
(n 	n+1) 	 Adds one.

h 	 (n 	n-1) 	 Subtracts one.

2+ 	 (n 	n+2) 	 Adds two.

2- 	 (n 	n-2) 	 Subtracts two.

2* 	 (n 	n*2) 	 Multiplies by two
(arithmetic left
shift).

(n 	n/2) 	 Divides by two
(arithmetic right
shift).

5 THE PHILOSOPHY OF FIXED POINT

this chapter we'll introduce a new batch of arithmetic
,:verators. Along the way we'll tackle the problem of handling
4etimal points using only whole-number arithmetic.

kiickie Operators

vet's start with the real easy stuff. You should have no trouble
iLguring out what the words in the following table do.t

pronounced:

The reason they have been defined as words in your FORTH system
in that they are used very frequently in most applications and
even in the FORTH system itself.

For Beginners

We'll explain what "arithmetic left - Shift" is later on.

107

ABS 	 (n -- In[) 	 Returns the absolute value.

NEGATE 	 (n -- -n) 	 Changes the sign.

MIN 	 (nl n2 -- n-min) 	Returns the minimum.

MAX 	 (nl n2 -- n-max) 	Returns the maximum.

Here are two simple word problems, using [ABS and MINI:

!ABS]

108 	 Starting FORTH

There are three reasons to use a word such as Eck instead of one
and , in your new definitions. First, you save a little
dictionary space each time. Second, since such words have been
specially defined in the "machine language" of each individual
type of computer to take advantage of the computer's
architecture, they execute faster than one and 11. Finally, you
save a little time during compilation.

Miscellaneous Math Operators

Here's a table of four miscellaneous
math operators. Like the quickie
operators, these functions should be
obvious from their names.

Aunt Min and Uncle Max

Write a definition which computes the difference between two
numbers, regardless of the order in which the numbers are
entered.

: DIFFERENCE - ABS

This gives the same result whether we enter

52 37 DIFFERENCE . 15 ok 	or
37 52 DIFFERENCE . 15 ok

1 THE PHILOSOPHY OF FIXED POINT 	 109

',trite a definition which computes the commission that furniture
salespeople will receive if they've been promised $50 or 1/10 of
the sale price, whichever is less, on each sale they make.

: COMMISSION 10 / 50 MIN ;

Three different values would produce these results:

600 COMMISSION . 50 ok
450 COMMISSION . 45 ok
50 COMMISSION . 5 ok

The Return Stack

We mentioned before that there were still some stack manipulation
operators we hadn't discussed yet. Now it's time.

Up till now we've been talking about "the stack" as if there were
only one. But in fact there are two: the "parameter stack" and
the "return stack." The parameter stack is used more often by
FORTH programmers, so it's simply called "the stack" unless there
is cause for doubt.

As you've seen, the parameter stack holds parameters (or
'arguments") that are being passed from word to word. The return
stack, however, holds any number of "pointers" which the FORTH
system uses to make its merry way through the maze of words that
are executing other words. We'll elaborate later on.

You the user can employ the return stack as a kind of "extra
hand" to hold values temporarily while you perform operations on
the parameter stack.

PARA-
MgTER,
STACK

RETURN
STACK

no
AWA*Rs.q400TiojOortawoeowwdwwmwqmhwmmv. —,,,,—,-

Starting FORTH

The return stack is a last-in first-out structure, just like the
parameter stack, so it can hold many values. But here's the

—catch: whatever you put on the return stack you must remove
again before you get to the end of the definition (the
semicolon), because at that point the FORTH system will expect to
find a pointer there. You cannot use the return stack to pass
parameters from one word to another.

The following table lists the words associated with the return
stack. Remember, the stack notation refers to the parameter
stack.

Takes a value off
the parameter
stack and pushes
it onto the return
stack.

Takes a value off
the return stack
and pushes it onto
the parameter
stack.

(n) 	 Copies the top of
the return stack
without affecting
it.

(n) 	 Copies the second
item of the return
stack without af-
fecting it.

(n)
	

Copies the third
item of the return
stack without af-
fecting it.

>R

R> 	 (n)

5 THE PHILOSOPHY OF FIXED POINT 	 111

The words >R1 and 1R>1 transfer a value to and from the return
stack, respectively. In the cartoon above, where the stack
effect was:

(2 3 1 -- 3 2 1)

This is the phrase that did it:

>R SWAP R>

Each 1>R] and its corresponding 1R>j must be used together in the
same definition or, if executed interactively, in the same line of
input (before you hit the RETURN key).

The other three words--e, 1171, and ©--only copy values from the
return stack without removing them. Thus the phrase:

>R SWAP I

would produce the same result as far as it goes, but unless you
clean up your trasht before the next semicolon (or return key),
you will crash the system.

To see how 1>R1, IR>1, and
unlucky as to need to solve

ax 2 + bx + c

might be used, imagine you are so
the equation:

with all four values on the stack in the following order:

(a b c x)

(remember to factor out first).

tYou might call such an error in your program a "litter bug."

112
	

Starting FORTH

Parameter 	Return
Operator 	Stack 	Stack

abcx

>R 	 a b c

SWAP ROT 	c b a

I 	 cbax

c b ax

c (ax + b)

R> * 	 c x(ax+b)

x(ax+b)+c

Go ahead and try it. Load the following definition:

: QUADRATIC (a b c x 	n)
>R SWAP ROT I * + R> * + ;

Now test it:

2 7 9 3 QUADRATIC 48 ok

One more note (it's a little off the subject, but this is the first
chance we've had to note it): you have now learned two different
words with the name p (remember the EDITOR's "insert" word?).
The reason the same name can refer to two separate definitions,
depending on the context, is that the words are in different
vocabularies.

We briefly mentioned earlier that the EDITOR is a vocabulary.
You can get into the EDITOR vocabulary automatically by using
certain EDITOR commands, such as 13. Another vocabulary is
called FORTH, which contains all the other predefined words
we've covered so far. You can get back into the FORTH
vocabulary by starting to compile a new definition (that is, when
the interpreter sees the word W).

We mention all this now simply to amaze and impress you. The
real discussion of vocabularies comes in a future chapter.

5 THE PHILOSOPHY OF FIXED POINT 	 113

An Introduction to Floating-Point Arithmetic

There are many controversies surrounding FORTH. Certain
principles which FORTH programmers adhere to religiously are
considered foolhardy by the proponents of more traditional
languages. One such controversy is the question of "fixed-point
representation" versus "floating-point representation."

If you already understand these terms, skip ahead to the next
section, where we'll express our views on the controversy. If
you're a beginner, you may appreciate the following explanation.

First, what does floating point mean? Take a pocket calculator,
for example. Here's what the display looks like after each entry:

You enter:
	

Display reads:

1 . 5 0 x
	

1.5

2 . 2 3
	

2.23

3.345

The decimal point "floats" across the display as necessary. This
is called a "floating point display."

"Floating point representation" is a way to store numbers in
computer memory using a form of scientific notation. In
scientific notation, twelve million is written:

12 x 10 6

since ten to the sixth power equals one million. In many
computers twelve million could be stored as two numbers: 12 and
6, where it is understood that 6 is the power of ten to be
multiplied by 12, while 3.345 could be stored as 3345 and -3.

The idea of floating-point representation is that the computer
can represent an enormous range of numbers, from atomic to
astronomic, with two relatively small numbers.

What is fixed-point representation? It is simply the method of
storing numbers in memory without storing the positions of each
number's decimal point. For example, in working with dollars and
cents, all values can be stored in cents. The program, rather
than each individual number, can remember the location of the
decimal point.

For example, let's compare fixed-point and floating-point
representations of dollars-and-cents values.

114
	

Starting FORTH

Real-world
Value

Fixed-point
Representation

Floating-point
Representation

1.23 123 123 (-2)
10.98 1098 1098 (-2)

100.00 10000 1(2)
	58.60 5860 586(-1)

As you can see, with fixed-point all the values must conform to
the same "scale." The decimal points must be properly "aligned"

--(in-this case two places in from the right) even though they are
not actually represented. With fixed-point, the computer treats
all the numbers as through they were integers. If the program
needs to print out an answer, however, it simply inserts the
decimal point two places in from the right before it sends the

--number to the terminal or to the printer.

Why FORTH Programmers Advocate Fixed-Point

Many respectable languages and many distinguished programmers
use floating-point arithmetic as a matter of course. Their
opinion might be expressed ,like this: - "Why should I haVe to
worry about moving decimal points around? That's what computers
are for."

That's a valid question--in fact it expresses the most significant
advantage to floating-point implementation. For translating a
mathematical equation into program code, having a floating-point
language makes the programmer's life easier.

The typical FORTH programmer, however, perceives the role of a
computer differently. A FORTH programmer is most interested in
maximizing the efficiency of the machine. That means he or she
wants to make the program run as fast as possible and require as
little computer memory as possible.

To a FORTH programmer, if a problem is worth doing on a computer
at all, it is worth doing on a computer well. The philosophy is,
"If you just want a quick answer to a few calculations, you might
as well use a hand-held calculator." You won't care if the
calculator takes half a second to display the result. But if you
have invested in a computer, you probably have to repeat the
same set of calculations over and over and over again.
Fixed-point arithmetic will give you the speed you need.

Is the extra speed that noticeable? Yes, it is. A floating-point
multiplication or division can take three times as long as its
equivalent fixed-point calculation. The difference is really
noticeable in programs which have to do a lot of calculations

5 THE PHILOSOPHY OF FIXED POINT 	 115

before sending results to a terminal or taking some action.t
Most mini- and microcomputers don't "think" in floating-point;
you pay a heavy penalty for making them act as though they do.

Here are some of the reasons you might prefer to have
floating-point capability.

1. You want to use your computer like a calculator on
floating-point data.

2. You value the initial programming time more highly than
the execution time spent every time the calculation is
performed.

3. You want a number to be able to describe a very large
dynamic range (greater than -2 billion to +2 billion).

4. Your system includes a discrete hardware floating-point
multiply (a separate "chip" whose only job is to perform
floating-point multiplication at super high speeds).

tFor Experts

Many professional FORTH programmers who have been writing
complex applications for years have never had to use
floating-point. And their applications often involve solutions
of differential equations, Fast Fourier Transforms, non-linear
least squares fitting, linear regression, etc. Problems that
traditionally required a main-frame have been done on slower
minicomputers and microprocessors, in some cases with an overall
increase in computation rate.

Most problems with physical inputs and outputs, including weather
modeling, image reconstruction, automated electrical
measurements, and the like all involve input and output variables
that inherently have a dynamic range of no more than a few
thousand to one, and thus fit comfortably into a 16-bit integer
word. Intermediate calculation steps (such as summation) can be
handled by the judicious use of scaling and double-length
integers where required. For example, one common calculation
step might involve multiplying each data point by a parameter (or
by itself) and summing the result. In fixed point, this would be a
16 x 16-bit multiply and 32-bit summation. In floating-point,
numbers are likely stored as 24-bit mantissa and 8-bit exponents.
The 24-bit multiply will take about 1.5 times longer and the 32-bit
addition 3-10 times longer than in fixed point. There is also the
overhead of floating all the input data and fixing all the output
data, approximately equal to one fldating-point addition each.
When these operations are performed thousands or millions of
times, the overall saving by remaining in integer form is
enormous.

*/ 	 (nl n2 n3 --
n-result)

As its name implies, I*/ performs multi-
plication, then division. For example,
let's say that the stack contains these
three numbers:

(225 32 100 --)

* / will first multiply 225 by 32, then
divide the result by 100.

This operator is particularly useful as an
integer-arithmetic solution to problems
such as percentage calculations.

Multiplies, then di-
vides (nl*n2/n3). Uses
a 32-bit intermediate
result.

116 	 Starting FORTH

All of these are valid reasons. Even Charles Moore, perhaps the
staunchest advocate of simplicity in the programming community,
has occasionally employed floating-point routines when the
hardware supported it. Other FORTH programmers have written
floating-point routines for their mini- and microcomputers. But
the mainstream FORTH philosophy remains: "In most cases, you
don't need to pay for floating-point."

FORTH backs its philosophy by supplying the programmer with a
unique set of high-level commands called "scaling operators."
We'll introduce the first of these commands in the next section.
(The final example in Chap. 12 illustrates the use of scaling
techniques.)

Star-slash the Scalar

Here's a math operator that is as useful as it is unusual:

For example, you could define the word % like this:

: % 	100 */ ;

so that by entering the number 225 and then the phrase:

32 %

sing le-length

200Q I
BC.

tool
garlaa3e1

1 	1001

I esoi

VIE PHILOSOPHY OF FIXED POINT 	 117

you'd end up with 32% of 225 (that is, 72) on the stack.t

El is not just a fil and a 2 thrown together, though. It uses a
"double-length intermediate result." What does that mean, you
ask?

Say you want to compute 34% of 2000. Remember that
single-precision operators, like ij and , only work with
arguments and results within the range of -32768 to +32767. If you
vere to enter the phrase:

2000 34 * 100 /

you'd get an incorrect result, because the "intermediate result"
in this case, the result of multiplication) exceeds 32767, as

shown in the left column in this pictorial simulation.

2000 34 * 100 / 	 2000 34 100 */

double-length

I 2.00 -01
31

63 4, 001

But Fral uses a double-length intermediate result, so that its
range will be large enough to hold the result of any two
single-length numbers multiplied together. The phrase:

2000 34 100 */

returns the correct answer because the end result falls within the
range of single-length numbers.

/For the curious

The method of first multiplying two integers,
then dividing by 100 is identical to the
approach most people take in solving such
problems on paper.

0

4 5 0 0

118 Starting. FORTH

The previous example brings up another question: how to round
off.

Let's assume that this is the problem:

If 32% of the - students eating at the school cafeteria usually
buy bananas, how many bananas should be on hand for a crowd
of 225? Naturally, we are only interested in whole bananas,
so we'd like to round off any decimal remainder.

As our definition now stands, any value to the right of the
decimal is simply dropped. In other words, the result is
"truncated."

32% of: Result:

225 = 72.00 72
226 = 72.32 72

227 = 72.64 72

-- exactly correct
-- correct, rounded down

(truncated)
-- truncated, not rounded.

There is a way, however, with any decimal value of .5 or higher,
to round upwards to the next whole banana. We could define the
word R%, for "rounded percent," like this:

: R% 10 */ 5 + 10 / ;

so that the phrase:

227 32 R% .

will give you 73, which is correctly rounded up.

Notice that we first divide by 10 rather than 100. This gives us
an extra decimal place to work with, to which we can add five:

Stack
Operation Contents

227 32 10

*/ 	 726

5 + 	 731

10 / 	 73

5 THE PHILOSOPHY OF FIXED POINT 	 119

The final division by ten sets the value to its rightful decimal
position. Try it and see.t

A disadvantage to this method of rounding is that you lose one
decimal place of range in the final result; that is, it can only
go as high as 3,276 rather than 32,767. But if that's a problem,
you can always use double-length numbers, which we'll introduce
later, and still be able to round.

Some Perspective on Scaling

Let's back up for a minute. Take the simple problem of computing
two-thirds of 171. Basically, there are two ways to go about it.

1. We could compute the value of the fraction 2/3 by
dividing 2 by 3 to obtain the repeating decimal .666666,
etc. Then we could multiply this value by 171. The
result would be 113.9999999, etc., which is not quite right
but which could be rounded up to 114.

2. We could multiply 171 by 2 to get 342. Then we could
divide this by 3 to get 114.

Notice that the second way is simpler and more accurate.

Most computer languages support the first way. "You can't have a
fraction like two-thirds hanging around inside a computer," it is
believed, "you must express it as .666666, etc."

FORTH supports the second way. */1 lets you have a fraction like
two-thirds, as in:

171 2 3 */

Now that we have a little perspective, let's take a slightly more
complicated example:

tFor Experts

An even faster definition:

: R% 	50 / 1+ 2/ ;

120 	 Starting

We want to distribute $150 in proportion to two values:t

7,105

12,

Again, we could solve the problem this way:

(7,105 / 12,250) x 150
and

(5,145 / 12,250) x 150

but for greater accuracy; we should say:

(7,105 x 150) / 12,250
and

(5,145 x 150) / 12,250

which in FORTH is written:

7105 150 12250 */ . 87 ok
then

5145 150 12250 */ . 63 ok

It can be said that
the values 87 and 63
are "scaled" to 7105
and 5145. Calculating
percentages, as we
did earlier, is also a
form of scaling. For
this reason, */1 is
called a "scaling
operator."

tFor Beginners Who Like Word-problems

Here's a word-problem for the above example:

The boss says he'll divide a $150 bonus between the two__
top-selling marketing representatives according to their monthly
commissions. When the receipts are counted, the top two
commissions are $7,105 and $5,145. How much of the bonus does
each marketing rep get?

5 THE PHILOSOPHY OF FIXED POINT 	 121

Another scaling operator in FORTH is I*/MOD:

*/MOD (ul u2 u3 	 Multiplies, then 	(1
u-rem u-result) divides (ul*u2/u3). star _ s kish_

Returns the re- 	mod
mainder and the
quotient. Uses a
double-length in-
termediate result.

We'll let you dream up a good example for */MOD yourself.

Using Rational Approximationst

So far we've only used scaling operations to work on rational
numbers. They can also be used on rational approximations of
irrational constants, such as pi .or the square root of two. For
example, the real value of pi is

3.14159265358, etc.

but to stay within the bounds of single-length arithmetic, we
could write the phrase:

31416 10000 */

and get a pretty good approximation.

Now we can write a definition to compute the area of a circle,
given its radius. We'll translate the formula:

7r 2

into FORTH. The value of the radius will be on the stack, so we
IDUP1 it and multiply it by itself, then star-slash the result:

t For Math-block Victims:

You can skip this section if it starts making your brain itch. But
if you're feeling particularly smart today, we want you to know

- that ...

A rational number is a whole number or a fraction in which the
numerator and denominator are both whole numbers. Seventeen is
a rational number, as is 2/3. Even 1.02 is rational, because it's
the same as 102/100. -'2, on the other hand, is irrational.

122 	 Starting FORTH

: PI 	DUP * 31416 10000 */ ;

Try it with a circle whose radius is ten inches:

10 PI . 314 ok

But for even more accuracy, we might wonder if there is a pair of
integers besides 31416 and 10000 that is a closer approximation to
pi. Surprisingly, there is. The fraction:

is accurate to more than six places beyond the decimal, as
opposed t6 less than four places with 31416.

Our new and improved definition, then, is:

: PI 	DUP * 355 113 */ ;

It turns out that you can approximate nearly any constant by
many different pairs of ihntegers, all numbers less than 32768, with
an error of less than 10 -0 .t

tFor Really Dedicated Matheohiles

Here's a handy table
constants:

of rational

Number

approximations

Approximation Error

to various

7 = 3.141 	... 355/ 	113 8.5 x 10 4
VT = 1.414 	... 19601/13860 1.5 x 10 4
-IT = 1.732 	• 	• 	• 18817/10864 1.1 x 10'

a = 2.713 	... 28667/10546 5.5 x 10 4
1 -0- = 3.162 	... 22936/ 	7253 5.7 x 10 4 ■/2 = 1.059 	. 26797/25293 -1-.-0 x 1.0

logio 2/1.6384 = 0.183 	... 2040/11103 1.1 x 10 4
1n2/16.384 = 0.042 	... 485/11464 1.0 1.Q: x

.001°/22-bit rev = 0.858 	... 18118/21109 1.4 x 10'
arc-sec/22-bit rev = 0.309 	... 9118/29509 1.0 x 10'

c = 2.9979248 24559/ 	8192 - 1-.6 x 10-9

5 THE PHILOSOPHY OF FIXED POINT
	

123

Here's a list of the FORTH words we've covered in this chapter:

1+ 	, 	(n -- n+1) 	Adds one.

1- (n -- n-1) 	 Subtracts one.

2+ 	 (n -- n+2) 	Adds two.

2- (n -- n-2) 	 Subtracts two.

2* 	 (n 	n*2) 	 Multiplies by two (arithmetic
left shift)

'2/ 	 (n 	n/2) 	 Divides by two (arithmetic
right shift)

ABS 	 (n 	 Returns the absolute value.

NEGATE 	(n 	-n) 	 Changes the sign.

MIN 	 (nl n2 -- n-min) 	Returns the minimum.

MAX 	 (nl n2 	n-max) 	Returns the maximum.

>R 	 (n) 	 Takes a value off the
parameter stack and pushes it
onto the return stack.

R> 	 (n) 	 Takes a value off the return
stack and pushes it onto the
parameter stack.

I . 	 (n) 	 Copies the top of the return
stack without affecting it.

(n) 	 Copies the second item of
the return stack without
affecting it.

J 	 (n) 	 Copies the third item of the
return stack without af-
fecting it.

*/

*/MOD

(nl n2 n3 --
n-result)

(ul u2 u3 --
u-rem u-result)

Multiplies, then divides (ul*
n2/n3). Uses a 32-bit interme-
diate result.

Multiplies, then divides (ul*
u2/u3). Returns the remain-
der and the quotient. Uses a
double-length intermediate
result.

124
	

Starting FORTH_

Review of Terms

Double-length
intermediate
result 	 a double-length value which is created

temporarily by a two-part operator, such as 1*/,
so that the "intermediate result" (the result of
the first operation) is allowed to exceed the
range of a single-length number, even though
the initial arguments and the final result are
not.

Fixed-point
arithmetic

Floating-point
arithmetic

Parameter Stack

Return stack

Scaling

arithmetic which deals with numbers which do
not themselves indicate the location of their
decimal points. Instead, for any group of
numbers, the program assumes the location of
the decimal point or keeps the decimal
location for all such numbers as a separate
number.

arithmetic which deals with numbers which
themselves indicate the location of their
decimal points. The program must be able to
interpret the true value of each individual
number before any arithmetic can be performed.

in FORTH, the region of memory which serves as
common ground between various operations to
pass arguments (numbers, flags, or whatever)
from one operation to another.

in FORTH, a region of memory distinct from the
parameter stack which the FORTH system uses to
hold "return addresses" (to be discussed in
Chap. 9), among other things. The user may
keep values on the return stack temporarily,
under certain conditions.

the process of multiplying (or dividing) a
number by a ratio. Also refers to the process
of multiplying (or dividing) a number by a
power of ten so that all values in a set of
data may be represented as integers with the
decimal point assumed to be in the same place
for all values.

5THE PHILOSOPHY OF FIXED POINT 	 125

Problems — Chapter 5

1. Translate the following algebraic expression into a FORTH
definition:

ab
c

given (a b c --)

2. Given these four numbers on the stack:

(6 70 123 45 --)

write an expression that prints the largest value.

Practice in Scaling

3. In "calculator style," convert the following temperatures,
using these formulas:

oC = °F - 32
1.8

°F = (°C x 1.8) + 32
° K = °C + 273

(For now, express all arguments and results in whole
degrees.)

a) 0° F in Centigrade
W 212° F in Centigrade
c) -32° F in Centigrade
d) 16° C in Fahrenheit
e) 233° K in Centigrade

4. Now define words to perform the conversions in Prob. 3.
Use the following names:

F>C F>K C>F C>K K>F K>C

Test them with the above values.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

