
(n 	n+1) 	 Adds one. 

h 	 (n 	n-1) 	 Subtracts one. 

2+ 	 (n 	n+2) 	 Adds two. 

2- 	 (n 	n-2) 	 Subtracts two. 

2* 	 (n 	n*2) 	 Multiplies by two 
(arithmetic left 
shift). 

(n 	n/2) 	 Divides by two 
(arithmetic right 
shift). 

5 THE PHILOSOPHY OF FIXED POINT 

this chapter we'll introduce a new batch of arithmetic 
,:verators. Along the way we'll tackle the problem of handling 
4etimal points using only whole-number arithmetic. 

kiickie Operators  

vet's start with the real easy stuff. You should have no trouble 
iLguring out what the words in the following table do.t 

pronounced: 

The reason they have been defined as words in your FORTH system 
in that they are used very frequently in most applications and 
even in the FORTH system itself. 

For Beginners 

We'll explain what "arithmetic left - Shift" is later on. 
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ABS 	 (n -- In[) 	 Returns the absolute value. 

NEGATE 	 (n -- -n) 	 Changes the sign. 

MIN 	 (nl n2 -- n-min) 	Returns the minimum. 

MAX 	 (nl n2 -- n-max) 	Returns the maximum. 

Here are two simple word problems, using [ABS and MINI: 

      

!ABS] 

108 	 Starting FORTH 

There are three reasons to use a word such as Eck instead of one 
and , in your new definitions. First, you save a little 
dictionary space each time. Second, since such words have been 
specially defined in the "machine language" of each individual 
type of computer to take advantage of the computer's 
architecture, they execute faster than one and 11. Finally, you 
save a little time during compilation. 

Miscellaneous Math Operators  

Here's a table of four miscellaneous 
math operators. Like the quickie 
operators, these functions should be 
obvious from their names. 

 

Aunt Min and Uncle Max 

Write a definition which computes the difference between two 
numbers, regardless of the order in which the numbers are 
entered. 

: DIFFERENCE - ABS 

This gives the same result whether we enter 

52 37 DIFFERENCE .  15 ok 	or 
37 52 DIFFERENCE . 15 ok 
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',trite a definition which computes the commission that furniture 
salespeople will receive if they've been promised $50 or 1/10 of 
the sale price, whichever is less, on each sale they make. 

: COMMISSION 10 / 50 MIN ; 

Three different values would produce these results: 

600 COMMISSION .  50 ok  
450 COMMISSION .  45 ok  
50 COMMISSION .  5 ok  

The Return Stack  

We mentioned before that there were still some stack manipulation 
operators we hadn't discussed yet. Now it's time. 

Up till now we've been talking about "the stack" as if there were 
only one. But in fact there are two: the "parameter stack" and 
the "return stack." The parameter stack is used more often by 
FORTH programmers, so it's simply called "the stack" unless there 
is cause for doubt. 

As you've seen, the parameter stack holds parameters (or 
'arguments") that are being passed from word to word. The return 
stack, however, holds any number of "pointers" which the FORTH 
system uses to make its merry way through the maze of words that 
are executing other  words. We'll elaborate later on. 

You the user can employ the return stack as a kind of "extra 
hand" to hold values temporarily while you perform operations on 
the parameter stack. 

  

   

PARA-
MgTER, 
STACK 

 

RETURN 
STACK 

   



no 
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The return stack is a last-in first-out structure, just like the 
parameter stack, so it can hold many values. But here's the 

—catch: whatever you put on the return stack you must remove 
again before you get to the end of the definition (the 
semicolon), because at that point the FORTH system will expect to 
find a pointer there. You cannot use the return stack to pass 
parameters from one word to another. 

The following table lists the words associated with the return 
stack. Remember, the stack notation refers to the parameter  
stack. 

Takes a value off 
the parameter 
stack and pushes 
it onto the return 
stack. 

Takes a value off 
the return stack 
and pushes it onto 
the parameter 
stack. 

( 	n) 	 Copies the top  of 
the return stack 
without affecting 
it. 

( 	n) 	 Copies the second  
item of the return 
stack without af-
fecting it. 

( 	n) 
	

Copies the third  
item of the return 
stack without af-
fecting it. 

>R 

R> 	 ( 	n) 



5 THE PHILOSOPHY OF FIXED POINT 	 111 

The words >R1 and 1R>1 transfer a value to and from the return 
stack, respectively. In the cartoon above, where the stack 
effect was: 

(2 3 1 -- 3 2 1) 

This is the phrase that did it: 

>R SWAP R> 

Each 1>R] and its corresponding 1R>j must be used together in the 
same definition or, if executed interactively, in the same line of 
input (before you hit the RETURN key). 

The other three words--e, 1171,  and ©--only copy  values from the 
return stack without removing them. Thus the phrase: 

>R SWAP I 

would produce the same result as far as it goes, but unless you 
clean up your trasht before the next semicolon (or return key), 
you will crash the system. 

To see how 1>R1, IR>1, and 
unlucky as to need to solve 

ax 2 + bx + c 

might be used, imagine you are so 
the equation: 

with all four  values on the stack in the following order: 

(a b c x 	) 

(remember to factor out first). 

tYou might call such an error in your program a "litter bug." 
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Parameter 	Return 
Operator 	Stack 	Stack  

abcx 

>R 	 a b c 

SWAP ROT 	c b a 

I 	 cbax 

c b ax 

c (ax + b) 

R> * 	 c x(ax+b) 

x(ax+b)+c 

Go ahead and try it. Load the following definition: 

: QUADRATIC ( a b c x 	n) 
>R SWAP ROT I * + R> * + ; 

Now test it: 

2 7 9 3 QUADRATIC  48 ok  

One more note (it's a little off the subject, but this is the first 
chance we've had to note it): you have now learned two different 
words with the name p (remember the EDITOR's "insert" word?). 
The reason the same name can refer to two separate definitions, 
depending on the context, is that the words are in different 
vocabularies. 

We briefly mentioned earlier that the EDITOR is a vocabulary. 
You can get into the EDITOR vocabulary automatically by using 
certain EDITOR commands, such as 13. Another vocabulary is 
called FORTH, which contains all the other predefined words 
we've covered so far. You can get back into the FORTH 
vocabulary by starting to compile a new definition (that is, when 
the interpreter sees the word W). 

We mention all this now simply to amaze and impress you. The 
real discussion of vocabularies comes in a future chapter. 
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An Introduction to Floating-Point Arithmetic  

There are many controversies surrounding FORTH. Certain 
principles which FORTH programmers adhere to religiously are 
considered foolhardy by the proponents of more traditional 
languages. One such controversy is the question of "fixed-point 
representation" versus "floating-point representation." 

If you already understand these terms, skip ahead to the next 
section, where we'll express our views on the controversy. If 
you're a beginner, you may appreciate the following explanation. 

First, what does floating point mean? Take a pocket calculator, 
for example. Here's what the display looks like after each entry: 

You enter: 
	

Display reads: 

1 . 5 0 x 
	

1.5 

2 . 2 3 
	

2.23 

3.345 

The decimal point "floats" across the display as necessary. This 
is called a "floating point display." 

"Floating point representation" is a way to store numbers in 
computer memory using a form of scientific notation. In 
scientific notation, twelve million is written: 

12 x 10 6  

since ten to the sixth power equals one million. In many 
computers twelve million could be stored as two numbers: 12 and 
6, where it is understood that 6 is the power of ten to be 
multiplied by 12, while 3.345 could be stored as 3345 and -3. 

The idea of floating-point representation is that the computer 
can represent an enormous range of numbers, from atomic to 
astronomic, with two relatively small numbers. 

What is fixed-point representation? It is simply the method of 
storing numbers in memory without storing the positions of each 
number's decimal point. For example, in working with dollars and 
cents, all values can be stored in cents. The program,  rather 
than each individual number,  can remember the location of the 
decimal point. 

For example, let's compare fixed-point and floating-point 
representations of dollars-and-cents values. 



114 
	

Starting FORTH 

Real-world 
Value 

 

Fixed-point 
Representation  

Floating-point 
Representation  

  

    

1.23 123 123 (-2) 
10.98 1098 1098 (-2) 

100.00 10000 1(2) 
	58.60 5860 586(-1) 

As you can see, with fixed-point all the values must conform to 
the same "scale." The decimal points must be properly "aligned" 

--(in-this case two places in from the right) even though they are 
not actually represented. With fixed-point, the computer treats 
all the numbers as through they were integers. If the program 
needs to print out an answer, however, it simply inserts the 
decimal point two places in from the right before it sends the 

--number to the terminal or to the printer. 

Why FORTH Programmers Advocate Fixed-Point  

Many respectable languages and many distinguished programmers 
use floating-point arithmetic as a matter of course. Their 
opinion might be expressed ,like this: - "Why should I haVe to 
worry about moving decimal points around? That's what computers 
are for." 

That's a valid question--in fact it expresses the most significant 
advantage to floating-point implementation. For translating a 
mathematical equation into program code, having a floating-point 
language makes the programmer's life easier. 

The typical FORTH programmer, however, perceives the role of a 
computer differently. A FORTH programmer is most interested in 
maximizing the efficiency of the machine. That means he or she 
wants to make the program run as fast as possible and require as 
little computer memory as possible. 

To a FORTH programmer, if a problem is worth doing on a computer 
at all, it is worth doing on a computer well. The philosophy is, 
"If you just want a quick answer to a few calculations, you might 
as well use a hand-held calculator." You won't care if the 
calculator takes half a second to display the result. But if you 
have invested in a computer, you probably have to repeat the 
same set of calculations over and over and over again. 
Fixed-point arithmetic will give you the speed you need. 

Is the extra speed that noticeable? Yes, it is. A floating-point 
multiplication or division can take three times as long as its 
equivalent fixed-point calculation. The difference is really 
noticeable in programs which have to do a lot of calculations 
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before sending results to a terminal or taking some action.t 
Most mini- and microcomputers don't "think" in floating-point; 
you pay a heavy penalty for making them act as though they do. 

Here are some of the reasons you might prefer to have 
floating-point capability. 

1. You want to use your computer like a calculator on 
floating-point data. 

2. You value the initial programming time more highly than 
the execution time spent every time the calculation is 
performed. 

3. You want a number to be able to describe a very large 
dynamic range (greater than -2 billion to +2 billion). 

4. Your system includes a discrete hardware floating-point 
multiply (a separate "chip" whose only job is to perform 
floating-point multiplication at super high speeds). 

tFor Experts 

Many professional FORTH programmers who have been writing 
complex applications for years have never had to use 
floating-point. And their applications often involve solutions 
of differential equations, Fast Fourier Transforms, non-linear 
least squares fitting, linear regression, etc. Problems that 
traditionally required a main-frame have been done on slower 
minicomputers and microprocessors, in some cases with an overall 
increase  in computation rate. 

Most problems with physical inputs and outputs, including weather 
modeling, image reconstruction, automated electrical 
measurements, and the like all involve input and output variables 
that inherently have a dynamic range of no more than a few 
thousand to one, and thus fit comfortably into a 16-bit integer 
word. Intermediate calculation steps (such as summation) can be 
handled by the judicious use of scaling and double-length 
integers where required. For example, one common calculation 
step might involve multiplying each data point by a parameter (or 
by itself) and summing the result. In fixed point, this would be a 
16 x 16-bit multiply and 32-bit summation. In floating-point, 
numbers are likely stored as 24-bit mantissa and 8-bit exponents. 
The 24-bit multiply will take about 1.5 times longer and the 32-bit 
addition 3-10 times longer than in fixed point. There is also the 
overhead of floating all the input data and fixing all the output 
data, approximately equal to one fldating-point addition each. 
When these operations are performed thousands or millions of 
times, the overall saving by remaining in integer form is 
enormous. 



*/ 	 (nl n2 n3 -- 
n-result) 

As its name implies, I*/ performs multi-
plication, then division. For example, 
let's say that the stack contains these 
three numbers: 

(225 32 100 -- ) 

* / will first multiply 225 by 32, then 
divide the result by 100. 

This operator is particularly useful as an 
integer-arithmetic solution to problems 
such as percentage calculations. 

Multiplies, then di-
vides (nl*n2/n3). Uses 
a 32-bit intermediate 
result. 
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All of these are valid reasons. Even Charles Moore, perhaps the 
staunchest advocate of simplicity in the programming community, 
has occasionally employed floating-point routines when the 
hardware supported it. Other FORTH programmers have written 
floating-point routines for their mini- and microcomputers. But 
the mainstream FORTH philosophy remains: "In most cases, you 
don't need to pay for floating-point." 

FORTH backs its philosophy by supplying the programmer with a 
unique set of high-level commands called "scaling operators." 
We'll introduce the first of these commands in the next section. 
(The final example in Chap. 12 illustrates the use of scaling 
techniques.) 

Star-slash the Scalar  

Here's a math operator that is as useful as it is unusual: 

For example, you could define the word % like this: 

: % 	100 */ ; 

so that by entering the number 225 and then the phrase: 

32 % 



sing le-length 

200Q I 
BC. 

tool 
garlaa3e1 

1 	1001 

I esoi 
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you'd end up with 32% of 225 (that is, 72) on the stack.t 

El  is not just a fil and a 2 thrown together, though. It uses a 
"double-length intermediate result." What does that mean, you 
ask? 

Say you want to compute 34% of 2000. Remember that 
single-precision operators, like ij and , only work with 
arguments and results within the range of -32768 to +32767. If you 
vere to enter the phrase: 

2000 34 * 100 / 

you'd get an incorrect result, because the "intermediate result" 
in this case, the result of multiplication) exceeds 32767, as 

shown in the left column in this pictorial simulation. 

2000 34 * 100 / 	 2000 34 100 */ 

double-length 

I 2.00 -01 
31 

63 4, 001 

But Fral uses a double-length intermediate result, so that its 
range will be large enough to hold the result of any two 
single-length numbers multiplied together. The phrase: 

2000 34 100 */ 

returns the correct answer because the end result falls within the 
range of single-length numbers. 

/For the curious 

The method of first multiplying two integers, 
then dividing by 100 is identical to the 
approach most people take in solving such 
problems on paper. 

0 

4 5 0 0 
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The previous example brings up another question: how to round 
off. 

Let's assume that this is the problem: 

If 32% of the - students eating at the school cafeteria usually 
buy bananas, how many bananas should be on hand for a crowd 
of 225? Naturally, we are only interested in whole bananas, 
so we'd like to round off any decimal remainder. 

As our definition now stands, any value to the right of the 
decimal is simply dropped. In other words, the result is 
"truncated." 

32% of: Result: 

225 = 72.00 72 
226 = 72.32 72 

227 = 72.64 72 

-- exactly correct 
-- correct, rounded down 

(truncated) 
-- truncated, not rounded. 

There is a way, however, with any decimal value of .5 or higher, 
to round upwards to the next whole banana. We could define the 
word R%, for "rounded percent," like this: 

: R% 10 */ 5 + 10 / ; 

so that the phrase: 

227 32 R% . 

will give you 73, which is correctly rounded up. 

Notice that we first divide by 10 rather than 100. This gives us 
an extra decimal place to work with, to which we can add five: 

Stack 
Operation Contents  

227 32 10 

*/ 	 726 

5 + 	 731 

10 / 	 73 
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The final division by ten sets the value to its rightful decimal 
position. Try it and see.t 

A disadvantage to this method of rounding is that you lose one 
decimal place of range in the final result; that is, it can only 
go as high as 3,276 rather than 32,767. But if that's a problem, 
you can always use double-length numbers, which we'll introduce 
later, and still be able to round. 

Some Perspective on Scaling  

Let's back up for a minute. Take the simple problem of computing 
two-thirds of 171. Basically, there are two ways to go about it. 

1. We could compute the value of the fraction 2/3 by 
dividing 2 by 3 to obtain the repeating decimal .666666, 
etc. Then we could multiply this value by 171. The 
result would be 113.9999999, etc., which is not quite right 
but which could be rounded up to 114. 

2. We could multiply 171 by 2 to get 342. Then we could 
divide this by 3 to get 114. 

Notice that the second way is simpler and more accurate. 

Most computer languages support the first way. "You can't have a 
fraction like two-thirds hanging around inside a computer," it is 
believed, "you must express it as .666666, etc." 

FORTH supports the second way. */1 lets you have a fraction like 
two-thirds, as in: 

171 2 3 */ 

Now that we have a little perspective, let's take a slightly more 
complicated example: 

tFor Experts 

An even faster definition: 

: R% 	50 / 1+ 2/ ; 
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We want to distribute $150 in proportion to two values:t 

7,105 

12,  

Again, we could solve the problem this way: 

(7,105 / 12,250) x 150 
and 

(5,145 / 12,250) x 150 

but for greater accuracy; we should say: 

(7,105 x 150) / 12,250 
and 

(5,145 x 150) / 12,250 

which in FORTH is written: 

7105 150 12250 */ .  87 ok  
then 

5145 150 12250 */ .  63 ok 

It can be said that 
the values 87 and 63 
are "scaled" to 7105 
and 5145. Calculating 
percentages, as we 
did earlier, is also a 
form of scaling. For 
this reason, */1 is 
called a "scaling 
operator." 

tFor Beginners Who Like Word-problems 

Here's a word-problem for the above example: 

The boss says he'll divide a $150 bonus between the two__ 
top-selling marketing representatives according to their monthly 
commissions. When the receipts are counted, the top two 
commissions are $7,105 and $5,145. How much of the bonus does 
each marketing rep get? 
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Another scaling operator in FORTH is I*/MOD: 

*/MOD (ul u2 u3 	 Multiplies, then 	( 1  
u-rem u-result) divides (ul*u2/u3). star _ s kish_ 

Returns the re- 	mod 
mainder and the   
quotient. Uses a 
double-length in-
termediate result. 

We'll let you dream up a good example for */MOD yourself. 

  

Using Rational Approximationst 

So far we've only used scaling operations to work on rational 
numbers. They can also be used on rational approximations of 
irrational constants, such as pi .or the square root of two. For 
example, the real value of pi is 

3.14159265358, etc. 

but to stay within the bounds of single-length arithmetic, we 
could write the phrase: 

31416 10000 */ 

and get a pretty good approximation. 

Now we can write a definition to compute the area of a circle, 
given its radius. We'll translate the formula: 

7r 2 

into FORTH. The value of the radius will be on the stack, so we 
IDUP1 it and multiply it by itself, then star-slash the result: 

t For Math-block Victims: 

You can skip this section if it starts making your brain itch. But 
if you're feeling particularly smart today, we want you to know 

- that ... 

A rational number is a whole number or a fraction in which the 
numerator and denominator are both whole numbers. Seventeen is 
a rational number, as is 2/3. Even 1.02 is rational, because it's 
the same as 102/100. -'2, on the other hand, is irrational. 
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: PI 	DUP * 31416 10000 */ ; 

Try it with a circle whose radius is ten inches: 

10 PI .  314 ok  

But for even more accuracy, we might wonder if there is a pair of 
integers besides 31416 and 10000 that is a closer approximation to 
pi. Surprisingly, there is.  The fraction: 

is accurate to more than six places beyond the decimal, as 
opposed t6 less than four places with 31416. 

Our new and improved definition, then, is: 

: PI 	DUP * 355 113 */ ; 

It turns out that you can approximate nearly any constant by 
many different pairs of ihntegers, all numbers less than 32768, with 
an error of less than 10 -0 .t 

tFor Really Dedicated Matheohiles 

Here's a handy table 
constants: 

of rational 

Number  

approximations 

Approximation Error 

to various 

7 = 3.141 	... 355/ 	113 8.5 x 10 4  
VT = 1.414 	... 19601/13860 1.5 x 10 4  
-IT = 1.732 	• 	• 	• 18817/10864 1.1 x 10' 

a = 2.713 	... 28667/10546 5.5 x 10 4  
1 -0-  = 3.162 	... 22936/ 	7253 5.7 x 10 4  ■/2 = 1.059 	. 26797/25293 -1-.-0 x 1.0 

logio  2/1.6384 = 0.183 	... 2040/11103 1.1 x 10 4  
1n2/16.384 = 0.042 	... 485/11464 1.0 1.Q:  x 

.001°/22-bit rev = 0.858 	... 18118/21109 1.4 x 10' 
arc-sec/22-bit rev = 0.309 	... 9118/29509 1.0 x 10' 

c = 2.9979248 24559/ 	8192 -  1-.6 x 10-9 
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Here's a list of the FORTH words we've covered in this chapter: 

1+ 	, 	(n -- n+1) 	Adds one. 

1- (n -- n-1) 	 Subtracts one. 

2+ 	 (n -- n+2) 	Adds two. 

2- (n -- n-2) 	 Subtracts two. 

2* 	 (n 	n*2) 	 Multiplies by two (arithmetic 
left shift) 

'2/ 	 (n 	n/2) 	 Divides by two (arithmetic 
right shift) 

ABS 	 (n 	 Returns the absolute value. 

NEGATE 	(n 	-n) 	 Changes the sign. 

MIN 	 (nl n2 -- n-min) 	Returns the minimum. 

MAX 	 (nl n2 	n-max) 	Returns the maximum. 

>R 	 (n 	) 	 Takes a value off the 
parameter stack and pushes it 
onto the return stack. 

R> 	 ( 	n) 	 Takes a value off the return 
stack and pushes it onto the 
parameter stack. 

I . 	 ( 	n) 	 Copies the top of the return 
stack without affecting it. 

( 	n) 	 Copies the second item of 
the return stack without 
affecting it. 

J 	 ( 	n) 	 Copies the third item of the 
return stack without af-
fecting it. 

*/ 

*/MOD 

(nl n2 n3 -- 
n-result) 

(ul u2 u3 -- 
u-rem u-result) 

Multiplies, then divides (ul* 
n2/n3). Uses a 32-bit interme-
diate result. 

Multiplies, then divides (ul* 
u2/u3). Returns the remain-
der and the quotient. Uses a 
double-length intermediate 
result. 
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Review of Terms  

Double-length 
intermediate 
result 	 a double-length value which is created 

temporarily by a two-part operator, such as 1*/, 
so that the "intermediate result" (the result of 
the first operation) is allowed to exceed the 
range of a single-length number, even though 
the initial arguments and the final result are 
not. 

Fixed-point 
arithmetic 

Floating-point 
arithmetic 

Parameter Stack 

Return stack 

Scaling 

arithmetic which deals with numbers which do 
not themselves indicate the location of their 
decimal points. Instead, for any group of 
numbers, the program assumes the location of 
the decimal point or keeps the decimal 
location for all such numbers as a separate 
number. 

arithmetic which deals with numbers which 
themselves indicate the location of their 
decimal points. The program must be able to 
interpret the true value of each individual 
number before any arithmetic can be performed. 

in FORTH, the region of memory which serves as 
common ground between various operations to 
pass arguments (numbers, flags, or whatever) 
from one operation to another. 

in FORTH, a region of memory distinct from the 
parameter stack which the FORTH system uses to 
hold "return addresses" (to be discussed in 
Chap. 9), among other things. The user may 
keep values on the return stack temporarily, 
under certain conditions. 

the process of multiplying (or dividing) a 
number by a ratio. Also refers to the process 
of multiplying (or dividing) a number by a 
power of ten so that all values in a set of 
data may be represented as integers with the 
decimal point assumed to be in the same place 
for all values. 
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Problems — Chapter 5  

1. Translate the following algebraic expression into a FORTH 
definition: 

ab 
c 

given (a b c -- ) 

2. Given these four numbers on the stack: 

(6 70 123 45 -- ) 

write an expression that prints the largest value. 

Practice in Scaling  

3. In "calculator style," convert the following temperatures, 
using these formulas: 

oC = °F - 32 
1.8 

°F = (°C x 1.8) + 32 
° K = °C + 273 

(For now, express all arguments and results in whole 
degrees.) 

a) 0° F in Centigrade 
W 212° F in Centigrade 
c) -32° F in Centigrade 
d) 16°  C in Fahrenheit 
e) 233° K in Centigrade 

4. Now define words to perform the conversions in Prob. 3. 
Use the following names: 

F>C F>K C>F C>K K>F K>C 

Test them with the above values. 
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