location.

Initialize 	to give a variable (or array) . its initial
value(s) before the rest of the program begins.

Offset 	 a number which can be added to the address of
the beginning of an array to produce the
address of the desired location within the
array.

Store 	 to place a value in a given memory location.

Variable 	 a location in memory which has a name and in
which values are frequently stored and fetched.

212 	 Starting FORTH

---- Problems — Chapter 8

1. 	a) Write two words called BAKE-PIE and EAT-PIE. The first
word increases the number of available PIES by one. The
second decreases the number by one and thanks you for the
pie. But if there are no pies, it types "What pie?"
(Make sure you start out with no pies.)

EAT-PIE WHAT PIE?
BAKE-PIE ok
EAT-PIE THANK YOU! ok

b) Write a word called FREEZE-PIES which takes all the
available pies and adds them to the number of pies in the
freezer. Remember that frozen pies cannot be eaten.

BAKE-PIE BAKE-PIE FREEZE-PIES ok
PIES ? 0
FROZEN-P.1_2 ? 2 ok

2. Define a wbrd called .BASE which prints the current value of

{BASE
the variable [BASE! in decimal. Test it by first changing

to some , value other, than: ten. (This one's trick„ier
than it may seem.)

DECIMAL .BASE 10 ok

HEX .BASE 16 ok

3. Define a number-formatting word called M. which prints a
double-length number with a decimal point. The position of
the decimal point within the number is movable and depends
on the value of a variable that you will define as PLACES.
For example, if you store a "1" into PLACES, you will get

200,000 M. 20000.0 ok

that is, with the decimal point one place from the right. A
zero in PLACES should produce no decimal point at all.

VARIABLES, CONSTANTS, AND ARRAYS 	 213

4. In order to keep track of the inventory of colored pencils
in your office, create an array, each cell of which contains
the count of a different colored pencil. Define a set of
words so that, for example, the phrase

RED PENCILS

returns the address of the cell that contains the count of
red pencils, etc. Then set these variables to indicate the
following counts:

23 red pencils
15 blue pencils
12 green pencils
0 orange pencils

5. A histogram is a graphic representation of a series of
values. Each value is shown by the height or length of a
bar. In this exercise you will create an array of values and
print a histogram which displays a line of "*"s for each
value. First create an array with about ten cells.
Initialize each element of the array with a value in the
range of zero to seventy. Then define a word PLOT which
will print a line for each value. On each line print the
number of the cell followed by a number of "*"s equal to the
contents of that cell.

For example, if the array has four cells and contains the
values 1, 2, 3, and 4, then PLOT would produce:

Starting:FORTH:7-T

6. Create an application that displays a tic-tac-toe board, so
that two human playerS can make their moves by entering them
from the keyboard. For example, the phrase

4 X!

puts an "X" in box 4 (counting starts with 1) and produces
this display:

X I

Then the phrase

3 0!

puts an "0" in box 3 and prints the display:

I 	1 	0

X I

Use a byte array to remember the contents of the board, with
the value 1 to signify an "X," a -1 to signify a "0," and a 0
to signify an empty box.

(NOTE: until we explain more about vocabularies, avoid
naming .nything "X," since this may conflict with the
editor's 21.)

-214

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

