
7 A NUMBER OF NINE'S OF NUMBERS

So far we've only talked about signed single-length numbers. In
this chapter we'll introduce unsigned numbers and double-length
numbers, as well as a whole passel of new operators to go along
with them.

The chapter is divided into two Sections:

For beginners—this section explains how a computer looks at
numbers and exactly what is meant by the terms signed or
unsigned and by single-length or double-length.

For,everyone--this section continues our discussion of FORTH
for beginners and experts alike, and explains how FORTH
handles signed and unsigned, single- and double-length
numbers.

L49

150 	 Starting FORTH

SECTION 1 -- FOR BEG/NNERS

Signed vs. Unsigned Numbers

All digital computers store numbers in
binary form.t In FORTH, the stack i s
sixteen bits wide (a "bit" is a
"binary digit"). Below is a view of
sixteen bits, showing the value of
each bit:

0400 0000 CIONOLO

000000000010 1001

00 0000 0000000000

c0
oa 	ko 	co 	v,

Nr• 	rsi 	 %el 	au

'

0,0 O) 04 IN to
1:15 I* rk) 1.0 rl A-0 es)

1 	[11 	1 	1 	[I I

If every bit were to contain a 1, the total would be 65535. Thus
in 16 bits we can express any value between 0 and 55535. Because
this kind of number does not let us express negative values, we
call it an "unsigned number." WP have been indicating unsigned
numbers with the letter "u" in our tables and stack notations.

But what about negative numbers? In order to be able to express
a positive or negative number, we need to sacrifice one bit that
Will essentially indicate sign. This bit is the one at the far
left, the "high-order bit." In 15 bits we can express a number as
high as 32767. When the sign bit contains 1, then we can go an
equal distance back into the negative numbers. Thus within 16
bits we can represent any number from -3276B to +32767. This
should look familiar to you as the range of a single-length
number, which we have been indicating with the letter "n."

0

tFor Beginner Beginners

N

If you are unfamiliar with binary notation, ask someone you know
who likes math, or find a book on computers for beginners.

7 A NUMBER OF KINDS OF NUMBERS 	 151

Before we leave you with any misconceptions, we'd better clarify
the way negative numbers at repeesented. You might think that
it's a simple matter Of setting the sign bit to indicate whether a
number is positive or negative, but it doesn't work that way.

To explain bow negative numbers are represented, let's return to
decimal notation and eXamine a counter such as that found on
many tape recorders.

Let'a tay the counter has the digits. As you wind the tape
forward, the counter -wheels turn and the number increases.
Starting once again with the counter at 0, now imagine you're
winding the tape backwards. The first number you see is 991),
which, in a sense, is the ate as -1. The next number will be 998,
which is the sate as -2, and so on.

ro c0]

001

001

L , 0: j

q fig

9 1381

7 I

representation of signed numberE in a computer is similar.

Starting with the number

0000004000000000

and going backwards one number, we get

1111111111111111 	(sixteen ones)

which stands for 65535 in unsigned notation as well as for -1 in
signed nrtatkin. The number

11111.11/11111110

which stands for 65534 in unsigned notation, represents -2 in
s igned notation.

ilere'u a chart that shows how a binary number on the stack can be
u.s.ed either as an unsigned number or as a signed number:

152 	 Starting FORTH

as an
unsigned

number

65535

1111111111111111

• • 1 as a
signed
number 32768

1000000000000000
32767

0111111111111111

0000000004000000

32767

0

1111111111111111

1000000000000000

-1

• • •

-32768

This bizarre-seeming method for representing negative values
makes it possible for the computer to use the same procedures for
subtraction as for addition.

To show how this works, let's take d very simple problem:

2
-1

Subtracting one from two is the same as adding two plus neyalive
one. In single-length binary notation, the two looks like this:

0000000000000010

while negative-one looks like this:

11113111111113,1.1

The computer adds them up the same way we would on paper; that
is when the total of any column exceeds one, it carries a one
into the next column. The result looks like this:

0000000000000010
+ 1111111111111111
10000000000000001

As you can see, the computer had to carry a one into every
column all the way across, and ended up with a one in the
seventeenth place. gut since the stack is only sixteen bits wide,

7A NUMBER OF KINDS OF NUMBERS 	 153

the result is simply

0000000000000001

which is the correct answer, one.

We needn't explain how the computer converts a positive number
to negative, but we will tell you that the process is called
"two's complementing."

Arithmetic Shift

While we're on the subject of how a computer performs certain
mathematical operations, we'll explain what is meant by the
mysterious phrases back in Chap. 5: "arithmetic left shift" and
"arithmetic right shift."

A FORTH Instant Replay:

2* 	(n 	n*2) 	Multiplies by two (arithmetic left shift).

:2/ 	(n 	n/2) 	Divides by two (arithmetic right shift).

To illustrate, let's pick a number, say six, and write it in binary
form:

0000000000000110

(4 + 2). Now let's shift every digit one place to the left, and
put a zero in the vacant place in the one's column.

0000000000001100

This is the binary representation of twelve (8 + 4), which is
exactly double the original number. This works in all cases, and
it also works in reverse. If you shift every digit one place to
the right and fill the vacant digit with a zero, the result will
always be half of the original value.

In arithmetic shift, the sign bit does not get shifted. This
means that a positive number will stay positive and a negative
number will stay negative when you divide or multiply it by two.
(When the high-order bit shifts with all the other bits, the term
is "logical shift.")

The important thing for you to know is that a computer can shift
digits much more quickly than it can go through all the folderol
of normal division or multiplication. When speed is critical,

154 	 Starting FORTH

it's much better to say

2*

than

2 *

and it may even be better to say

2* 2* 2*

than

8*

depending on your particular model of computer, but this topic is
getting too technical for right now.

An Introduction to Double-length Numbers

A double-length number is just what you probably expected it
would be: a number that is represented in thirty-two bits instead
of sixteen. Signed double-length numbers have a range of
+2,1.47,483,647 (a range of over four billion).

CID

Ni.r 	V.

.-f1%4?'"v6i-ZVI°4)Zr 4 co
ct, b ry 	z 43 AN, ca9 (I,

	

rp ;1 0
r". 	 cb 	A. So 	41 CID 'ICA' ' 4% 10 CO 10,

f'D 	V CD 61 P's 4, t. 	ct, "sr 	 cb ry to eb sp,
LO 	'4• ctr 01 	tor Vr • 	'sr 	1\ el• 	tb 	_ r‘r [orb

	

to 	CD CD PS) So r`) 	r'Sx 	AC3 C3 "-q 41 PS, v, no'
b-r.r) ^sr 	 "-I 	r r 	ry 	r'r3 	 4,1 lr r4.3. {1:1 	 G7 V. f'w ti

In FORTH, a double-length number takes the place of two
single-length numbers on the stack. Operators like I2SWAP(and
PUP1 are useful either for double-length numbers or for pairs of
single-length numbers.

One more thing we should explain: to the non-FORTH-speaking
computer world, the term "word' means a 16-bit value, or two
bytes. But in FORTH, "word" means a defined command, so in
order to avoid confusion, FORTH programmers refer to a 16-bit
value as a "cell." A double-length number requires twO Cells.

/A MASER OF KINDS OF NUMBERS 	 155

Other Number Bases

As you get more involved in programming, yOui I need to employ
other number bases besides decimal and binary, particularly
hexadecimal (base 16) and octal {base 8}. Since we'll be talking
about these two number bases later on in this chapter, we think
you might like an introduction now.

Computer people began using hexadecimal and octal numbers for
one main reason: computers think in binary and human beings
have a bard time reading long binary numbers. For people, it's
much easier to convert binary to hexadecimal than binary to
decimal, because sixteen is an even power of two, while ten is
hot. The same is true with octal. So programmers usually use hex
or octal to express the binary numbers that the computer uses for
things like addresses and machine codes. Elmacieciplai (in $imply
'heel looks strange at first since it uses the letters A through
F.

Decimal 	Binary Hexadecimal

0 	 0400 	0
1 	0001 	L
2 	0010 	2
3 	 0011 	3
4 	0100 	4
5 	 010]. 	5
6 	 0110 	6
7 	0111 	7
B 	 1000 	8
9 	 1001 	9

10 	 1010 	A
11 	 1011 	Ei
12 	 1100 	C
13 	 1101 	ID
14 	 1110 	E
15 	nil 	F

It take a single length binary number:

011110/110100001

To convert this number to hexadecimal, we first subdivide it into
four units of four bits each:

I 0111 I LOU 1010 I 0001

then convert each 4-bit unit to its hex equivalent:

I 7 1 13 1All I

156 	 Starting FORTH

or simply 713A1.

Octal numbers use only the numerals 0 through 7. Because
nowadays most computers use hexadecimal representation,
we'll skip an octal conversion example

We'll have more on conversions in the section titled "Number
Conversions" later in this chapter.

The ASCII Character Set

If the computer uses binary notation to store numbers, how does it
store characters and other symbols? Binary, again, but in a
special code that was adopted as an industry standard many years
ago. The code is called the American Standard Code for
Information Interchange code, usually abbreviated ASCII.

Table 7-1 shows each character in the system and' its numerical
equivalent, both in hexadecimal and in decimal form.

The characters in the first column (ASCII codes 0-1F hex) are
called "control characters" because they indicate that the
terminal or computer is supposed to do something like ring its
bell, backspace, start a new line, etc. The remaining characters
are called "printing characters" because they produce visible
characters including letters, the numerals zero through nine, all
available symbols and even the blank space (hex 20). The only
exception is DEL (hex 7F) which is a signal to the computer to
ignore the last character sent.

In Chap. 1 we introduced the word 1EMIT. • T 71 takes an ASCII
code on the stack and sends it to the trminal so that the
terminal will print it as a character. For example,

65 EMIT A ok
66 EMIT B ok

etc. (We're using the decimal, rather than the hex, equivalent
because that's what your computer is most likely expecting right
now.) t

Why not test IEMITI on every printing character, "automatically"?

: PRINTABLES 127 32 DO I EMIT SPACE LOOP ;

t For Experts

Why are you snooping on the beginner's section?

7 A NUMBER OF KINDS OF NUMBERS 157

TABLE 7-1 -- ASCII CHARACTERS & EQUIVALENTS

Char He Dec 	L Char Hex Dec Char Hex Dec Char Rex Dec

NHL 00 0 SP 20 32 9 40 64 60 96
SOH 01 1 21 33 A 41 65 a 61 97
STx 02 2 22 34 B 92 66 b 62 98
ETX 03 3 # 23 35 C 43 67 63 99
EDT 04 4 S 	24 36 D 44 68 d 64 100
ENQ 05 5 8 25 37 E 45 69 e 65 101
ACK 06 6 & 26 38 F 46 70 f 66 102
BEL 07 7 27 39 G 47 71 g 67 103
85 08 13 28 40 46 72 h 68 104
HT 09 9 } 29 41 I 49 73 69 105
LF OA 10 2A 42 J 4A 74 j 6A 106
VT OH 11 + 213 43 K 413 75 k 6B 107
FF 0C 12 r 2C 41 L 40 76 1 6C 108
CR OD 13 20 45 M. 4D 77 m 6D 109
SM DE 14 2E 46 N 4E 78 n 6E 110
SI OF 15 / 2F 97 O 4F 79 o 6F 111
OLE 10 16 0 30 48 P 50 BO p 70 112
DC1 11 17 1 31 49 51. 81 q 71 113
DC2 12 18 2 32 50 R 52 82 r 72 114
DC) 13 19 3 33 51 53 83 73 115
DC4 14 20 4 34 52 T 54 84 t 74 116
NAN 15 21 5 35 53 LI 55 85 75 117
SI14 16 22 6 36 54 V 56 86 76 118
ETB 17 23 7 37 55 w 57 87 w 77 119
CAN 18 24 8 38 56 58 88 x 78 120
DI 19 25 9 39 57 y 59 89 y 79 121
SUB LA 26 3A 58 2 5A 90 z 7A 122
ESC 113 27 35 59 513 91 75 123
Fs IC 28 c 3C 60 \ 5C 92 7C 124
GS ID 29 3D 61 5D 93 7D 125
RS lE 30 a 3E 62 5E 94 7E 126
US 112 3]. 7 3F 63 5F 95 DEL 7F 127

(RE()

Tile "Char" columns list the ASCII characters (some of which are
:ontrol characters); the "Hex" columns give the hexadecimal

lents
qu ivalents; and the "Dec" columns present the decimal equiva-

158 	 Starting FORTH

PRINTABLES will emit every printable character in the ASCII set;
that is, the characters from decimal 32 to decimal -26, (we're
using the ASCIXoo.des as our Lg loop index.)

PRINTABLES 	1 " # $ % & 	} * 	ok

Beginners may be intereSted in some of the control characters as
well. For instance, try this

7 EMIT ok

You should have heard some sort of beep, which is the video
terminal's version of the mechanical printer's "typewriter bell.'

Other control characters that are good to know include the
following;

decimal

	

n6,11 	operation 	equivalent

	

BS 	backspace 	 2

	

LF 	line teed 	 10

	

CR 	carriage return 	13

Experiment with these control characters, and see what they do.

ASCII is designed so that each character can be represented by
one byte. The tables in this book use the letter "c' to indicate
a byte value that is being used as a coded ASCII character.

Bit Logic

The words AND aria 	 (which we introduced in Chap. 4) use "bit
logic "H; that is each bit is treated independently, and there are
no "carries" from one bit -place to the next. For example, letTs
see what happens when we valJA these two binary numbers:

0000000011111111
0110010110100010 IANDI
00000000101,00010

For any reSOLt-bit to he "1," the respective bits in both
arguments must be Pl." Notice in this example that the argument
on to contains all zeroes in the high-order byte and all ones in

7 A NUMBER OF KINDS OF NUMBERS 	 159

the low-order byte. The effect on the second argument in this
example is that the low-order eight bits are kept but the
high-order eight bits are all set to zero. Here the first
argument is being used as a "mask," to mask out the high-order
byte of the second argument.

The word 10Ri also uses bit logic. For example,

1000100100001001
0000001111001000 OR
1000101111001001

a "1" in either argument produces a "1" in the result. Again,
each column is treated separately, with no carries.

By clever use of masks, we could even use a 16-bit value to hold
sixteen separate flags. For example, we could find out whether
this bit

1011101010011100
A

is "1" or "0" by masking out all other flags, like this:

1011101010011100
0000000000010000 IANDI
0000000000010000

Since the bit was "1," the result is "true." Had it been "0," the
result would have been "0" or "false."

We could set the flag to 110 II without affecting the other flags by
using this technique:

1011101010011100
1111111111101111
1011101010001100

A

We used a mask that contains all "1"s except for the bit we
wanted to set to "0." We can set the same flag back to "1" by
using this technique:

1011101010001100
0000000000010000 OR
1011101010011100

A

If

160
	

SLarting FORTH

SECTION II -- FOR EVERYBODY

Signed and Unsigned Numbers

Back in Chap. 1 we introduced the word '.• MEER].

If the word 'INTERPRET] can't find an incoming string in the
dictionary, it hands it over to the word !NUMBEg. INUMBETR then
attempts to c • -ert the string into a number expressed in binary
form. If 1NU;. succeeds, it pushes the binary equivalent onto
the stack.

NUMBER does not do any range-checking.t Because of this,
NUMBER! can convert either signed or unsigned numbers.

For instance, if you enter any number between 32768 and 65535,
NUMBER] will convert it as an unsigned number. Any value
between -32768 and -1 will be stored as a two's-complement
integer.

This is an important point: the stack can be used to hold either
signed or unsigned integers. Whether a binary value is
interpreted as signed or unsigned depends on the operators that
you apply to it. You decide which form is better for a given
situation, then stick to your choice.

tFor Beginners

This means that [NUMBER] does not check whether the number you've
entered as a single-length nurrka ,7 exceeds the proper range. If
you enter a giant number, [NUME_____ converts it but only saves the
least significant sixteen digits.

Prints the unsigned
single-length number,
followed by one space.

U. 	 (u)

Like DO ... +LOOP ex-
cept uses an unsigned
limit, index, and
increment.

DO 	/LOOPY 	DO: (u-limit
u-index --

/LOOP: (u)

In this book the letter "n" signifies signed single-length
numbers, while the letter "u" signifies unsigned single-
length numbers. (We've already introduced 1U.R, which
prints an unsigned number right-justified within a given
column width.)

Here is a table of additional words that use unsigned numbers:

U* 	 (ul u2 	ud) 	Multiplies two 16-bit
numbers. Returns a
3 2-bit result. All
values are unsigned.

U/MOD 	 (ud ul 	u2 u3) 	Divides a 32-bit by a
16-bit number. Returns
a 16-bit quotient and
remainder. All values
are unsigned.

(ul u2 	f) 	 Leaves true if ul < u2,
where both are treated
as 1 6-bit unsigned
integers.

tFORTH-79 Standard

7 A NUMBER OF KINDS OF NUMBERS 	 161

We've introduced the word Ej, which prints a value on the stack as
a signed number:

65535 . -1 ok

The word
number:

lu• I prints the same binary representation as an unsigned

65535 U. 65535 ok

1/LOOP is included in the optional Reference Word Set.

162
	

Starting`. FORTH._-,

is similar to I+LOOP , in that it terminates a DO loop and
that it takes an incrementing value. The difference is that with

, the index and limit may range from zero to 65535, and the
increment must be positive. I/LOOP executes somewhat faster than
+ I,(1C)TID

Number Bases

When you first load FORTH, all number conversions use base ten
(decimal) for both input and output.

/LOOPS

I/LOOP

You can easily change the base by executing one of the following
comands:

HEX

OCTAL

DECIMAL

Sets the base to sixteen.

Sets the base to eight
(available on some sys-
tems).±

Returns the base to ten.

tFor Experts

OCTAL is omitted unless the design of the particular processor
compels its use.

	

7A NUMBER OF KINDS OF NUMBERS 	 163

When you change the number base, it stays chan ed until you
change it again. So be sure to declare DECIMAL as soon as
you're done with another number base.t

These commands make it easy to do number conversions in
"calculator style."

For example, to convert decimal 100 into hexadecimal, enter

DECIMAL 100 HEX . 64 ok

To convert hex F into decimal (remember you are already in hex),
enter

OF DECIMAL . 15 ok

Make it a habit, starting right now, to precede each hexadecimal
value with a zero, as in

OA 08 OF

This practice avoids mix-ups with such predefined words as B , D,
or 	in the EDITOR vocabulary.

A Handy Hint

A Definition of BINARY -- or Any-ARY

Beginners who want to see what numbers look like in binary
notation may enter this definition:

: BINARY 	2 BASE ! ;

The new word BINARY will operate just like OCTAY:1 or D'FIEXI but
will change the -doer base to two. On systems which do not
have the word [01 . %g, experimenters may define

: OCTAL 8 BASE ! ;

tFor People Using Multiprogrammed Systems

When you change the number base, you change it for your terminal
task only. Every terminal task uses a separate number base.

164 	 Starting FORTH

Double-length Numbers

Double-length numbers provide a range of +2,147,483,647. Most
FORTH systems support double-length numbers to some degree.tt
Normally, the way to enter a double-length number onto the stack
(whether from the keyboard or from a block) is to punctuate it
with one of these five punctuation marks:

For example, when you type

200,00OP,-

[NUMBER recognizes the comma as a signal that this value should
be converted to double-length. [NUMB' • then pushes the value
onto the stack as two consecutive "cells' (cell is the FORTH term
for sixteen bits), the high order cell on top.

tFor polyFORTH Users:

polyFORTH includes double-length routines, but they are
"electives," which means that they are written in the group of
blocks which you must load each time the system is booted. This
arrangement gives you the flexibility to either load these
routines or delete them from your load block, according to the
needs of your application.

T-FORTH-79 Standard

The Standard requires only three double-length arithmetic
primitives. The optional Double Number Word Set includes many
more double-length operators.

1
Prints the signed c"--1.7.--`
double-length number, dot
followed by one space.

(d)

7A NUMBER OF KINDS OF NUMBERS 	 165

The FORTH word Li2,1 prints a double-length number without any
punctuation.

In this book, the letter "d" stands for a double-length signed
integer.

For example, having entered a double-length number, if you were
now to execute ID., the computer would respond:

D. 200000 ok

Notice that all of the following numbers are converted in exactly
the same way:

12345. D. 12345 ok
123.45 D. 12345 ok
1-2345 D. 12345 ok
1/23/45 D. 12345 ok
1:23:45 D. 12345 ok

But this is not the same:

-12345

because this value would be converted as a negative,
single-length number. (This is the only case in which a hyphen
is interpreted as a minus sign and not as punctuation.)

In the next section we'll show you how to define your own
equivalents to 11 which will print whatever punctuation you want
along with the number.

166
	

Starting FORTH

Number Formatting -- Double-length Unsignedt

$200.00 	12/31/80 	372-8493 	6:32:59 	98.6

The above numbers represent the kinds of output you can create
by defining your own "number-formatting words" in FORTH. This
section will show you how.

The simplest number-formatting definition we could write would be

UD. 	<# #S #> TYPE ;

UD. will print an unsigned double-length number. The words
and #> (respectively pronounced bracket-number and
number-bracket) signify the beginning and the end of the
number-conversion process. In this definition, the entire
conversion is being performed by the single word 1#S1 (pronounced
numbers). #S] converts the value on the stack into ASCII
characters. It will only produce as many digits as are necessary
to represent the number; it will not produce leading zeroes. But
it always produces at least one digit, which will be zero if the

-value was zero. For example:

12,345 UD. 12345ok
12. UD. 12ok
0 UD. Ook

The word [TYPE prints the characters that represent the number at
your terminal. Notice that there is no space between the number
and the "ok." To get a space, you would simply add the word

, like this:

: UD. 	<# #S #> TYPE SPACE ;

Now let's say we have a phone number on the stack, expressed as a
32-bit unsigned integer. For example, we may have typed in

372-8493

(remember that the hyphen tells [NUMBER] to treat this as a
double-length value). We want to define a word which will format
this value back as a phone number. Let's call it .PH# (for "print
the phone number") and define it thus:

tFor Those Whose Systems Do Not Have Double-length Routines
Loaded

The examples used in this and the next section won't do what you
expect. The principles remain the same, however, so read these
two sections carefully, then read the note on page 172.

<#

ISPACE1

1?®8 	D

!A NUMBER OF KINDS OF NUMBERS
	

167

: .PH# <# # # # # 45 HOLD #S #> TYPE SPACE ;

Our definition of .PH# has
everything that UD. has, and more.
"he FORTH word E (pronounced
number) produces a single digit
only. A number-formatting
definition is reversed from the
order in which the number will be
printed, so the phrase

produces the right-most four digits
of the phone number.

Now it's time to insert the hyphen. Looking up the ASCII value
for hyphen in the table in the beginner's section of this
chapter, we find that a hyphen is represented by decimal 45. The
FORTH word [HOLD takes this ASCII code and inserts it into the
formatted number character string.

We now have three digits left. We might use the phrase

but it's easier to simply use the word l#S1, which will
automatically convert the rest of the number for us.

If you are more familiar with ASCII codes represented in
hexadecimal form, you can use this definition instead:

HEX : .PH# 	<# # # I # 2D HOLD IS #> TYPE SPACE ;
DECIMAL

Either way, the compiled definition will be exactly the same.

Now let's format an unsigned double-
length number as a date, in the
following form:

7/15/80

Here is the definition:

: .DATE <# # # 47 HOLD # # 47 HOLD #S #> TYPE SPACE ;

Let's follow the above definition, remembering that it is written
in reverse order from the output. The phrase

168 	 Starting FORTH

47 HOLD

produces the right-most two digits (representing the year) and
the right-most slash. The next occurrence of the same phrase
produces the middle two digits (representing the day) and the
left-most slash. Finally, litSi produces the left-most two digits
(representing the month).

We could have just as easily defined

47 HOLD

as its own word and used this word twice in the definition of
.DATE.

Since you have control over the conversion process, you can
actually convert different digits in different number bases, a
feature which is useful in formatting such numbers as hours and
minutes. For example, let's say that you have the time in seconds
on the stack, and you want a word that will print hh:mm:ss. You
might define it this way:

: SEXTAL 6 BASE ! ; t
: :00 # SEXTAL # DECIMAL 58 HOLD ;
: SEC 	<# :00 :00 #S #> TYPE SPACE ;

We will use the word :00 to format the
seconds and the minutes. Both seconds and
minutes are modulo-60, so the right digit
can go as high as nine, but the left digit
can only go up to five. Thus in the
definition of :00 we convert the first digit
(the one on the right) as a decimal number,
then go into "sextal" (base 6) and convert
the left digit. Finally, we return to
decimal and insert the colon character.
After :00 converts the seconds and the
minutes, #S converts the remaining hours.

For example, if we had 4500 seconds on the
stack, we would get

4500. SEC 1:15:00 ok

Table 7-2 summarizes the FORTH words that
are used in number formatting. (Note the
"KEY" at the bottom, which serves as a
reminder of the meanings of "n," "d," etc.)

tFor Beginners

See the Handy Hint on page 163.

4 h;:pii3ER OF KINDS OF NUMBERS 	 169

numbers

nurn• er
Converts the number until the result is zero.
Always produces at least one digit (0 if the
value is zero).

number- bracket

Completes number conversion by leaving the
character count and address on the stack
(these are the appropriate arguments for

)•

TABLE 7-2 -- NUMBER FORMATTING

bracket - number

Converts one digit and puts it into an
output character string. n always pro-
duces a digit--if you're out of significant
digits, you'll still get a zero for every

Inserts, at the current position in the
character string being formatted, a
character whose ASCII value is on the stack.
IHOLDI (or a word that uses) must be
used between I<#1 and

Inserts a minus sign in the output string if
the third number on the stack is negative.
Usually used immediately before #>I for a
leading minus sign.

<f

a

Begins the number conversion process.
Expects an unsigned double-length number on
the stack.

S

IHOLDI
1#>1

SIGN

#>

c HOLD

Stack effects for number formatting

phrase 	 stack 	 type of arguments

#> 	(d 	adr u) or 	32-bit unsigned
(u 0 	adr u) 	16-bit unsigned

<# 	SIGN #> (n 	adr u) 	32-bit signed (where n is
or the high-order cell of d

and Idi is the absolute
value of d).

(n 	0 	adr u) 	16-bit signed (where In' is
the absolute value).

KEY

n, n1 ... 	16-bit signed numbers 	adr 	address
d, dl, 	32-bit signed numbers. 	 ASCII char-
u, ul, 	16-bit unsigned numbers 	 acter value

I. 5

(^A

Low

	J

[ovsr,1

170 	 atiaing FORTH

Number Formatting -- Signed and Single-length

So far we have formatted only unsigned double-length numbers.
The 1711.1...[17 form expects only unsigned double-length numbers,
but we can use it for other types of numbers by making certain
arrangements on the stack.

..F_or_iristance, let's look at a simplified version of the system
definition of LD..j (which prints a signed double-length number):

: D. SWAP OVER DABS <# itS SIGN #> TYPE SPACE ;

The word 	which must be situated within the [<#[...[#>1 phrase,
inserts a minus sign in the character string only if the third
number on the stack is negative. So we must put a copy of the
high-order cell (the one with the sign bit) at the bottom of the
stack, by using the phrase

SWAP OVER

Because FT expects only unsigned double-length numbers, we must
take the absolute value of our double-length signed number, with
the word IDABSI. We now have the proper arrangemeni - of arguments
on the stack for the <#1...14>1 phrase. The word g, .. like HOLD,
will insert the minus sign at whatever point withi,,,,e character
string we situate it. Since we want our minus sign to appear at
the left, we include [SIGN] at the right of our [<# ...1#>] phrase.
In some cases, such as accounting, we may want a negative number
to be written

12345-

in which case we would place the word [SIGN] at the left side of
our [<#...P7 phrase, like this:

, 	OF KINDS OF NUMBERS 	 171

<E, SIGN #5 #>

s define a word which will print a signed
rouble-length number with a decimal point and
tvo decimal places to the right of the decimal.
Since this is the form most often used for
vriting dollars and cents, let's call it .$ and
define it like this:

: .$ SWAP OVER DABS
<# # # 46 HOLD #5 SIGN 36 HOLD #> TYPE SPACE ;

Let's try it:

2000.00 .$ $2000.00 ok

or even

2,000.00 .$ $2000.00 ok

We recommend that you save .$, since we'll be using it in some
future examples.

You can also write special formats for single-length numbers. For
example, if you want to use an unsigned single-len ,rii number,
simply put a zero on the stack before the word . This
effectively changes the single-length number into a
double-length number which is so small that it has nothing (zero)
in the high-order cell.

To format a signed single-length number, again you must supply a
zero as a high-order cell. But you also must leavP a copy of the
signed number in the third stack position for and you must
leave the absolute value of the number in the second stack
position. The phrase to do all of this is

DUP ABS 0

172
	

StarLing FORTH

Here are the "set-up" phrases that are needed to print various
kinds of numbers:

I Number to be :printed

32-bit, unsigned

31-bit, plus sign

Precede 	by

(nothing needed)

SWAP OVER DABS
(to save the sign in the
third stack position for
SIGN

16-bit, unsigned

15-bit, plus sign

0
(to give a dummy
high-order part)

DUP ABS 0
(to save the sign)

If Your System Does Not Have Double-length Routines Loaded

In this case the set-up phrases are different, as follows:

Number to be printed 	 Precede 1<#1 by

16-bit, unsigned 	 DUP

15-bit, plus sign 	 DUP ABS DUP

Even though fl still expects two cells on the stack, in this
case the significant cell must be on top (where normally the
high-order cell is found). The contents of the second stack
position are not used.

maX

DMIN 	 (dl d2 	d-min) 	Returns the minimum of
two 32-bit numbers.

D= 	 (dl d2 	f) 	Returns true if dl and
d2 are equal.

DO= 	 (d 	f) 	 Returns true if d
zero.

D< 	 (dl d2 	f) 	Returns true if dl is
less than d2.

DU< 	 (udl ud2 	f) 	Returns true if udl is
less than ud2. Both
numbers are unsigned.

D.R 	 (d width) 	Prints the signed _ft-bit
number, right-justified
within the field width.

tFor polyFORTH Users

The double-length routines must be loaded.

.FORTH-79 Standard

Except for ID-1-1, 1E7, and DNEGI. . which are required, these words

A V.:MBER OF KINDS OF NUMBERS 	 173

...:e-length Operators

Nate is a list of double-length math operators:t

0+
	

(dl d2 	d-sum) 	Adds two 32-bit numbers.
d- lus

(dl d2 	d-diff) 	Subtracts two 32-bit
numbers (di-d2). 	(c4-minus

DNEGATE 	(d 	-d) 	 Changes the sign of al .)
32-bit number.

Cd-nepte

DABS 	 (d 	 Returns the absolute
value of a 32-bit
number.

(d-absoluje

DMAX 	 (dl •d2 	d-max) 	Returns the maximum of
two 32-bit numbers.

are part of the optional Double Number Word Set.

rn-
star

II
rn-

Slash

174
	

Starting FORTI1

The initial "D" signifies that these operators may only be used
for double-lf,.nrjth operations, whereas the initial "2," as in

and 1.:_1151, signifies that these operators may be used
either for double-length numbers or for pairs of single-length
numbers.

Here's, an example using [17-:

200,000 300,000 D+ D. 500000 ok

A warning for experimenters: you can write definitions that
contain double-precision operators, but you cannot include a
punctuated, double-precision .Der inside a definition. In the
next chapter we'll explain what uo do instead.

Mixed-Length Operators

Here's . a table of very'useful FORTH words which operate on a - 7.
combination of single- and double-length numbers:t

2SWAP

M+ 	(d n 	d-sum) 	Adds a 3 2-bit number to a
16-bit number. Returns a 32-bit
result.

(d n 	n-quot) 	Divides a 32-bit number by a
16-bit number. Returns a 16-bit
result. All values are signed.

(nl n2 	d-prod) Multiplies two 16-bit numbers.
Returns a 32-bit result. All
values are signed.

M*/
	

(d n n 	 Multiplies a 3 2-bit
d-result) number by a 16-bit number and

divides the triple-length
result by a 16-bit number
(d*n/n). Returns a 32-bit
result. All values are signed.

IFORTH-79 Standard

The mixed-length operators are not included in either the
Required or the Double Number Word Set.

7 A NUMBER OF KINDS OF NUMBERS 	 175

Here's an example using M+:

200,000 7 M+ D. 200007 ok

Or, using IM*/i, we can redefine our earlier version of % so that
it will accept a double-length argument:

: % 	100 M*/ ;

as in

200.50 15 % D. 3007 ok

If you have loaded the definition of .$ which we gave in the last
Handy Hint, you can enter

200.50 15 % .$ $30.07 ok

We can redefine our earlier definition of R% to get a rounded
double-length result, like this:

: R% 10 M*/ 5 M+ 10 M/ ;

then

987.65 15 R% .$ $30.08 ok

Notice that 	is the only ready-made FORTH word which
performs multiplication on a double-length argument. To multiply
200,000 by 3, for instance, we must supply a "1" as a dummy
denominator:

200,000 3 1 M*/ D. 600000 ok

since

is the same as 3.

v is also the only ready-made FORTH word that performs
division with a double-length result. So to divide 200,000 by 4,
for instance, we must supply a "1" as a dummy numerator:

200,000 1 4 M*/ D. 50000 ok

176 	 Starting FORTH

Numbers in Definitions

When a definition contains a number, such as

: SCORE-MORE 20 + ;

the number is compiled into the dictionary in binary form, just as
it looks on the stack.

000000111001)

The number's binary value depends on the number base at the time
you compile the definition. For example, if you were to enter

HEX : SCORE-MORE 14 + ; DECIMAL

the dictionary definition would contain the hex value 14, which
is the same as the decimal value 20 (16 + 4). Henceforth,
SCORE-MORE will always add the equivalent of decimal 20 to the
value on the stack, regardless of the current number base.

If, on the other hand, you were to put the word IHEX inside the
definition, then you would change the number base when you
execute the definition.

For example, if you were to define:

DECIMAL
: EXAMPLE HEX 20 . DECIMAL ;

the numbe
20, since

be compiled as the binary equivalent of decimal
was current at compilation time.

• •

DECIMAL

At execution time, here's what happens:

EXAMPLE 14 ok

The number is output in hexadecimal.

HEX

OCTAL

Sets the base to sixteen.

-, Sets the base to eight
(available on some -sys-
tems).

DECIMAL
	

() 	 Returns the base to ten.

7 A NUMBER OF KINDS OF NUMBERS 	 177

For the record, a number that appears inside a definition is
called a "literal." (Unlike the words in the rest of the
definition which allude to other definitions, a number must be
taken literally.)

Here is a list of the FORTH words we've covered in this chapter:

Unsigned operators

U*

U/MOD

(u 	 Prints the unsigned
single-length number,
followed by one space.

(ul u2 	ud) 	Multiplies two 16-bit num-
bers. Returns a 32-bit
result. All values are
unsigned.

(ud ul 	u2 u3) 	Divides a 32-bit by a 16-
bit number. Returns a
16-bit quotient and re-
mainder. All values are
unsigned.

(ul u2 	f) 	Leaves true if ul < u2,
where both are treated as
16-bit unsigned integers.

DO ... /LOOP 	DO: (u-limit
	

Like DO ... +LOOP except

	

u-index -- 	uses an unsigned limit,
/LOOP: (u)
	

index, and increment.

Number bases

Number formatting operators

<# 	 Begins the number conversion process.
Expects an unsigned double-length number on
the stack.

Converts one digit anduts it into an output
character string. Q#p always produces a
digit--if you're out of significant digits,
you'll still get a zero for every

178
	

L;LarLiny

#S
	

Converts the number until the result is zero.
Always produces at least one digit (0 if the
value is zero).

--c—HOLD 	----Inserts, at the current position in the
character string being formatted, a character
whose ASCII va7'. - is on the stack. HOLD (or a
word that uses , ' LDI) must be used between
and 1#>1.
	 1<fd

SIGN
	

Inserts a minus sign in the output string if
the third number on the stack is ne ative.
Usually used immediately before #> for a
leading minus sign.

Completes number conversion by leaving the
character count and address on the stack
(thace are the appropriate arguments for

Stack effects for number formatting

phrase

stack type of arguments

.- #> (d 	adr u) or 	32-bit unsigned
(u 0 	adr u) 	16-bit unsigned

	

SIGN #> (n 	adr u)
or

	

(n 	0 	adr u)

32-bit signed (where n is
the high-order cell of d
and Id! is the absolute
value of d).

16-bit signed (where In' is
the absolute value).

Double-length operators (Optional in FORTH-79 Standard)

D+
	

(dl c-12 -- a-sum) 	Adds two 32-bit numbers.

D- 	 (dl d2 	d-diff) 	Subtracts two 3 2-bit
numbers (dl-d2).

DNEGATE 	(d 	-d) 	 Changes the sign of a
32-bit number.

DABS 	 (d 	!di) 	 Returns the absolute value
of a 32-bit number.

DMAX 	 (dl d2 	d-max) 	Returns the maximum of two
32-bit numbers.

DMIN . (dl d2 	d-min) Returns the minimum of two
32-bit numbers.

D= "(d1 d2 	f) 	 Returns true if dl and d2
are equal.

DO= (d 	f)

(dl d2 	f)

Returns true if d is zero.

Returns true if dl is less
than d2.

Returns true if udl is less
than ud2. Both numbers are
unsigned.

(udl ud2 	f) DU<

DU< Prints the signed 32-bit
number, followed by one
space.

Adds a 32-bit number to a
16-bit number. Returns a
32-bit result.

(d n 	d-sum)

M/ Divides a 32-bit number by
a 16-bit number. Returns a
16-bit result. All values
are signed.

(d n 	n-quot)

M* (nl n2 	d-prod) 	Multiplies two 1 6-bit
numbers. Returns a 32-bit
result. All values are
signed.

M*/ (d n n --
d-result)

Multiplies a 32-bit number
by a 16-bit number and
divides the triple-length
result by a 16-bit number
(d*n/n). Returns a 32-bit
result. All values are

n, n1 ...
d, dl,
u, ul,

16-bit signed numbers
32-bit signed numbers
16-bit unsigned numbers

adr

8-bit byte
Boolean flag
ASCII character
value
address

Mi,x-ed-le-ngth operators (Not required by FORTH-79 Standard)

KEY

Prints the signed 32-bit
number, right-justified
within the field width.

D.R (d width --)

ud, udl, ... 32-bit unsigned numbers

7 A NUMBER OF KINDS OF NUMBERS 	 179

180 	 Starting FORTE

ASCII

Binary

Byte

Cell

Decimal

Hexadecimal

Literal

Mask

Two's
complement

the process of shifting all bits in a number,
except the sign bit, to the left or right, in
effect doubling or halving the number,
respectively.

a standardized system of representing input/
output characters as byte values. Acronym for
American Standard Code for Information
Interchange. (Pronounced ask-key.)

number base 2.

the standard term for an 8-bit value.

the FORTH term for a 16-bit value.

number base 10.

number base 16.

in general, a number or symbol which represent-s--
only itself; in FORTH, a number that accears
inside a definition.

a value which can be "superimposed" over
another, hiding certain bits and revealing
only those bits that we are interested in.

the process of printing a number, usually in a
special form such as 3/13/81 or $47.93.

number base 8.

the bit which, for a signed_ number, indicates
whether it is positive or negative and, for an
unsigned number, represents the bit of the
highest magnitude.

for any number, the number of equal absolute
value but opposite sign. To calculate 10 - 4,-
the computer first produces the two's comple-
ment of 4 (i.e., -4), then computes 10 +

Review of Terms

Arithmetic left
and right shift

Number
formatting

Octal

Sign bit,
high-order bit

Unsigned number a number which is assumed to be positive.

A NUMBER OF KINDS OF NUMBERS 	 181

.nsigned single-
length number 	an integer which falls within the range 0 to

65535.

Word 	 in FORTH, a defined dictionary entry;
elsewhere, a term for a 16 -bit value.

Problems -- Chapter 7

FOR BEGINNERS

L Veronica Wainwright couldn't remember the upper limit for a
signed single-length number, and she had no book to refer
to, only a FORTH i-,=rminal. So she wrote a definition called
N-MAX, using a T=771...IUNTILI loop. When she executed it,
she got

32767 ok

What was her definition?

2. Since you now know that IAND1 and [OR em .r.)loy bit logic,
explain why the following example must use . instead 'of IN:

: MATCH HUMOROUS SENSITIVE AND
ART-LOVING MUSIC-LOVING OR AND SMOKING NOT AND

IF ." I HAVE SOMEONE YOU SHOULD MEET " THEN ;

3. Write a definition that "rings" your terminal's bell three
times. Make sure that there is enough of a delay between
the bells so that they are distinguishable. Each time the
bell rings, the word "BEEP" should appear on the terminal
screen.

(Problems 4 and 5 are practice in double-length math.)

4. a. Rewrite the temperature conversion definitions which you
created for the problems in Chap. 5. This time assume
that the input and resulting temperatures are to be
double-length signed integers which are scaled (i.e.,
multiplied) by ten. For example, if 10.5 degrees is
entered, it is a 32-bit integer with a value of 105.

b. Write a formatted output word named .DEG which will
display a 32-bit signed integer scaled by ten as a string
of digits, a decimal point,; and one fractional digit.

For example:

12.3 .DEG MED 12.3 ok

182 	 Starting FORTH ,

-Problem 4, continued
c. Solve the following conversions:

0.0° F in Centigrade
212.0 ° F in Centigrade
20.5° F in Centigrade
16.0° C in Fahrenheit

-40.0° C in Fahrenheit
100.0° K in Centigrade
100.0 ° K in Fahrenheit
233.0 ° K in Centigrade
233.0 ° K in Fahrenheit

5. a. Write a routine which evaluates the quadratic equation

7x 2 + 20x + 5

given x, and returns a double-length result.

b. How large an x will work without overflowing thirty-two
bits as a signed number?

FOR EVERYONE - -

6. Write a word which prints the numbers 0 through 16 (decimal)
in decimal, hexadecimal, and binary form in three columns.
E.g.,

DECIMAL 0 HEX 0 BINARY 	0
DECIMAL 1 HEX 1 BINARY ,,..1
DECIMAL 2 HEX 2 	10

DECIMAL 16 HEX 10 BINARY 10000

7. If you enter

(two periods not separated by a space),..and the system
responds "ok," what does this tell you?

8. Write a definition for a phone-number formatting word that
will also print the area code with a slash if and only if the
number includes an area code. E.g.,

555-1234 .PH# 555-1234 ok
213/372-8493 .PHr 213/372-8493 ok

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

