i More Programming

Power

3

By this time you've had quite a bit of programming experience in TI BASIC. You know
what a program is, how it's structured, and how it’s performed by the computer. Now
were ready to add a few more techniques to your programming skills.

In this chapter we'll introduce you to several new TI BASIC features. F irst, there's the
very usetful and versatile FOR-NEXT statement, which creates loops in programs.
Next, we'll cover some “plain and fancy” printing, using the PRINT statement and the
TAB function. Then we'll add some details about the "number power” of your
computer: the way numbers are displayed on the screen and the order in which the
computer performs mathematical calculations. Finally, we'll introduce you to the
INTeger function.

These new features will help you increase your programming skills, building on those
we've already discussed in previous chapters. They'll also prepare the way for even
more exciting things to come.

The FOR-NEXT Statement

Chapter 2 presented several examples of the GO TO loop, which repeats a set of
statements indefinitely — or until you press CLEAR to stop the program. The FOR-—
NEXT statement also creates a loop, but it’s different from GO TO in two important

ways:
1. The FOR-NEXT statement is actually a pair of lines in the program, the FOR line
and the NEXT line, each with its own line number.

2. You control the number of times the loop is performed. After the loop has been

“executed” the number of times you specify, the program moves on to the line that
follows the NEXT line.

The FOR line has the form

space required

upper limit

variable

starting count

The NEXT line could be

space

the same variable
used in the FOR line

\

80 NEXT A

These two lines would cause the portion of the program between the FOR and NEXT
hines to be performed three times. In this example the starting value of A is 1; after
each pass through the loop, A is increased by 1. Its value is then tested against the
upper hmit (3, in this example). After the third pass through the loop, A is equal to 4,
so the program “exits” (or leaves) the loop to the line tollowing line 80.

48 ’ Beginner's BASIC

CHAPTER THREE:
More Programming Power

To help you see the differences between GO TO and FOR-NEX'T more clearly, let's
compare two similar programs, one with a GO TO loop and one with a FOR-NEXT
loop.

A GO TO Loop
Type NEW, press ENTER, and then enter this program:

10 CALL CLEAR
20 LET A=1

30 PRINT "A=";A
40 LET A=A+1

50 60 TO 30

Before you run the program, think for a few minutes about what it will do. First, the
initial value of the variable A will be set to 1. Then, the computer will print out the
current value of A. Finally, the value of A will be increased by 1, and the program will
loop back to line 30. It will go on with this procedure until you press CLEAR.

Ready to run the program? Type RUN and press ENTER to see it in action. When you're
ready to stop it, press CLEAR.

A FOR-NEXT Loop

Now let’'s examine a similar "counting” program with a FOR-NEXT loop. Type NEW
and press ENTER to erase the first program. Then type these lines:

10 CALL CLEAR

20 FOR A=1 TO 5

30 PRINT "A=";A

40 NEXT A

50 PRINT "OUT OF-LOOP -
60 PRINT "A=",A

70 END

Think about the way this program will be performed. The value of A will start at 1 and
will be increased by 1 each time the program completes line 40. As soon as the value
of A is greater than 5, the program will exit the loop and continue with line 50. If we
listed the lines in their order of performance, along with the increasing values of A, this
- 18 what we'd have:

Beginner's BASIC 49

Line Number Value of A

Sets up value limits

10 O

for A and starts loop. - 20 ’
First pass) 30 1

through loop 40 2

30 o

Second pass i 10 3

_ ‘ 30 3

40 4

30 4

40 5

_) 30 3

40 &

-~ 50 6

Out of loop 60 6

| 70 6

Run the program, and the screen should look like this:

7

OuT OF LOODP
A= 6

*% DONE **
\ J

The following flowcharts illustrate the differences in the two programs.

Beginner's BASIC

CHAPTER THREE:
More Programming Power

. T - i R
e i S il =

GO TO Program FOR-NEXT Program
| Clear screen. ‘ Clear screen. _l
I ' 1 -
‘ Set initial value of A. Set the “parameters”
[| for A: beginning and
Print "A =" and current ending values. J
value of A. | _
1 Print “A="and current
| Increase A by 1. value of A._
1 _ _ |
| Loop back to line 30. Increase A by 1; check
- to see if the new value
(Loop continues until for A exceeds the upper
you stop the program limit set by line 20.
by pressing CLEAR.) [f the answer is "no,”
repeat lines 30 and 40.
If “yes,” break out of
loop.

[

[Print "Out of Loop.”
1 _

Print "A =" and current
value of A.

. r -

| Stop program run. _J

In Chapter 2 we also used the GO TO statement in a CALL COLOR program to
create a delay loop:

40 60 TO 40

This line caused the program to “idle” and hold the ¢blér design on the screen until you
pressed CLEAR. Without some sort of delay loop, the color we used in the program
would have blinked on the screen only for an instant before the program stopped and
the screen returned to its normal Immediate Mode colors.

We can also use the FOR-NEXT statement to build a controlled time delay into a
program. Consider this example:

20 FOR A=1 T0 1000
30 NEXT A

Better still, let's try it! Type NEW, press ENTER, and then type in the following
program:

Beginner's BASIC S1

BASIC READY

CALL CLEAR

FOR A=1 T0 1000
NEXT A

END

J

Now run the program. What happens on the screen? Not much. really; the screen
changes to a light green, and the cursor disappears. After a short time delay (while the
computer “counts” from 1 to 1000), the screen changes back to cyan (a light blue) and

the cursor reappears:

light blue

Signals
end of run

** DONE =x
N\ J
Although no other lines are being executed between ttie FOR and NEXT lines, time

passes while the computer counts the number of loops, in this example from 1 to 1000.
The following program utilizes a FOR-NEXT time-delay loop in a CALL COLOR
program.

CALL COLOR with a FOR-NEXT Loop
Clear the previous program (type NEW: press ENTER), and enter this program:

10 CALL CLEAR
20 CALL cOLOR(2,7,7)
30 CALL HCHAR(12,3,42,28)
40 FOR B=1 TO 1000

50 NEXT B

60 END

Color codes for
foreground and background
are the same;
dark red

52 - . Beginner's BASIC

CHAPTER THREE.:
More Programming Power

This program will print a row of asterisks on the screen. However, since the
foreground color (the color of the asterisks) and the background color are both dark
red, the screen will show a solid horizontal bar of dark red. The red asterisks blend
into the red backgrounds. |

Now run the program. Does the color bar stay on the screen long enough for you to
observe it carefully? If not, change line 40 to increase the time delay (1 to 2000, for
example).

Suppose we want to see a bar of a different color? We could retype line 20, inserting a

new color code for the foreground and background colors. But there’s an easier way to
edit the program so that we won't have to retype line 20 every time we want to change
colors. Type these lines:

15 INPUT A -

20 CALL COLOR(2,A,A)
60 GO TO 10

Here's where we'li enter
our new color code each
time the program is run.

Well, well! A GO TO loop and a FOR-NEXT loop in the same program! Run the

- program, and see how it works. Remember, when you see the question mark on the
screen, the program is waiting for you to “input” a color code from 1 through 16. If you
enter a number that is outside this range, you'll see this error message on the screen:

* BAD VALUE IN 20

(Remember, also, that color 1 is transparent, and color 4 is the screen color in the Run
Mode, so you won't be able to see these bars on screen.)

Experiment now with the color codes, and change the time delay in line 40 if you want
to make the bar stay on the screen longer or disappear faster.

Experiment! o e

Here’s a challenge for you! Can you change the program above to make a single small
square of color appear on the screen, instead of a bar? (Hint: See Chapter 1, pp. 20-22,
review using HCHAR or VCHAR to display a single character.)

“Nested’”’ FOR-NEXT Loops

You've just seen that we can use both a FOR-NEXT loop and a GO TO loop in the
-same program. It’s also possible for us to use more than one FOR-NEXT loop — one
- inside another — in a program. We call these nested loops.

As an example, let’s experiment a bit with a program very similar to the one you've just
completed. But this time, we'll get a little fancier. We'll make the bar "walk” down the
screen, so that it appears in a different position each time the color changes. Type
these lines:

Beginner’s BASIC 53

NEW - Erases old program

- Sets limits for A
10 FOR A=1 TO 16 .

20 CALL CLEAR

Uses current value of A
to set cofor codes

30 CALL COLOR(2,A,A)

Uses current value of A
fo define "'row’’ position

40 CALL HCHARCA+5,3,42,28) -

50 FOR B=1 TO 300
60 NEXT E‘HHH“HHH%E
70 NEXT A

80 END

Sets limits of B
for time-delay loop

Executes time-delay loop

Executes
“counting” loop that
controls how many times
the program is run

Notice that one loop is wholly contained within the other loop. That's why these are
called "nested” loops: one is nested inside another.

This program gets a lot of mileage out of the variable A. We're using it to control the
number of times the program is repeated (a Joop counter), to define the color codes for
foreground and background, and to determine the row position of the color bar.

(Before you run the program, remember that color 1 1s trapsparent and color 4 is the
Run Mode screen color. You won't be able to see these bars.)

Now run the program. Does the bar appear to move down the screen? What happens if
you shorten the time-delay loop? Try changing line 50 to

>0 FOR B=1 TO 100

and run the program again.

Another interesting change would be to make the bar vertical instead of horizontal. We
can do this easily by changing line 40. Type and enter this new line:

N\

40 CALL VCHARC(1,A+5,42,24)

new row position number of repetitions

new column position same character code

When you run the program this time, the bar will be vertical and will move across the
screen from left to right.

54 Béginner’s BASIC

CHAPTER THREE.:
More Programming Power

Now let’s examine another program with nested FOR-NEXT loops. The following
program displays sixty-four of the alphanumeric characters, codes 32 through 95.
(See Appendix B for a list of the character codes.) Enter these lines:

NEW

10 CALL CLEAR

Starting value for variable
CHAR (character code)

20 LET CHAR=3/¢

Beginning
and ending values
for row number

30 FOR ROW=7 TO 14 -

40 FOR COLUMN=13 TO 20

50 CALL HCHAR(ROW,COLUMN,CHAR)

Beginning
and ending values
for column number

60 CHAR=CHAR*1
70 NEXT COLUMN

80 NEXT ROW

Increases numeric code
for CHAR by 1

90 END

The program will look like this on the screen:

7

BASIC READY

CALL CLEAR

CHAR=32

FOR ROW=7 TO 14
FOR COLUMN=13 TO 20
CALL HCHAR(ROW,COLUMN,CHA

r I

CHAR=CHAR+1
NEXT COLUMN
NEXT ROW
END

N\ J

There are several things we'd like to point out about this program. First, FOR-NEXT
‘loops do not have to start counting at 1. They can begin with whatever numeric value
“you need to use. Second, the nested loop (FOR COLUMN-NEXT COLUMN) is not
just a time-delay loop. It actually controls a part of the program repetition.

Finally, line 50 1s called a wrap-around line. It has more than 28 characters, so part of
it prints on another line on the screen. This is an important point: program lines can be
more than one screen-line Iong. In fact, a program line, 1n general, can be up to four
screen lines (112 characters) in length. (The exception is the DATA statement. See the
"BASIC Reference” section of the User’s Reference Guide for an explanation.) Notice
that wrap-around lines (that is, the second, third, or fourth screen lines of a program
line) are not preceded by the small prompting symbol.

Beginner's BASIC 335

Run the program, and the sixty-four characters will be printed in nice, neat rows on

the screen;
(N\

I"ESAR!
(J*x+ - _/f
01234567
89:;<=>7
dABCDEFG
HIJKLMNO
PARSTUVW
XYZLvIA_

*% DONE %%
2 J

Hold on! There are only sixty-three characters on the screen! What happened to the

other one? Well, there are actually sixty-four. Look at the top line, and notice that it

appears to be indented one space. That's because character 32 is a space. Even though

a space doesn't print anything on the screen, it does occupy room on a line, and it is a
character, as far as the computer is concerned.

Experiment!

Let's add color to the character program above! Enter these lines:

22 FOR I=1 TO 8
24 CALL COLOR(I,7,15)
26 NEXT 1I

Try other color combinations until you tind your favorite.

Error Conditions with FOR-NEXT

We mentioned earlier that a nested loop must be completely contained within another
loop. If your program included lines like these.

-~ - e

20 FOR A=1 TO 6
30 FOR X=5 T0 10

Should be nested
within the "A'" loop.

80 NEXT A
90 NEXT X

the computer would stop the program and give you this error message:

* CAN'T DO THAT IN 90

The computer can’t go back inside the completed "A” loop to pick up the beginning of
the “"X" loop.

56 Beginner's BASIC

CHAPTER THREE:
More Programming Power

Another possible error condition with FOR-NEX'T statements is accidentally omitting
either the FOR line or the NEXT line. For example, if you attempted to run this

program. 15 FQR A=1 TO 5
20 PRINT A
30 END

the computer would respond with

* FOR-NEXT ERROR
If you encounter an error message, just list the program (type LIST and press ENTER),
identify the error, and correct the problem line or lines.

We've given you quite a lot of information now about FOR-NEXT loops, so it's
probably time for a change of pace. Let's review a bit of the PRINT material we
covered in Chapter 1.

Plain and Fancy PRINTIing

While using the PRINT statement in the Immediate Mode, we saw that a difference in
spacing occurred when we used a comma or a semicolon to separate numeric values in
a PRINT statement. Let's take another look at this.

' Spacing with Commas

Try each of the tollowing examples. (In each, we'll assume that the screen has been
cleared by typing CALL CLLEAR and pressing ENTER.)

Type this and
press ENTER

>PRINT 1,2
1

>PRINT 1,2,3,4,5,6
e

4
6

Beginner's BASIC 57

So far we have used only small positive integers. Let's try some simple negative
numbers.

>PRINT -1,-2
-1

>0

PRINT 1,2,-3,-4
1'
-3

>0

Note that the computer always leaves a space precedmg the number for the sign of the
number. For positive numbers, the plus sign (+) is’assumed and is not printed on the

screen. For negative numbers, the computer prints a minus sign (—) before the
number.

We mentioned in Chapter 1 that there are two print zones on the screen line. Each
print zone has room for fourteen characters per line.

58 | Beginner's BASIC

CHAPTER THREE.:
More Programming Power

N

Print Zone 1 Print Zone 2
(spaces I through 14) (spaces 15 through 28)

When you use a comma to separate numeric values or variables in a PRINT
statement, the computer is instructed to print only one value in each zone. Therefore,
since there are only two print zones on each line, the computer can print a maximum
of two values per screen line. If the PRINT statement has more than two items, the
computer simply continues on the next screen line until all the items have been
printed.

L

Now let’s try some examples with séring variables, using commas as "separators.” (See
page 35 of Chapter 2 if you need to review string variables.)

4 N\

>LET A$="ZONE 1" °

>LET B$="Z0ONE 2"

>PRINT A%,BS3
ZONE 1 ZONE 2

N\ /)
The strings (the letters and numbers within the quotation marks) are also printed in
‘different zones on the screen when a comma 1s used to separate the string variables.

Beginner's BASIC 59

Try this example: /

LET A®="0ONE"

>LET B%="TWO"

>LET C$="THREE"
>LET D$="FOUR"
>PRINT AS$,B$,C$,D$

ONE TWwO
THREE FOUR

, . J

(Note that, for strings, the computer does not leave a preceding space.)

Spacing with Semicolons

Now let’s look at semicolon spacing. Try these examples:

/

N\

>PRINT 1;2
1 2

\\thﬂ ﬂ ;#//

Aha! The numbers are much closer together.

7

>PRINT 1;2,;3
T 2 3

| J

60

Beginner's BASIC

Skl P - P il

CHAPTER THREE:.:
More Programming Power

4 N\

>PRINT 1;2;=3;-4;5;-6;7
1T 2 =3 =4 5 =6 7

\\hh>cl __ﬂ,//
The semicolon instructs the computer not to leave any spaces between the values or
variables in the PRINT statement. Then why do we see spaces between the numbers
on the screen? Two reasons! First, remember that each number is preceded by a space
for its sign. Second, every number is followed by a trailing space. (The trailing space is

there to guarantee a space between all numbers, even negative ones. The way
numbers are displayed is discussed in detail in Appendix D))

- If the semicolon tells the computer to leave no spaces between variables in a PRINT
statement, what happens when we use string variables, rather than numeric? Let’s try

some examples.
(N\

>LET A%="HI THERE!"

-I-n‘ . .

>LET B$="HOW ARE YOU?"

. r -l

>PRINT AS$;B%
HI THERE'HOW ARE YOU?

k:ﬂ:} /
The two strings are run together. If we want a space to appear between them, then, we

must include the space inside one of the sets of quotation marks! For example, let's
.change A$. Type

LET A$="HI THERE! "
PRINT A$;8%

leave one space

Beginner's BASIC 61

LET A3="HI THERE!"

First
>LET B8%="HOW ARE YQU?" example

»PRINT A3;B%
HI THERE'HOW ARE YOU?

>LET A$="HI THERE' "

Second
example

>PRINT AS;BS
HI THERE! HOW ARE YOU?

\—)
Spacing with Colons |

There is a third “separator” that can be used: the colon. The colon instructs the
computer to print the next item at the beginning of the next line. It works the same
way with both numeric and string variables. Enter these lines as an example:

LET A==5
LET B$="HELLO"
LET C¥$="MY NAME IS ALPHA"

PRINT A:B%:C$%

7

>LET A=-5

>LET B3="HELLO"

>LET C5="MY NAME IS ALPHA"

PRINT A:B$:(9%
-5

HELLOQ
MY NAME IS ALPHA

| - J

To review for a moment, then, these are the three print separators we have used:

Punctuation mark Operation

Comma Prints values in different print zones; maximum of
two items per line.

Semicolon Leaves no spaces between items. (The spaces that
appear between numbers are results of the built-in
display tormat for numeric quantities.)

Colon Prints next item on following line.

62 égnner’s BASIC

CHAPTER THREE:
More Programming Power

The TAB Function

Besides these separators there is another method you can use to control the printing on
the screen. The TAB function operates very much like a typewriter TAB key:

PRINT TAB(10),"HELLO"

The statement would instruct the computer to begin printing the word HELLO in the
tenth column on the screen.

7

>PRINT TAB(10);"HELLOD"
HELLO

\ >0 /
Notice that the “print line” on the screen has 28 columns or character positions (unlike
the “graphics line,” which has a 32-column “grid”). Thus the first position on the print

line counts as column 1. This is where the "P” appears in the word “PRINT” on the
previous screen. The last print position on the line is column 28.

You can also use the TAB function more than once in a print statement:

>PRINT TABC(10);3:TAB(20) ;-4
3 -4

>

Notice that the first number, 3, is actually printed in column 11, because the preceding
or "leading” space (reserved for the sign of the number) occupies column 10, just as the
minus sign of the second number occupies column 20.

The TAB function always starts counting in column 1 (the leftmost print position on
the line), regardless of where or how many times it appears in the PRINT statement.
In the example above, the second number, —4, was printed starting in the twentieth

column on the print line, not twenty spaces from the position in which the first number,
3, was printed.

Beginner's BASIC 63

L

What happens, then,

if we indicate a column that is already occupied by another

message, or if there isn’t enough room left on the line to print the message positioned
by a TAB? Enter this short program to find the answer:

NEW

10
20
30
40
50
60

CALL CLEAR

LET A$="HELLO! HOW ARE YOU?"
LET B$="HI!"

PRINT A$;TAB(5);B%

PRINT B$;TAB(20) ;A%
END

Now run the program:

Line 40;
Column 5 is

already taken by
the 'O in "HELLQ."
- So "HI'' starts

7

Line 50: The whole
message of A won't
fit on any line

HELLO! HOW ARE YQU? starting at column

in column 5 of
the next line.

20 so "HELLO! HOW
ARE YOU?" 1s printed
starting in column [

of the next line.

~ HI!
HI! -
HELLO! HOW ARE YOU?

*% DONE

\::-l:l

J

Notice that separators (semicolons) are also used in the PRINT statement above. Let's
try a program to help explore the use of the TAB function and separators. Imagine for
a few minutes that you are a loyal football fan, and it’s time for the big game of the
season. Since you are also a computer fan, you want te program your computer to

cheer the team on to

NEW
10
20
30
40
50
60
70
80
90

victory! So you enter this program:

CALL CLEAR
LET A$="GO"
PRINT TAB(13),A%::TAB(12) ;"TEAM"::TAB(13),;A8,;"!"
FOR Z=1 T0 10
PRINT
NEXT Z
FOR Z=1 TO 600
NEXT Z

¢0 TO0 10

Prints an "empty’’ line.

Note that
this is a
wrap-around
line.

Beginner's BASIE

CHAPTER THREE:

More Programming Power

Before you run the program, let's analyze it. Line 10, of course, clears the display
screen. Line 20 defines the string variable A$ as GO.

Line 30 1s a very, very hard-working line. It might be helpful if we drew a flowchart to

describe what's going on here.

TAB (13)

A

TAB(12)

"TEAM™

TAB(13)

A

Tab over to column 13. ‘

Do not skip any other spaces.]

Print GO. _J

]

Print the next print item fwo
lines down.

Tab over to column 12.

L

Do not skip any other spaces.

Print TEAM.

I

Print the next print item two J

lines down.

l Tab over to column 13.

I

‘ Do not skip any other spaces.

[_

‘ Print GO.

‘ Do not skip any other spaces.

1

Print an exclamation point.

(You'll have to admit that’s a lot of information to pack into one program line, even if it
15 more than one screen line long!)

The FOR-NEXT loop in lines 40 through 60 will print ten "empty” lines, to position
your message in the middle of the screen. Next, lines 70 and 80 form a time-delay loop.
Then line 90 instructs the computer to go back to line 10 and start all over again.

Beginner's BASIC

65

N uklr L
Pl — P il —

Run the program now, and watch your computer cheer!

4 N

N\ J

The words come on at the bottom of the screen, one at a time, and scroll up to the

center. Then the screen clears, and the whole process is repeated until you stop the
program by pressing CLEAR.

By now, your team has probably won the game, and you're ready to try some other
messages and formats. Experiment for a while with TAB and the three separators in
different PRINT statements before we go on to discuss the arithmetic operations of the
computer.

Arithmetic Power

You've been introduced before to the arithmetic powers of your computer, but it's time
now to take a more detailed "tour” of some of its mathematical capabilities. For
example, what is the answer to this problem:

Remember, * means
‘multiply’ fo the computer.

/
4+6%5=>

Let’s say, for example, that the answer represents an amount of money you owe a
friend. Your friend argues that you owe him $50, because

4+6=10, and
10X5=50.

You, however, don'’t agree. You say you only owe $34, because

6X5=30
4+30=34

Who 1s right? Why not ask your computer?

Type PRINT 4+6%5
and press ENTER.

The answer is 34. How about that! You win!

66 Beginner's BASIC

o - . A ..

CHAPTER THREE:
More Programming Power

— .

Order of Operations

There is a commonly accepted order in which arithmetic operations are performed,
and your computer performs calculations in that order. In any problem involving
addition, subtraction, multiplication, and division, the arithmetic operations will be
completed in this way:

Multiplications and divisions are performed
before additions and subtractions.

This is the method your computer used to solve the previous example. It first
multiplied 6*5 and then added the result to 4, giving you a final answer of 34. Now try
this example:

PRINT 6+15/3%2-4

Before you press ENTER, let’s think about the way the computer will evaluate this
problem. Scanning the problem from left to right, the computer will solve it in this
order:

15/3=5

5*2=10

64+10=16

16—4=12

Your answer, then, should be 12. Press ENTER now, and see the result:

4 N\

>PRINT 6+15/3%2-4
12

| S

Suppose, however, that we want the computer to solve the last problem like this:

(1) Add 6 and 15.

(2) Divide the result by 3.

(3) Multiply that result by 2.

(4) Subtract 4, giving a final result of 10.

Using Parentheses

We can change the built-in computational order by using parentheses. Try this:

PRINT (6+15)/3%2-4 ~

Beginner's BASIC 67

3

Skl ekl
APy el

The answer, 10, is displayed on the screen, because the computer has completed the
computation inside the parentheses first. So our new order of operations becomes:
(1) Complete everything inside parentheses.
(2) Complete multiplication and division.
(3) Complete addition and subtraction.

Now try this example:

PRINT 8/2%4/2

The answer 1s 8, because

8/2=4
4*4=16
16/2=8

But suppose we entered the problem with parentheses, like this:

PRINT 8/(2%4)/2

This time, we get a result of .5, because the expression within the parentheses has
been solved first:

2*4 =8
8/8=1
1/2=.5

Here's a slightly harder problem to try:
PRINT 274+10/2%100-30

It we enter the problem just like this, we obtain an answer of 744 because

10/2=5
5X100=500
2744500=774
774—-30=744

But by adding parentheses in different places we can get a variety of answers:

& N\

274+10=284
284/2=142
100—-30=70
142*70=9940

274+10=284
2*¥100=200

284/200=1 .42
1.42-30=—28.58

>PRINT (274+10)/2%(100~-30)
9940 =

>PRINT (274+10)/(2*100)~-30

-28,58
>PRINT (274+10/2)%100-30 10/2=35
27870 ~— 274+5=279
>0 279*100=27900
\ 27900—-30=27870

68] Beginner's BASIC

CHAPTER THREE:
More Programming Power

L
L

Experiment!

Try the following for practice:

38+6—4 Note the difference
384+6—4*2 ~ parentheses make.
(38+6—4)*2

((38+6—4)*2)/(6+2)
Rearrange the parentheses in the last problem. How is the answer affected?

Scientific Notation

o far, all the examples we've tried have given results in a normal decimal display
form. However, the computer displays very long numbers (more than ten digits) in a
Spemal way. Try this program:

NEW

10 CALL CLEAR
20 LET A=1000
30 FOR X=1 TO 5
40 PRINT A

50 LET A=A*100
60 NEXT X

70 END

When you run the program, the first four results are printed out in the normal form.
The last result, however, looks like this:

1.E+11

We call this special form scientific notation. It's just the computer’s way of handling
numbers that won't fit into the normal ten-digit space allotted for numbers.

1.E+11 means 1 X10" or 100,000,000,000
As you can see, 1.E +11 represents a very large number!

You'll ind a more detailed discussion of the mathematical capabilities and numerical
displays of your computer in Appendix D (starting on page 127). Be sure to refer to this
appendix when you want to explore the computational powers of the computer. For
now, however, let's go on to another very useful feature, the INT function.

The INT Function

““The INT function gets its name from the word infeger, meaning a whole number, one
that has no fractional part. Integers include zero and all of the positive and negative
numbers that do not have any digits after the decimal point.

The best way to learn how the INT function works is by trying it. First, let's work a
division problem that doesn't result in a whole number answer. Type

PRINT 16/53
and press ENTER. The answer is 5.333333333.

Beginner's BASIC ' 69

i P,

Now try this example:

PRINT INT(16/3) Fress ENTER.

4 N

>PRINT 16/3
5.333333333

new answer
>PRINT INTC(16/3)

5
INT kept the whole number part of the answer and threw away the digits after the
decimal point! Try another example:

7/76=1.166666666.
INT 7/6=1.

PRINT INT(7/6) -

The answer is 1; all of the fractional part has been discarded.

How about a real-life problem? Let’s say a salesclerk is giving $1.37 in change to a
customer. The customer wants as many quarters as possible. How many quarters can
be given?

PRINT INT(1,37/.25)

The answer is 5. Five quarters can be given.

More than one INT function can be used in a PRINT statement. Here's an example:

7 N\

>PRINT INT(1/3);INT(20/9)
0 2

\M‘:} _ /
What would happen if you entered these values with the INT function: 8, 8.99, 8.34?
Try them and see.

70 Beginner's BASIC

CHAPTER THREE.:
More Programming Power

N

>PRINT INT(8)
8

>PRINT INT(8.99);INT{(8.34)
8 8 |

\\a_ﬂj _H//.
If you'use INT with a whole number (integer), you just get the same number back. In
the other two examples, no matter what digits are to the right of the decimal point, the

INT tunction “truncates” or cuts off those digits — that is, it works this way for positive
numbers. What happens with negative numbers?

We'll use a program to explore INT and negative numbers. Enter these lines:

NEW

10 CALL CLEAR

20 FOR A=1 70 7

30 PRINT -A/3,INT(=A/3)
40 NEXT A

50 END

Now run the program. The screen will show these results:

-.333333333 -1
-.666666666 -1
....1 _.1 Ce e e
-1.333333333 -2
-1.666666666 -2
-2 -2
-2.333333333 -3

So INT(X) — where X represents a number or a mathematical expression — computes
the nearest integer that 1s less than or equal to X. Perhaps looking at a number line will
help to explain.

-3 -2 -1 0 1 P 3

—-26 —-23 -16-13 -0.6-03 0.3 0.6 1.3 16 2.3 2.6

INT -3 -2 -1 0 1 2

Beginner's BASIC 71

3

As you see from the number line, when X has the value —0.3, the nearest integer that
1s less than or equal to X is —1.

One last feature associated with INT is very useful to know. It can appear on the right
side of an equals sign in a LET statement. For example, try the next series of lines.

(N\

>LET A=INT(4/3)+¢

*PRINT A
3

- J
In the LET statement, INT(4/3) produces the integer result of 1. This result is added

to the constant 2, yielding 3 as a final result. A is then assigned the value of 3 and
printed.

Several applications of the INT function are shown in the chapters that follow. For

now, try some other experiments with INT so that you become even more familiar
with how it works.

Summary of Chapter 3

Chapter 3 has introduced you to some new and powerful TI BASIC capabilities:

FOR-NEXT You've used this statement to build controlled loops that
repeat a part of the program 4 specified number of times or
create a time delay in the program.

PRINT formats You've learned how to control the spacing of PRINT items
using the three separators (comma, semicolon, and colon)

and the TAB function.
Computation You've discovered that your computer follows a certain
Order mathematical order in solving problems:

1. Everything in parentheses is computed first.
2. Multiplication and division are done next.
3. Addition and subtraction are performed last.

INT function You've learned how this function works on both positive
and negative numbers that are not integers (whole
numbers).

These features will help prepare you for the programs that follow in the next chapters.

72 Beginner's BASIC

EouR TR Fun and

Simulations

4

In this chapter we'll explore some features of the BASIC language that allow you to
create exciting simulations and games.

Many computer programs are simulations that imitate some real-world event. With a
computer simulation we can imitate an event as simple as the rolling of a single die or
as complex as the patterns of animal migration in North America.

As an example of a simulation, we’ll enter and run a dice-rolling program in this
chapter. Other programs included here explore the games, graphics, and musical
capabtlities of your computer.

The heart of most games and simulations is the RND function, so let’s begin there.

The RND Function

The letters in the name RND are taken from the word RaNDom. To find out what
RND does, let's try a few examples in the Immediate Mode.

Clear the screen, and then enter this line:

7

PRINT PND

N

>PRINT RND
2291877823

N

Now try entering the line again:

7

The second number
is not the same
as the first!

>PRINT RND
5291877823

PRINT RND
3913360723

N J

Here's an interesting situation! Every time we use RND, we get a different number.
That's exactly what RND does — it generates random numbers.

Beginner's BASIC 73

4

Now let’s try a program that will produce ten random numbers. Enter these lines:

20 FOR LOOP=1 TO 10
30 PRINT RND

40 NEXT LQOP

50 END

When you've checked your program for errors, run it. A list of ten random numbers

will be printed on the screen. Look at the numbers closely. Are any two of the numbers
identical?

You may have noticed that all the numbers generated by RND are less than one (1.0)
in value. Also, there are no negative numbers. RND is preset to produce only numbers
that are greater than or equal to zero and less than one (0<n<1).

Write down the numbers this program produced, and then run the program a second
time. Check your written list against the numbers on the screen this time. Very
strange! The list of numbers is the same!

This feature of the RND function is important to remember and can be very useful in
certain applications. Within a program RND will produce the same sequence of
random numbers each time the progran is run.

UNLESS .. . !
Unless the BASIC statement RANDOMIZE is used in your program.

The RANDOMIZE Statement

Add the RANDOMIZE statement shown below to the program that is still in your
computer.

10 RANDUMIZE
Clear the screen now (type CALL CLEAR; press EHTER) and list the changed

program on the screen:

2LIST
10 RANDOMIZE
20 FOR LOOP=1 TO 10
30 PRINT RND
40 NEXT LOQP
50 END

. S
Run the program again, and compare the new set of numbers with your written list
from the first program run. Are they different this time? They should be!

74 Beginner’'s BASIC

CHAPTER FOUR:
Fun and Simulations

Experiment!

Continue to experiment with the program until you feel comfortable with RND and
RANDOMIZE. For example, try changing line 30 of the previous program to:

350 PRINT RND;RND
What result does this change have on the program?

If you want the program to generate more or fewer than ten random numbers, just
change line 20.

Other Random Number Ranges

The program you just completed generates random numbers between O and 1
(0=n<1). Now let's examine ways to increase the range of the numbers we generate.

The RND function can be used as part of any legitimate computation. For example,
10*RND and (10*RND)+ 7 are both valid uses of RND in TI BASIC. To show what is
produced when RND is used in this way, try the following examples:

PRINT 10*RND
PressENTER

What number appears on the screen? Try the same example again. What number did
you get this time?

In both these examples, you should see a decimal point followed by ten digits, or one
digit to the left of the decimal point, followed by nine digits to the right of the decimal
point. That's because 10*RND produces random numbers in the range of O to (but not
including) 10, or 0=n<{10.

Now let’s increase the range to this: 0=n<{1Q0, or random numbers from O up to (but
not including) 100. Try this: |

PRINT 100%RND

and see what 1s produced. (Remember, this time you could get one or two digits to the
lett of the decimal point, 1n the range from O through 99.9999 . .)

Let's use a program to generate some random numbers in the ranges 0 to 10 and O to
100. Enter these lines:

Every time you

NEW run the program
T0 RANDOMIZE - you'll get a
20 FOR LOOP=1 TO 5 different series

of numbers.

30 PRINT 10*RND,100*RND
40 NEXT LOOP
50 END

comma here

Beginner’s BASIC 75

Now clear the screen and run the program. Although the numbers you generate on
your screen will be different, they'll look something like this:

4 N\

>RUN
3.196128739 11.32761568
6,233532821 9.502421843
7.030941884 33.17351797

5689170795 86 .40802154
9,.388957913 .7565322811
*% DONE *«

\}D _/
Study the differences between the numbers in the left print zone on the screen and

those in the right print zone. Can you see that the range is greater in those on the
right? Run the program again to produce other numbers.

Suppose we'd like to eliminate all digits to the right of the decimal point and produce
random whole numbers (integers). Well, do you remember the INT function we

discussed in Chapter 3? This is a job for INT!
Change the program by typing and entering this new line:

30 PRINT INTC(I10*RND),INTC100%RND)

If you list the program now, it will look like this:

7

>LIST
10 RANDOMIZE

20 FOR LOOP=1 TO 5

30 PRINT INTC(10*RND),INT (100
*RND)

40 NEXT LOOP

50 END

N S

76 Beginner's BASIC

CHAPTER FOUR:
Fun and Simulations

byl

- o

When you run the program, the screen will show two series of random whole numbers:

4 N\

Remember, you
won't necessarily
see these same

numbers on
your screem.

*% DONE *w*

All the numbers on the left side of the screen will have values from 0 through 9, while
the numbers on the right have values from 0 through 99. The INT tunction throws
away the digits to the right of the decimal point. The following table summarizes what
we have covered so far.

Program Instruction Range

RND O through .9999 . ..
10*RND 0 through 9.9999 . . .
INT(10%RND) O through 9 (integers only)
100*RND 0 through 99.9999 . ..
INTC(100*RND) 0 through 99 (integers only)

Notice that all these ranges begin with the value of zero. In many games and -
simulations, however, we need random numbers that start at some other value. For
example, to simulate the throw ot one die you need a random number generator that
produces values from 1 to 6. You have seen that INT(10*RND) gives values from O to
9. What would INT(6*RND) produce? Change line 30 in the program to PRINT
INT(6*RND) and run the new program. |

Type:

30 PRINT INT(6*%RND)

CALL CLEAR //, ﬁ“\

RUN

>
RUN Random valfues

within a range
from Q through 5

Il P WU =
}

*x DONE =*x
s J

Beginner's BASIC 77

Your screen shows a list of five random numbers ranging from 0 to 5. What would
happen if we added the value 1 to each item in this list? The resultant numbers would
range from 1 to 6. That’s just what we need to simulate the throw of a single die.
Again, alter the program as shown below and run it.

Type:
30 PRINT INT(6*%RND)+1
CALL CLEAR /,, ﬁ\\
RUN

>RUN
i Simulation of 5
1 rolls of a die.
4
2
*% DONE *x=*

|\ J
That does it! The program now in your computer is a simulation (1im1tation) of
throwing a single die five times.

A Two-Dice Simulation

At this point we can easily design a program to simulate the throws of two six-sided

dice. Before you start, erase the old program by typing NEW. Then enter the tollowing
program:

Input number of
rolis fo simulate.

5 CALL CLEAR
10 RANDOMIZE

20 INPUT "NUMBER OF ROLLS?":N
30 FOR ROLL=1 TO N

40 DIE1=INT (6%RND)+1]f,ff””fr
50 DIEZ=SINT(6*RND)+1

60 PRINT DIE1;DIE2,DIET+DIE2~
70 NEXT ROLL

80 PRINT

90 GOTO 20

Simulate rolls.

Display each die
and sum of "spots. "

This program prints out the number of “spots” on each die and the sum of the spots on
both dice faces. You are asked how many rolls you wish to make at the start of the
program. Run the program now and watch what happens.

78 Beginner's BASIC

CHAPTER FOUR:
Fun and Simulations

RUN

\HUHBER OF ROLLS?O

S

First, the program prints a request for the number of rolls to make. Enter a number (5,
for example) and press the ENTER key.

The program keeps looping back to the INPUT req

NUMBER OF ROLLS?5

Z 35 7
6 6 12
3 1 A
2 3 5

1 & 5
NUMBER OF ROLLS?0O

Your screen shows
5 throws.

program, just press CLEAR.)

Experiment]

ucs

t line. (If you want to stop the

Try entering different values for the number of rolls. What happens if you try 30 rolls?
Then make some changes to the program, if you'd like to experiment. For example,
how would you alter the program to simulate the throwing of three dice? Two eight-

sided dice?

Eginner's_EASlE

79

- bl el
Pk, ik - P, A

Error Conditions with RND

The error messages produced by an improper usage of RND are essentially the same
as the error messages we've mentioned before. Here are some examples:

Typing Errors Error Message

missing operation

10 PRINT INTCT10RND) *INCORRECT STATEMENT IN 10
10 PRINT INT(10*RND *INCORRECT STATEMENT IN 10

missing close parenthesis

About the only new error condition we need to mention occurs if you try to use the
letters RND as a numeric variable name in a LET or assignment statement. For
example, if you type

~ LET RND=5
the computer will respond with

* INCORRECT STATEMENT

This occurs because RND is “reserved” to be used only as a function in T1 BASIC.

(For a list of all reserved words, see the "BASIC Reference” section of the User’s
Reference Guide.).

Randomized Character Placement

The following program utilizes the INT and RND functions to generate random screen

positions for a character you input. First, type NEW and press ENTER to erase your
old program; then enter these lines: |

10 RANDOMIZE
20 INPUT "CHAR CODE?":CODE
30 CALL CLEAR

40 ROWSINT(24*RND)+1 —
S0 COLUMN=INT(32#RND)+1 -~

60 CALL VCHARCROW,COLUMN,CODE)
70 GO TO 40

Produces
a row number

from | through 24.

Produces
a column number
from 1 through 32.

We'll use the character codes 33 through 95; since character 32 is a blank space, we
want to avoid entering it when the program asks for a code number.

30] N S - T

Be?inner's BASIC

CHAPTER FOUR:
Fun and Simulations

Before running the program, let's examine a flow chart describing its performance.

"Randomizes." the random number

series each time the program is run.
[_

Stops and asks "CHAR CODE?"

Line 20 Assigns number you enter to the

variable CODE. |
5

Clears prompting message and input
character code from the screen.
|

Produces random integer in range _|
Line 40 of O through 23; adds 1 to value
and assigns value to variable ROW. |

1
Produces random integer in range of
Line 50 0 through 31; adds 1 to value and
assigns value to variable COLUMN.

Prints input character in random -|

Line 10

Line 30

Line 60 position designated by lines 40 and 50.

I

Loops back to produce new random
posttion for character.

Line 70

Now clear the screen with CALL CLEAR and run the program. For this first

example, enter 42 (the character code for the asterisk) as the input for CHAR CODE.
The screen will look something like this:

Asterisks are
filling the
screen at randoin.

To stop the program just press CLEAR. Then try running the program several times,
putting in a different character code each time. See if any unusual designs are
produced.

Beginner's BASIC 81

i, W . L
Pk - A T b, Pl i

When you've finished experimenting with different characters, let’s change the program
to generate characters at random, as well as placing them randomly on the screen.
First we'll have to decide how to set the limits we want for the character range. Here's
a general procedure for setting the limits for use with RND:

Subtract the LOWER LIMIT from the UPPER LIMIT.
Add 1.

Multiply that result by RND.

Find the integer (IN'T) of this result.

Add the LOWER LIMIT.

Now we know that we want 63 characters, with character codes ranging from 33
through 95. So our LOWER LIMIT is 33, and our UPPER LIMIT is 95:

95 —-33=62
62+1 =63

The number we want to multiply by RND is 63, and we must use the INT function:

INT(63*%RND)

Produces random integers
from O through 62.

Now check the limits established when we add our LOWER LIMIT, 33:

0+33 =33 (lowest possible character code)
62 +33 =95 (highest possible character code)

INT(63*RND) + 33 will give us random whole numbers in the range we need. Type the
following new line:

20 CODE=INT(63*RND)+33

and press ENTER . Now clear the screen and list the.program to review this change.

.\

»LIST
10 RANDOMIZE

20 CODE=INT(&63*RND)+33
30 CALL CLEAR

40 ROW=INT(24%xRND.)+1

20 COLUMN=INT(32%RND)+1

60 CALL VCHARCROW,COLUMN,COD
E)

70 GO TO 40
\\H_btl _;//
When we run the program this time, the computer will generate a random character

code and then print the character in random positions on the screen. (Press CLEAR

when you want to stop the program.) Run the program several times to see different
characters.

82 ' ' “Beginner's BASIC

CHAPTER FOUR:
Fun and Simulations

Experiment!

By making changes in two lines, you can cause the previous program to print different
random characters each time 1t loops. Try it! (Hint: Think about lines 30 and 70.)

The IF-THEN Statement

All the programs we've considered so far in this book have been constructed so that
they either run straight through or loop using a GO TO or a FOR-NEX'T loop. The
IF-THEN statement provides you with the capability of making branches or "torks” in
your program. A branch or fork is a point in a program where either one of two paths
can be taken, just like a fork in a road.

I?o.— PRINT B —-—I

. e

.
TO: LET ,k/

L]

The general form of an IF-THEN statement looks like this:
IF condition THEN line number

The condition is a mathematical relationship between two BASIC expressions. The
Iine number is the program line to which you want the program to branch ifthe
condition is true. If the condition is not true, then the program line following the 1F-
THEN statement 1s executed. For example,

30 IF K<10 THEN 70

The statement says: If the value of K is less than 10, then go to line 70 of the program. If
K is greater than or equal to 10, then do not branch to line 70.
Instead, execute the Iine following line 30.

Let’s try a demonstration program. Enter these lines:

NEW
If lue of K 10 CALL CLEAR If new value of K s
oo Toss th 20 LET K=1 less than 10, go back

1s not less than

' to line 30 and t,
10, go on to next line. o line 30 and repea

30 PRINT "K=";K
40 LET K=K+1 $Hx>
50 IF K<10 THEN 30

60 PRINT "OuUT OF LOOP"
70 END

Beginner's BASIC 83

a4

Now run the program.

O DO S ONWA PN R -

OuT OF LOQP

AkXDONE % *

Each time the program reaches line 50, it must make a “true or false” decision. When
K 1s less than 10, the IF condition (K <10) is true, and the program branches to line
30. When K equals 10, however, K<10 is false. The program then executes line 60
and stops.

We mentioned earlier that the condition is a mathematical relationship between two
expressions. In the example you've just seen, the mathematical relationship was <<, or
“less than.” There are a total of six relationships that can be used in the IF-THEN
statement:

Mathematical BASIC

Relationship Symbol Symbol
Equal to = =
Less than < <
Greater than > p=
Less than or equal to < =
Greater than or equal to = - > =
Not equal to ¥ <>

Suppose we changed line 50 in the program to this:
50 IF K<=10 THEN 30

How would the program’s performance be affected? Try it! Enter the new line, and
then run the program again.

Now, the program prints the value of K all the way through 10, because the new line
says, “If K is less than or equal to 10, branch to line 30.”

84 . Beginner's BASIC

CHAPTER FOUR:
Fun and Simulations

S

Experiment!

The IF-THEN statement can be a powerful tool in program development. Try this
program for a graphics application:

NEW

10 CALL CLEAR

20 CALL COLOR(2,5,5)

30 LET K=1

40 CALL HCHARCK,K+1,42)
50 K=K+1

60 IF K<25 THEN 40

70 K=1

80 CALL HCHAR(K,K+3,42)
90 K=K+1

100 IF K<25 THEN 80

110 GOTO 110

Can you follow this pattern to create more than two diagonal lines?

Error Conditions with IF-THEN

Like most TI BASIC statements, the [F-THEN statement is pretty particular about its

form. The main errors that can occur in using the IF-THEN statement are shown
below:

20 IFA=B THEN 200 (No space after 1F)

20 IF A=BTHEN 200 (No space 1n front of THEN)

20 IF A=B THENZ200 (No space after THEN)

20 IF A==B THEN 200 (Invalid relational symbol combinations)

20 IF A= THEN 200 (No expression on one side of the relational symbol

All of the above conditions produce an error message either when entered or during

the running of the program, along with a reference to the line number of the statement
in which the error occurs.

If the line number referenced in an IF-THEN statement does not exist, the program
stops and produces a message saying that the line number referenced in the statement

1 not found in the program. For example (using the line above), if 200 is not a valid
line number 1n your program, you see this error message:

* BAD LINE NUMBER IN 20
Games and Music

The remainder of this chapter explores color graphics and sound through special
games applications. Several of the programs are based on a number-guessing game

you may have played before. You'll also find that both the RND function and the IF-
THEN statement are used extensively in the programs.

Beginner's BASIC 85

4

L
il .

A Number-Guessing Program

In this game the computer generates a secret number from 1 to 100, using the RND
function, and asks you to guess the number. The program tells you if your guesses are
larger, smaller, or equal to the secret number. When you guess the number, the
program chooses another number and begins the game again.

Type NEW, press ENTER, and enter these lines:

Select random number
from I through 100.

10 CALL CLEAR
20 SECRET=INT(100%RND)+1

30 PRINT "I HAVE A SECRET NUMBER!"
40 PRINT

20 INPUT "WHAT IS YOUR GUESS?":GUESS
60 IF GUESS=SECRET THEN 130 —
70 IF GUESS>SECRET THEN 100

80 PRINT "TOO SMALL!"
90 GOTO 110

100 PRINT "TQO BIG!'"
1170 PRINT "TRY AGAIN."
120 GOTO 40

130 PRINT "YOU GUESSED IT!"
140 PRINT "LET'S PLAY AGAIN!"

150 FOR DELAY=1 T0 1000
160 NEXT DELAY -

170 GOTO 10

Your guess s
input here.

If you guess correctly,

the program
branches to line 130.

Ifyour guess is too large,
the program
branches to line 100.

Delay so you can read
the “victory' message.

Notice that two I[F-THEN statements are used in the program, at lines 60 and 70. In
line 60, if the guess is not equal to the secret number, the condition in the IF-THEN
statement is false, and the program proceeds to line 70. If the guess 7s equal to the
secret number, the program branches to line 130 and prints the victory message.

At line 70, we test to see if the guess is larger than the secret number. If the guess is
larger than the number, the condition is true, and the program branches to line 100. If

the guess is smaller than the number, the condition is false, and the program proceeds
to line 80.

86 Beginner's BASIC

CHAPTER FOUR:
Fun and Simulations

Now run the program. When it asks “WHAT IS YOUR GUESS?” just type in a
number from 1 through 100, and press ENTER. Here’s an example of what might appear

on the screen:

I HAVE A SECRET NUMBER!'

WHAT IS YOUR GUESS?35~

TOO SMALL!
TRY AGAIN.

WHAT IS YOUR
TOO BIG!
TRY AGAIN,

WHAT IS YOUR
TOO BIG!
TRY AGAIN.

WHAT IS YOUR
TOO SMALL'!
TRY AGAIN.

WHAT IS YOUR
TOO SMALL!
TRY AGAIN.

WHAT IS YOUR
TOO SMALL!
TRY AGAIN.

WHAT IS YOUR GUESS?45
YOU GUESSED IT!!

LET'S PLAY AGAIN!

I HAVE A SECRET NUMBER!

Guess is too big

GUESS?75
GUESS?50 ~ Still too big

Aha.
GUESS?40 - I must be close!

GUESS?41

Is it here? No!

GUESS?42 .

Try again

WHAT IS YOUR GUESS?

The computer will start a new game each time you guess the correct number. When
~you want to stop playing, just press CLEAR.

* Notice also that we did not include the RANDOMIZE statement. Therefore, the
program will generate the same series of random numbers each time you run it! If you
want to make the program create a new set of random numbers each time, just add

this line:
15 RANDOMIZE

Beginner's BASIC

87

CHAPTER FOUR:
Fun and Simulations

Now run the program. When it asks “WHAT IS YOUR GUESS?” just type in a

number from 1 through 100, and press ENTER. Here's an example of what might appear
on the screen:

I HAVE A SECRET NUMBER!
WHAT IS YOUR GUESS?35
TOO SMALL!

TRY AGAIN.

WHAT IS YOUR
TOO BIG!

Guess is too big

GUESS?75

TRY AGAIN.,

Still too big

WHAT IS YOUR
T00 BIG!
TRY AGAIN.

GUESS?50 -

Aha.

WHAT IS YOUR GUESS?40 -
TOO SMALL'!

TRY AGAIN.

{ must be close!

WHAT IS YOUR GUESS?41
TOO SMALL!

TRY AGAIN.

Is 1t here? No!

WHAT IS YOUR
TOO SMALL!
TRY AGAIN.

GUESS?42 .

Try again

WHAT IS YOUR GUESS?45
YOU GUESSED ITI!!

LET'S PLAY AGAIN!

I HAVE A SECRET NUMBER!
WHAT IS YOUR GUESS?

The computer will start a new game each time you guess the correct number. When
“you want to stop playing, just press CLEAR.

~ Notice also that we did not include the RANDOMIZE statement. Therefore, the
program will generate the same series of random numbers each time you run it! If you

want to make the program create a new set of random numbers each time, just add
this line:

15 RANDUMIZE

Beginner's BASIC 87

4

A Tone-Guessing Program

A novel version of the number-guessing program can be created using the sound
capabilities of your computer. This program generates a random tone from 131 cycles
per second through 247 cycles per second. (If you need to review the CALL SOUND
statement and the frequency limits of the computer, see Chapter 1, page 17.) Your job
1S to guess the frequency of the tone! The program lets you know if your guess is lower,
higher, or equal to the frequency of the random tone that 1s generated. When you guess
the correct frequency, the program plays the tone three times and begins the game

again,

So type NEW, press ENTER, and enter the new program.

10
20
30

40
50

60
70
80

90
100

110
120
130
140

150
160

170

180
190

200
210

220

CALL CLEAR
TONE=INT(117*RND)+131 -

PRINT "HERE'S THE TONE!"
PRINT
CALL SOUND(1000,TONE,2) -

INPUT "GUESS, PLEASE?":GUESS
IF GUESS=TONE THEN 160
IF GUESS>TONE THEN 110

PRINT "TOO LOw!"
GOTO 120

PRINT "TOO HIGH!"

CALL SOUND(1000,GUESS,2)
PRINT "TRY AGAIN."

PRINT

6OT0 30
PRINT "YOU GUESSED IT!"
FOR PLAY=1 TO 3]

Generate a fone
between 131 and 247
cycles per second.

Play the tone.

Input your guess —
a number from
131 through 147,

Play your guess,
if incorrect.

Play your correct
guess 3 times.

CALL SOUND(100,TONE,2)
NEXT PLAY

FOR DELAY=1 TO 500
NEXT DELAY

GOTO 10

Line 20 may need a little explanation. If the lowest tone we want is 131 cycles per

second and the highest is 247 cycles per second, how do we set our random number
limits? Well, INT(11 7*RND) produces numbers from 0 through 116, and

0+131=131 (our desired lower limit)

116 +131 =247 (Our desired upper limit)

Now run the program. The information that appears on the screen is similar to the
number-guessing program. The only difference is that in this program your guess is
“played” back to you by the computer.

88

Roaminmnoe's I ACTM™

CHAPTER FOUR:
Fun and Simulations

If you'd like to change the tone limits, you can do so easily by changing line 20. For
example, suppose you'd rather hear a series of higher tones — perhaps in the range
from 262 cycles per second through 392 cycles per second. How would you rewrite
line 20 to generate these tones?

Also, you may want to add the RANDOMIZE statement to create a new series of
random tones each time you run the program. If so, just enter this new line:
15 RANDOMIZE

Color Up!

Next, let's examine two color programs. The first program creates ten randomly
placed horizontal bars — of a color you input, and of random lengths. Then the
program stops for you to input a new color code.

You'll notice that we've used IF-THEN statements in a new way (lines 30 and 40). We
test the input color code to be sure it's valid. If it isn’t, the program gives you a
specially written “error message.”

10 CALL CLEAR
15 RANDOMIZE

20 INPUT "COLOR PLEASE?":C
25 CALL CLEAR

30 IF €<1 THEN 200
35 IF C>16 THEN 200

40 FOR LOOP=1 TO 10
45 ROWSINT(24*RND)+1
50 REPEAT=INT(28*RND)+1
55 CALL COLOR(2,cC,C)

60 CALL HCHAR(ROW,3,42,REPEAT)~
65 FOR DELAY=1 TO 100 |

70 NEXT DELAY
75 NEXT LOOP

80 60 TO 10

200 PRINT "BAD COLOR CODE!'"™
210 PRINT "MUST BE 1 TO 16." [+
220 PRINT "TRY AGAIN!"

240 FOR DELAY=1 T0 500
250 NEXT DELAY

260 60 TO0 10

Test input color code.

Generate a row number
from I through 24.

Generate a random
number of repetitions
“ from 1l through 28.

Print color bar.

Special error message
for invalid color code.

When you run the program, you'll see all of the bars begin at column 3, near the left-
hand edge of the display. Their lengths, however, are random, as are their horizontal
positions on the screen. After ten bars of the input color are placed, the program clears
the screen and asks you for a new color code.

Beginner's BASIC 89

4

Remember to avoid putting in color codes 1 (transparent) and 4 (the screen color in the

Run Mode).

Although these are valid codes, you won't be able to see the bars.

The next program is a game that contests two colors against each other. A winning
color 1s randomly chosen. The program is the longest you've seen yet, so we'll provide
some explanations as we go along. Here's the program:

NEW

10
20
30
40

50
60
70

80
90
100

110
120

130

140
150

160

170
180

190

200
210

220

700
710
720
730

800
810
820

830

Accept first color code

CALL CLEAR and check for validity.

INPUT "FIRST CDLUR?":C1}

IF C1<1 THEN 700
IF C1>16 THEN 700

INPUT "SECOND cULOR?":cz}Jf,f”f

Accept second color code
and check for validity.

IF C2<1 THEN 800
IF C2>16 THEN 800

CALL CLEAR
COLORTEST=INT(2*RND)+1
FOR LOOP=1 TO 50~

ROW=INT (24*RND) +1
COLUMN=INT (32*RND)+1

IF COLORTEST=1 THEN 160 -

LET A=(CZ
GOTO 170

LET A=C1

CALL COLOR(2,A,A)
CALL HCHARCROW,COLUMN, 42)

NEXT LOOP -

FOR DELAY=1 TO 500
NEXT DELAY -

GOTO 10

PRINT "BAD COLOR CODE!"
PRINT "MUST BE 1 TO 16."
PRINT "TRY AGAIN."

6OTO 20

PRINT "BAD COLOR CODE!"™
PRINT "MUST BE 1 TO 16."
PRINT "TRY AGAIN!"

GOTO 50

Pick randomly either
Color One or Color Two.

Set loop to print
30 colored squares
on screen.

Select random position
for color square.

If Color One "wins, "’
branch to Iine 160 and
assign value of ClI to

If Color Two “wins,”’
assign value of C2 to A
and go to line 170.

Print color square in
random position on screen.

Go through loop
again, until 50 squares
are on the screen.

Delay to observe pattern,
then start new game.

Print error message if
color codes are 1nvalid.

Two people can play against each other, or you can play against yourself by putting in
both color codes, just to see which "wins” the game. (Again, avoid entering color codes

1 and 4.)

90

Beginner's BASIC

CHAPTER FOUR:
Fun and Simulations

Random Notes

We've used CALL SOUND earlier in a program that played notes from a musical
scale. (See Chapter 2, pages 39-40.) If we modify that program, adding the IF-THEN
statement and the RND function, we can make the computer play some interesting
(but not necessarily enjoyable) "music.” Here's how:

NEW

10 LET C€=26/2
15 LET D=294
20 LET E=330
25 LET F=349
30 LET G=392
35 LET A=440
40 LET B=494
45 LET (C2=523

50 RANDOUMIZE

55 NOTE=INT(8*RND)+1
60 TIME=INT(901*RND)+100
65 VOLUME=Z2

70 IF NOTE=1 THEN 200
75 IF NOTE=2 THEN 300
80 IF NOTE=3 THEN 400
85 IF NOTE=4 THEN 500 -~
90 IF NOTE=5 THEN 600

Set up a musical

scale from "middle C"'
through “high C."”

Randomly select
I of the 8 notes.

Randomly select a
~ duration from 100
through 1000 milliseconds.

Check which nofe to play.
Notice that we don’t have
to check for the last note —

“highC" (C2)
100 IF NOTE=6 THEN 700 It will automatically
105 IF NOTE=7 THEN 800 be selected if none of the

first 7 notes are selected.

110 NOTE=CZ

115 CALL SOUND(TIME,NOTE,VOLUME) -
120 60TO 55 ”

200 NOTE=C
210 GOTO 115

300 NOTE=D
310 GOTO 115

400 NOTE=E
410 G6O0TO 115

500 NOTE=F — Define NOTE.
510 GOTO 115

600 NOTE=G
610 GOTO 115

700 NOTE=A
710 GOTO 115

800 NOTE=B
810 GOTO 115

Play the note.

Beginner's BASIC 91

4

Now run the program and enjoy the “music.” When you're ready to “stop the music,”
just press CLEAR.

You might like to experiment with this program in various ways. For example, do you
notice anything different in the “music” if you change lines 60 and 65 to

60
65

TIME=500
VOLUME=5

A Musical Interlude

Now that we've let the computer play its "music,” let’s play some music of our own!
With this program we can use the keyboard to input the notes we want to play. Enter

these lines:

NEW
10

15
20
25
30
35
40
45

50

55
60
65
70
75
80
85

90

100
110

200
210

300
310

400
410

200
510

600
610

700
800
810

CALL CLEAR

LET C=262
LET D=294
LET E=330
LET F=349
LET G=392
LET A=440
LET B=494

INPUT "NOTE ":AS$

IF A$="C" THEN 100
IF AS="D" THEN 200
IF AS="E" THEN 300
IF A$="F" THEN 400
IF A$="G" THEN 500
IF A$="A" THEN 600
IF A$S="B" THEN 700

GOTO 50

NOTE=C
GOTO 800

NOTE=D
GOTO 800

NOTE=E
GOTO 800

NOTE=F
GOTO 800

NOTE=G
GOTO 800

NOTE=A
GOTO 800

NOTE=B
CALL SOUND(100,NOTE,2)
60TO 50 -

This time, we’ll only
define 7 notes.

leave one space

Accept "note.”

Check for the letter key
pressed on the keyboard.

Not A-G! Do it again.

Play “note.”

Return for new note.

Beginner's BASIC

- ilieini

CHAPTER FOUR:
Fun and Simulations

When you run the program, the program will ask you for a note. You then press one of
the letter keys (A,B,C,D,E F, or G), followed by the ENTER key. For example, when the
screen shows

Cursor blinks until
you enter a "note."”

NOTEO -

and you press these keys:
A (ENTER)

the "note” A will play. The screen keeps a record of the keys you depress:

NOTE C
NOTE D
NOTE E

NOTE F

Having to press the ENTER key for each note slows down your musical performance a
bit, doesn't it? What can we do about this problem?

The CALL KEY Routine

There is a routine that permits the transfer of one character from the keyboard directly
into a program. The routine is CALL KEY. If you alter the current program in the
following way, you don't have to press the ENTER key after hitting the key for each
note.

Enter;

must be zero

Character code of
depressed key ends up here.

/ "} - e e e LI

50 CALL KEY(O,NOTE,STATUS)
55 IF STATUS==1 THEN 50
60 IF STATUS=0 THEN 50
65 IF NOTE=67 THEN 100
70 IF NOTE=68 THEN 200
75 IF NOTE=69 THEN 300
80 IF NOTE=70 THEN 400
85 IF NOTE=71 THEN 500
90 IF NOTE=65 THEN 600
95 IF NOTE=66 THEN 700

Status indicator. If:
I = new key since Jast time
—] =same key as {ast time
(=no key depressed

Check character code of
depressed key to see if
itisA B ... G.

Beginner's BASIC 93

a

Here's how CALL KEY works. Each character on the keyboard has a numeric code.
When a key is depressed, the character code of that key 1s assigned to the second
variable in the KEY routine. In this example, the character code is assigned to the
variable NOTE. The last variable in the KEY routine is a status indicator. The
indicator lets the program know what has occurred on the keyboard. If you keep
holding down the same key, the STATUS is minus one, If you press a key different

from your last entry, the STATUS is one (1). If you don't press any key, the STATUS
s zero (0). When you run the program. nothing appears on the screen as you press the

keys. The program simply plays the note you request. S50 go ahead — make a little
music!

The CALL KEY routine allows you to create “your own kind of music,” and the

routine can also be used in many games and simulations where single-character input
values are requested. The CALL KEY routine speeds up the input of data by
eliminating the need to press the ENTER key after your data entry.

Summary of Chapter 4

This chapter has given you an idea of the many interesting games and simulations you
can develop with your computer. You've discovered these new features:

RND Allows you to generate random numbers.

RANDOMIZE Insures that each series of random numbers generated by
a program will be different.

IF-THEN Provides conditional branching capabilities in a program.

CALL KEY Permits the transfer of a keyboard character directly into
a program, without pressing ENTER.

Congratulations! You've accomplished a lot of computer programming!

The following chapter deals only with computer graphics. You'll learn how to define
your own characters and how to make “animated” patterns on the screen. Just turn the
page for some more exciting experiences!

04 Beginner's BASIC

Beginner's BASIC

95

