* % % * x kkkx
* x * *
* x % *
* % % * * % %
x % *
* x * *
* %% * X kkkk
INTRO.1.0.
DATA BASE.
SUBROUTINES.
DB.1.0.

STRING ARRAY.

SUBROUTINES.
SA.1.0.
STRING.
SUBROUTINES.
SM.1.0.
INTEGER.
SUBROUTINES.
IN.1.0.
V.D.P..
SUBROUTINES.
VM.1.0.
MISCELLANEOUS.
SUBROUTINES.
MISC.1.0.
INDEX.

INDEX.1.0.

ourwhPR

QO!D(IJOO\I\IO’G)G’(HU’\&(»NI—\

QOOO(IJOO\I\IO’G)(H(H-&-&(»NI—\

ommuwmmmmmmbbwwwwn—\

vCoNORBNR

1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

Introduction

Meet the author
How to load the program

. Additional memory requlrements

Command mode

. Warning

Examples of SXB codlng

Database subroutines

1

1.

2.

1.

1.

1.

Database con51derat10ns
Sample database
Database subroutines
DBDATA

DBKEYS .

Additional memory requ1rements
DBSORT .

Additional memory requlrements
Example e
DBDEL
Example
DBINS
Example
DBREPL

Example
DBUPDT

.1. Example 1
.2. Example 2

P

1.

1.

1.

1.

1.

2.

.10.
L1,
.11.1. Example
.12,
.12,
.13.
.13.
.13. .
String subroutines

1.

2.

1.

1.
2.

1.
2.

1.

1.

DBEQCT

.11.1. Example
.12,
.12,
.12,
.13.
.13.
.13,
.13.
.14,
.14.

DBFIND
1. Example 1
2. Example 2
DBCOMP
1. Example 1
2. Example 2
3. Example 3
DBOKEY
1. Example

String array subroutines

String array considerations
Sample string array
String array subroutines
SAICNT e
Example
SACCNT
Example
SAMIN
Example
SAMAX

Example
SATRNS

Example
SANCOD
SADCOD
SAZAP

SACOPY
1. Example
SAVIEW .

1. Additional memory requ1rements .

2. Example

String con51derat10ns
String subroutines
SMHXBN
Additional memory requ1rements
Example
SMBNHX
Example
SMFIX
Example 1
Example 2
SMSNIP
Example 1
Example 2
SMTRIM
Example
SMSWAP
Example
SMRDUC

.10. SMXPND
Integer subroutlnes

Integer considerations
Integer subroutines
INPAK4

INUPK4

INPAK

INUPK

INZERO

ININC

INDEC

INPOS

INNEG

INCHNG

INGETS

INPUTS

INVADD

INVSUB

INVMPY

11
L1

.12
.13

.14
.15
.16
.17
.18
.18

.21

.22
.23

.25
.25

.26
.27
.27

.28
.29

.30
.31

.35
.35
.35
.36

Additional memory requ1rements .

.38
.38

.39
.40
.41
.41
.42
.42

.43

.45

.46
.47

.48
.49
.51
.51

.53

.53
.53

10
10

11

13
13

18
19
19
20
20

21
22

24
24
25

26

28

29
29

31

.32

32
33
33
34
34

37

39

40
40

a1

42

43
44
44
44

45
45

46

47

48
49

50

52
52

53
53

53
54
54
55
56
57

©OWOON~NOOO B WNE

.16 e e
Miscellaneous subroutines

CONNNNNANANNNODODODDDDODDDDDIIIODDDDIOIOOOOOOOOO O U
OB WNNRERE

.18
.19

. INvVDIV

. Note concerning INvVADD, INvSUB, INVMPY and INVDIV .
. VDP subroutines e e e e e e e e

. Video Display Processor considerations .
. video Display Processor subroutines

. VMWNDW

. VMBLNK

. VMTYPE

. VMREAD

VMLIST

.1. Example .

VMDRAW .

.1. Example

VMPCdd

.1. Examples

. VMGCdd

.1. Example

. VMGDEF

. VMPDEF

. VMLCL

. VMFORM

. VMCOLR .
.1. Example 1
.2. Example 2
.3. Example 3
. VMSCOL

.1. Example

BANNER

.1. Example

KEY1

.1. Example

PARMSV
PARMGT
QuUIT

USRSUB

. Addendum

J&KH software license agreement .

.60

.62
.62
.63
.63
.64

.65

.67
.67

.69
.70

.73
.73
.73

.75
.76

77
e
77
.78
.79

58
59
60

61

64

66

69

70
70

71
72

74

.74

75

75

76

80

{INTRODUCTTIO N}.

SUPER EXTENDED BASIC (SXB) is a powerful extension to
the TI Extended BASIC programming language. SXB is
comprised of over 100 TMS9900 Assembly Language
subroutines which substantially expand your
programming capabilities on the TI Home Computer. The
subroutines are easily invoked with the Extended BASIC
LINK subprogram. In essence, it is now possible to
access the raw power of assembly alnguage with only a
knowledge of Extended BASIC and the information
provided in this instruction book. A1l SXB
subroutines are invoked with the following format:.

CALL LINK(subroutine-name[,argument-1list]).
For the sake of simplifying the argument-1list names,

we have devised an easy method of identifying what is
required. The format is as follows:.

Prefix: I Input (may be an equation).
0] Output (may not be an equation).
I0 Input + OQutput (may not be an.
equation).
Body: all lower case descriptor.
Suffix: $ String.

$() String Array.
{ } Numeric Variable.
) Numeric Array.

{EXAMPLES:}.
I0database$() would indicate that a string
array will be used for both input and
output and that it is a "data base." You
would enter a value such as MAILLISTS$()..

Tarray() would indicate a numeric array to
be used only for input..

Thexadecimal$ would indicate a (readable)
hexadecimal string to be used for input
only..

Obinary$ would indicate a binary string to
be used for output..

Subroutine nemes are a maximum of six characters in
length. With the exception of the six miscellaneous
subroutines (BANNER, KEY1, PARMSV, PARMGT, QUIT, and
USRSUB), the first two characters are a prefix
representing the category of SXB subroutine it falls
into. The five major SXB subroutine categories are as
follows:.

INTRO.2.0.

{PREFIX} {CATEGORY?}.
DB Data Base.

SA String Array.

SM string.
IN Integer.
VM V.D.P. -- Video Display Processor.

This instruction book has been designed so that it can
be updated as needed. Also you may find it
advantageous to rearrange the sections of this book to
fit your own preferences..

{SECTION} {CATEGORY}.
Introduction.

Data Base Subroutines.
String Array Subroutines.
String Subroutines.
Integer Subroutines.
V.D.P. Subroutines.
Miscellaneous Subroutines.
Index.

O~NO U WNE

INTRO.3.0.
{HOW TO LOAD THE PROGRAM}.

The TI Extended BASIC command module should be
inserted into the console. Put the SXB disk in drive
one. Select EXTENDED BASIC and the subroutines will
be loaded automatically. Optionally the SXB disk may
be mounted on drive 2 or 3 in which case you would use
the RUN "DSKn.LOAD" instruction where "n" is the drive

number. {The SXB subroutines must be loaded prior to}
{loading your program which calls them.} You will
normally not have to reload SXB between programs..

INTRO.4.0.
{ADDITIONAL MEMORY REQUIREMENTS}.

SXB utilizes the entire 8K portion of the 32K memory
expansion. Additionally, it also utilizes the first
three 256 byte blocks of memory in the 24K portion of
the 32K memory expansion. The first block is reserved
space for the addition of user defined subroutines
(USRSUB) after SXB is loaded. The next two blocks are
buffers for input and/or output of strings. CAUTION:
{Some SXB subroutines require additional memory over}
{and above the aforementioned 768 bytes. 1In most cases}
{it is only for temporary use -- but with the DBKEYS}
{subroutine, it stays in effect until another DBKEYS}
{subroutine is called or SXB is reloaded.}.

Extended BASIC does not normally allow you to use the
8K portion of the 32K memory expansion, so you have

not lost any memory here. But you do loose some of
the 24K portion as explained above. To make up for
this you will find that SXB subroutines do, in many
instances, allow you to do the same amount of
programming without taking up as much memory.
Additionally, the Integer subroutines allow for the
reduction of space needed to store integers. Overall
you should not notice the reduction in memory from the
24K portion of the memory expansion unless you are
sorting large Data Bases..

{COMMAND MODE}.

All SXB subroutines are designed so that they can be
called in command mode. Except for the few cases
where the computer resets certain values (e.g.,
colors, sprites, etc.), you now have some very
valuable debugging tools. Probably one of the most
powerful is SAVIEW which allows you to inspect the
contents of a string array. This would be
particularly valuable if you interrupt a program and
then need to check the values in a string array..

INTRO.5.0.

1.6. Examples of SXB coding

The following few examples of SXB coding should help give you a better idea of just
how simple it is to use

the SXB calls. Refer to the appropriate subsequent sections of this reference
manual to see the standard

example abbreviations used for illustration purposes.

DBKEYS and DBDEL

CALL LINK("DBKEYS",CHR$(25)&CHR$(1)&CHR$(5),V)
CALL LINK("DBDEL","sSCO1D",V)

SAICNT (page 31)

CALL LINK("SAICNT",DB$(),CNT)

SMTRIM (page 46)
A8="ABCXYZABCABCABCXYZZZZYXZYYXZ"
CALL LINK("SMTRIM", A$, "XYZ")

INPAK4 (page 51)

A=25

B=-24000

C=768

D=1024

CALL LINK("INPAK4",E,A,B,C,D)

VMWNDW (page 62) and VMLIST (page 64)
CALL LINK("VMWNDW",3,3,22,30)

CALL LINK("VMLIST"," NOW IS THE TIME FOR SXB")
BANNER (page 75)

CALL LINK("BANNER",AS(),"SXB")

KEY1l (page 76)

CALL LINK("KEY1","IRDU",V)

PARMGT (page 77)

CALL LINK("PARMGT", PARMS$)

An SXB Data Base (henceforth referred to as Data Base) is made up of a
string array and is considered to include only item one through the
first item containing a null string (i.e.,"") in the array. If item
one contains a null string, then the Data Base is considered to be
"empty" even though other items might contain values other than null
strings. If you are using OPTION BASE 1, you cannot access item
zero... but if you are using OPTION BASE 0 (the Basic default

value), you may use zero for any purpose -- just remember that it will
be ignored by SXB subroutines. The following is a sample Data Base
which will be used to demonstrate the SXB Data Base subroutines:.

{SAMPLE DATA BASE}.

ITEM VALUE NOTES.

0 "any value" Ignored by SXB.
1 "SCO1DSUPER CATALOGER" Only item one.
2 "SXB1DSUPER EXTENDED BASIC" through the first.
3 "VTO1TVIDEO TITLES I" item with a null.
4 "VTO1DVIDEO TITLES I" string are.
5 "VTO2DVIDEO TITLES II" considered as the.
6 "VTO3TVIDEO TITLES III" Data Base by SXB..
7 "VTO3DVIDEO TITLES III".
8 nn .
9 "any value" Ignored by SXB..
10 "any value".

etc..

So as to give some meaning to the SAMPLE DATA BASE, here is a possible
description to each item: Positions 1-5 are for product numbers.
Position five also indicates "T" for tape versiln or "D" for disk
version. Positions 6-25 reflect the product name. Note that this
last field is variable in length. A1l Data Base subroutines treat
Data Base items as fixed length. Any item shorter than the maximum
length specified by the DBKEYS subroutine will be expanded to the
maximum length with null characters (i.e., CHR$(0)) for the purpose of
doing comparisons. Any item returned to a Data Base will have all
trailing null characters deleted..

DB.2.0.
{DATA BASE SUBROUTINES}.

DBDATA Provide error information concerning other.
Data Base subroutines..

DBKEYS Describe Data Base (maximum item length + key.
fields)..

DBSORT Sort Data Base..

DBDEL Delete all Data Base items with keys equal to.
argument item..

DBINS Insert new item in Data Base..

DBREPL Replace item in Data base..

DBUPUT Update (replace/insert) item in Data Base..

DBEQCT Count items in Data Base with keys equal to.
argument item..

DBFIND Find next item in Data Base with keys equal.
to argument item..

DBCOMP Compare two Data Base formatted items..

DBOKEY Build a new Data Base with only key fields as.
output..

The last parameter of each Data Base subroutine is
Ovector. After executing any of these subroutines,
Ovector will be returned with a value which can be
used with an ON Ovector GOTO or GOSUB. A value of "1"
returned in this numeric variable will always indicate
that an error condition occurred. Use the DBDATA
subroutine to determine the specifics of the error..

DB.3.0.
DBDATA.

CALL LINK("DBDATA",Osubroutineid,Oerrorcode,Ovaluel,
Ovalue2).

This subroutine returns information about the last SXB
Data Base subroutine called. If the subroutine was
called without an error, Oerrorcode, Ovaluel and
Ovalue2 will contain zeroes. Other values are
explained for each particular Data Base subroutine.

DB.4.0.
DBKEYS.
éALL LINK("DBKEYS", Idescription$, Ovector)
+his subroutine defines items in a Data Base and how

they are to be compared. CAUTION: {This subroutine}
{must be invoked properly prior to calling any other}
{Data Base subroutines.} Once set, it remains in
effect until DBKEYS is invoked again or SXB is
reloaded. .

The first position of Idescription$ indicates the
maximum length allowed for each item in the Data Base.
This is the format CHR$(maxlength). The subsequent
optional pairs of positions within Idescription$
identify the key fields within each item. Only the
key fields will be used for the purposes of comparison
in other Data Base subroutines. The format for
specifying each key field is CHR$(firstpostion)&&
CHR$(keylength). Optionally you can specify that a
key is to be treated in descending rather than
ascending order simply by changing the format to CHR$
(firstposition)&&CHR$(keylength+128). The maximum key
length is 127 characters. If no keys are specified,
SXB assumes that there is only one key that starts in

position one and it has a length equal to maxlength or
127, whichever is lesser. Following are three
EXAMPLES of Idescription$:.

Idescription$ VALUE MAXIMUM KEY KEY ASCENDING/
ITEM FIRST LENGTH DESCENDING

LENGTH POS SEQUENCE.
CHR$(20) 20 1 20 ascending
CHR$(25)&&CHR$(3)&&CHR$(5) 25 3
5 ascending
CHR$(50)&&CHR$(1)&&CHR$(9) 50 1
9 ascending
&&CHR$(24)&&CHR$ (5+128) 24
5 descending
&&CHR$(11)&&CHR$(3) 11

3 ascending

A maximum of 127 key fields is possible with SXB. The
use of many keys does not substantilly slow down the
comparison process since most comparisons will result
in an unequal condition within the first few
characters. Keys may overlap if necessary with the
exception that an ascending key may not overlap a
descending key..

DB.5.0.
DBKEYS (Continued).
{ADDITIONAL MEMORY REQUIREMENTS}.

An additional amount of the 24K portion of memory is
required to store the DBKEYS information. The amount
is equal to approximately the length of Idescription$
+ 2 [+maxlength +2 if there are any descending
key fields]. This additional memory will continue to
be used until it is replaced by a different amount
required for the nest call to DBKEYS. If DBKEYS is
invoked with an error, this additional memory
requirement will be freed up..

Error..
0.K..

Ovector values: 1
2

DBDATA VALUES DESCRIPTION OF ERROR.

50 2 00 Idescription$ length invalid..

50 3 0 0 Maximum item length zero.

50 4 no0 First position of a key is zero..

50 5 n0 First position of key is greater than
maximum item length..

50 6 n O Key length zero..

50 7 n o0 Key extends past end of maximum item..

50 8 ¢ 0 Overlapping ascending and descending.

key fields..

n = position within Idescription$..

c = position within item..
DB.6.0.
DBSORT.
éALL LINK("DBSORT", I0database$(),Ovector).
+his subroutine sorts all items in IOdatabase$()
according to the key fields specified with the DBKEYS

subroutine..

Ovector values: 1

= Error..
2 = 0.K., no duplicate keys detected..
3 = 0.K., duplicate keys detected..
DBDATA VALUES DESCRIPTION OF ERROR.
51100 DBKEYS improperly/not invoked..
519 im I0database$() item has length greater.

than maximum item..

m
i

maximum item length..
index to item in Data Base..

{ADDITIONAL MEMORY REQUIREMENTS}.

An additional amount of the 24K portion of memory is
temporarily required to perform the sort. The amount
is equal to approximately (number of items in Data
Base + 1) * maximum line length. If you do not have
enough space to use DBSORT, you can still accomplish
the sort (although it is slower) by using DBUPDT as
you add each item to the Data Base..

------------------- EXAMPLE -cemmmmmmmmcmmmmmm
{INPUT:}.
DBKEYS Idescription$ = CHR$(25)&&CHR$(1)&&CHRS(5) .

IODatabase$()

SAMPLE DATA BASE.

{OUTPUT:}.

ITEM VALUE.

"SCO1DSUPER CATALOGER".
"SXB1DSUPER EXTENDED BASIC".
"VTO1DVIDEO TITLES I".
"VTO1TVIDEO TITLES I".
"VTO2DVIDEO TITLES II".
"VTO3DVIDEO TITLES III".
"VTO3TVIDEO TITLES III".

IODatabase$()

O~NO UL WNRE

Note that the disk versions of Video Titles I && Video
Titles III are now listed before the tape versions..

DB.7.0.

DBDEL.
CALL LINK("DBDEL",IOdatabase$(),Iitem$,Ovector).
This subroutine searches all items in IOdatabase$()
and deletes all items which have key fields identical

to those of Iitem$..

Ovector values:

1 = Error..
2 = I0database() item(s) deleted..
3 = No equal items in IOdatabase$()..
DBDATA VALUES DESCRIPTION OF ERROR.
54100 DBKEYS improperly/not invoked..
54 300 Iitem$ length zero..
54 9 0 m Iitem$ length greater than maximum.
item length..
54 9 im I0database$() item has length greater.

than maximum item length..

maximum item length..
index to item in Data Base..

e EXAMPLE ---cccmmmmamaaaaoo
{INPUT:}.

DBKEYS Idescription$ = CHRS(25)&ECHRS(1)&ECHRS(5).
IODatabase$() = SAMPLE DATA BASE.

Iitem$ = "SCOLD"

{OUTPUT:}.

IODatabase$() = IT

=

VALUE.

"SXB1DSUPER EXTENDED BASIC".
"VTO1DVIDEO TITLES I".
"VTO1TVIDEO TITLES I".
"VTO2DVIDEO TITLES II".
"VTO3DVIDEO TITLES III".
"VTO3TVIDEO TITLES III".

~No b~ wNREM

Note that old item 1 has been deleted and all other
items have moved up one position. If there had been
more than one item with the same key "SCO1D", they

would have all been deleted. CAUTION: {If you had}
{previously located an item with DBFIND, and you want}
{to delete only that one specific item, it would be}
{more appropriate to use SADEL to insure that no
others} {are inadvertently deleted}..

DB.8.0.

DBINS.

CALL LINK("DBINS",IOdatabase$(),Iitem$,Ovector).

This subroutine searches all items in IOdatabase$()
until it finds the first item with a higher key than
that of Iitem$. Once found, it inserts Iitem$ into
I0database$() moving all subsequent items down one
position. If an item with a higher key is not found,
Iitem$ will be placed at the end of IOdatabase$().
This subroutine assumes that IOdatabase$() has
previously been sorted..

Ovector values: 1

= Error..
2 = 0.K..
DBDATA VALUES DESCRIPTION OF ERROR.
551 00 DBKEYS improperly/not invoked. .
55 3 0 0 Iitem$ length zero..
5590 m Iitem$ length greater than maximum.
item length..
5569 im I0database$() item has length greater.

than maximum item length..

maximum item length..
index to item in Data Base..

L EXAMPLE -cccmmmmmmmaaaaaa o
{INPUT:}.

DBKEYS Idescription$ = CHR$(25)&&CHRS(1)&&CHRS(5).
IODatabase$() = SAMPLE DATA BASE.

Iitem$ = "SCO2SUPER CATALOGER II".

{OUTPUT:}.

=

VALUE.

"SCO1DSUPER CATALOGER".
"SCO2DSUPER CATALOGER II".
"SXB1DSUPER EXTENDED BASIC".
"VTO1TVIDEO TITLES I".
"VTO1DVIDEO TITLES I".
"VTO2DVIDEO TITLES II".
"VTO3TVIDEO TITLES III".
"VTO3DVIDEO TITLES III".

IODatabase$() = IT

©Co~NOOPM~WNEM

Note that SC02D was inserted berfore SXB1D because it
was the first higher key encountered. The old items
2-8 have now become items 3-9..
DB.9.0.
DBREPL.

CALL LINK("DBREPL",IOdatabase$(),Iitem$,Ovector).

This subroutine searches all items in IOdatabase$()
until it finds the first item with a key equal to that
of Iitem$. Once found, it replaces the old item with
Iitem$. If an item with an equal key is not found,
I0database$() will not be altered..

Error..

Item replaced in IOdatabase$()..
Equal item not found in.
I0odatabase$(). .

Ovector values: 1
2
3

DBDATA VALUES DESCRIPTION OF ERROR.

56 1 0 0 DBKEYS improperly/not invoked. .

56 300 Iitem$ length cannot be zero..

56 9 O m Iitem$ length greater than maximum.
item length..

55 9 im I0database$() item has length greater.

than maximum item length..

maximum item length..
index to item in Data Base..

L EXAMPLE --ccommmmmmaaaaao
{INPUT:}.

DBKEYS Idescription$ = CHR$(25)&&CHRS(1)&&CHRS(2).
IODatabase$() = SAMPLE DATA BASE.

Iitem$ = "SCO2SUPER CATALOGER II".

{OUTPUT:}.

IODatabase$() = IT

=

VALUE.

"SCO2DSUPER CATALOGER II".
""SXB1DSUPER EXTENDED BASIC".
"VTO1TVIDEO TITLES I".
"VTO1DVIDEO TITLES I".
"VTO2DVIDEO TITLES II".
"VTO3TVIDEO TITLES III".
"VTO3DVIDEO TITLES III".

o~NoOGh~wWNEM

Note that item 1 has been replaced since both it and
Item$ had a value of "SC" in position 1-2..

DB.10.0.
DBUPDT.
éALL LINK("DBUPDT", IOdatabase$(), Iitem$, Ovector).
+his subroutine searches all items in IOdatabase$()

until it finds an item with either an equal or higher
key than that of Iitem$. If an equal key is found, it

replaces the old item with Iitem$. If a higher key is
found, it inserts Iitem$ into IOdatabase$() moving all
subsequent items down one position. If all items in
I0database$() have lower key values, Iitem$ will be
placed at the end of IOdatabase$(). This subroutine
assumes that IOdatabase$() has previously been
sorted. .

Ovector values: 1

= Error..
2 = 0.K., Item replaced in.
I0database$(). .
3 = 0.K., item inserted in.

I0odatabase$(). .

DBDATA VALUES DESCRIPTION OF ERROR.

57 100 DBKEYS improperly/not invoked..

57 30 0 Iitem$ length zero..

5790 m Iitem$ length greater than maximum.
item length..

559 im I0database$() item has length greater.

than maximum item length..

m
i

maximum item length..
index to item in Data Base..

(examples start on the following page.
DB.11.0.

DBUPDT (Continued).

{INPUT:}.

DBKEYS Idescription$ = CHR$(25)&&CHR$(1)&&CHR$(5).
iODatabase$() = SAMPLE DATA BASE.

iitem$ = "SCO2SUPER CATALOGER (TM)".

%OUTPUT:}.

IODatabase$() = IT

=

VALUE.
"SCO1DSUPER CATALOGER (TM)".
"SXB1DSUPER EXTENDED BASIC".
"VTO1TVIDEO TITLES I".
"VTO1DVIDEO TITLES I".
"VTO2DVIDEO TITLES II".
"VTO3TVIDEO TITLES III".
"VTO3DVIDEO TITLES III".

o~NoO UG~ WNEM

Note that item 1 was replaced..
———————————————— EXAMPLE®# 2 ------------------

{INPUT:}.

DBKEYS Idescription$ = CHRS(25)&ECHRS(1)&&CHRS(5).
IODatabase$() = SAMPLE DATA BASE.

Iitem$ = "SCO2SUPER CATALOGER II".

{OUTPUT:}.

IODatabase$() = IT

=

VALUE.

"SCO1DSUPER CATALOGER".
"SCO2DSUPER CATALOGER II".
""SXB1DSUPER EXTENDED BASIC".
"VTO1TVIDEO TITLES I".
"VTO1DVIDEO TITLES I".
"VTO2DVIDEO TITLES II".
"VTO3TVIDEO TITLES III".
"VTO3DVIDEO TITLES III".

O©CoOoO~NOOP~WNEM

Note that the new item was inserted as item 2 and all
subsequent items were pushed down one position in the
Data Base..

DB.12.0.
DBEQCT.
CALL LINK("DBEQCT",Idatabase$(),Iitem$,Ocount,Ovector)

This subroutine searches all items in Idatabase$() and
returns a count of all items which have key fields
identical to those of Item$..

Error..

Equal item(s) found in.
Idatabase$()..

No equal items found in.
Idatabase$()..

Ovector values: 1
2

3

DBDATA VALUES DESCRIPTION OF ERROR.

58 1 0 0 DBKEYS improperly/not invoked..

58 300 Iitem$ length zero..

58 9 0 m Iitem$ length greater than maximum.
item length..

58 9 im I0database$() item has length greater.

than maximum item length..

maximum item length..
index to item in Data Base..

------------------- EXAMPLE ---mmmmmmmmmmmmmmme-
{INPUT:}.
DBKEYS Idescription$ = CHR$(25)&&CHR$(5)&&CHR$(1).

IDatabase$() = SAMPLE DATA BASE.

Iitem$ = "----D".

{OUTPUT:}.

6count = 5 (disk versions exist)..
DB.13.0.
DBFIND.

CALL LINK("DBFIND",Idatabase$(),Iitem$, IOpointer, .
Ovector).

This subroutine searches all items in Idatabase$()
starting at IOpointer + 1 and returns IOpointer with
either the next item number in Idatabase$() which has
key fields identical to those of Iitem$ or a value of
zero if no subsequent match was found..

Ovector values: 1 Error..

2 Next equal item found in.
Idatabase$()..
3 = Equal item not found in.

Idatabase$()..

DBDATA VALUES DESCRIPTION OF ERROR.

531 00 DBKEYS improperly/not invoked. .

53 3 0 0 Iitem$ length zero..

5390 m Iitem$ length greater than maximum.
item length..

539 im Idatabase$() item has length greater.

than maximum item length..

maximum item length..
index to item in Data Base..

L EXAMPLE -cccommmmmmeeaaaao
{INPUT:}.

DBKEYS Idescription$ = CHRS(25)8&CHRS(6)8ECHRS(20).
IDatabase$() = SAMPLE DATA BASE.

Iitem$ = "----- VIDEO TITLES I".

1
(o]

IOpointer
{OUTPUT:}.

IOpointer = 3 (first occurance in database).

DB.14.0.

DBFIND (Continued).

{INPUT:}.

DBKEYS Idescription$ = CHR$(25)&&CHR$(6)&&CHR$(20).
iDatabase$() = SAMPLE DATA BASE.

iitem$ = Moo VIDEO TITLES I".

iOpointer = 3 (same as example #1).

{OUTPUT:}.

IOpointer = 4 (second occurance in Data base).

DB.15.0.

DBCOMP.
CALL LINK("DBCOMP",Iiteml$,Iitem2$,Ovector).
This subroutine compares two Data Base formatted items
(i.e., Iitem$1 against Iitem$2) based only on key
fields specified with the DBKEYS subroutine..

Ovector values:

1 = Error..

2 = Iiteml$ < Iitem2$..
3 = Iiteml$ = Iitem2$..
4 = TIiteml$ > Iitem2$..

DBDATA VALUES DESCRIPTION OF ERROR.

521 00 DBKEYS improperly/not invoked..
52310 Iitem1$ length zero..
52 320 Iitem2$ length zero..
52 91 m Iitem1$ length greater than maximum.
item length..
5392 m Iitem2$ length greater than maximum.
item length..
m = maximum item length..
---------------- EXAMPLE # Ll ----mmmmmmmaeeaen
{INPUT:}.

DBKEYS Idescription$ = CHR$(25)&&CHR$(6)&&CHR$(20).
Iitem1$ = "VTO1TVIDEO TITLES I".

IITEM2$

= "VTO1DVIDEO TITLES I".
{OUTPUT:}.
Ovector = 3 (Iiteml$ = Iitem2$).

DB.16.0.

DBCOMP (Continued).

{INPUT:}.
DBKEYS Idescription$ = CHR$(25)&&CHR$(6)&&CHRS(20).

Iitem1$

= "SCO1DSUPER CATALOGER".
IITEM2$ = "VTO3VIDEO TITLES III".
{OUTPUT:}.

Ovector = 2 (Iiteml$ < Iitem2$).

{INPUT:}.

DBKEYS Idescription$ = CHR$(25)&&CHR$(6)&&CHRS(20).
Iitem1$ = "SXB1DSUPER EXTENDED BASIC".

Iitem2$

= "SCO1DSUPER CATALOGER".
{OUTPUT:}.
6vector = 4 (Iiteml$ > Iitem2$).
DB.17.0.
DBOKEY .

CALL LINK("DBOKEY",Idatabasel$(),0database2$(), .
Ovector).

This subroutine transfers all key fields from
Idatabasel$() to Odatabase$2() in such a manner so as
to create one contiguous key field for each output
item. Although not readily apparent, this subroutine
can also be used to quickly perform the equivalent of
extremely complicated SEG$ statements. You will have
to experiment with this subroutine to actually get a
good feel for this capability..

Error..

Ovector values: 1
2 0.K..

DBDATA VALUES DESCRIPTION OF ERROR.
50100 DBKEYS improperly/not invoked..

{INPUT:}.
DBKEYS Idescription$ = CHRS(25)&ECHRS(1)&&CHRS(5).

IDatabase$() = SAMPLE DATA BASE.

{OUTPUT:}.

ODatabase2$() = ITEM VALUE.
1 "SCO1D".
2 "SXB1D".
3 "VTOLT".
4 "VTO1D".
5 "VTO2D".
6 "VTO3T".
7

8

"VTO3D".

DB.18.0.

{STRING ARRAY}

{CONSIDERATTIONS}.
SXB String Arrays are considered to include only item one through the first item
containing a null string (i.e.,"")in the array. If item one contains a null
string, then the array is considered to be "empty" even though other items might
contain values other than null strings. If you are using OPTION BASE 1, you
cannot access item zero. If you are using OPTION BASE 0 (the default value), you
may use item zero for any purpose -- {just remember that it will be ignored by SXB
String Array subroutines:}.

{SAMPLE STRING ARRAY}.

ITEM VALUE NOTES.

0 "any value" Ignored by SXB..
1 "111 CONSTITUTION" Only item one through.
2 "FIRST AND MAPLE" the first item with a.
3 "P.0. BOX 415" null string are.
4 ""2820 S ABINGDON ST" considered as the.
5 "APT 43" String Array by SXB.
6 "WASHINGTON DRIVE".
7 nn .
8 "any value" Ignhored by SXB.
9 "any value".
etc

STRING ARRAY SUBROUTINES.

SAICNT Count the number of non-null string items in.
the array..

SACCNT Count the number of characters used for items.
in the array..

SAMIN Determine the length of the shortest non-null.
string in the array..

SAMAX Determine the length of the longest non-null.
string in the array..

SATRNS Translate specified characters in the array to.
new ones..

SANCOD Encode (encrypt) String Array according to.
password. .

SADCOD Reverse SANCOD process with same password. .

SAZAP Make all non-null strings in the array into.
null strings..

SACOPY Copy one String Array to another String Array..

SAVIEW View String Array on screen with item numbers.
+ lengths..

SA.2.0.

SAICNT.

CALL LINK("SAICNT",Iarray$(),Ocount).

This subroutine counts the number of non-null string items in Iarray$() and
returns the value in Ocount..

el EXAMPLE -cccmmmmmmmmeeeeao .
{INPUT:}.

Tarray$() = SAMPLE STRING ARRAY.

{OUTPUT:}.

Ocount = 6.

SACCNT .
CALL LINK("SACCNT",Iarray$(),Ocount).

This subroutine totals the lenghts of all items in Iarray$() and returns
the value in Ocount..

{INPUT:}.
Iarray$() = SAMPLE STRING ARRAY.
{OUTPUT:}.

Ocount = 82.

SA.3.0.

SAMIN.

CALL LINK("SAMIN",Iarray$(),Ocount).
This subroutine checks the length of each non-null string item in Iarray$

() to determine the shortest 1length,which is returned in Olength. If Iarray$() is
empty, length will return with a value of zero..

{INPUT:}.
Iarray$() = SAMPLE STRING ARRAY.
{OUTPUT:}.

Olength = 6.

SAMAX.

CALL LINK("SAMAX",Iarray$(),0Olength).
This subroutine checks the length of each non-null string item in Iarray$

() to determine the longest length, which is returned in Olength. If Iarray$() is
empty, Olength will return with a value of zero..

{INPUT:}.
Iarray$() = SAMPLE STRING ARRAY.
{OUTPUT:}.

Olength = 18.

SA.4.0.

SATRNS.

CALL LINK("SATRNS",IOarray$(),Itable$).

This subroutine translates selected characters in IOarray$() based on
values in Itable$. The format for Itable$ isas follows: Each pair of character
in Itable$ represent an item in the table. The first character of each pair
indicates the character that is to be translated. The second character indicates
the replacement character. (e.g.If Itable$ were equal to "AQNVJR", each "A" would
be replaced with a "Q", each "N" with a "V" and each "J" with an "R".).

{ADDITIONAL MEMORY REQUIREMENTS:}.

An additional 256 bytes of the 24K portion of memory is
temporarily required in order to use this subroutine..

{INPUT:}.

iOarray$() = SAMPLE STRING ARRAY.
itab1e$ = " -AaBz".

{OUTPUT}.

IOarray$() = ITEM VALUE.
1 "1111-CONSTITUTION".

"FIRST-&&-MaPLE" .
"P.0.-Z0X-415".
"'2820-S-aZINGDON-ST".
"aPT-43".
"WaSHINGTON-DRIVE".

NO O~ WN

Another practical use for this subroutine would be to

convert normally unused characters to needed binary values which are
required for other SXB subroutines. As an example, suppose you do not need to use
lower case letters "a", "b", "c" but you do need the binary values 1,2 and 3(i.e.,
CHR$(1), CHR$(2) AND CHR$(3)). This can be accomplished with Itable$ equal to
"a"&&CHR$(1)&&"b"&&CHAR $(2)&&"c"&&CHR$(3). You may consider reserving a special

string array (with a DIM(2)) for converting single strings -- just place the string
in item one and never put any value in item two -- then use SATRNS..

SA.5.0.

SANCOD.

CALL LINK("SANCOD",IOarray$(),Ipassword$).

This subroutine encodes (encrypts) all non-null string items in IOarray$
() so as to be unreadable. The length of Ipassword$ is directly related to the
complexity of encryption scheme which is used on IOarray$(). Using the same

Ipassword$ with the SADCOD subroutine is required to restore IOarray$() to it's
original condition..

SADCOD.
éALL LINK("SADCOD", I0array$(), Ipassword$).
fhis subroutine reverses the encryption process described in the SANCOD
subroutine. Using the same Ipassword$ on the SANCODed IOarray$() will restore the
string items to their original condition..
SA.6.0.
SAZAP.
CALL LINK("SAZAP",I0array$()).
fhis subroutine replaces all non-null string items in
IOarray$() with null strings..
L EXAMPLE -------------------- .
{INPUT:}.
iOarray$() = SAMPLE STRING ARRAY.

{OUTPUT:}.

M VALUE.

IOarray$() = IT

E

1

2

3

4 nn .
5

6 .
7 nn .
SACOPY.

éALL LINK("SACOPY", Iarrayl$(),0array2$()()).

This subroutine moves a copy of each item in Iarrayl$() to the
corresponding item in Oarray2$()..

{INPUT:}.

Iarrayl$() = SAMPLE STRING ARRAY.

{OUTPUT:}.

ITEM VALUE.

"111 CONSTITUTION".
"FIRST & MAPLE".

"P.0 BOX 415".

""2820 S ABINGTON ST".
"APT 43",

"WASHINGTON DRIVE".

6array2$()

~N~No bk~ WNRE

SA.7.0.
SAVIEW.
CALL LINK("SAVIEW",Iarray$()).

This subroutine scrolls items from Iarray$() on the screen preceded by a
line of hyphens with two numbers on the right indicating the item number and item
length. If there is a null string in the first item of Iarray$(), the subroutine
will do nothing. otherwise, it will automatically scroll the first item onto the
bottom of the screen. As long as the second item of Iarray$() is not a null
string, you can now scroll through Iarray$() by using the Down arrow (FCTN X) to
display items in ascending order or the UP arrow (FCTN E) to display
items in descending order. Press ENTER to exit the subroutine..

{ADDITIONAL MEMORY REQUIREMENTS:}.

An aditional 768 bytes of the 24K portion of memory is
temporarily required in order to use this subroutine..

{INPUT:}.

iarray$() =

SAMPLE STRING ARRAY.

(momentarily pressing the DOWN arrow key)

{OUTPUT:}.

Screen:.

WASHINGTON DRIVE.

SA.8.0.

R ING}.
ERATIONS}.

SXB strings are the same as regular Extended BASIC
strings..

{STRING SUBROUTINES}.

SMHXBN Convert readable hexadecimal to binary (two
hex characters to one binary character ratio).

SMBNHX Convert binary to readable hexadecimal (one
binary character to two hex characters ratio).

SMFIX Fix the length of a string..

SMSNIP Delete specified number of characters from a
string..

SMTRIM Delete specified trailing characters from a
string..

SMSWAP Swap the values of two strings..

SMRDUC Reduces length of string by changing each.
group of 1-16 continuous blanks/zeros to 1.
byte..

SMXPND Restores string created by SMRDUC to it's
original condition..

SM.2.0.

SMHXBN .

CALL LINK("SMHXBN",Ihexadecimal$, Obinary$).

This subroutine converts a readable hexadecimal string
(Ihexadecimal$) to a binary string (Obinary$)..

CAUTION: {Only hexadecimal characters (0, 1, 2, 3, 4,}
{5, 6, 7, 8, 9, A, B, C, D, E and F) are valid input}

for Ihexadecimal$. Input of invalid characters will}
produce unpredictable results.}.

{ADDITIONAL MEMORY REQUIREMENTS:}.
An addditional 256 bytes of the 24K portion of memory

is temporarily required in order to use this
subroutine..

{INPUT:}.

Thexadecimal$ = "4142434445464748" (length 16).
{OUTPUT:}.

Obinary$ ="ABCDEFGH" (length 8).

SMBNHX.

CALL LINK("SMBNHX",Ibinary$,Ohexadecimal$).

This subroutine converts a binary string (Ibinary$) to
a readable hexadecimal string (Ohexadecimal$)..

CAUTION: {The output string will be twice the length}
{of the input string. If the input string is greater}
{than 127 characters in length, it will be shortened
by} {128 characters!}.

------------------- EXAMPLE -----mmmmmmmeaaeao o,
{INPUT:}.

Ibinary$ = "ABCDEFGH" (length 8).

{OUTPUT:}.

Ohexadecimal$ = "4142434445464748" length 16).

SM.3.0.

SMFIX.

CALL LINK("SMFIX",IOstring$,Ilength).
This subroutine fixes the lingth of IOstring$. If it
is longer on input, it will be truncated on output. If

it is shorter on input, it will be expanded to the
specified length with trailing blanks..

{INPUT:}.

iOString$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
ilength = 15

{OUTPUT:}.

I10string$ = "ABCDEFGHIJKLMNO".

{INPUT:}.
iOString$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
ilength = 27.
{OUTPUT}.
iOString$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ ".
Note the extra blank following the z..
; SM.4.0.
SMSNIP.
CALL LINK("SMSNIP", IOstring$, Ilength).
+his subroutine "snips" off Ilength characters from the
end of IOstring$. If IOstring$ is less than Ilength

characters in length, IOstring$ will be returned as a
null string..

{INPUT:}.

I0string$

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" .
Ilength = 5.

{OUTPUT:}.
IOSTRINGS

"ABCDEFGHIJKLMNOPQRSTU" .

{INPUT:}.

I0string$ "ABC".
ILENGTH = 5.

{OUTPUT:}.

IOstring$
SM.5.0.

SMTRIM.

CALL LINK("SMTRIM",IOstring$,Itrimlist$).

This subroutine deletes all trailing characters from
I0string$ that match any of the characters in

Itrimlist$. Once it finds any character that does not
have a match in Itrimlist$, the truncation process
stops..

{INPUT:}.
I0string$ = "ABCXYZABCABCABCXYZZZZYXZYYXZ".
Itrimlist$ = "Xyz".
{OUTPUT:}.
I0string$ = "ABCXYZABCABCABC".
Note that the letters "XYZ" are still left in the first
part of the string..
.SP 31.
SM.6.0.

SMSWAP .

CALL LINK("SMSWAP",IOstringl$,IOstring2$).

This routine swaps the values in IOstringl$ and
I0string2s$..

{INPUT:}.

iOString1$ = "ABCDEFGHIJKLMN".

iOStringZ$ = "OPQRSTUVWXYZ".

{OUTPUT:}.

iOStringi$ = "OPQRSTUVWXYZ".

iOStringz$ = "ABCDEFGHIJKLMN".

h SM.7.0
SMRDUC.

CALL LINK("SMRDUC",Iregular$,Oreduced$).

This routine reduces the length of Iregular$ by
changing each group of 1-16 continuous blanks or zeros

to 1 byte. CAUTION: {Since the binary values 0-31 are}
{used to designate the compacted data, Iregular$ must}
{never contain these characters (i.e., CHRS(0-31)) or}
{the string will not be able to be reconstructed by
the} {SMXPND routine.

SMXPND.

CALL LINK("SMXPND",Ireduced$,Oregular$).

This subroutine reverses the process of the SMRDUC
subroutine..

SM.8.0.

{INTEGER}.
{CONSIDERATIONS}.

SXB allows for the storage of four times as many
integers (in the range of -32,768 to +32,767) in a
numeric array than in Extended BASIC (i.e., a numeric
array such as DIM INTEGER(250) can store 1,000
integers). Each item in a numeric array would
normally hold one Radix-100 notated number in Extended
BASIC. The SXB Integer subroutines allow up to four
integers to occupy the same amount of storage.
Referencing items in the SXB Integer Array (henceforth
referred to as Integer Array) will be acomplished in
the following manner: IOarray(),Ipointer. This will
replace the format you are normally used to working

with (i.e., IOarray(Ipointer)). CAUTION:
{Inadvertent} {input of numbers outside the range of
-32,768 to} {+32,767 will produce unpredictable
results!}.

{NUMERIC ARRAY} {SXB INTEGER ARRAY}.

{ } { Iy

{l 1 |3 {11 21 3] 4]}

{l 2 |3 {1 51 61 71| 8]}

{l 3 |3 {I 9110 | 11| 12 |}.

{l 4 |3 {l 13] 14| 15| 16 |}.

{INTEGER SUBROUTINES}.

INPAK4 Pack four integers into one numeric

variable. .

INUPK4 Unpack four integers from one numeric.
variable..

INPAK Pack one integer into an Integer Array cell..

INUPK Unpack one integer from an Integer Array.
Cell..

INZERO Zero an Integer Array cell..

ININC Add 1 to the integer in an Integer Array.
cell..

INDEC Subtract 1 from the integer in an Integer.
Array cell..

INPOS Make the integer in an Integer Array cell.
positive..

INNEG Make the integer in an Integer Array cell.
negative. .

INCHNG Change the sign of the integer in an Integer.
Array cell..

INGETS Move (portion of) Integer Array to a string.
variable..

INPUTS Move string variable to (a portion of).
Integer Array..

INVADD Add integers..

INVSUB Subtract integers..

INVMPY Multiply integers..

INVDIV Divide integers..

IN.2.0.
INPAK4.

CALL LINK("INPAK4'",Onumericvar,Iintegerl,Iinteger?2,.
Iinteger3, Iinteger4).

This subroutine packs Iintegerl, Iinteger2, Iinteger3,
and Iinteger4 into Onumericvar. Onumericavar may be
part of an Integer Array. If it is, Array(2) actually
references Integer Array, 5-8, etc. If Iintegeril,
Iinteger2, Iinteger3, or Iinteger4 is not a whole
number, it will be truncated to one..

INUPK4.

CALL LINK("INUPK4",Inumericvar,Ointegerl,0integer?2, .
Ointeger3,0integer4).

+his subroutine reverses the process of the INPAK4
subroutine. .

INPAK.
éALL LINK("INPAK",Oarray(),Ipointer,Iinteger).
+his subroutine packs Iinteger into the specified cell
of Oarray(),Ipointer..

INUPK.
éALL LINK("INUPK", Iarray(),Ipointer,Ointeger).
+his subroutine reverses the process of the INPAK
subroutine..

IN.3.0.

INZERO.
éALL LINK("INZERO", IOarray(),Ipointer).
+his subroutine zeroes the integer in the specified
cell of IOarray(),Ipointer..

ININC.
éALL LINK("ININC",IOarray(),Ipointer).
+his subroutine adds 1 to the integer in the specified

cell of IOarray(),Ipointer..

INDEC.

CALL LINK("INDEC",IOarray(),Ipointer).
This subroutine subtracts 1 from the integer in the
specified cell of IOarray(),Ipointer..

INPOS.
CALL LINK("INPOS",IOarray(),Ipointer).
This subroutine makes the integer in the specified
cell of IOarray(),Ipointer positive..

INNEG.
CALL LINK("INNEG",IOarray(),Ipointer).
This subroutine makes the integer in the specified
cell of IOarray(),Ipointer negative..

INCHNG.
CALL LINK("INCHNG",IOarray(),Ipointer).
This subroutine changes the sign of the integer in the
specified cell of IOarray(),Ipointer..

IN.4.0.

INGETS.
CALL LINK("INGETS",Iarray(),Ipointer,Icount,0Ostring$).
This subroutine retrieves compacted Integer Array cell
values, starting at Iarray(),Ipointer and ending at
Iarray(),Ipointer+Icount-1, into Ostring$. This
produces an easy method of saving an Integer Array in
an output file for later reuse. The maximum Icount is
127 since this would cause a maximum even length
string (i.e., 254 characters) as each cell takes up
.RM +2.
two characters. CAUTION: {When retrieving strings of}
{this type you must use the LINPUT statement.

Failure} {to follow this advice will possibly result
in the loss} {of data when it is retrieved.}.

INPUTS.
CALL LINK("INPUTS",IOarray(),Ipointer,Istring$).

This subroutine reloads the Integer Array cells from
Istring$ starting at IOarray(),Ipointer and continuing

based on the length of Istring$. Every two characters
fills one Integer Array cell..

IN.5.0.
INVADD.

CALL LINK("INGADD",0,Iaddendl, Iaddend2,0sum).
CALL LINK("INGADD",0,Iaddendl, Iaddend2&&0sum).

CALL LINK("IN1ADD",IOintegerarray(),Iaddendl,Iaddend?2, .
Isumpointer).
CALL LINK("IN1ADD", 0, Iaddendl, Iaddend2&&0sum).

CALL LINK("IN2ADD",Iintegerarray(),Iaddendl, .
Taddend2pointer,Osum).

CALL LINK("IN2ADD",IOintegerarray(),Iaddendl, .
Taddend2pointer&&Isumpointer).

CALL LINK("IN3ADD",IOintegerarray(),Iaddendl, .
Iaddend2pointer, Isumpointer).

CALL LINK("IN3ADD",IOintegerarray(),Iaddendl, .
Taddend2pointer&&Isumpointer).

CALL LINK("IN4ADD",Iintegerarray(),Iaddendlpointer, .
Taddend2,0sum).

CALL LINK("IN4ADD",Iintegerarray(),Iaddendlpointer, .
Taddend2&&0sum) .

CALL LINK("INSADD",IOintegerarray(),Iaddendlpointer, .
Iaddend2, Isumpointer).

CALL LINK("INS5ADD",Iintegerarray(),Iaddendlpointer, .
Taddend2&&0sum) .

CALL LINK("INGADD",Iintegerarray(),Iaddendlpointer, .
Taddend2pointer,Osum).

CALL LINK("INGADD",IOintegerarray(),Iaddendlpointer, .
Taddend2pointer&&Isumpointer).

CALL LINK("IN7ADD",IOintegerarray(),Iaddendlpointer, .
Iaddend2pointer, Isumpointer).

CALL LINK("IN7ADD",IOintegerarray(),Iaddendlpointer, .
Taddend2pointer&&Isumpointer).

These subroutines provide the capability to either add
two integers together to produce a sum or add one
integer to another. All possible combinations of
interaction between numeric variables and Integer
Array cell variables have been provided for your
programming convenience..

400 addend2.
{+ 50} addend1.
450 sum.

See table on page IN.10.0 for further clarification..

CALL
CALL

CALL
CALL
CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL
CALL
CALL
CALL

CALL

IN.6.0.
INVSUB.

LINK("INOGSUB", 0, Isubtrahend, Iminuend, Odifference).
LINK("INOSUB", 0, Isubtrahend, Imenuend&&0difference)

LINK("IN1SUB", IOintegerarray(), Isubtrahend, .
Iminuend, Idifferencepointer).
LINK("IN1SUB", 0, Isubtrahend, Iminuend&&0difference)

LINK("IN2SUB",Iintegerarray(), Isubtrahend, .
Iminuendpointer,0difference).

LINK("IN2SUB", I0Ointegerarray(), Isubtrahend, .
Iminuendpointer&&Idifferencepointer).

LINK("IN3SUB", IOintegerarray(), Isubtrahend, .
Iminuendpointer, Idifferencepointer).
LINK("IN3SUB", IOintegerarray(), Isubtrahend, .
Iminuendpointer&&Idifferencepointer).

LINK("IN4SUB",Iintegerarray(), Isubtrahend pointer, .
Iminuend, 0difference).
LINK("IN4SUB",Iintegerarray(), Isubtrahendpointer, .
Iminuend&&Odifference).

LINK("IN5SUB", I0integerarray(), .
Isubtrahendpointer, Iminuend, Idifferencepointer).
LINK("IN5SUB", Iintegerarray(), Isubtrahendpointer, .
Iminuend&&Odifference).

LINK("IN6SUB",Iintegerarray(), Isubtrahendpointer, .
Iminuendpointer,0difference).
LINK("IN6SUB",IOintegerarray(), .
Isubtrahendpointer, .
Iminuendpointer&&Idifferencepointer).

LINK("IN7SUB",I0Ointegerarray(), .
Isubtrahendpointer, Iminuendpointer, .
Idifferencepointer).

LINK("IN7SUB", I0Ointegerarray(), .
Isubtrahendpointer, .
Iminuendpointer&&Idifferencepointer).

These subroutines provide the capability to either
subtract one integer from another to produce a
difference or subtract one integer from another. All
possible combinations of interaction between numeric
variables and Integer Array cell variables have been
provided for your programming convenience..

400 minuend.
{- 50} subtrahend.
350 difference.

See table on page IN.10.0 for further clarification..
IN.7.0.
INVMPY.

CALL LINK("INOMPY",Q,Imultiplier,Imultiplicand, .
Oproduct).

CALL LINK("INOMPY",0Q,Imultiplier, .
Imultiplicand&&Oproduct).

CALL LINK("INAIMPY",IOintegerarray(),Imultiplier, .
Imultiplicand, Iproductpointer).

CALL LINK("INIMPY",0Q,Imultiplier, .
Imultiplicand&&Oproduct)

CALL LINK("IN2MPY",Iintegerarray(),Imultiplier, .
Imultiplicandpointer,Oproduct).

CALL LINK("IN2MPY",IOintegerarray(),Imultiplier, .
Imultiplicandpointer&&Iproductpointer).

CALL LINK("IN3MPY",IOintegerarray(),Imultiplier, .
Imultiplicandpointer, Iproductpointer).

CALL LINK("IN3MPY",IOintegerarray(),Imultiplier, .
Imultiplicandpointer&&Iproductpointer).

CALL LINK("IN4MPY",Iintegerarray(),Imultiplierpointer, .
Imultiplicand, Oproduct).

CALL LINK("IN4MPY",Iintegerarray(),Imultiplierpointer, .
Imultiplicand&&Oproduct).

CALL LINK("INSMPY",IOintegerarray(), .
Imultiplierpointer, Imultiplicand , Iproductpointer).

CALL LINK("INSMPY",Iintegerarray(),Imultiplierpointer, .
Imultiplicand&&Oproduct).

CALL LINK("ING6MPY",Iintegerarray(),Imultiplierpointer, .
Imultiplicandpointer, Oproduct).

CALL LINK("IN6MPY",IOintegerarray(), .
Imultiplierpointer, .
Imultiplicandpointer&&Iproductpointer).

CALL LINK("IN7MPY",IOintegerarray(), .
Imultiplierpointer, Imultiplicandpointer, .
Iproductpointer).

CALL LINK("IN7MPY",IOintegerarray(), .
Imultiplierpointer, .
Imultiplicandpointer&&Iproductpointer).

These subroutines provide the capability to either

multiply two integers together to produce a product or

multiply one integer by another. All possible
combinations of interaction between numeric variables
and Integer Array cell variables have been provided for

your programming convenience. .

400 multiplicand.
{x 50} multiplier.
20,000 product.

See table on page IN.10.0 for further clarification..

IN.8.0.
INVDIV.

CALL LINK("INGDIV", O, Idivisor,Idividend, Oquotient).
CALL LINK("INGDIV", O, Idivisor,Idividend&&Oquotient).

CALL LINK("IN1DIV",IOintegerarray(),Idivisor, .
Idividend, Iquotientpointer).

CALL LINK("IN1DIV",O,Idivisor, .
Idividend&&Oquotient).

CALL LINK("IN2DIV",Iintegerarray(),Idivisor, .
Idividendpointer,Oquotient).

CALL LINK("IN2DIV",IOintegerarray(),Idivisor, .
Idividendpointer&&Iquotientpointer).

CALL LINK("IN3DIV",IOintegerarray(),Idivisor, .
Idividendpointer, Iquotientpointer).

CALL LINK("IN3DIV",IOintegerarray(),Idivisor, .
Idividendpointer&&Iquotientpointer).

CALL LINK("IN4DIV",Iintegerarray(),Idivisorpointer, .
Idividend, Oquotient).

CALL LINK("IN4DIV",Iintegerarray(),Idivisorpointer, .
Idividend&&Oquotient).

CALL LINK("IN5SDIV",IOintegerarray(),Idivisorpointer, .
Idividend, Iquotientpointer).

CALL LINK("IN5DIV",Iintegerarray(),Idivisorpointer, .
Idividend&&Oquotient).

CALL LINK("IN6DIV",Iintegerarray(),Idivisorpointer, .
Idividendpointer, Oquotient).

CALL LINK("IN6DIV",IOintegerarray(),Idivisorpointer, .
Idividendpointer&&Iquotientpointer).

CALL LINK("IN7DIV",IOintegerarray(), Idivisorpointer, .
Idividendpointer, Iquotientpointer).

CALL LINK("IN7DIV",IOintegerarray(),Idivisorpointer, .
Idividendpointer&&Iquotientpointer).

These subroutines provide the capability to either
divide one integer into another to produce a quotient
or to divide one integer into another. All possible
combinations of interaction between numeric variables
and Integer Array cell variables have been provided for
your programming convenience. .

400 dividend.
{/ 50} divisor.
8 quotient.

See table on page IN.10.0 for further clarification..

IN.9.0.

Note concerning INvVADD, INvSUB, INvVMPY, and INvDIV:.

There is a definite scheme to the assignment of the
value "v" to each of these subroutine names. It is
best explained with the following table:.

addendl or addend2 or sum or.
subtrahend or minuend or difference or.
multiplier or multiplicand or product or.
{v divisor dividend quotient }.
numeric numeric numeric.
0 variable variable variable.
Integer.
numeric numeric Array.
1 variable variable pointer.
Integer.
numeric Array numeric.
2 variable pointer variable.
Integer Integer.
numeric Array Array.
3 variable pointer pointer.
Integer.
Array numeric numeric.
4 pointer varaible variable.
Integer Integer.
Array numeric Array.
5 pointer variable pointer.
Integer Integer.
Array Array numeric.
6 pointer pointer variable.
Integer Integer Integer.
Array Array Array.
7 pointer pointer pointer.

The last parameter is always optional in which case
the preceeding parameter doubles as itself and the
"result" field..

IN.10.0.

6. VDP subroutines

6.1. Video Display Processor considerations

SXB Video Display Processor subroutines deal with most of the aspects of the
computer that affect what you see on the screen. The screen (in Extended Basic) 1is
divided into 24 rows, each containing 32 screen characters (8 A-— 8 pixels). SXB
allows you to define a "window" in that 24 A— 32 screen area. All SXB video
subroutines will affect only the current window portion of the screen. By default
SXB begins with the window set to ignore the leftmost two columns and rightmost two
columns of the screen. Some SXB video subroutines indicate an optional last
parameter of zero. Using this parameter will cause the window to

be blanked before the subroutine does anything else.

CAUTION: If you are not getting the expected results. first check to insure that
you properly defined the window.

6.2. Video Display Processor subroutines

VMWNDW Define window for activity area on the screen.

VMBLNK Move spaces to the window.

VMTYPE Allows key entry on data directly to the screen with editing and cursor
movement.

VMREAD Read data from the window and place in string variable.

VMLIST List information in the window based on string with delimiters between data.
VMDRAW Draw string data on the screen based on data delimited by row and column
addresses or direction indicator.

VMPCdd Put string on screen in any one of eight different directions.

VMGCdd Get string from screen in any one of eight different directions.

VMGDEF Get pattern definition of up to 31 characters.

VMPDEF Put (define) up to 31 character patterns.

VMLCL Redefine lower case letters in a typewriter style.

VMFORM Redefine specified characters as lines for creating forms on the screen.
VMCOLR Change character set foreground/background colors.

VMSCOL Change sprite colors.

6.3. VMWNDW

CALL LINK("VMWNDW", Ifirstrow , Ifirstcolumn , Ilastrow , Ilastcolumn)

This subroutine defines the current window for screen activity with SXB Video
subroutines.

CAUTION: If an incorrect specification in given, the subroutine will change the
window to reflect the startup default values:

Ifirstrow = 1

Ifirstcolumn = 3

Ilastrow = 24

Ilastcolumn = 30

For the purpose of illustration, all examples displaying screen output will have
the window set as follows:

Ifirstrow = 3

Ifirstcolumn = 3

Ilastrow = 22

Ilastcolumn = 30

This will produce a frame around the window two bytes in width. Additionally, all
of these same examples will have had the cursor character (CHR$(30)) moved to all
position prior to calling the SXB subroutine and each subroutine will have utilized
the last parameter feature to blank out the window.

6.4. VMBLNK

CALL LINK ("VMBLNK")

This subroutine causes the current window to be blanked out on the screen.

6.5. VMTYPE

CALL LINK("VMTYPE"[, Ivalidlist$ [,0]])

This subroutine allows free-form typing within the current window. Optionally, if
Ivalidlist$ is present or a null string, the subroutine will only accept characters

specified in the list. Adding a second parameter will cause the window to be
cleared before typing begins. The following keys are used for cursor movement:
FCTN Action
Left
Right
Up
Down
(DELETE) No movement (deletes 1 char)
(INSERT) No movement (insert mode)
(ERASE) Home + clears window
(CLEAR) Left Margin
(BEGIN) Center
(PROC'D) Right Margin
(AID) Left on next line
(REDO) Home
(BACK) Home
(QUIT) Center
Pressing ENTER will cause the subroutine to exit.
6.6. VMREAD
CALL LINK("VMREAD", Ostring$)
This subroutine retrieves all characters (up to a maximum of 255) from the current
window into Ostring$.
To retrieve more than 255 characters, redefine the window and perform VMREAD
multiple corresponding times.
6.7. VMLIST
CALL LINK("VMLIST", Idata$ [,0])
This subroutine allows data to be listed onto the screen starting at Home (upper
left corner) of the current window. Idata$ contains the data to be listed on each
line separated by a delimiter character which is specified in the first character
of Idata$.
6.7.1. Example
INPUT:
Idata$ = " NOW IS THE TIME FOR SXB"
6.8. VMDRAW
CALL LINK("VMDRAW", Idata$ [,0])
This subroutine allows quick placement of data on the screen in a contiguous and/or
non-contiguous fashion. The default beginning position is Home within the window
with a direction of RIGHT. The data to be placed on the screen is interspersed with
instructions on direction change or jump to a new row and column 1 ocation. The
format for these instructions is as follows:
ControlCharacter Instruction
CHR$(0) Change direction to UP
CHR$(1) Change direction to UP and RIGHT
CHR$(2) Change direction to RIGHT
CHR$(3) Change direction to DOWN and RIGHT
CHR$(4) Change direction to DOWN
CHR$(5) Change direction to DOWN and LEFT
CHR$(6) Change direction to LEFT
CHR$(7) Change direction to UP and LEFT
CHR$(8)&CHR$(row)&CHRS(column) Jump to a new row and a new column
6.8.1. Example
INPUT:
Idata$ = CHR$(8)&CHR$(10)&CHR$(7)&"ABC"
&CHR$(3)&"DEF"
&CHR$(4)&"GHI"
&CHR$(5)&" IKL"
&CHR$(6)&"MNO"
&CHR$(7)&"PQR"
&CHR$(0)&"STU"

oo ~NoOOUA~AWNRERLIMOW

&CHR$(1)&"VWX"

6.9. VMPCdd

CALL LINK("VMPCU", Irow , Icolumn , Istring$ [,0])

CALL LINK("VMPCUR", Irow , Icolumn , Istring$ [,0))

CALL LINK("VMPCR", Irow , Icolumn , Istring$ [,0])

CALL LINK("VMPCDR", Irow , Icolumn , Istring$ [,0))

CALL LINK("VMPCD", Irow , Icolumn , Istring$ [,0))

CALL LINK("VMPCDL", Irow , Icolumn , Istring$ [,0])

CALL LINK("VMPCL", Irow , Icolumn , Istring$ [,0])

CALL LINK("VMPCUL", Irow , Icolumn , Istring$ [,0))

These eight subroutines allow for putting Istring$ on the screen in eight different
directions. Irow and Icolumn may be either positive or negative numbers. Depending
on where they begin and the direction that they are "putting" the characters from
Istring$, only those which correspond to coordinates within the current window are
actually moved to the screen. All others are ignored.

The scheme to the assignment of the value "dd" to each of 'these subroutine names
is as follows:

dd Direction

U up

UR up and right

R right

DR down and right

D down

DL down and left

L left

UL up and left

6.9.1. Examples

INPUT:

Irow = 12

Icolumn = 16

Istring$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

6.10. VMGCdd

CALL LINK("VMGCU", Irow , Icolumn , Ilength , Ostring$ [,0))

CALL LINK("VMGCUR", Irow , Icolumn , Ilength , Ostring$ [,0))

CALL LINK("VMGCR", Irow , Icolumn , Ilength , Ostring$ [,0])

CALL LINK("VMGCDR", Irow , Icolumn , Ilength , Ostring$ [,0])

CALL LINK("VMGCD", Irow , Icolumn , Ilength , Ostring$ [,0))

CALL LINK("VMGCDL", Irow , Icolumn , Ilength , Ostring$ [,0])

CALL LINK("VMGCL", Irow , Icolumn , Ilength , Ostring$ [,0])

CALL LINK("VMGCUL", Irow , Icolumn , Ilength , Ostring$ [,0])

These eight subroutines allow for getting Ostring$ from the screen in eight
different directions. Irow and Icolumn may be either positive or negative numbers.
Depending on where they begin and the direction that they are '"getting" the
characters from the screen, only those which correspond to coordinates within

the current window are actually moved to Ostring$. Any locations which are outside
the window will be returned to Ostring$ as null characters (i.e., CHR$(0)).

The scheme to the assignment of the value "dd' to each of these subroutine names is
as follows:

dd Direction

U up

UR up and right

R right

DR down and right

D down

DL down and left

L left

UL up and left

6.10.1. Example

INPUT:

Irow = 12

Icolumn = 16

Ilength = 5

Screen = Same condition as with corresponding examples from VMPCdd.
OUTPUT:

Ostring$ = "ABCDE"

6.11. VMGDEF

CALL LINK("VMGDEF", Iasciivalue , Icount , Obinary$)

This subroutine allows for the simultaneous retrieval of up to 31 character pattern
definitions. Iasciivalue is the first character pattern definition retrieved. Each
character pattern definition will occupy eight characters in Obinary$. This
provides an easy means of storing character pattern definitions while the
characters are temporarily being redefined for other uses.

CAUTION: There is no error checking to determine if you are retrieving definitions
within the normal 14 characters sets allowed in TI Extended Basic.

6.12. VMPDEF

CALL LINK("VMPDEF", Iasciivalue , Ibinary$)

This subroutine allows for the redefinition of up to 31 character patterns
simultaneously starting at Iasciivalue and continuing until Ibinary$ is exhausted.
CAUTION: There is no error checking to determine if you are redefining characters
outside the normal range. Failure to keep within the normal 14 character sets of TI
Extended Basic may cause unpredictable results.

6.13. VMLCL

CALL LINK("VMLCL")

This subroutine redefines all the lower case alphabetic characters so that they
will appear (when used on the screen) similar to lower case typewriter letters. You
may want to save the original lower case character definitions with the VMGDEF
subroutine if you intend to restore them later in the same program.

6.14. VMFORM

CALL LINK("VMFORM", TIasciivalue)

This subroutine will redefine up to 11 characters beginning at Iasciivalue and
continue until either all 11 characters have been redefined or the ASCII character
143 has been redefined. The characters that are redefined can then be used to
design forms on the screen. The order of character redefinition is as follows:
Character New definition

Tasciivalue Upper left corner

Tasciivalue+ 1 Horizontal line

Iasciivalue+ 2 Upper right corner

Iasciivalue+ 3 Vertical line

Iasciivalue+ 4 Lower right corner

Tasciivalue+ 5 Lower left corner

Iasciivalue+ 6 Left "T' intersection

Iasciivalue+ 7 Right "T" intersection

Iasciivalue+ 8 Top "T" intersection

Tasciivalue+ 9 Bottom "T" intersection

Tasciivalue+ 10 Vertical line intersecting horizontal line.

6.15. VMCOLR
CALL LINK("VMCOLR", Itable$)

This subroutine changes character set
based on the information contained in
character set zero (which is used for
for an equal number of character sets

foreground/ background color combinations
Itable$. The changes always start with

the cursor and edge characters) and continue
as there are items in Itable$. The format for

Itable$ is as follows: Each pair of characters in Itable$ (e.g., CHR$(foreground
color)&CHR$(background color)) represent an item in the table. A value of zero will
cause the associated color to remain unchanged.

CAUTIONS: An incomplete trailing Itable$ item will be ignored by the subroutine.

This subroutine does not check to see

if you have exceeded past character set 14

with Itable$. Doing so may cause unpredictable results.

Color codes

Value Color
1 Transparent
2 Black

3 Medium Green

4 Light Green

5 Dark Blue

6 Light Blue

7 Dark Red

8 Cyan

9 Medium Red

10 Light Red

11 Dark Yellow

12 Light Yellow

13 Dark Green

14 Magenta

15 Gray

16 White

6.15.1. Example 1

INPUT:

Itable$ = CHR$(0)&CHR$(0)&RPT$S(CHRS(16)&CHRS(5),14)

OUTPUT:

Character sets 1-14 will be changed to having a foreground color of White and a
background color of Dark Blue. Character set zero remains unchanged.

6.15.2. Example 2

INPUT:

Itable$ = RPT$(CHR$(9)&CHRS(0), 15)

OUTPUT:

The foreground color for all character sets is changed to Medium Red without
changing any of the background colors.

6.15.3. Example 3

INPUT:

Itable$ = RPT$(CHR$(0),10)&RPT$(CHR$(11)&CHRS$(3), 3)

OUTPUT:

For character sets 5, 6 and 7, the foreground color is changed to Dark Yellow and
the background color is changed to Medium Green.

6.16. VMSCOL

CALL LINK("VMSCOL", Itable$)

This subroutine changes sprite colors based on the information in Itable$. The
changes always start with sprite # 1 and continue for an equal number of sprites as
there are items in Itable$. The format for Itable$ is as follows: Each character in
Itable$ (e.g., CHR$(color)) represents an item in the table. A value of zero will
cause the associated sprite color to remain unchanged.

Color codes

Value Color

1 Transparent
2 Black

3 Medium Green
4 Light Green
5 Dark Blue

6 Light Blue

7 Dark Red

8 Cyan

9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta

15 Gray

16 White

6.16.1. Example

INPUT:

Itable$ = RPT$(CHR$(0),5)&RPT$(CHR$(11),8)

OUTPUT:

Sprites 1-5 remain unchanged while the colors for sprites 6-13 (the next eight)
will have their color changed to dark yellow.

BANNER.
CALL LINK("BANNER",Oarray$(),Ititle$).

This subroutine allows for the retrieval of character
pattern definitions in such a way so as to provide
each bit in an "on" status to be represented in the
strings of Oarray$() as asterisks (i.e., "*")and those
in an "off" status as blanks. Oarray$() will be
returned with items 1-8 representing the eight rows of
pixels which would normally be used to display the
characters of Ititle$. Ititle$ may be a maximum of 31
characters long.

CAUTION: {Any Ititle$ length greater than 31
characters} {will be reduced to 31 characters.}.

------------------- EXAMPLE
{INPUT:}.

Ititle$ = "SXB".

{OUTPUT:}.
Oarray$(): ITEM VALUE.
1 n II.
2 n * % % * * * % % % n
3 n * * * * * n
4 n * * * * * n
5 mn * % % * * % % ".
6 mn * * * * n
7 n * * * * * * ll'
8 n * % % * * * % % % ll.
.SP 18.
MISC.2.0.
KEY1

CALL LINK("KEY1",Icharacterlist$, Opointer).

This subroutine will go into a wait loop untill one

of the characters in Icharacterlist$ is depressed at
which time the subroutine will return with Opointer
indicating the character. If Icharacterlist$ is given
as a null string (i.e., ""), the value "YNyn" will be
automatically substituted..

------------------- EXAMPLE --cccmmmmmmamao,

{INPUT:}.

icharacterlist$ = "IDRU".
+he key "R" is depressed..
{OUTPUT:}.
6POINTER = 3.
MISC.3.0.

PARMSV.

CALL LINK("PARMSV", Iparameter$).
This subroutine temporarily stores Iparameter$ so that
it can be retrieved in the next SXB program. The

parameter must be retrieved immediately or it will be
inadvertently destroyed..

PARMGT .

CALL LINK("PARMGT",Oparameter$).

This subroutine retrieves a parameter left by the
PARMSV subroutine. .

MISC.4.0.

QUIT.

CALL LINK("QUIT").

This subroutine exits to the Master Title Screen.

CAUTION: {Invoking this subroutine may destroy the
SXB} {subprograms depending on the particular version
of the} {console you are using.}.
.SP 44,

MISC.5.0.

USERSUB.

CALL LINK("USERSUB"[,parameter-1list]).

This subroutine is provided for those who would like
to use one of their own TMS9900 Assembly Language
subroutines in conjuction with SXB. The following

rules must be strictly observed:.

1.

6.

The program must begin with an absolute origin of
>AQ00 (AORG >A000)..

There must not be a DEF statement ... USERSUB has
already been provided..

The program must not be any longer than 256 bytes
in length..

The buffer areas starting at >A000+256 and
A0OO+512 may be utilized for reading aand/or
writing strings..

If more than one subroutine is needed you can add
a parameter to indicate which part of the
subroutine to execute..

J & K H SOFTWARE may at some future date provide

additional subroutines which would require the use of

this USESUB area.

They would be done in such a way so

as to be loaded on an optional basis so that you would
still be able to use your choice of subroutines (e.g.,
"yours" or "ours")..

MISC.6.0.

