
4 DECISIONS, DECISIONS, ...

In this chapter we'll learn how to program the computer to make
"decisions." This is the moment when you turn your computer into
something more than an ordinary calculator.

The Conditional Phrase

Let's see how to write a simple decision-making statement in
FORTH. Imagine we are programming a mechanical egg-carton
packer. Some sort of mechanical device has counted the eggs on
the conveyor belt, and now we have the number of eggs on the
stack. The FORTH phrase:

12 = IF FILL-CARTON THEN

tests whether the number on the stack is equal to 12, and if it is,
the word FILL-CARTON is executed. If if. 's not, execution moves
right along to the words that follow

The word E takes two 	 and compares them to see
values off the stack 	 whether they are equal.

89

FILL- CARTON

o
a

FILL-CARTON

90
	

Starting FORTH .

If the condition is true, 	 But if the condition is
1IFI allows the flow of 	 false, IF causes the flow
execution to continue with 	 of execution to skip to
the next word in the definition. 	[THEN , from which point

execution will proceed.

Let's try it. Define this example word:

: ?FULL 12 = IF ." IT'S FULL " THEN ; ok
11 ?FULL ok
12 ?FULL IT'S FULL ok

Notice: an IIFJ...E1- 	statement must be contained within a colon
definition. You can't just enter these words in "calculator
style."

Don't be misled b the traditional English meanings - of th't FORTH -
words IF! and THEN . The words that follow 	-.:-.executed if
the condition is true. The words that follow 7 	are always
executed, as though you were telling the computer, "After you
make the choice, then continue with the rest of the definition."
(In this example, the only word after ITHEN1 is 1], which ends the
definition.)

Let's look at another example. This definition checks whether
the temperature of a laboratory boiler is too hot. It expects to
find the temperature on the stack:

: ?TOO-HOT 220 > IF ." DANGER -- REDUCE HEAT " THEN ; ok

If the temperature on the stack is greater than 220, the danger
message will be printed at the terminal. You can execute this
one yourself, by entering the definition, then typing in a value
just before the word.

290 ?TOO-HOT DANGER -- REDUCE HEAT ok
130 ?TOO-HOT ok

CYOU 0 AND
I NOW PRONOUNCE

21

equal

DECISIONS, DECISIONS, -. 	 91

Remember that every IIF1 needs a (THEN!
to come home to. Both words must be in
the same definition.

Here is a partial list of comparison
operators that you can use before an
[I1-.1THEN statement:

0=

0<

0>

zero equal)

Zero-;:!:7 tTc1;7)

zero-greater-than;

The words 11 and El expect the same stack order as the arithmetic

operators, that is:

Infix
	

Postfix

2 < 10 is equivalent to
	

2 10<

17 > -39 is equivalent to
	

17 -39 >

The words 10=1 10<1, and 0> expect only one value on the stack.
The value is compared with zero.

Another word, 	, doesn't test any value at all; it simply
reverses whatever condition has just been tested. For example,
the phrase:

= NOT IF

INOT1

will execute the words after PI, if the two numbers on the stack
are not equal.

92 	 Starting FORTH

The Alternative Phrase

FORTH allows you to provide an alternative phrase in an
statement, with the word [ELSE

[IF1

The following example is a definition which tests whether a
--given number is a valid day of the month:

: ?DAY 32 < IF ." LOOKS GOOD " ELSE ." NO WAY " THEN ;

If the number on the stack is less than thirty-two, the message
"LOOKS GOOD" will be printed. Otherwise, "NO WAY" will be
printed.

Imagine that IF pulls a railroad-track switch, depending on the
outcome of the test. Execution then takes nrIP of two routes, but
either way, the tracks rejoin at the word ET ...
By the way, in computer terminology, this whole business of
rerouting the path of execution is called "branching."t

Here's a more useful example. You know that dividing any number
by zero is impossible, so if you try it on a computer, you'll get
an incorrect answer. We might define a word which only performs
division if the denominator is not zero. The following
definition expects stack items in this order:

tFor Old Hands

FORTH has no GOTO statement. If you think you can't live without
GOTO, just wait. By the end of this book you'll be telling your
GOTO where to GOTO.

	

4 DECISIONS, DECISIONS, ... 	 93

	

(numerator denominator)

:/CHECK DUP 0= IF ." INVALID " DROP
ELSE / THEN ; t

Notice that we first have to IDUP1 the denominator because the
phrase

0= IF

will destroy it in the process.

Also notice that the word DROP removes the denominator if
division won't be performed, so that whether we divide or not,
the stack effect will be the same.

Nested 	Statements

It's possible to put an [IFI... T":- j (or (IF ...IELSEI...73.7:
statement inside another IIFI...THE:y .statement. In fact, you %.:an
set. . As complicated as you like, so long as every Egi has one
L'T • .

Consider the following definition, which determines the size of
commercial eggs (extra large, large, etc.), given their weight in
ounces per dozen:

: EGGSIZE 	DUP 18 < IF ." REJECT " 	ELSE
DUP 21 < IF ." SMALL " 	ELSE
DUP 24 < IF ." MEDIUM " 	ELSE
DUP 27 < IF ." LARGE " 	ELSE
DUP 30 < IF ." EXTRA LARGE " ELSE

." ERROR "
THEN THEN THEN THEN THEN DROP ;

tFor Experts

There are better ways to do this, as we'll see.

1 For People at Terminals

Because this definition is fairly long, we suggest you load it
from a disk block.

94 	 Starting FORTH,

Once EGGSIZE has been loaded, here are some results you'd get:

23 EGGSIZE MEDIUM ok
29 EGGSIZE EXTRA LARGE ok
40 EGGSIZE ERROR

We'd like to point out a few things about EGGSIZE:

The entire definition is a series of "nested" IF ...-1E7
statements. The word "nested" does not refer to the fact that
we're dealing with eggs, but to the fact that the statements nest

_inside one another, like a set of mixing bowls.

The five Elf: : : ; at the bottom close off the five IIFIs in reverse
order; that 1.:

IF

IF

IF

IF

THEN THEN THEN THEN THEN

Also notice that a DROP is necessary at the end of the
definition to get rid of the original value.

Finally, notice that the definition is visually organized to be
read easily by human beings. Most FORTH programmers would
rather waste a little space in a block (there are plenty of
blocks) than let things get any more confused than they have to
be.

tFor Trivia Buffs

Here is the official table on which this definition is based:

Extra Large 27-30
Large 24-27
Medium 21-24
Small 18-21

4:LCISIONS, DECISIONS, ... 	 95

k Closer Look at IF

6ov does the comparison operator
113, El, or whichever) let IIF

*now whether the condition is true
or false? By simply leaving a one
or a zero on the stack. A one
scans that the condition is true;
a zero means that the condition is
false.

In computer jargon, when one piece of program leaves a value as
a signal for another piece of program, that value is called a
'flag."

Try entering the following phrases at the terminal, letting g
show you what's on the stack as a flag.

5 4 > . 1 ok
5 4 < . 0 ok

(It's okay to use comparison operators directly at your terminal
like this, but remember that an IF ...1THEN statement must be
wholly contained within a definition because it involves
branching.)

will take a one as a flag that means true and a zerr , as a flag
that means false. Now let's take a closer look at Z. Fri, which
reverses the flag on the stack.

0 NOT . 1 ok
1 NOT . 0 ok

Now we'll let you in on a little secret:
non-zero value to mean true.t So what, you ask?

will take any
 Well, the fact

tFor the Doubting Few

Just to prove it, try entering this test:

: TEST IF ." NON-ZERO " ELSE ." ZERO " THEN ;

Even though there is no comparison operator in the above
definition, you'll still get 	0 TEST "---) nk

1 TEST— :. ::7 	̂k
-400 TESL 	 ok

tFor Memory-Misers Who Read the above Footnote

: TEST IF ." NON-" THEN ." ZERO " ;

96 	 Starting FORTH

that an arithmetic zero is identical to a flag that means "false"
leads to some interesting results.

For one thing, if all you want to test is whether a number is
zero, you don't need a comparison operator at all. For example,

_a slightly simpler version of /CHECK, which we saw earlier, could
be

: /CHECK DUP IF / ELSE ." INVALID "'DROP THEN ;

Here's another interesting result. Say
you want to test whether a number is an
even multiple of ten, such as 10, 20, 30,
40, etc. You know that the phrase

10 MOD

divides by ten and returns the
remainder only. An even multiple of
ten would produce a zero remainder, so
the phrase

10 MOD 0=

gives the appropriate "true" or "false"
flag.

If you think about it, both p= and NOT do exactly the same
thing: they change zeros to ones and non-zeros to zeros. They
have different names because one makes more sense dealing with
numbers, the other with flags.

Still another interesting result is that you
can use 0 (minus) as a comparison operator
which tests whether two values are "not
equal." When you subtract two equal
numbers, you get zero (false); when you
subtract two unequal numbers, you get a
non-zero value (true).

And a final result is described in the next
section.

30(
200
100

-20

DIXISIONS, 	 g7

i 1.:eti e Logic.

possible to take several flags from various tests and combine
04-• into a single flag for one IF statement. You might combine
"tea as an "either/or" decision, in which you make two
comparison tests. If either or both of the tests are true, then
Oa computer will execute something. If neither is true, it won't.

Sires a rather simple-minded
example, just to show you what
ve mean. Say you want to print
the name "ARTICHOKE" if an
input number is either negative
or a multiple of ten.

How do you do this in FORTH?
Consider the phrase:

DUP 0< SWAP 10 MOD 0= +

Here's what happens when the
input number is, say, 30:

Contents
Operator 	of Stack 	Operation

30

DUP 	 30 30 	Duplicates it so we can test it
twice.

0< 	 30 	0 	Is it negative? No (zero).

SWAP 	 0 30 	Swaps the flag with the number.

10 MOD 0= 	0 	I 	Is it evenly divisible by 10? Yes
(one).

	

1 	Adds the flags.

Adds the flags? What happens when you add flags? Here are four
possibilities:

98 	 - Starting , FORTH

first flag

second flag ek .

result

Lo and behold, the result flag is true if either or both
conditions are true. In this example, the result is one, which
means "true." If the input number had been -30, then both
conditions would have been true and the sum would have been two.
Two is, of course, non-zero. So as far as [IFI is concerned, two is
as true as one.

Our simple-minded definition, then, would be:

: VEGETABLE DUP 0< SWAP 10 MOD 0= +
IF ." ARTICHOKE " THEN ;

Here's an improved version of a previous example called ?DAY.

The old ?DAY only caught entries over thirty-one. But negative
numbers shouldn't be allowed either. How about this:

: ?DAY DUP 1 < SWAP 31 > +
IF ." NO WAY " ELSE ." THANK YOU " THEN ;

The above two examples will always work because any "true" flags
will always be exactly "1." In some cases, however, a flag may
be any non-zero value, not just "1," in which case it's dangerous
to add them with H. For example,

1 -1 + . 0 ok

gives us a mathematically correct answer but not the answer we
want if 1 and -1 are flare.

For this reason, FORTH supplies a word called IORI, which will
return the correct flag even in the case of 1 and -1. An "or
decision" is the computer term for the kind of flag combination
we've been discussing. For example, if either the front door or
the back door is open (or both), flies will come in.

Another kind of decision is called an "and" decision. In an

VISIONS, DECISIONS, ... 	 99

•and" decision, both conditions must be true for the result to be
true. For example, the front door and the back door must both be
open for a breeze to come through. If there are three or more
conditions, they must all be true.t

How can we do this in FORTH? By using the handy word IAND1.
Here's what IAND would do with the four possible combinations of
flags we saw earlier:

AND

AND

In other words, only the combination "1 1 AND" produces a result
of one.

Let's say we're looking for a cardboard box that's big enough to
fit a disk drive which measures:

height 6"

width 19"

length 22"

The height, width, and length requirements all must be satisfied
for the box to be big enough. If we have the dimensions of a box
on the stack, then we can define:

tFor the Curious Newcomer

The use of words like "or" and "and" to structure part of an
application is called "logic." A- form of notation for logical
statements was developed in the nineteenth century by George
Boole; it is now called Boolean algebra. Thus the term "a
Boolean flag" (or even just "a Boolean") simply refers to a flag
that will be used in a logical statement.

Starting,FORTH,'

: BOXTEST (length width height --)
6 > ROT 22 > ROT 19 > AND AND
IF ." BIG ENOUGH " THEN ;

Notice that we've put a comment inside the definition, to remind
us of stack effects. This is particularly wise when the stack,
order is potentially confusing or hard to remember.

You can test BOXTEST with the phrase:

23 20 7 BOXTEST BIG ENOUGH ok

As your applications become,more sophisticated, you will be able
to write statements in FORTH that look like postfix English and
are very easy to read. Just define the individual words within
the definition to check some condition somewhere, then leave a
flag on the stack.

An example is:

: SNAPSHOT ?LIGHT ?FILM AND IF PHOTOGRAPH THEN ;

which checks that there is available light and that there is film
in the camera before taking the picture. Another example, which
might be used in a computer-dating application, is:

: MATCH HUMOROUS SENSITIVE AND
ART.LOVING MUSIC.LOVING OR AND SMOKING NOT AND
IF ." I HAVE SOMEONE YOU SHOULD MEET " THEN ;

where words like HUMOROUS and SENSITIVE have been defined to
check a record in a disk file that contains information on other
applicants of the appropriate sex.

M.11.11M.1.1 	NM M.11.1.111.1

true

r

ABORT"

101 4 DECISIONS, DECISIONS, ...

Two Words with Built-in IIFis

1?DUPi

s,uestion-dupe

abort-quote

The word (?DUP1 duplicates the top stack value only if it is
non-zero. This can eliminate a few surplus words. For example,
the definition

: /CHECK DUP IF / ELSE DROP THEN ;

can be shortened to:

: /CHECK ?DUP IF / THEN ;

ABORT"

It may happen that somewhere in
a complex application an error
might occur (such as division by
zero) way down in one of the
low-level words. When this
happens you don't just want the
computer to keep on going, and
you also don't want it to leave
anything on the stack.

If you think such an error might
occur, you can use the word
'ABORT". ABORT" expects a flag
on the stack: a "true" flag
tells it to "abort," which in
turn clears the stack and returns
execution to the terminal,
waiting for someone to type
something. (ABORT" also prints
the name of the last interpreted
word, as well as whatever
message you want.t

Let's illustrate. We hope you're not
because here is yet another version:

sick of /CHECK by now,

: /CHECK DUP 0= ABORT" ZERO DENOMINATOR " / ;

tFORTH-79 Standard

The Standard includes the word ABORT1,' which differs from

ABORT"(
only in that it does not issue an error message.

102 	 Starting FORTH

In this version, if the denominator is zero, any numbers that
happen to be on the stack will be dropped and the terminal will
show:

8 0 /CHECK /CHECK ZERO : ' ':)MINATOR

Just as an experiment, try putting /CHECK inside another
definition:

: ENVELOPE /CHECK ." THE ANSWER IS " . ;

and try

8 4 ENVELOPE_"" I'. AlEP 	2 ok
8 0 ENVELOPE 	 2 • DENOMINATOR

The point is that when /CHECK aborts, the rest of ENVELOPE is
skipped. Also notice that the name ENVELOPE, not /CHECK, is
printed.

A useful word to use in conjunction with [ATI 	is l?STACKI, which
checks for stack underflow and returns a truce flag if it finds it.
Thus the phrase:

?STACK ABORT" STACK EMPTY "

aborts if the stack has underflowed.

FORTH uses the identical phrase, in fact. But it waits until all
of yc• - - definitions have stopped executing before it performs the
[?STF._:_:, test, because checking continuously throughout execution
would needlessly slow down the computer. t You're free to insert
a ?STACK 'ABORT" phrase at any critical or not-yet-tested
portion of your application.

t For Computer Philosophers

FORTH provides certain error checking automatically. But because
the FORTH operating system is so easy to modify, users can
readily control the amount of error checking their system will
do. This flexibility lets users make their own tradeoffs between
convenience and execution speed.

4 DECISIONS, DECISIONS, ... 	 103

Here's a list of the FORTH words we've covered in this chapter:

IF xxx
ELSE yyy
THEN zzz

IF: 	(f)

(n1 n2 --

If f is true (non-zero) exe-
cutes xxx; otherwise executes
yyy; continues with zzz
regardless. The phrase ELSE
yyy is optional.

Returns true if nl and n2 are
equal.

(nl n2 -- n-diff) 	Returns true (i.e., the
non-zero difference) if n1
and n2 are not equal.

(nl n2 	f) 	Returns true if n1 is less
than n2.

(nl n2 	f) 	Returns true if nl is greater
than n2.

0= 	 (n 	f) 	 Returns true if n is zero
(i.e., reverses the truth
value).

0< 	 (n 	f) 	 Returns true if n is nega-
tive.

0> 	 (n 	f) 	 Returns true if n is positive.

NOT 	 (f 	f) 	 Reverses the result of the
previous test; equivalent to
0=.

AND 	 (nl n2 -- and) 	Returns the logical AND.

OR 	 (nl n2 -- or) 	Returns the logical OR.

?DUP 	 (n 	n n) or 	Duplicates only if n is non-
(0 -- 0) 	 zero.

ABORT" xxx 	(f) 	 If the flag is true, types out
the last word interpreted,
followed by the text. Also
clears the user's stacks and
returns control to the
terminal. If false, takes no
action.

?STACK 	 (Returns true if a stack
underflow condition has
occurred.

l04 	 Starting FORTH ,

Review of Terms

Abort

"And" decision

as a general computer term, to abruptly cease
execution if a condition occurs which the
program is not designed to handle, in order to
avoid producing nonsense or possibly doing
damage.

two conditions that are combined such that if
both of them are true, the result is true.

Branching 	breaking the normally straightforward flow of
execution, depending on conditions in effect
at the time of exection. Branching allows the
computer to respond differently to different
conditions.

Comparison
operator 	 in general, a command that compares one Value

with another (for example, determines whether
one is greater than the other) and sets a flag
accordingly, which normally will be checked by
a conditional operator. In FORTH, a
comparison operator leaves the flag on the
stack.

Conditional
operator

Flag

Logic

a word, such as rin which routes the flow of
execution differently depending on some
condition (true or false).

as a general computer term, a valUe stored in
memory which serves as a signal as to whether
some known condition is true or false. Once
the "flag is set," any number of routines in
various parts of a program may check (or reset)
the flag, as necessary.

in computer terminology, the system of
representing conditions in the form of "logical
variables," which can be either true or false,
and combining these variables using such
"logical operators" as "and," "or," and "not,"
to form statements which may be true or false.

Nesting 	 placing a branching structure within an outer
branching structure.

"Or" decision 	two conditions that are combined such that if
either of them is true, the result is true.

4 DECISIONS, DECISIONS, ... 	 105

Problems — Chapter 4

(answers in the back of the book)

1. What will the phrase

0= NOT

leave on the stack when the argument is

1?
0?
200?

2. Explain what an artichoke has to do with any of this.

3. Define a word called CARD which, given a person's age on the
stack, prints out either of these two messages (depending on
the relevant laws in your area):

ALCOHOLIC BEVERAGES PERMITTED 	or
UNDER AGE

4. Define a word called SIGN.TEST that will test a number on
the stack and print out one of three messages:

POSITIVE 	or
ZERO 	or
NEGATIVE

5. In Chap. 1, we defined a word called STARS in such a way
that it always prints at least one star, even if you say

0 STARS * ok

Using the word STARS, define a new version of STARS that
corrects this problem.

6. Write the definition for a word called WITHIN which expects
three arguments:

(n low-limit hi-limit
	

)

and leaves a "true" flag only if
	

is within the range

low-limit < n < hi-limit

106 Starting FORTH , 711!

7. Here's a number-guessing game (which you may enjoy writing
more than anyone will enjoy playing). First you secretly
enter a number onto the stack (you can hide your number
after entering it by executing the word PAGE, which clears
the terminal screen). Then you ask another player to enter a
guess followed by the word GUESS, as in

100 GUESS

The computer will either respond "TOO HIGH," "TOO LOW," or
 "CORRECT!" Write the definition of GUESS, making sure that

the answer-number will stay on the stack through repeated
guessing until the correct answer is guessed, after which the
stack should be clear.

8. Using nested tests and 	 ELSE... THEN statements, write a
definition called SPELLER which will spell out a number that
it finds on the stack, from -4 to 4. If the number is outside
this range, it will print the message "OUT OF RANGE." For
example:

2 SPELLER TWO ok
-4 SPELLER NEGATIVE POUR ok
7 SPELLER OUT OF 	ok

Make it as short as possible. (Hint:, the FORTH word_ ABS!
gives the absolute value of a number on the stack.)

9. Using your definition of WITHIN from Prob. 5, write another
number-guessing game, called TRAP, in which you first enter a
secret value, then a second player tries to home in on it by
trapping it between two numbers, as in this dialogue:

0 1000 TRAP P --w 	ok
330 660 TRAP 	7 7,1
440 550 TRAP:—__ 	 ok
330 440 TRAP BETWI 	ok

and so on, until the player guesses the answer:

391 391 TRAP YOU GOT IT! ok

Hint: you may have"to modify the arguments to WITHIN so
that TRAP does not say "BETWEEN" when only one argument is
equal to the hidden value.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

