
1 FUNDAMENTAL FORTH

In this chapter we'll acquaint you with some of the unique
properties of the FORTH language. After a few introductory pages
we'll have you sitting at a FORTH terminal. If you don't have a
FORTH terminal, don't worry. We'll show you the result of each
step along the way.

A Living Language

Imagine that you're an office manager and you've just hired a
new, eager assistant. On the first day, you teach the assistant
the proper format for typing correspondence. (The assistant
already knows how to type.) By the end of the day, all you have
to say is "Please type this."

On the second day, you explain the filing system. It takes all
morning to explain where everything goes, but by the afternoon
all you have to say is "Please file this."

By the end of the week, you can communicate in a kind of
shorthand, where "Please send this letter" means "Type it, get me
to sign it, photocopy it, file the copy, and mail the original."
Both you and your assistant are free to carry out your business
more pleasantly and efficiently.

Good organization and effective communication require that you

1. define useful tasks and give each task a name, then

2. group related tasks together into larger tasks and give
each of these a name, and so on.

FORTH lets you organize your own procedures and communicate them
to a computer in just this way (except you don't have to say
"Please").

As an example, imagine a microprocessor-controlled washing
machine programmed in FORTH. The ultimate command in your
example is named WASHER. Here is the definition of WASHER, as
written in FORTH:

7

8 	 Starting FORTH

: WASHER WASH SPIN RINSE SPIN ;

In FORTH, the colon indicates the beginning of a new definition.
The first word after the colon, WASHER, is the name of the new
procedure. The remaining words, WASH, SPIN, RINSE, and SPIN,
comprise the "definition" of the new procedure. Finally, the
semicolon indicates the end of the definition.

	

= 	 	

Each of the words comprising the definition of WASHER has
already been defined in our washing-macnine application. For
example, let's look at our definition of RINSE:

: RINSE FILL AGITATE DRAIN ;

As you can see, the definition of RINSE consists of a group of
words: FILL, AGITATE, and DRAIN. Once again, each of these
words has been already defined elsewhere in our washing-machine
application. The definition of FILL might be

: FILL FAUCETS OPEN TILL-FULL FAUCETS CLOSE ;

In this definition we are referring to things (faucets) as well as
to actions (open and close). The word TILL-FULL has been
defined to create a "delay loop" which does nothing but mark
time until the water-level switch has been activated, indicating
that the tub is full.

If we were to trace these definitions back, we would eventually
find that they are all defined in terms of a group of very useful
commands that form the basis of all FORTH systems. For example,
polyFORTH includes about 300 such commands. Many of these
commands are themselves "colon definitions" just like our example
words; others are defined directly in the machine language of the
particular computer. In FORTH, a defined command is called a
"word."t

tFor Old Hands

This meaning of "word" is not to be associated with a 16-bit
value, which in the FORTH community is referred to as a "cell."

1 FUNDAMENTAL FORTI4 	 9

The ability to define a word in terms of other words is called
"extensibility." Extensibility leads to a style of programming
that is extremely simple, naturally well-organized, and as
powerful as you want it to be.

Whether your application runs an assembly line, acquires data for
a scientific environment, maintains a business application, or
plays a game, you can create your own "living language" of words
that relate to your particular need.

In this book we'll cover the most useful of the standard FORTH.
command&

.1.11 This and 	Interactive].

One of FORTH's many unique features is that it lets you
"execute"t a word by simply naming the word. If you're working
at a terminal keyboard, this can be as simple as typing in the
word and pressing the RETURN key.

Of course, you can also use the same word in Ehe definition of
any other word, simply by putting its name in the definition.

FORTH is called an "interactive" language because it carries out
your commands the instant you enter them.

We're going to give an example that you can try yourself, showing
the process of combining simple commands into more powerful
commands. We'll use some simple FORTH words that control your
terminal screen or printer. But first, let's get acquainted with
the mechanics of "talking" to FORTH through your terminal's
keyboard.

Take a seat at your real or
imaginary FORTH terminal.
We'll assume that someone
has been kind enough to
set everything up for you,
or that you have followed
all the instructions given
for loading your particular
computer.

tpor seginners

To " execute' a word is to order the computer to carry out a
command.

10 	 Starting FORTH

Now press the key labeled:

RETURNt

The computer will respond by saying

ok

The RETURN key is your way of telling FORTH to acknowledge your
request. The ok is FORTH'S way of saying that it's done
everything you asked it to do without any hangups. In this case,
you didn't ask it to do anything, so FORTH obediently did nothing
and said ok. (The ok may be either in upper case or in lower
case, depending on your terminal.)

Now enter this:

15 SPACES

If you make a typing mistake, you can correct it by hitting the
"backspace" key. Back up to the mistake, enter the correct
letter, then continue. When you have typed the line correctly,
press the RETURN key. (Once you press RETURN, it's too late to
correct the line.)

In this book, we use the symbol ORM3 to mark the point where you
must press the RETURN key. We also underline the computer's
output (even though the computer does not) to indicate who is
typing what.

Here's what has happened:

15 SPACES COZD 	 ok

As soon as you pressed the return key, FORTH printed fifteen
blank spaces and then, having processed your request, it
responded ok (at the end of the fifteen spaces).

Now enter this:

42 EMITOM *ok

The phrase "42 EMIT" tells FORTH to print an asterisk

tFor People at Terminals

RETURN may have a different name on your terminal. othor
possible names are NEW LINE and ENTER.

Backspace may also have a different name on your terminal, such
as DEL or RUBOUT.

1 FUNDAMENTAL FORTH. 	 11

discuss this command later on in h-he bcok.) 1.1.ra. FORTH printed
the asterisk, then responded ok.

we can put more than one command on the same line. For evarnpleE

15 SPACES 42 EMIT 4L Em/T 	 +.*,k

This time FORTH printed fifteen spaces and two asterisks. A note
About entering words and/or numbers; we can separate them from
one another by as many spaceS as w.e want for clarity. But they

must be separated by at least one space for FORTH to be able to
recognize them as words and/or numbers.

Instead of entering the phrase

42 EMIT

over and over, let's define it as a word called "STAR.'

Enter this

STAR 42 EMIT 71:=0 ck

Here "STAR" is the name; "42 EMIT' is the definition. NOtioe
that we set off tht oolon and semicolon from adjaont words with
A space. Also, to make FORTH definitions easy for human beings
to read, we conventionally separate the name of a definition
from its Contents with three spaces.

• YCm have entered the above definition and pressed RETURIld
rcHTs responds ok signifying that it has recognized youri
definition and will remember it. Now enter

STARCEMED *ok

'Jolla! FORTH executes your definition of 'STAR" and prints an
deter ics.

There is no difference between a word such as STAR that you
de[ino ;ours e lf and a word such as LEMIT ttnt is already defined.
In this Look, however, we will. put boxes around those words that
trt already defined, so that you can more easily tell the diff erence.

4"thersystem-d e fined word i5 Fir wkla. pforma a carriage
/turn and line feed at your terminal.t For example, enter thiSI

Ir°f 12 eginhols

LO distinguish between the key labeled RETURN and the Mk:-11 word

12 Starting FORTE

CRIMEL
ok

M you can see, FORTH executed a carriage return, then printed an
ok (on the next line).

Now try this:

CI STAR CR STAR CR STARS

*ok

Let's put a ICR/ in a definition, like this:

MARGIN CR 30 SPACES 00M03 ok

Now we can enter

MARGIN STAR MARGIN STAR MAR C/N STAR RETURN

and gat three stars lined up vertically, thirty spaces in from the
left.

Our MAMIN STAR combination will be L,/eful for what WP intend to
do, so let's define

: BLIP MARGIN STAR ,r= ok

we will also need to print a horizontal row of stars. So let ts
enter the following definition (we'll explain how it wocks in a
latae chaptee):

STARS 0 nO STAR LOOP Uanflo, ok

Now we can say

5 STARE CE1ED *****ok

or

35 STARS = **********kk********************** 40k

or any number of stars imaginable)

We will need a word which performs MARGIN, then prints five

stars_ Let's define it like this:

: EAR MARGIN 5 STARS ;MUD ok

Now we tan enter

BAR BLIP BAR BLIP BLIP CR

1 FUNVAMENTAL FORTH 	 13

and get a letter "F" (for FORTH) made up of stars. It should look
like this

kAk*A.

*

The final step is to make thi5 new procedure a word. Let's call
the word "F":

F BAR SLIP BAR BLIP BLIP CR 023=3 ok

You've just seen an example of the way simple FORTH commands can
become the foundation for more complex commands. A FORTH
application, when liSted,t consists of a series of increasingly
powerful definitions rather than a sequence of instructions to be
executed in order.

To give you a sample of what a FORTH application really looks
like, here's a listing of our experimental application:

0 (LARGE LETTER-F5
1 : STAR 	42 EMIT ;
2 : STARS 	e DO STAR LOOP ;
3 : MARGIN 	CR 30 SPACES ;
4 : BLIP 	MARGIN STAR
5 : BAR 	MARGIN S STARS ;
6 : F 	BAR BLIP BAR BLIP BLIP CR
7
B

'For Beginners

We'll explain more about listing, as it applies to FORTH, in
Chapter 3.

STAR 	42_ EMIT ;

-tAt• v.-
Print an
asterisk.

14 	 Starting FORTH

The Dictionary

Each word and its definition are
entered into FORTH's "dictionary."
The dictionary already contained
many words when you started, but
your own words are now in the
dictionary as well.

When you define a new word, FORTH
translates your definition into
dictionary form and writes the
entry in the dictionary. This
process is called "compiling."t

For example, when you enter
the line

: STAR 42 EMIT ;01130

the compiler compiles the new
definition into the dictionary.
The compiler does not print
the asterisk.

Once a word is in the dictionary, how is it executed? Let's say
you enter the following line directly at your terminal (not inside
a definition):

STAR 30 SPACES

This will activate a word called fINTERPF:• 	also known as the
"text interpreter."

tFor Beginners

Compilation is a general computer term which normally means the
translation of a high-level program into machine code that the
computer can understand. In FORTH it means the same thing, but
specifically it means writing in the dictionary.

42S-PA-CE-S-
oAroAIMIIIKONCOIKOI■rol.

1 FUNDAMENTAL FORTH 15

The text interpreter scans
	 When he finds such a string,

the input stream, looking for
	

he looks it up in the
strings of characters separated
	

dictionary.
by spaces.

taz Y Print an asterisk i

If he finds the word in the
dictionary, he points out
the def'-jtion to a word
called 1- 7.T.CUTE1--

--who then executes the
definition (in this case,
he prints an asterisk). The
interpreter says everything's
"ok."

If the interpreter cannot
find the string in the
dictionary, he calls the

. - - - -runner (called

!_7.j knows a • 11-,..r when
one. If LL-.„iA

finds a number, he ruhs it
off to a temporary storage
location for numbers.

16
	

Starting FORTH

What happens when you try to execute a word that is not in the
dictionary? Enter this and see what happens:

XLERB OM23 XLERB ?

When the text interpreter c .r•• t 	XTTRB in the dictionary, it
tries to pass it off on 	 shines it on. Then the
interpreter returns the striny co you wiLh a question mark.

In some versions of FORTH, including polyFORTH, the compiler
does not copy the entire name of the definition into the
dictionary--only the first three characters and the number of
characters. For example, in polyFORTH, the text interpreter
cannot distinguish between STAR and STAG because both words are
four characters in length and both begin S-T-A.t

While many professional programmers prefer the three-character
rule because it saves memory, certain programmers and many
hobbyists enjoy the freedom to choose any name. The FORTH-79
Standard allows up to thirty-one characters of a name to be
stored in the dictionary.

To summarize: when you type a pre-defined word at the terminal,
it gets interpreted and then executed.

Now remember we said that Q is a word? When you type the word
g, as in

: STAR 42 EMIT ;CB=

t For polyFORTH Users

The trick to avoiding conflicts is to

a) be conscious of your name choices, and
b) when flaming a series of similar words, put the

distinguishing character up front, like this:

1LINE 2LINE 3LINE etc.

--47M010-07.17:0WOW0fto

gal's! "Please
start compiling."
LEEINEE,

3. FuNDAMKNTAL FORTH
	

17

the following occurs:

The text interpreter finds
the colon in the input
stream,

and points it out to
DEC T .

;STAR 	42 EMIT

The compiler translates the
definition into dictionary
form and writes it in the
dictionary.

ok

When the compiler gets 	 and execution returns to the
to the semicolon, he

	
text interpreter, who gives

stops, 	 the message ok.

18 	 Starting FORTH

1•

Say What?

In FORTH, a word is a character or group of characters that have
a definition. Almost any characters can be used in naming a
word. The only characters that cannot be used are:

return

backspace

space

caret (T or ^)

because the computer thinks you've
finished entering,t

because the computer thinks you're trying
to correct a typing error,

because the computer thinks it's the end of
the word, and

because the editor (if you're using it)
thinks you mean something else. We'll
discuss the editor in Chap. 3.

Here is a FORTH word whose name. consists of two punctuation
marks. The word is f."I and is pronounced dot-quote. You can use

inside a definition: to type a "string" of text at your
terminal. Here's an example:

: GREET ." HELLO, I SPEAK FORTH " ;CM= ok

We've just defined a word called GREET. Its definition consists
of just one FORTH word, 179, followed by the text we want typed.
The quotation mark at the end of the text will not be typed; it
marks the end of the text. It's called a "delimiter."

tFor Philosophers

No, the computer doesn't "think." Unfortunately, there's no
better word for what it really does. We say "think" on the
grounds that it's all right to say, "the lamp needs a new light
bulb." Whether the lamp really needs a bulb depends on whether
it needs to provide light (that is, incandescence is its karma).
So let's just say the computer thinks.

T- FORTH-79 Standard

In systems that conform to the Standard, 1.1 will execute outside
of a colon definition as well.

I I

Nana et Next
Operation

1 FUNDAMENTAL FORTH 	 19

When entering the definition of GREET, don't forget the closing
to end the definition.

Let's execute GREET:

GREETS HELLO, I SPEAK FORTH ok

The Stack: FORTH's Worksite for Arithmetic

A computer would not be much good if it couldn't do arithmetic.
If you've never studied computers before, it may seem pretty
amazing that a computer {or even a pocket calculator) an dry
arithmetic at all. We can't cite all the mechanics in this book,
but believe us, it's not a miracle.

In general, computers perform their operations by breaking
everything they do into ridiculously tiny pieces of information
and ridiculously easy things to do. To you and me, "3 + 4" is
just "7," without even thinking. To a computer, "3 + 4" is
actually a very long list of things to do and remember.

Without getting too specific, let's say you have a pocket
calculator which expects its buttons to be pushed in this order:

4

in order to perform the addition and display the result. Here's a
generalized picture of what might occur:

When you_press.

Hama of Next
OparatIon

BDIC A ODIC 13

the number 3 goes into one place {called Box A}.

— tile intended operation (addition) is remembered somehow.

20 	 Starting FORTH

Name of Next
Operation

Box B

4

—the number 4 is stored into a second place (called Box B).

Box A

7

Box B

Name of Next
Operation

--the calculator performs the operation that is stored in the
"Next Operation" Box on the contents of the number boxes and
leaves the result in Box A.

Many calculators and computers approach arithmetic problems in a
way similar to what we've just described. You may not be aware
of it, but these machines are actually storing numbers in various
locations and. then performing operations on them.

In FORTH, there is one central location where numbers are
temporarily stored before being operated on. That location is
called the "stack." Numbers are "pushed onto the stack," and
then operations work on the numbers on the stack.

The best way to explain the stack is to illustrate it. If you
enter the following line at your terminal:

3 4 + .0120 7 ok

here's what happens, key by key.

Recall that when you enter a ru...!..r at your terminal, the text
interpreter hands it over to t '...1MBER, who runs it to some
location. That location, it can now be told, is the stack. In
short, when you enter the number three from the terminal, you
push it onto the stack.

1 FUNDAMENTAL FORTH 	 21

Now the four goes onto the "tap" of the stack and pushes the
three downward.

101
The nest word in the input stream can be found in the dictionary.

has been previously defined to "take the top two numbers oft
the stack, add them, and push the result back onto the stack."

TE.I D1,4v

22
	

Starting FORTH

The next word, g, is also found in the dictionary. It has been
previously defined to take the number off the stack and print it
at the terminal.

Postfix Power

Now wait, you say. Why does FORTH want you to type

3 4 +

instead of

3 + 4

which is more familiar to most people?

FORTH uses "postfix" notation (so called because the operator is
affixed after the numbers) rather than "infix" notation (so
called because the operator is affixed in-between the numbers) so
that all words which "need" numbers can get them from the stack.t

tFor Pocket-calculator Experts

Hewlett-Packard calculators feature a stack and postfix arithmetic.

1 FUNDAMENTAL FORTH 	 23

For example:

the word n gets two numbers from the stack and adds them;

the word El gets one number from the stack and prints it;
the word ISPAC:.: gets one number from the stack and prints
that many spaces;

the word EMIT gets a number that represents a character and
prints that character;

even the word STARS, which we defined ourselves, gets a
number from the stack and prints that many stars.

When all operators are defined to work on the values that are
already on the stack, interaction between many operations
remains simple even when the program gets complex.

Earlier we pointed out that FORTH lets you execute a word in
either of two ways: by simply naming it, or by putting it in the
definition of another word and naming that word. Postfix is part
of what makes this possible.

Just as an example, let's suppose we wanted a word that will
always add the number 4 to whatever number is on the stack (for
no other purpose than to illustrate our point). Let's call the
word

FOUR-MORE

We could define it this way:

: FOUR-MORE 4 + AMED

and test it this way:

3 FOUR-MORE .C31:0 7 ok

and again:

-10 FOUR-MORE .COM:0 -6 ok

The "4" inside the definition goes onto the stack, just as it
would if it were outside a definition. Then the C adds the two
numbers on the stack. Since 11 always works on the stack, it
doesn't care that the "4" came from inside the definition and the
three from outside.

As we begin to give some more complicated examples, the value of
the stack and of postfix arithmetic will become increasingly
apparent to you. The more operators that are involved, the more
important it is that they all be able to "communicate" with each
other.

24 	 Starting FORTH

Keep Track of Your Stack

We've just begun to demonstrate the philosophy behind the stack
and postfix notation. Before we continue, however, let's look
more closely at the stack in action and get accustomed to its
peculiarities.

FORTH's stack is described as "last-in, first-out" (LIFO). You can
see from the earlier illustration why this is so. The three was
pushed onto the stack first, then the four pushed on top of it.
Later the adding machine took the four off first because it was
on top. Hence "last-in, first-out."

In general, the only accessible value at any given time is the
top value. Let's use another operation, the 2 to further
demonstrate. Remember that each Li removes one number from the
stack and prints it. Four dots, therefore, remove four numbers
and print them.

2 4. 6 8 MEE) 8 6 4'2 ok

se*
6

The system reads input from left to right and executes each word
in turn.

For input, the rightmost value on the screen will end up on
top of the stack.

For output, the rightmost value on the screen came from the
bottom of the stack.

Let's see what kind of trouble we can get outselves into. Type:

10 20 30 . 	.

(that's four dots) then RETURN. What you get is:

1 FUNDAMENTAL FORTH 	 25

10 20 30 . . . 	30 20 10 0 . STACK EMPTY

Each dot removes one value. The fourth dot found that there was
no value left on the stack to send to the terminal, and it told
you CO.

This error is called "stack underflow." (Notice that a stack
underflow is not "ok.'}

The opposite condition, when the stack completely fills up, is
called "stack overflow." The stack is so deep, however, that this
condition should never occur except when you've done something
terribly wrong.

it's important to keep track of new words' 'stack effects"; that
is, the sort of numbers a word needs to have on the stack before
you execute it, and the sort of numbers it will leave on the stack
afterwards.

If you maintain a list of your newly created words with their
meanings as you go, you or anyone else Can easily understand the
words' operations. In FORTR, such a list is called a "glossary."

To communicate stack effects in a visual way, FORTH programmers
conventionally use a special stack notation in their glossaries
or tables of words. We're introducing the stack notation now so
that you'll have it under your belt when you begin the next
chapter.

tror the Curious

Actually, dot always prints whatever is on the top, so if there is
nothing on the stack, it prints whatever is just below the stack,
which is usually zero. Only then is the error detected; the
offending word (in this case dot) is returned to the screen,
followed by the "error message."

26 	 Starting FORTH

Here's the basic form:

(before -- after)

The dash separates the things that should be on the stack (before
you execute the word) from the things that will be left there
afterwards. For example, here's the stack notation for the word
0:

(n)

(The letter "n" stands for "number.") This shows that 0 expects
one number on the stack (before) and leaves no number on the
stack (after).

Here's the stack notation for the word B.
(nl n2 -- sum)

When there is more than one n, we number them nl, n2, n3, etc.,
consecutively. The numbers 1 and 2 do not refer to position on
the stack. Stack position is indicated by the order in which the
items are written; the rightmost item on either side of the arrow
is the to most item on the stack. For example, in the stack
notation of , the n2 is on top:

(nl n2 -- sum)

You're the top

Since you probably have the hang of it by now, we'll be leaving
out theCalMsymbol except where we feel it's needed for clarity.
You can usually tell where to press "return" because the
computer's response is always underlined.

1 FUNDAMENTAL FORTH
	

27

Here's a list of the FORTH words you've learned so far, including
their stack notations ("n" stands for number; "c" stands for
character):

: xxx yyy ; 	(--) Creates a new definition with
the name xxx, consisting of
word or words yyy.

CR (--) Performs a carriage return and
line feed at your terminal.

SPACES (n --) Prints the given number of
blank spaces at your terminal.

SPACE (--) Prints one blank space at your
terminal.

EMIT (c --) Transmits a character to the
output device.

." xxx"
	

(--)
	

Prints the character string
xxx at your terminal. The "
character terminates the
string.

+ 	 (n1 n2 -- sum) 	Adds.

Prints a number, followed by
one space.

In the next chapter we'll talk about getting the computer to
perform some fancier arithmetic.

Review of Terms

Compile

Dictionary

to generate a dictionary entry in computer
memory from source text (the written-out form
of a definition). Distinct from "execute."

in FORTH, a list of words and definitions
including both "system" definitions
(predefined) and "user" definitions (which you
invent). A dictionary resides in computer
memory in compiled form.

28 	 Starting FORTH

Execute

Extensibility

Glossary

to perform. Specifically, to execute a word is
to perform the operations specified in the
compiled definition of the word.

a characteristic of a computer language which
allows a programmer to add new features or
modify existing ones.

a list of words defined in FORTH, showing their
stack effects and an explanation of what they
do, which serves as a reference for
programmers.

Infix notation 	the method of writing operators between the
operands they affect, as in "2 + 5."

Input stream 	the text to be read by the text interpreter.
This may be text that you have just typed in at
your terminal, or it may be text that is stored
on disk.

Interpret 	(when referring to FORTH's text interpreter) to
read the input stream, then to find each word
in the dictionary or, failing that, to convert
it to a number.

LIFO 	 (last-in, first-out) the type of stack which
FORTH uses. A can of tennis balls is a LIFO
structure; the last ball you drop in is the one
you must remove first.

Postfix notation the method of writing operators after the
operands they affect, as in "2 5 +" for "2 + 5."
Also known as Reverse Polish Notation.

Stack

Stack overflow

Stack underflow

Word

in FORTH, a region of memory which is
controlled in such a way that data can be
stored or removed in a last-in, first-out (LIFO)
fashion.

the error condition that occurs when the entire
area of memory allowed for the stack is
completely filled with data.

the error condition that occurs when an
operation expects a value on the stack, but
there is no valid data on the stack.

in FORTH, the name of a definition.

1 FUNDAMENTAL FORTH 	 29

Problems — Chapter 1

Note: before you work these problems, remember these simple
rules:

Every E needs a J.
and

Every 	needs a J.

1. Define a word called GIFT which, when executed, will type
out the name of some gift. For example, you might try:

: GIFT ." BOOKENDS " ;

Now define a word called GIVER which will print out a
person's first name. Finally, define a word called THANKS
which includes the new FORTH words GIFT and GIVER, and
prints out a message something like this:

DEAR STEPHANIE,
THANKS FOR THE BOOKENDS. ok

2. Define a word called TEN.LESS which takes a number on the
stack, subtracts ten 	returns the answer on the stack.
(Hint: you can use 	.)

3. After entering the words in Prob. 1, enter a new definition
for GIVER to print someone else's name, then execute THANKS
again. Can you explain why THANKS still prints out the first
giver's name?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

