
6 THROW IT FOR A LOOP 

In Chap. 4 we learned to program the computer to make 
"decisions" by branching to different parts of a definition 
depending on the outcome of certain tests. Conditional 
branching is one of the things that make computers as useful as 
they are. 

In this chapter, we'll see how to write definitions in which 
execution can conditionally branch back to an earlier part of 
the same definition, so that some segment will repeat again and 
again. This type of control structure is called a "loop." The 
ability to perform loops is probably the most significant thing 
that makes computers as powerful as they are. If we can program 
the computer to make out one payroll check, we can program it to 
make out a thousand of them. 

For now we'll write loops that do simple things like printing 
numbers at your terminal. In later chapters, we'll learn to do 
much more with them. 

Definite Loops —  

One type of loop structure is called a "definite loop." You, the 
programmer, specify the number of times the loop will loop. In 
FORTH, you do this by specifying a beginning number and an 
ending number (in reverse order) before the word bJ. Then you 
out the words which you want to have repeated between the words 
DO and ILOOP1. For example 

: TEST 10 0 DO CR ." HELLO " LOOP ; 

will print a carriage return and "HELLO" ten times, because zero 
from ten is ten. 

127 



PARA-
METER 
S TA C K 

RETURki 
STACK 

,128 
	

Starting FORTE,11, 

TEST 
HELLO  
HELLO  
HELLO  
HELLO  
HELLO  
HELLO  
HELLO  
HELLO  
HELLO  
HELLO ok  

Like an IF 	THEN statement, which also involves branching, a 
[DO ...ILOOP1 statement must be contained within a (single) 
-definition. 

The ten is called the "limit" and the zero is called the "index." 

FORMULA: 

limit index DO ... LOOPt 

Here's what happens inside a 75—  (LOOP( 

   

First 	 puts the index and the limit on the return stack. 

tFor the Timid Beginner 

Go ahead! Nobody's looking. 

: TEST 1000 0 DO ." I'M GOING LOOPY! " LOOP ; 

Go on, execute it! How often have you been able to tell anyone 
to do something a thousand times? 

,- half-brother of the DODO bird. 



s 'NROW IT FOR A LOOP 	 129 

11 	ri)illi 	 
DO 
	

LOOP  

Then execution proceeds to the 	up till the word 
words inside the loop, 

ILOOP 

If the 	is less than the 	and adds a one to the 
limit, 	reroutes execution 

	
index. 

back to p01,  

LATER: 

Eventually the index reaches ten, and ILOOPI lets execution move 
on to the next word in the definition. 

t
(who just emerged from its loophole) 



130 	 Starting. FOWITI___ 

Remember that the FORTH word Ei copies the top of the return 
stack onto the parameter stack. You can use to get hold of the 
current value of the index each time around. Consider the 
definition 

: DECADE 10 0 DO I . LOOP ; 

_which executes like this: 

DECADE 0 1 2 3 4 5 6 7 8 9 ok  

Of course, you could pick any range of numbers (within the range 
of -32768 to +32767): 

: SAMPLE -243 -250 DO I . LOOP ; 

SAMPLE -250 -249 -248 -247 -246 -245 -244 ok  

Notice that even negative numbers increase by one each time. 
The limit is always higher than the index. 

something inside a !DOI loop. For instance, 
You can leave a number on the stack to serve as an argument to 

: MULTIPLICATIONS CR 11 1 DO DUP I * . LOOP DROP ; 

will produce the following results: 

7 MULTIPLICATIONS 
7 14 21 28 35 42 49 56 63 70 ok  

Here we're simply multiplying the current value of the index by 
seven each time around. Notice that we have to DUP] the seven 
inside the loop sr) that a copy will be available each time and 
that we have to [. it after we come out of the loop. 

A compound interest problem gives us the opportunity to 
demonstrate some trickier stack manipulations inside a DOS loop. 

Given a starting balance, say $1000, and an interest rate, say 6%, 
let's write a definition to compute and print a table like this: 

1000 6 COMPOUND 
YEAR 1 BALANCE 1060 
YEAR 2 BALANCE 1124 
YEAR 3 BALANCE 1191 

etc. 

for twenty years. 

First we'll load R%, our previously-defined word from Chap. 5, 
then we'll define 



6 THROW IT FOR A LOOP 	 131 

: COMPOUND 	( amt int -- ) 
SWAP 21 1 DO ." YEAR " I . 3 SPACES 
2DUP R% + DUP ." BALANCE " . CR LOOP 2DROP ; 

Each time through the loop, we do a I2DUP so that we always 
maintain a running balance and an unchanged interest rate for 
the next go-round. When we're finally done, we 2DROP them. 

Getting 
	

fy 

The index can also serve as a condition for an IF statement. In 
this way you can make something special happen on certain passes 
through the loop but not on others. Here's a simple example: ,  

: RECTANGLE 256 0 DO I 16 MOD 0= IF 
CR THEN ." *" LOOP ; 

RECTANGLE will print 256 stars, and -'at every sixteenth star it 
will also perform a carriage return at your terminal. The -result 
should look like this: 

**************** 
**************** 
**************** 
**************** 
**************** 
**************** 
**************** 
**************** 

**************** 
**************** • 
**************** 
**************** 
**************** 
***********W**** 
**********04e**M 



Starting FORTH 

And here's an example from , the world of nursery rhymes. We'll 
let you figure this one out. 

: POEM CR 11 1 DO I . ." LITTLE " 
I 3 MOD 0= IF ." INDIANS " CR THEN LOOP 

." INDIAN BOYS. " ; 

Nested Loops  

In the last section we  defined a word called MULTIPLICATIONS, 
which contained a D0...ILOOPI. If we wanted to, we could put 

_MULTIPLICATIONS inside another IDO LOOP, like this: 

TABLE CR 11 1 DO I MULTIPLICATIONS LOOP ; 

Now we'll get a multiplication table that looks like this: 

1 2 3 4 5 6 7 8 9 10 
2'4 6 8 10 1214 16 18 20 
3 6 9 12 15 18 21 24 27 30 

etc. 
10 20 30 40 50 60 70 80 90 100 

because the El in the outer loop supplies the argument for 
MULTIPLICATIONS. 

You can also nest DOI loops inside one another all in the same 
definition: 

: TABLE CR 11 1 DO 
11 1 DO I J * 5 U.R LOOP CR LOOP ; 

Notice this phrase in the inner loop: 

I J * 

    

 

0: 91 

   

In Chap. 5 we mentioned that the word 
copies the third item of the return stack 
onto the parameter stack. It so happens 
that in this case the third item on the 
return stack is the index of the outer  loop. 

Thus the phrase "I J *" multiplies the two 
indexes to create the values in the table. 

Now what about this phrase? 

5 U.R 

     

  

index 

   

  

imit 

   

      

      

      

       



*THROW IT FOR A LOOP 	 133 

This is nothing more than a fancy Q that is used to print numbers 
In table form so that they line up vertically. The five 
represents the number of spaces we've decided each column in the 
table should be. The output of the new table will look like this: 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 
2 	4 	6 	8 	10 	12 	14 	16 	18 	20 
3 	6 	9 	12 	15 	18 	21 	24 	27 	30 	etc. 

Each number takes five spaces, no matter how many digits it 
contains. ((U.R1 stands for "unsigned  number-print, right  
justified." The term "unsigned," you may recall, means you 
cannot use it for negative numbers.) 

1+LOOPt 

If you want the index to go up by some number other than one 
each time around, you can use the word +LOOPI instead of LOOP.t 

expects on the stack the number by which you want the 
index to change. For example, in the definition 

: PENTAJUMPS 50 0 DO I . 5 +LOOP ; 

the index will go up by five each time, with this result: 

PENTAJUMPS  0 5 10 15 20 25 30 35 40 45 ok  

while in 

: FALLING -10 0 DO I . -1 +LOOP ; 

the index will go down by one each time, with this result: 

FALLING  0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 ok  

The argument for HLOOP], which is called the "increment," can 
come from anywhere, but it must be put on the stack each time 
around. Consider this experimental example: 

: INC-COUNT DO I . DUP +LOOP DROP ; 

tFor the Curious 

A third DO) loop ending word is introduced in Chap. 7. 

(+LOOP 



134 	 Starting FORTH__ 

There is no increment inside the definition; instead, it will have 
to be on the stack when INC-COUNT is executed, along with the 
limit and index. Watch this: 

Step up by one: 

------ .1.5 0 INC-COUNT  0 1 2 3 4 - ok  

Step up by two: 

2 5 0 INC-COUNT  0 2 4 ok  

Step down by three: 

-3 -10 10 INC-COUNT  10 7 4 1 -2 -5 -8 ok  

Our next example demonstrates an increment that changes each 
time through the loop. 

: DOUBLING 32767 1 DO I . I +LOOP ; 

Here the index itself is used as the increment (I +LOOP), so that 
starting with one, the index doubles each time, like this: 

DOUBLING 
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 ok  

(We chose 32767 as our limit because it is our highest allowable 
number in single-length.) 

Notir' that in this example we don't ever want the argument for 
+L1___,  to be zero, because if it were we'd never come out of the 
loop. We would have created what is known as an "infinite loop." 



e THROW IT FOR A LOOP 	 135 

fiqing It -- FORTH style  

There are a few things to remember before you go off and write 
some 114  loops of your own. 

First, keep this simple guide in mind: 

Reasons for Termination  

Execution makes its exit from a loop when ... 

going up ". 

... the index has reached or passed the limit. 

going down ". 

... the index has passed the limit--not when it has 
merely reached it. 

But a IDO1 loop always executes at least once: 

: TEST 100 10 DO I . -1 +LOOP ; 
TEST 10 ok 

Second, remember that the words 1D0i and LOOP are branching 
commands and that therefore they can only be executed inside a 



second 2DUP R% 	.S77777 
time 	6 1124 ok  

2DROP .S 
EMPTY ok  

136 	 Starting FORTH .,  

definition. This means that you cannot design/test your loop 
definitions in "calculator style" unless you simulate the loop 
yourself: 

Let's see how a fledgling FORTH programmer might go about 
design/testing the definition of COMPOUND (from the first section 
of this chapter). Before adding the I.1 messages, the programmer 
might begin by jotting down this version on a piece of paper: 

: COMPOUND ( amt int -- ) 
SWAP 21 1 DO I . 2DUP R% + DUP . CR LOOP 2DROP ; 

The programmer might test this version at the terminal, using 2 
or .S to check the result of each step. The "conversation" might 
look like this: 

first 

1000 6 SWAP 
6 1000 ok 

.H= 

2DUP .Sar"7" In simulation, the programmer 
time 
thru 

6 1000 6 1_ ok omits the "limit index DO" 
phrase, as well as any 
reference to I. 

R% 
6 1000 60 ok 

+ In simulation, the programmer 
6 1060 ok can omit the "DUP ." phrase. 

Everything seems to be work-
ing, so the programmer 
pretends the last loop has 
finished and checks that the 
stack is clear. 



i ;'BROW IT FOR A LOOP 	 137 

A Handy Hint  

How to Clear the Stack  

Sometimes a beginner will unwittingly write a loop which leaves a 
whole lot of numbers on the stack. For example 

FIVES 100 0 DO I 5. LOOP ; 

instead of 

: FIVES 100 0 DO 15 * . LOOP ; 

If you see this happen to anyone (surely it will never happen to 
you[) and if you see the beginner typing in an endless succession 
of dots to clear the stack, recommend typing in 

XX 

XX ts not a FORTH word, so the text interpreter will execute the 
word IhBORT fi l f  which among other things clears both stacks. The 
beginner will be endlessly grateful. 



130 	 POWIl 

Indefinite Loops  

While DOS loops are called definite loops, FORTH also supports 
"indefinite" loops. This type of loop will repeat indefinitely 
or until some event occurs. A standard form of indefinite loop is 

BEGIN ... UNTIL 

The BEGINI...IUNTIL] loop repeats until a condition is "true." 

The useage is 

BEGIN xxx f UNTIL 

where "xxx" stands for the words that you want to be repeated, 
and "f" stands for a flag. As long as the flag is zero (false), 
the loop will continue to loop, but when the flag becomes 
non-zero (true), the loop will end. 

An example of a definition that uses a BEGIN...UNTILI statement 
is one we mentioned earlier, in our washing machine example: 

: TILL-FULL BEGIN ?FULL UNTIL ; 

which we used in the higher-level definition 

: FILL FAUCETS OPEN TILL-FULL FAUCETS CLOSE ; 

?FULL will be defined to electronically check a switch in the 
washtub that indicates when the water reaches the correct level. 
It will return zero if the switch is not activated and a one if it 
is. TILL-FULL does nothing but repeatedly make this test over 
and over (thousands of times per second) until the switch is 
finally activated, at which time execution will come out of the 
loop. Then the 1 in TILL-FULL will return the flow of execution 
to the remaining words in FILL, and the water faucets will be 
turned off. 

Sometimes a programmer will deliberately want to create an 
infinite loop. In FORTH, the best way is with the form 



.7:.i.4)W IT FOR A LOOP 	 139 

BEGIN xxx 0 UNTIL 

The zero supplies a "false" flag to the word 
*:11 repeat eternally. 

'UNTIL , so the loop 

 

; , ;Inners usually want to avoid infinite loops, because executing 
zne means that they lose control of the computer (in the sense 
V:at only the words inside the loop are being executed). But 
tnfinite loops do have their uses. For instance, the text 
.r.terpreter is part of an •infinite loop called IQUITI, which waits 
tar input, interprets it, executes it, prints "ok," then waits for 
Lftput once again. In most microprocessor-controlled machines, 
the highest-level definition contains an infinite loop that 
,:clines the machine's behavior. 

,bother form of indefinite loop is used in this format: 

BEGIN xxx f WHILE yyy REPEAT 

Here the test occurs halfway through the loop rather than at the 
end. As long as the test is true, the flow of execution continues 
with the rest of the loop, then returns to the beginning again. 
If the test is false, the loop ends. 

Notice that the  effect of the test is opposite that in the 
..IUNTILi construction. Here the loop repeats while 

something is true (rather than until  it's true). 

The indefinite loop structures lend themselves best to cases in 
which you're waiting for some external event to happen, such as 
the closing of a switch or thermostat, or the setting of a flag by 
another part of an application that is running simultaneously. 
So for now, instead of giving examples, we just want you to 
remember that the indefinite loop structures exist. 

[BEGIN) 



Sometime during the course of the loop  (while ILOOP1 is 
asleep at the switch), the word LEAVE( sets the limit to 
equal the index. Now the next time 1LOOP  is executed, the 
loop will terminate. 

140 
	

aarLing PURIM 

The Indefinitely Definite Loop  

There is a way to write a definite loop so that it stops short of 
the prescribed  limit if a truth condition changes state, by using 
the word ILEAVEI. LEAVE causes the loop to end on the very next 
LOOP or i+LOOPi.  

Watch how we rewrite our earlier definition of COMPOUND. 
Instead of just letting the loop run twenty times, let's get it to 
quit after twenty times or as soon as our money has doubled, 
whichever occurs first. 

We'll simply add this phrase: 

2000 > IF LEAVE THEN 

like this: 

: DOUBLED 	6 1000 21 1 DO CR 
." YEAR " 	I 2 U.R 
2DUP RE + DUP . 	BALANCE " . 
DUP 2000 > IF CR CR ." MORE THAN DOUBLED IN 

I . ." YEARS " LEAVE THEN 
LOOP 2DROP ; 

The result will look like this: 



';:i:.014 IT FOR A LOOP 

DOUBLED 

141 

YEAR 	1 BALANCE 1060 
YEAR 	2 BALANCE 1124 
YEAR 	3 BALANCE 1191 
YEAR 	4 BALANCE 1262 
YEAR 	5 BALANCE 1338 
YEAR 	6 BALANCE 1418 
YEAR 	7 BALANCE 1503 
YEAR 	8 BALANCE 1593 
YEAR 	9 BALANCE 16139 
YEAR 10 BALANCE 1790 
YEAR 	11 BALANCE 1897 
YEAR 12 BALANCE 2011 

MORE THAN DOUBLED IN 	12 YEARS ok 

One of the problems at the end of this chapter asks you to rework 
DOUBLED so that it expects the parameters of interest and 
starting balance, and computes by itself the doubled balance that 

will try to reach. [LEAVE 



142 
	

Starting FORT!! 

Two Handy Hints: PA"  and !QUIT 

To give a neater appearance to your loop outputs (such as tables 
and geometric shapes),you might want to clear the screen first 
by using the word PAGEI. You can execute PAGE interactively 
like this: 

PAGE RECTANGLE 

which will clear the screen before printing the rectanglp . that we 
defined earlier in this chapter. Or you could put   at the 
beginning of the definition, like this: 

: RECTANGLE PAGE 256 0 DO 
I 16 MOD 0= IF CR THEN ." *" LOOP ; 

If you don't want the "ok" to appear upon completion 
execution, use the word 1QUITI. Again, you can use 
interactively: 

RECTANGLE QUIT 

or you can make QUIT the last word in the definition (just before 
the semicolon). 

of 
QUIT] 



6 THROW IT FOR A LOOP 	 143 

Here's a list of the FORTH words we've covered in the chapter: 

DO ... LOOP 	DO: (limit 
index 	) 

LOOP: ( 	) 

DO ... +LOOP 
	

DO: (limit 
index 	) 

+LOOP: (n 	) 

Sets up a finite loop, given 
the index range. 

Like DO ... LOOP except adds 
the value of n (instead of 
always one) to the index. 

( 	) 

UNTIL: (f 	) 

WHILE: (f 	) 

Terminates the loop at the 
next LOOP or +LOOP. 

Sets up an indefinite loop 
which ends when f is true. 

Sets up an indefinite loop 
which always executes xxx 
and also executes yyy if f is 
true. Ends when f is false. 

LEAVE 

BEGIN 
UNTIL 

BEGIN xxx 
WHILE yyy 
REPEAT 

U. R 

PAGE 

QUIT 

Prints the unsigned single-
length number, right-
justified within the field 
width. 

Clears the terminal screen 
and resets the terminal's 
cursor to the upper left-hand 

.; corner. 

Terminates execution for the 
current task and returns 
control to the terminal. 



144 
	

Starting FORTH 

Review of Terms  

 

Definite loop 

Infinite loop 

Indefinite loop 

 

a loop structure in which the words contained 
within the loop repeat a definite number of 
times. In FORTH, this number depends on the 
starting and ending counts (index and limit) 
which are placed on the stack prior to the 
execution of the word Vo.  
a loop structure in which the words contained 
within the loop continue to repeat without any 
chance of an external event stopping them, 
except for the shutting down or resetting of 
the computer. 

a loop structure in which the words contained 
within the loop continue to repeat until some 
truth condition changes state (true-to-false or 
false-to-true). In FORTH,  the indefinite loops 
begin with the word BEGIN].  



o THROW IT FOR A LOOP 	 145 

Problems — Chapter 6  

In Problems 1 through 6, you will create several words which will 
print out patterns of st -  --; ---"- erisks). These will involve the 
use of DO loops and  11  loops. 

1. First create a word named STARS which will print out n stars 
on the same line, given n on the stack: 

10 STARS =31 ********** ok 

2. Next define BOX which prints out a rectangle of stars, given 
the width and height (number of lines), using the stack order 
(width height 	). 

10 3 BOX 
********** 
********** 
********** ok 

3. Now create a word named \STARS which will print a skewed 
array of stars (a rhomboid), given the height on the stack. 
Use a IDO loop and, for simplicity, make the width a constant 
ten stars. 

3 \STARS 
********** 
********** 
********** ok 

4. Now create a word which slants the stars the other direction; 
call it /STARS. It should take the 	:ght as a stack input 
and use a constant ten width. Use a __ loop. 

5. Now redefine this last word, using a BEGIN IUNTILI loop. 

 



146 	 SLarLiny FORTH 

6. Write a definition called DIAMONDS which will print out the 
given number of diamonds shapes, as shown in this example: 

	

****,,( 	;:*)e,< 

	

*****,,, 	* 
* * * * 	)!<** 

*k<*****Y***** ,'.(* 
***************** 

******************* 
******************* 
***************** 
*************** 
************* 

***** 

**** 
*71, 

7. In our discussion of LEAVE we gave an example which 
computed 6% compound interest on a starting balance of $1000 
for 20 years or until the balance had doubled, whichever 
came first. Rewrite this definition so that it will expect a 
starting balance and interest rate on the stack and will 

when this starting balance has doubled. ILEAVE1 



i TRROw IT FOR A LOOP 	 147 

S. Define a word called ** that will compute exponential 
values, like this: 

7 2 ** . 49 ok 
(seven squared) 

24 ** . 1€ ok 
two to the fourth power) 

For simplicity, assume positive exponents only (but make sure 
** works correctly when the exponent is one--the result 
should be the number itself). 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

