Beginner’s
BASIC

IMPORTANT KEYBOARD INFORMATION

The TI-90/4A Computer has a standard typewriter keyboard with both upper-case
(large capital) and lower-case (small capital) characters. The SHIFT key is used, just
as on standard typewriters, to type an upper-case symbol. Except for the letter keys,

each key's upper-case (SHIF Ted) character is printed above the lower-case character
on the key face.

Depressing ALPHA LOCK locks all of the alphabetical keys into their upper-case
mode. Number and punctuation keys are not affected. Press ALPMA LOCK again to
return to normal keyboard operation.

T1 BASIC, except in specific instances, accepts both upper- and lower-case
characters as input. However, when you LIST a program, the screen displays all
reserved words, variable names, and subprogram names as large capitals.

The T1-99/4A Computer also has several function keys that perform important
operations. These are accessed by holding down the FCTH key while pressing the
appropriate number or letter key. Most nf the functions (AlD, CLEAR, OWNT, ctc.} are
identified on the strip overlay packed with your computer. Note also that certain
symbols are printed on the front of several letter keys. These functions. such

as (& - t| .and [3] .and some punctuation symbols are also accessed
by hﬂldmg dnwn the FCTN key while pressing the symbo! key. The following chart
identifies these functions.

FUNCTION KEYS

Name Press Name Press

AlD PCTH 7 Left arrow FCTN &
CLEAR FCTN 4 Right arrow FCTN D
DELete PCTHN 1 Down arrow FCTHN X
HiSert FCTH 2 Up arrow FCTH R
OUIY FCTH = PROC'D PCTHN &
REDO FCTN 8 BRGIN FCTHN 8
ERASH FCTH 3 BACK FPCTH &

IMPORTANT NOTICE REGARDING PROGRAMS AND-BOOK MATERIALS

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR PARTICULAR PURPOSE,
REGARDING THESE PROGRAMS OR BOOK MATERIALS OR ANY
PROGRAMS DERIVED THEREFROM AND MAKES SUCH MATERIALS
AVAILABLE SOLELY ON AN “AS-IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF
THESE BOOK MATERIALS OR PROGRAMS AND THE SOLE AND EXCLUSIVE
LIABILITY TO TEXAS INSTRUMENTS, REGARDLESS OF THE FORM OF
ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THIS BOOK,
MOREOVER, TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM
OF ANY KIND WHATSOEVER AGAINST THE USER OF THESE PROGRAMS
OR BOOK MATERIALS BY ANY OTHER PARTY.

Copyright ©® 1979, 1981, Texas instrumenis incorporated

Texas Instruments T1-99/4A Computer %i

LCB 4180

Beginner’s
BASIC

A step-by-step guide that takes you from the “ground up” into an
adventure — the adventure of communicating with a computer in a
simple, yet powerful language.

Even if this 1s the first time you've seen a computer, you'll be able
to follow this easy-to-understand, hands-on approach.

Note: The instructions and sample programs in this book are designed for use
with the Texas Instruments TI1-99/4A Computer. The information included will
be generally useful with other computers incorporating BASIC programming
language conforming to the American National Standard for Minimal BASIC.
However, the program instructions included here — especially those for graphics
and sound — will apply specifically to the TI computer.

Beginner's BASIC

This book was developed by

Don Inman
Ramon Zamora

Bob Albrecht

in cooperation with Texas Instruments Incorporated and
the Staff of the Texas Instruments Learning Center:

Jacquelyn Quiram
Bob O'Dell
Artwork and layout were coordinated and executed by

Schenck Design Associates, Inc.

[SBN 0-89512-028-3
Library of Congress Catalog Number: 79-65510

Copyright © 1979, 1981 by Texas Instruments Incorporated

ba}

Beginner's BASIC

Table
of Contents

INTRODUCTION Page
You and Computer Programming P 5
T BASIC . . 5
About this Book 6

CHAPTER 1: THE IMMEDIATE MODE
The PRINT Statement. 8
The CALL CLEAR Statement 10
Error Messages. 11
Error Correction. 12
The LET Statement. e e e e 13
The CALL SOUND Statement. e, 17
Graphics (CALL VCHAR and CALL HCHAR). P 20
SUMMATY. . . . 25

CHAPTER 2: SIMPLE PROGRAMMING
A Printing Program 26
Program Structure 27
Commands — NEW, RUN, LIST i, 28
A Numerical Program e 29
Editing the Program. 31

Adding Program Lines e, 31
Removing Program Lines. e 32
The INPUT Statement. e, 33
String Variables. e e 35
The GO TO Statement. e e s, 38
A GO TO Loop with CALL SOUND e, 39
A GO TO Loop with CALL COLOR s e 40
Error Messages. 45
DUITIMIATY . . . oo et et e et e e e e e e e e e e e e, 47

CHAPTER 3: MORE PROGRAMMING POWER |

The FOR-NEXT Statement i, 48
AGO TO Loop. ... e e 49
AFOR-NEXT Loop...... ... e, 49

CALL COLOR witha FOR-NEXTLoop e 52

"Nested" FOR-NEXT Loops. 53
Error Conditions with FOR-NEXT. 56

Plainand Fancy Printing e 57
Spacing with Commas e 57
Spacing with Semicolons 60
Spacing with Colons 62
The TAB Function 63

Arithmetic Power e 66
Order of Operations. 67
Using Parentheses. 67
Scientific Notation. 69

The INT Function 69

SUMMALY . . . ottt e et e e e e e e e e e e e e e e, 72

Beginner's BASIC 3

il

CHAPTER 4: FUN AND SIMULATIONS Page
The RND Function 73
The RANDOMIZE Statement. 74
Other Random Number Ranges. 75
A Two-Dice Simulation. 78
Error Conditions with RND 80
Randomized Character Placement. 80
The IF-THEN Statement 83
Error Conditions with IF-THEN 85
Gamesand Music.......... 85
A Number-Guessing Program. 86
A Tone-Guessing Program 88
Color Upl 89
Random Notes. 01
A Musical Interlude. 02
The CALLKEY Routine. 93
SUMMATY.ot 04
CHAPTER 5: COMPUTER GRAPHICS
Blocksof Color. 06
The CALLSCREEN Statement. 07
Patterns. 08
Rectanglesand Squares 08
Holes™ 103
Animation 104
Flashing Letters 104
Flashing Color Squares. 105
Moving Color Squares. 107
The CALLCHAR Statement 108
A Block Figure with CALL CHAR 114
Mr.Bojangles.,. e e 118
The Giant. JE 121
SUMMATY. ..o oiv ettt e e e 123
Appendix A: Musical Tone Frequencies. 124
Appendix B: Character Codes. 125
Appendix C: Color Codes 126
Appendix D: Mathematical Operations, 127
Index 142

4 ' Bevinner's BASIC

Introduction

You and Computer Programming

This book is your guide to an adventure — learning to program your Texas
Instruments computer. Even if you have never worked with a computer before,

you can use this book to teach yourself, your family, and your friends how to use and
€Nnjoy your computer.

Computers are rapidly becoming an everyday part of our lives. We're very familiar with
bank statements compiled and printed by computers; we watch computerized
scoreboards at sports events — we even see computer-aided instruction in our
children’s classrooms! Almost everything we eat, wear, and use has been handled at
some point in the manufacturing process by computer-controlled machinery.

By learning to program and interact with your computer. you'll be joining this
technological revolution of the Computer Age. You'll understand more about how
computers work, what they can (and can’t) do, and why they are becoming so widely
used. Best of all, you'll be able to apply the power of your computer to the areas that
appeal to you — your business and finance, your hobbies, your family's needs and
Interests.

And perhaps we'd better warn you — many people become fascinated with computer
programming as an exciting and entertaining hobby! So don't be surprised when you —
and all the family — find yourselves wanting to learn about and use your computer
more and more as time goes on.

What is computer programming? Nothing mysterious! Programming is simply
communicating with a computer — telling it what to do and when to do it. To program
your computer youll only need to learn two things: the language your computer
understands, and the way you talk to it. No lengthy training periods or super-
sophisticated skills are required.

TI-BASIC o

In order to communicate with any computer, you'll need to learn its language. The
language we'll be exploring here is a form of BASIC (short for Beginners All-purpose
Symbolic Instruction Code). BASIC was developed by John Kemeny and Thomas
Kurtz at Dartmouth College during the middle 1960'. Although BASIC is only one of
many computer languages, it is one of the most popular in use today. It's easy to learn

and simple to use; yet it's powerful enough to do almost anything you'd want to do with
computers.

->ome BASIC features may vary slightly from one type of computer to another. The
similarities, however, far outweigh the differences; in fact, you can think of these

different forms of BASIC as dialects of the same language. The dialect used by the
T1 computer is called TI BASIC.

As you read this book and try out the examples on your own computer, you'll notice
one striking fact about BASIC: it's very much like English! You'll see words like
PRINT, GO TO, RUN, and END. The meanings of these words in BASIC are almost
identical to the defimitions you already know and understand. This fact is what makes
BASIC so easy to learn and fun to use.

Beginner's BASIC 5

Introduction

You and Computer Programming

This book is your guide to an adventure — learning to program your Texas
Instruments computer. Even if you have never worked with a computer before,

you can use this book to teach yourself, your family, and your friends how to use and
enjoy your computer.

Computers are rapidly becoming an everyday part of our lives. We're very familiar with
bank statements compiled and printed by computers; we watch computerized
scoreboards at sports events — we even see computer-aided instruction in our
children’s classrooms! Almost everything we eat, wear, and use has been handled at
some point in the manufacturing process by computer-controlled machinery.

By learning to program and interact with your computer, you'll be joining this
technological revolution of the Computer Age. You'll understand more about how
computers work, what they can (and can’t) do. and why they are becoming so widely
used. Best of all, you'll be able to apply the power of your computer to the areas that
appeal to you — your business and finance. your hobbies, your family's needs and
interests.

And perhaps we'd better warn you — many people become fascinated with computer
programming as an exciting and entertaining hobby! So don't be surprised when you —
and all the family — find yourselves wanting to learn about and use your computer
more and more as time goes on.

What i1s computer programming? Nothing mysterious! Programming is simply
communicating with a computer — telling it what to do and when to do it. To program
your computer you il only need to learn two things: the language your computer
understands, and the way you talk to it. No lengthy training periods or super-
sophisticated skills are required.

THBASIC L

In order to communicate with any computer, you'll need to learn its language. The
language we'll be exploring here is a form of BASIC (short for Beginners All-purpose
Symbolic Instruction Code). BASIC was developed by John Kemeny and Thomas
Kurtz at Dartmouth College during the middle 1960's. Although BASIC is only one of
many computer languages, it i1s one of the most popular in use today. It's easy to learn

and simple to use; yet it's powerful enough to do almost anything you'd want to do with
computers.

~>some BASIC features may vary slightly from one type of computer to another. The
similarities, however, far outweigh the differences; in fact, you can think of these

different forms of BASIC as dialects of the same language. The dialect used by the
Tl computer 1s called T1 BASIC.

As you read this book and try out the examples on your own computer, you'll notice
one striking fact about BASIC: it's very much like English! You'll see words like
PRINT, GO TO, RUN, and END. The meanings of these words in BASIC are almost
tdentical to the definitions you already know and understand. This fact is what makes
BASIC so easy to learn and fun to use.

Beginner's BASIC 5

Introduction

Now, how do you talk to the computer? Well, take a look at the keyboard. You see
there the letters of the alphabet, numbers, punctuation marks. and other special
symbols, many of which you've seen before on typewriter keyboards. Everything you'll
need to use to communicate with your computer is right there on the keyboard. You
“type” your instructions, and the computer "hears” them. It's essentially as easy as that!

About This Book

This book will guide you step by step through the process of learning TI BASIC. While
the book is not a complete textbook on BASIC programming, the material included
here will give you a good foundation for the continued development of your
programming skills. (Once you are familiar and comfortable with BASIC. you'll be
ready for the more advanced material found in the User’s Reference Guide.)
Throughout the book, each explanation of a statement or command is followed by one
or more examples for you to try out. Also, you can — and should — experiment with
other examples of your own, to help you become thoroughly acquainted with the
capabilities of your computer. You'll find some speclal sections marked EXPERIMENT!
throughout the book. These are for you to try out on your own.

In the first chapter we'll explore some of the BASIC statements that can be performed
in what's called the Immediate Mode (that is. directly from the keyboard). Do you want
to add 3 and 5, or create sounds, or make designs (computer graphics) on the screen?
You can do all of these in the Immediate Mode. and you ll find out how to do them in
Chapter 1.

Chapters 2 and 3 take you on into programming. You'll learn how to “structure” a
program, issue “commands” your computer can follow, perform mathematics. use
graphics and sound more effectively, and create loops (program segments that repeat
themselves).

Then, in Chapters 4 and 5, you'll get further into some of the exciting things a
computer can do. Did you know that your computer can play games? Make music?
Draw colorful designs on the television screen? It can. and you can teach it how!

At the end of the book are several appendices of reference information yOu can use as
you develop your own programs. Of special interest to those who want and need to use
the computer as a powerful computational device, Appendix D outlines the
mathematical operations and functions of the computer. You'll also find a convenient
alphabetized index of topics to help you look up features you want to review.

Now that you know what's ahead, let's waste no more words — let's get started in the
Immediate Mode.

6 - Beoinner's BASIC

1 ONE The Immediate
- Mode

In its Immediate Mode, your computer "immediately” performs each BASIC statement
you've typed in, as soon as you press ENTER. Because you can see an instant response
on the screen, the Immediate Mode 1s a good way to introduce and explore certain
BASIC language statements.

Before you begin learning BASIC, take a few minutes to review the operation of the
keyboard. You'll ind a complete "key tour™ in the User's Reference Guide.

When you are ready, turn on your computer. The display screen should look like this:

TEXAS INSTRUMENTS

HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN

|

© 1981 TEXAS INSTRUMENTS

Press any key on the keyboard. The display will then show the master selection list.

//fpgu TEXAS INSTRUMENTS “_“E\\

HOME COMPUTER

PRESS

1 FOR TI BASIC

If a module is
plugged fnto its slot
on the console, its
title will appear as the
second item on this list.

\ J

(Note: When you're ready to leave T1 BASIC, just type the word BYE and press the
ENTER key. The computer will then return to the main title screen.)

The examples shown in this book are printed in upper-case (large capital) letters. If
you want to reproduce the examples exactly as you see them here, press down the

ALPHA LOCK key. However, in most cases the computer accepts either upper-case or
lower-case letters.

Also, see Important Keyboard Information on the inside front cover of this book for
details about the function keys (CLBAR, left-arrow key, right-arrow key, etc.).

Beginner's BASIC 7

1

Press the 1 key to select TI BASIC.
The display now shows that the computer is ready for you to begin.

(N

T he cursor and
"prompting’
character.

TI BASIC READY

>0

The flashing rectangle is called the cursor. It tells you that the computer is ready for
you to use. Whenever you see the cursor, you know that it's your turn to do something.
The prompting symbol marks the beginning of each line you type.

The PRINT Statement

The PRINT statement means exactly what it says. You merely type the word PRINT,
followed by a message enclosed in quotation marks, and the computer prints the
message when you press ENTER.

F’RINTT"THIS IS A MESSAGE',

The word PRINT End quotes

Beginning quotes

Remember to press the ENTER key after the ending quotation marks! This is the
computer's cue to perform what you have requested.

7

You typed this and
then pressed ENTER.

“prompter’ and
flashing cursor

Tl BASIC READY

T he computer follows
your directions and
prints this.

>PRINT "THIS IS A MESSAGE"
THIS IS5 A MESSAGE -

Q0

Beginner's BASIC

CHAPTER ONE:
The Immediate Mode

Let's try another PRINT statement.

Type this:

quotation
marks

one space PRINT, "HI, THERE!"

[/

(Note: If you accidentally press a wrong letter or symbol key, just use the left arrow key
to move the cursor back to the incorrect symbol. Then retype.)

- Now press ENTER, and the computer will do just what you told it to do:

S

4 N\

T hese are left on
the screen from
YOur previous

example.

You typed this.

TI BASIC READY

>PRINT "THIS IS A MESSAGE"
THIS IS A MESSAGE

>PRINT "HI THERE!"
HI THERE! -

\ >0 /
Did you notice the way the lines moved up on the screen when you pressed ENTER and

again when the computer finished printing its line? This procedure is called scrolling.
The cursor tells you it's your turn now and shows you where the next line will begin.

T he computer
printed this.

Let's try another example. Type these words, but dotl't press ENTER just yet:

quotation marks

PRINT, "I, SPEAK BASIC., pO,YOU?2"

one space
two spaces

(When you run out of room on a line, just keep typing — the computer will
automatically "scroll” to the next line.)

one space

Eleg'i'nner’s BASIC 9

Now, look at the screen and check what you've typed. If there are any errors, just use
the /eft arrow key until the cursor has reached the error. Then retype the line correctly
from that point on. (This is only one correction procedure — you'll learn others as you
go along in the book.) When everything is correct, press the ENTER key. You'll then

' 7 N

TI BASIC READY

You just typed this.

>PRINT "“THIS IS A MESSAGE"
THIS IS A MESSAGE

>PRINT "HI THERE!"
HI THERE!

T he computer printed
this when you
pressed ENTER.

>PRINT "I SPEAK BASIC. DO YO
U?Il
I SPEAK BASIC. ©DO YOU? -

. J
If you want to try some other PRINT statements on your own, go right ahead. Each

time you press ENTER, you'll see the lines on the screen scroll upwards. The top lines
will finally begin to disappear as the screen’s capacity (24 lines) is reached.

The CALL CLEAR Statement

You've probably noticed that your video display has begun to look rather cluttered. If
you want to clear the screen for a less distracting appearance, you can use the words

CALL CLEAR.

-:EI-”

T he cursor moves;
the prompter stays
af the start

of the fine. CLUTTER

CLUTTER

Type CALL CLEAR.
T hen press ENTER.

CLUTTER

CLUTTER
>CALL CLEARO =

CALL CLEAR wipes the slate clean for your next request, and your display will look
like this: |

10) Beginner's BASIC

CHAPTER ONE:
The Immediate Mode

N

Only the prompter
and cursor show.

N\ J

Note: As you work through this book, you'll see several BASIC statements that begin
with the word CALL. Your computer has been “taught” to do certain things by having
some special-purpose programs built into 1t, and a CALL statement tells the computer
to "call” the built-in program named 1n the statement.

Error Messages

Every computer programmer makes mistakes, so don't hesitate to try experiments of
- your own as you go through the examples in this book. Errors will not hurt the
computer. It quickly recognizes things it can't do and gives you an error message and a

tone to tell you to try again. When mistakes happen, just identity the error and retype
the instruction correctly.

Some of the most common errors are typing a wrong letter and omitting a necessary
part of the statement. For example. here are a few mistakes your computer doesn't
like in a PRINT statement:

1. A misspelling in the word PRINT.

2. A missing or extra quotation mark.
3. Extra spaces in the word PRINT. =~ 7

Let's experiment with some intentional errors to become more comfortable with error
messages.

(1) Misspelling in the word PRINT

4 N\

Misspelled on
purpose as a
demonstration

You typed this and
pressed ENTER.

>PIRNT "THIS IS A MESSAGE"™

Error message returned.

« INCORRECT STATEMENT -
\}L‘J /

Beginner's BASIC 11

(2) Missing or extra quotation marks

4 N\

Missing quotation mark

>PRINT "THIS 1S A MESSAGE “

Press ENTER after
the line is typed.

* INCORRECT STATEMENT

\ = /

(3) Extra spaces in the word PRINT

—

Extra space
here,

>;\RIHT "THIS 18 A MESSAGE"

* INCORRECT STATEMENT
\:»EJ J

Try a few more messages with the PRINT statemént, introducing intentional errors so
that you will become familiar with the error messages. (We'll discuss other error
messages at appropriate places throughout the book.).

Experiment!

Error Correction
There are several ways to correct typographical errors before you have pressed ENTER.

1. You can press ERASE to erase what you've typed on the line.

2. lf you spot the mistake just after you've made it, use the Jeff arrow key to move the

cursor back to the error, retype the line from that point on, and then press ENTER.
(Note that the characters are not erased as you backspace over them.)

Beginner's BASIC

CHAPTER ONE:
The Immediate Mode

i " kbl

3. If you've finished typing a line and you find a mistake near the beginning of the line,
use the Jeft arrow key as above, retype the letter or word, use the right arrow key
to move the cursor back to the end of the line, and then press ENTER. Note

that the right arrow key does not erase as it moves the cursor. If you need to erase a
character or word, use the SPACE BAR to advance the cursor over the character.

OR

You can just disregard the error and press ENTER anyway. The computer may give you
an error message, but it's very forgiving. Simply retype your line — correctly, this time
— and press ENTER again.

The LET Statement

The LET statement is used to assign a value to a variable. Variables are "names”
given to numbers or to phrases containing both numbers and letters (and certain other
characters). Although there are two types of variables, in this section we'll consider
only those variables that give names to numbers. These are called numeric variables.
A numeric variable 1s just a name given to a numeric value.

In the LET statement the word LET is followed by the variable (the name), then an
equals sign, and finally the numeric value you're assigning to the variable. Variables
can be up to 15 characters long, but they are generally kept fairly short for
convenience,

Let's try a few examples. Type in the following lines, pressing ENTER at the end of each
line:

one SPace

LET\ A=5

LET AZ2=8
LET ALPHA=1D

You can think of variables as labeled boxes that hold assigned values.

LET A=5
LET A2=8
3
LET ALPHA=10 m%é |
ALPHA =10

Beginner's BASIC - 13

1

Only one value at a time may be assigned to a given variable, but you can change a
value easily. Type these successive LET statements. pressing ENTER after each line.

"-—-—-.--l—_—l —

The value of A is no longer 5. The 5 has been replaced by the value 8.

Now let's use PRINT statements to check the values we ve entered. Clear the screen:
then type PRINT A and press ENTER.

(N

You typed this line.

T he computer prints
the value of A.

*PRINT A
B =

\G J
Did you notice that this PRINT statement is different from the PRINT statements we

explored earlier? We didn't put quotation marks around the A. That's because we
didn’'t want to print the letter A; we only wanted to see the numeric value assigned to A.

Now, check for the values of A2 and Alpha. (Remember! Press the ENTER key at the
end of each line, even though it isn't shown in the illustration below.)

4 N\

>PRINT A
8

>PRINT AZ2

3

*PRINT ALPHA
10

| J

Beginner's BASIC

CHAPTER ONE:

The Immediate Mode

A single PRINT statement can also be used to print two or more things. Clear the
screen, and try these examples:

Now, try these:

7

SPRINT A2,ALPHA

>LET AL=6

>LET ALBERT=8

r

>PRINT AL;ALBERT
6 , 8

N

When a comma separates
A2 ALPHA — note the
distance between
& and 10.

When a semicolon
separates AL, ALBERT
— note the distance
between 6 and 8.

N\ J

The computer divides the display screen into two horizontal zones. When you use a
comma {,) between two (or more) variables in-a print statement, you are telling the

computer to print the values in different zones. On the other hand, the semicolon (;)
instructs the computer to print the numbers close together.

If you want to print the variable's name along with its value. you can. Remember our
old friends. the quotation marks? Here's where we use them again:

The name is
printed with
the value.

(N\

>LET BILL=Z5

>PRINT "BILL=";BILL

Semicolon keeps
PRINT items
close together.

0

BILL= 25
\> J

(Did you remember to press ENTER at the end of each line?)

Beginner's BASIC

15

1

qu that you've learned to assign values to variables, what can you do with this new
skill? Let's find out. First, use the CALL CLEAR statement to clear the screen.

Atter variables have been assigned values by LET statements. the PRINT statement
may be used to perform arithmetic operations on the variables and to display the

results.
e Y

>LET W=4

>LET T=8

PPRINT W+T,;T-W

| N S

You can also perform multiplication and division by using an asterisk (*) to multiply
and a slash mark (/) to divide. For example,

N

>PRINT WHT;T/W
32 2

\ R /
Note: Iq TI BASIC, the LET statement is not the only way to assign a numeric value
to a vanable. Your computer will also accept the assignment without the word LET:

7

>JACK=3

>JILL=S

PRINT JACK*JILL
15

\ = /

16 Beginner's BASIC

el ekl L I ekl i ——

CHAPTER ONE:
The Immediate Mode

i P —
_

In other words, the word LET is optional in TI BASIC; your computer will accept the
assignment either way.

Experiment!

Try other variable names and numeric values, and experiment with using the comma
and semicolon to separate variables in the PRINT statement. Try adding, subtracting,
multiplying, and dividing these variables in PRINT statements. Discover what
mistakes will cause error messages.

The CALL SOUND Statement

Here is another of the CALL statements. (Remember the CALL CLEAR statement

we discussed earlier? We hope you've been using it occasionally to "erase” the display
screen.)

Using the CALL SOUND statement, you can produce sounds over a range of
frequencies from 110 to more than 44,000 Hertz. One Hertz (abbreviated Hz) is equal
to one cycle per second. Thus the sounds you generate with your computer can vary

from 110 cycles per second (A below low C on a piano keyboard) to over 44,000 (well
above human hearing limits).

 You can also control the duration and the volume of the sound. The time the sound
lasts (duration) ranges from 1 to 4250 milliseconds. One thousand (1000) milliseconds
equal one second, so the duration range could be stated as being from 0.001 to 4.250
seconds. Volume selections are scaled from 0 to 30. Zero and one produce the same
sound level and are the loudest. Thirty produces the quietest tone.

This example shows how to use the CALL SOUND statement:

no spaces here

Be sure you
have a space

between CALL
and SOUND.

Press ENTER here.

N\

CALL: SOUNDC1000%440,2)

Loudness
(volume)

Duration in

uri Tone frequency
milliseconds

(Hz)

Notice that the three values that control the sound are enclosed in parentheses
following the words CALL SOUND. This example will produce a note of 440 Hz (A
above middle C) with a duration of 1000 milliseconds (one second) and a volume of 2
(quite loud!).

Try the example now to hear the tone quality of your computer.

Beginner's BASIC) 17

1

You can play more than one tone in a single CALL SOUND statement. Let's add a
second note and see how this enhances the sound.

C

Second tone ("E")
and loudness

First tone
frequency ("A")

>CALL SOUND(1000,440,2,659,2)

\C— J

Note: Because the statement above contains exactly 28 characters (letters, spaces, and
symbols), the cursor will move down to the next line as soon as you type the close
parenthesis symbol. Be sure that you remember to press ENTER! (Notice that the
prompting symbol stays at the beginning of your line.)

You only had to type the duration value (the number code that determines how long the
sounds last) one time — at the beginning of the CALL SOUND instruction enclosed in
parentheses. Both of the sounds must last for the same length of time. On the other

hand, you can vary the loudness values. What would happen if you typed 5, instead of
2, for the second note’s loudness? Try it!

Next, try a three-note chord:

4 3\

/[/

>CALL SOUND(1000,440,2,659,2,
880, 2)
Fd

Ol)

(Part of this CALL SOUND statement extends to the second line, since TI BASIC

uses only 28 printing positions per line. This gives large, clear, readable text on the
screen.) |

You can produce up to three tones and one “noise” simultaneously over a given time
duration. Noise is rather hard to define in words: it's best for you to experiment and
hear for yourself. Remember, one person's "noise” may be another person's "music’!

18 Beginner's BASIC

il
A - kol e s

CHAPTER ONE:
The Immediate Mode

To produce noise instead of tones, replace the tone frequency with a negative integer
from -1 to -8.

Try these examples:

Same duration and
loudness as before.

>CALL SDUND(1000,-2,2)

“"Noise' instead
of tones.

>CALL SOUND(1000,440,2,659,2,
880,2,-3,2)

AV
\}D

You can also use variables, rather than actual#alues;ifi the CALL SOUND
statement. For example, let’s use these variables:.

T = time (duration)

V = volume (loudness)

C = 262 (Middle C on the piano)

E = 330 (E)

G = 392 (G)

‘So type in the following LET statements:

LET T=1000
LET v=1
LET (=262
LET E=330
LET G=392

Now you're ready for the CALL SOUND statement. Type:

caALL SOUNDCT,C,V,E, V,G,V)
and press ENTER.

gginner-’s BASIC 19

1

Experiment!

Experiment with other values for duration, tone, volume. and noise within the required
range of values for each. (A list of musical note frequencies is included in Appendix A))
You'll soon be able to create imaginative sound effects for use in your future programs.
The Immediate Mode is quite helpful for this type of experimentation.

Graphics (CALL VCHAR and CALL HCHAR)

One of the most exciting things you can do with your computer 1s to create colorful
designs right on the screen. With your computer's graphic capability, you can make a
design, draw a picture, create a gameboard, and so on.

In this chapter, we'll introduce you to two simple, yet important, graphics statements.
CALL VCHAR and CALL HCHAR are used to position a character or draw a line of
characters on the screen. Later chapters will show you how to choose and combine
colors and how to use graphics statements in programs.

Earlier we mentioned that TI BASIC uses 28 printing positions on each line. For
graphics, however, the computer allows 32 character positions on each line. Think of
the screen as a "grid” of square blocks made up of 32 columns and 24 rows.

COLUMNS
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1 3 S 7 9 1113 15 17 19 21 23 25 27 29 3i

! L * HEEEN

8 '-‘.}i_._.hn

10
11

ROWS 12
13

14
15
16
17
18
19
20
21
22
23

24 . ;

m—

Fach square on the grid is identified by two values (called coordinates) — a row number
and a column number. For example, the coordinates 5,7 mean the fifth row and the
seventh column, and the coordinates 10,11 mean the tenth row and the eleventh column.

20 Beginner's BASIC

CHAPTER ONE:
The immediate Mode

I_\ ﬁIL

. l. J, - Jijl

10,11 15 11 —1—1 - g —
16 B 1 l_. |

The first thing we want to try is to place a character in a particular square on the
screen. For the time being let’s consider that a character is any one of the 26 letters of
the alphabet, the numbers 0 through 9, and certain other symbols, like the asterisk (*),
the plus and minus signs (+ and -), and the slash (/). (Later on, in Chapter 5, you'l
learn more about how to define other characters for graphics.) Each character 1s
assigned an identifying numeric value of its own, and the values for the full character
set are given in Appendix B. O

By using either CALLL VCHAR or CALL HCHAR, naming the two coordinates (row

and column), and identifying a character by its numeric value, you can place the
character in any spot you choose. Here’s the form used for these two statements:

Open parenthesis

Space required
Close parenthesis

CALL VCHAR(12,17,42)

Row

number Character code

(42="*)

Try this example, and you'll see an asterisk (*) appear near the center of the screen.

Beginner's BASIC 21

.Tl

Let's try a few more examples. First, clear the screen by typing CALL CLEAR and
pressing ENTER. Now type: |

Check your typing and
then press ENTER.

CALL VCHAR(15,10,67) —

(Don't forget the parentheses in the statement — they're important!)

4 N\

The character
you identified

T he numeric value
for the letter C

Row ~ Column
\ number

number

»CALL VCHAR{(15,10,67)

U AN

Now try the CALL HCHAR statement.

The CALL VCHAR

statement you
used earlier.

When you pressed
ENTER, 2 '"'C"
appeared in row
16, column 10.

You just
typed this.

>CALL VCHAR(15,10,67)

- >CALL HCHAR(16,10,67)

e /

The order for entering the row number, the column number, and the character's
numeric value is the same for both CALL VCHAR and CALL HCHAR. and they both
do the same thing when you are positioning a single character on the screen.

If yoti want to draw a line of characters, however, you'll find that there is a distinct
difference between the functions of the two statements. CALL VCHAR causes a
vertical column of characters to appear, while CALL HCHAR draws a horizontal row
of characters. To draw a line with either statement, we must add a fourth numeric
value to the statement: the number of repetitions we want. This number controls the
“length” of the line.

22 ' Beginner's BASIC

CHAPTER ONE:
The Immediate Mode

Clear the screen (type CALL CLEAR and press ENTER), and let’s try a vertical line.

Type this:

starting
row number

numeric value
fﬂr e Vl‘ |

NpCTS

CALL VCHAR(11,10,86,8)

mumber of repetitions

Check for errors, and then press ENTER. The screen will look like this:

7

>0

N\

Lo A~ o o o i

>CALL VCHAR(11,10,86,8)

)

J

As we mentioned earlier, there are 24 horizontal rows of character blocks on the "grid”
of the screen. Therefore, you can only draw a vertical line (column) that 1s 24
characters long. What will happen, then, if you enter a repeat value greater than 24?7

Let's try it.

Clear the screen and then type in:

CALL VCHAR(1,10,86,50)

When you press ENTER, the screen should show:

/ vvy \
V¥

We've asked for 50
repetitions this time.

vV After column 10
v is filled in, the
Y printing continues
Y at the fop of the
vV next column and
vy - SO On.
Your statement ey
1s partially vV
replaced by VvV
the /lines. VvV
>CALL VCVVR(1,10,86,50)
- VV
> j
Beginner's BASIC 23

1

A . -

(Note: Graphics in the Immediate Mode only are affected by the scrolling of the screen.

That's why you don't actually see all 50 of the V's above — some have already scrolled
off the top of the screen.)

We also mentioned earlier that there are 32 vertical columns: therefore, it would seem
that we could draw a horizontal line 32 characters long. However, some display
screens may “clip off” the first two and last two columns (columns 1 and 2. 31 and 32).
The only way to know what your screen shows is to experiment. 5o let's clear the
screen and try drawing some horizontal lines.

numeric value

Type in:
M for "H"

CALL HCHAR(17,1,72,50)

Number of
Row repetitions
number

)

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHRH
HHHHHHHHHHHHHHHHHH

>CALL HCHARC17,1,72,50)

h >D - * H

Again the printing filled one line (horizontal. this time) and then started over on the
next line. Count the H's. If you see only 28 in the full line. columns 1 and 2, 31 and 32
do not show on your screen, and you should use only columns 3 through 30 to avoid
losing part of your graphic design.

So far, we've entered actual numeric values in our statements. However, you can use

the LET statement to assign numeric values to variables and then use the variables in

the CALL VCHAR and CALL HCHAR statements. Try this:
LET A=5
LET B=12
LET C=67
CALL CLEAR
CALL VCHARCA,B,C)

Where did the "C" appear on the screen?

24 ' Beginner’s BASIC

CHAPTER ONE.:
The Immediate Mode

Experiment!

For a big finale let’s fill the screen with asterisks (numeric code 42). Type these lines,
pressing ENTER at the end ot each line.

24 rows X 32 cofumns
=768 positions.

CALL CLEAR J/
CALL HCHAR(1,1,42,768)

Continue to experiment on your own, trying different characters (see Appendix B} and
positions. For example, can you fill the screen with your first-name initial?

SUMMARY OF CHAPTER 1

This concludes our “tour’ in the Immediate Mode, and you've been introduced to these
BASIC statements:

PRINT CALL SOUND
CALL CLEAR CALL VCHAR
LET CALL HCHAR

~ This chapter has given you a glimpse of T1 BASIC and your computer's capabilities.
Now, you're ready to get into the real fun — learming to program your computer.

Beginner's BASIC 25

Twg [ER Simple

Programming

2

L T
. . . P T i el

In Chapter 1, you used Immediate Mode statements to instruct the computer to do one

thing at a time. Each statement was performed immediately after you pressed the
ENTER key.

You typed PRINT "HI THERE!" and pressed ENTER.
The computer printed HI THERE!

Now you're ready to discuss programs, sets of statements which are not done

immediately. Instead, they are stored in the computer’s memory, waiting for you to
mnstruct the computer to perform them.

A Printing Program

Let’s begin by using an old familiar friend, the PRINT statement, in a program. First
type the word NEW and press ENTER.

7

NEW clears the screen,

prepares the memories
for your program,
and lets you know

the computer is ready!

Tl BASIC READY

N\ J

Now type the following program, pressing ENTER at the end of each program line:

10f;RINT/;ARE YOU READY" |
20 PRINT "TO LEARN BASIC?". i one space
30 END

(As you type the program, notice the small “prompting” character that appears just to
the left of the printing area. This symbol marks the beginning of each program line you

type.)

In computer terminology, you have just “entered” a program. Nothing to it! Check the
program now to see it there are any typing mistakes. If there are, just retype the line
correctly, including the number at the beginning of the line, right there at the bottom of
the screen. Then press ENTER. The computer will automatically replace the old line
with the new, correct one. |

When you're ready to see the program in action, type CALL CLEAR and press ENTER.
The screen will be cleared, but your program won't be erased — it's stored in the
computer's memory!

Now type RUN and press ENTER again.

26 Beginner's BASIC

CHAPTER TWO:
Simple Programming

N

>RUN
ARE YOU READY
TO LEARN BASI(C?

*% DONE *#*

| J

Want to "run” the program again? Type RUN again and press ENTER.

4 N\

>RUN
ARE YOU READY
TO LEARN BASIC?

% DONE **

>RUN

ARE YDU READY
TO LEARN BASI(C?

xx DONE #*%

| = J

Each time you type RUN and press ENTER, the computer begins at the first statement
and follows your instructions in order until it reaches the last statement. END means
just what 1t says: the end, stop!

= [}

Did you notice that the display screen briefly tﬁrned green while the program was
running? The screen always turns green while a program is being executed and then
changes back to its normal blue color when the program 1s finished.

Program Structure

Now that you've had a bit of programming experience, let's review some of the things
you did when you entered the program above. To refresh your memory, we’ll get the
program back on the screen.

Beginner's BASIC

27

First, type CALL CLEAR (without a line number) and press ENTER to clear the screen.
Now type LIST and press ENTER again:

7

LIST lists
what's In
memory!

2LIST

10 PRINT "ARE YOU READY
20 PRINT "TO LEARN BASIC?"

20 END
\:’f _/

The program above consists of three statements or “lines.” Each statement begins with
a line number, which serves two important functions:

1. It tells the computer nof to perform the statement immediately, but to
store it in memory when you press ENTER.

2. It establishes the order in which the statements will be done in the
program.

As in the Immediate Mode, you pressed ENTER when you finished typing each program
line. Pressing ENTER defines the end of the program line, just as the line number
identifies the beginning of the line. It is also the computer's cue to store the line in its

memory. Pressing ENTER at the end of each program line is essential — without it, your
line will not be correctly stored by the computer.

10 PRINT "ARE YOU READY"
=4 20 PRINT "TO LEARN BASIC?"
30 END » |

T he computer performs
the program
in this order.

Also, you may be wondering why we numbered the lines in increments of ten
(10,20,30,etc.). Well, we could just as easily have numbered them 1,2,3. By using
increments of ten, however, or other spreads like 100,200,300, etc., we can go back
and insert new lines if we want to expand the existing program, and we don't have to
retype the whole program! (We'll cover this clever trick when we discuss editing a
program.)

Commands—NEW, RUN, LIST

You've already used these commands, but you might like a little more definition of
commands in general and these three in particular at this point.

Commands are different from statements. They are not part of the program, and they
do not have line numbers. Instead, they instruct the computer to do specific tasks:

NEW —Instructs the computer to erase the program in its memory. (It also

clears the screen, but don’t confuse it with CALL CLEAR, which
only clears the screen.)

28 i - T T T

Beginner’'s BASIC

CHAPTER TWO:
Simple Programming

RUN -—Instructs the computer to perform (or "run”) the program in its
memory.

LIST —Instructs the computer to show (or “list”) on the screen the program
that 1s stored in its memory.

As you saw earlier, we use NEW only when we want to prepare the computer for
storing a new program. Be careful in using NEW; when in doubt, use LIST first, so
that you can see the current program before you erase it.

LIST is a powerful aid for correcting or changing a program. It lets you get the
program right on the screen in front of you, where you can check for and correct any
errors 1n your program.

And y;)u already know what RUN will do! It's the magic word that makes 1t all happen.

A Numerical Program

In addition to its printing or "message” capabilities, your computer also has a great
deal of "number power.” You experimented with addition, subtraction, multiplication,
and division in the Immediate Mode in Chapter 1. Now it's time to try a mathematical
problem-solving program. Just to refresh your memory, review the keys that are used
to pertform the four basic mathematical operations:

SHIFT + for addition

SHIFT — for subtraction

SHIFT * for multiplication
/ for division

Notice that +, — , and %
are the upper symbols

above =, /, and 8.

As an example, we can easily construct a program that will convert kilograms to
pounds (1 kilogram=2.2 pounds). The first thing we’ll do is to clear the display and the
computer's memories by typing NEW and pregsinig ENTER. We'll use the variables K
(for kilograms) and P (for pounds) to help us remember which value is which, and we'll
begin our program by assigning values to these variables.

Type: 10 LeT k=50~
20 LET P=2.2*K~— Press ENTER.

In this case, we are trying to find out how many pounds are equal to 50 kilograms, so
we have defined K as 50. Notice that we have defined P as 2.2 XK. If we stopped here
.and ran the program at this point, the computer would perform the conversion, but it
wouldn't show us the answer! So type in:

50 PRINT P

and press ENTER. Now, have we told the computer everything it needs to do? We've told
1t the number of kilograms we want converted to pounds, we've told it how to make
the conversion, and we've told it to show us the answer. Yes, that's all we need, so

type:
40 END

and press ENTER. Your program should look like this:

Beginner's BASIC 29

BASIC READY

LET K=50
LET P=2.2*K
PRINT P

END

Before you run the program, let's mention two features of TI BASIC that may be
shightly different from other versions of the language. First, a prompting character (to
the left of the printing field on the screen) marks the start of every program line you
type. You'll see its function more clearly when you begin to enter program lines that

are longer than a single screen line. Second, the END statement in a program is

optional in TI BASIC. Since it is a conventional part of BASIC, however, we'll use it
in this example.

Now check the program for typographical errors. If there are any, retype the line
correctly, including the line number, and press ENTER. When you're ready, type RUN

and press ENTER.,
4 N

TI BASIC READY

>10 LET K=50
>20 LET P=2.2*K
>30 PRINT P

>40 END

>RUN

~ 110

the answer
*% DONE %+

N\ J
Your answer is on the screen: 50 kilograms is equal to 110 pounds. Suppose, however,

that we want to find the number of pounds that are equivalent to 60 kilograms. Easy!
We can do it by changing only one line — line 10. Type:

10 LET K=60

and press ENTER. Now type RUN and press ENTER again.

30 Beginner’s BASIC

CHAPTER TWO:
Simple Programming

/ >10 LET K=50 \
>20 LET P=2.2%K

>30 PRINT P

>40 END
your first answer, >RUN
P=2.2X50 - 110
xx DONE

>10 LET K=60

>RUN
your second answer, - 132
P=22%X60
*x DONE #w

| - /)

What you have just done is called "editing” a program. The ability to edit or change a
program without retyping the whole thing is one you'll come to value highly as your
programming skills grow. To give you an idea of the great flexibility editing adds to
programming, let's experiment with a few more changes in the present program.

Editing the Program

Adding Program Lines

We mentioned earlier that the reason we number program lines in increments of 10
(instead of 1,2,3, etc.) 1s to allow program lines to be added without retyping the whole

program. Before we experiment with a few examples, let’s clear the screen and recall
our prograrm.

Type: CALL CLEAR -
LIST

4 N\

>LIST

10 LET K=60

20 LET P=2.2*%K
30 PRINT P

40 END

\ >0 /
(Notice that the prompting character doesn't appear to the left of lines printed by the
computer — only the lines you type are marked!)

We might want to add a CALL CLEAR statement to the program, so that we won't
have to keep clearing the screen from the keyboard each time we “run” the program.

Type:
5> CALL CLEAR -

Beginner's BASIC 31

Gaam il
— F— ik e . kil

Now list the program again to see the new line (type LIST and press ENTER).

C —\

The old program >LIST

10 LET K=60

20 LET P=2.2#K
20 SRINT P Added line

40 END
>5 CALL CLEAR -
>LIST

5 CALL CLEAR

T he new program 10 LET K=60

20 LET P=2.2%*K
30 PRINT P

40 END

J

Compare the two programs on the screen, and notice that the computer has

automatically placed the new line in its proper order. Run the program again to see the
effect of the added line.

Now let's add another line that will help to point out our answer. Type:

| 2f PRINT ""THE ANSWER IS:"
and press ENTER. When you run the program again, you'll see this:

4 N\

THE ANSWER 1IS5:
132

*% DONE **

\T

Removing Program Lines

)

Quite often it’s necessary to remove a line or lines from a program. Deleting a program
line 1s a very simple procedure.

The program we have stored right now doesn't really have any lines we want to delete.
Just for practice, however, let’'s remove line 5.

First, clear the screen and list the program as it is now. Line 5 is the first line of the
program, a CALL CLEAR statement. To remove it, simply type 5 and press ENTER.

Then list the program again. Presto! Line 5 is gone!

32 Begnner's BASIC

CHAPTER TWO:
Simple Programming

(oo N

5 CALL CLEAR

10 LET K=60

20 LET P=2.2%*K

27 PRINT "THE ANSWER IS:"
30 PRINT P

40 END
»5 =
>LIST

10 LET K=60

20 LET P=2.2%K
New program 27 PRINT "THE ANSWER IS:"
30 PRINT P

40 END JJ//

That's all there is to it. To remove a line, type the line number and press ENTER. The
computer will then delete the line from program memory.

Old program

Here's where we
deleted line 5.

Since we really need line 5 in this program, let's reenter it. Type

5 CALL CLEAR
and press ENTER.

The INPUT Statement

You've already seen that you can easily change the value of K by simply retyping line

10 to assign a new value. But suppose you had many values for K, and you wanted to
find the equivalent value of P for each one. It would get rather tiresome to retype
line 10 each time.

There is a better way to edit line 10. An INPUT statement causes the computer to
type a question mark and stop, waiting for you to type in a value and press ENTER. The

value you enter is then assigned to the variable contained in the INPUT statement.
For example, type

10 INPUT K
and press ENTER. Now run the program again.

7

-::L . . . , r L

N

Eeginner’s BASIC 33

s A i e

The question mark and cursor show you that the computer is waiting for you to "input”
a value for K. This time we'll let K= 70, so type 70 and press ENTER. The computer

prints your answer:

7 70
THE ANSWER 1I5:
154

% DONE **
\}D J
Now you can run the program as many times as you like, changing the value of K each

time the computer prints a question mark and stops. Try the program several times
with different values for K.

The INPUT statement can also be used to print a “prompting” message (instead of a

question mark) that helps you remember what value the computer is asking for.
- Change line 10 again by typing

10 INPUT "KILOGRAMS?":K

and pressing ENTER. Now run the program again. First the program asks:

KILOGRAMS?
Let's let K=50 this time. Type 50 and press ENTER.

//’F

_”““\\

KILOGRAMS?50

THE ANSMWER 1S:
110

% DONE *=*

. ___J

Beginner's BASIC

CHAPTER TWO:
Simple Programming

By now, your program looks like this:

5 CALL CLEAR

10 INPUT "KILOGRAMS?'":K
20 LET P=2.2%*K

27 PRINT "“THE ANSWER IS:"
30 PRINT P

40 END

It you'd like, you can list it on the screen at this time and review the changes you've
made so far. When you're ready, we’'ll go on to look at one more change.

String Variables

You already know what numeric variables are: numeric values assigned to names
(variables), like "K =50." A string variable is a combination of characters (letters and
numbers, or other symbols) assigned to a name. String variables differ from numeric
variables in these ways:
1. The variable name must end with a §.
2. The alphanumeric characters in the “string” must be enclosed in
quotation marks.
3. "Strings” of numbers cannot have arithmetic operations performed with
or upon them. - j

Let’s try a couple of examples in the Immediate Mode before changing the program.
(Note that this does not interfere with the program stored in memory!)

Clear the screen (CALL CLEAR) and enter this:
LET N$="JACK SPRAT"

7

PRINT N$

"“\\

>LET N$="JACK SPRAT"

>PRINT NS$
JACK SPRAT

| J

one space
here

Now type:

LET wWw$=""ATE NO FAT."

rd
PRINT N$;W$

Beginner’s BASIC | 35

>LET N$="JACK SPRAT"

>PRINT N¥
JACK SPRAT

>LET W3=" ATE NO FAT."

>PRINT NS;uW$
JACK SPRAT ATE NO FAT.

Q j
Let's make your conversion program a little more personal by using a string variable.
Type these two lines:

8 INPUT "NAME, PLEASE?":BS$
P
26 PRINT "DK,\.";B$

leave cne space

(Clear the screen and list the program again so you can see how the new lines fit in.)

When you run the program this time, the two INPUT statements will stop the program
twice:

T he computer asks You type in

NAME, PLEASE?O Your name and then press ENTER.

KILOGRAMS®?O The number of kilograms and then press
ENTER.

Let's try it. Type RUN and press ENTER.

/'-

N

\ NAME, PLEASE?D /

We'll type in Alpha (that's a nice name) and press ENTER. Then we'll see

ik il il o

36 ' Beginner's BASIC

CHAPTER TWO:
Simple Programming

N

NAME, PLEASE?ALPHA
\ KILOGRAMS 2?0 /

Again let's type 70 for the number of kilograms. Press ENTER again and you'll see:

4 3\

NAME, PLEASE?ALPHA
KILOGRAMS?70
OK,ALPHA

THE ANSWER IS:

154

x%* DONE *=*
e J

String variables can save a lot of typing when you're using a message (a name or a
prompting statement, for example) more thanﬁoﬂn_(_:g; i1} 4 program.

Now list your program and review these latest changes. We've given you a lot of
information, and we've given it pretty quickly. This would be a good time for you to do
a little experimenting on your own, trying out some of the things you've learned.

Experiment!

Want a challenge? Try writing another conversion program — one that converts a
temperature in degrees Fahrenheit (F) to degrees Celsius (C). The conversion
‘formula 1s

Degrees C=5/9 (Degrees F —32)

Don't forget to use INPUT statements and CALL CLEAR at appropriate places! Hint:
Let C=5/9%F —32) — the parentheses must be there in your program!

Beginner's BASIC 37

2

The GO TO Statement

So far, you've been developing programs that operate from beginning to end in a
straight sequential order. There are many situations, however, in which you want to
interrupt this orderly flow of operation. Look at the following program, but don't enter

it yet: 10 CALL CLEAR
20 INPUT K
30 PRINT K

40 PRINT

50 K=K+1

60 GO TO 30
Here we “send” the program back to line 30 by using a GO TO statement in line 60.
The GO TO statement causes the actions performed by lines 30, 40, and 50 to be
repeated over and over again, setting up what’s called a Joop. (Notice that we don't use
an END statement. That’s because the program will never get beyond line 60! It
won't stop until you tell it to by pressing CLEAR. This is called an "endless loop.”)

Let’s enter the program now. First, type NEW and press ENTER to erase the computer's

memory, and then INes:
y then type these lines 10 CALL CLEAR

20 INPUT K
30 PRINT K
40 PRINT
50 K=K+1
60 GO0 TO 30

Before you run the program, we'll examine a diagram called a flowchart, explaining
how the program works.

Note that LET Is optional

Program Line Operation
10 CALL CLEAR I_ Clears the screen ‘
20 INPUT K Stops and waits for

initial value of K

] |

| ——— .

30 PRINT K Prints the current
value of K
40 PRINT Prints nothing; just

_ gives you a blank line
50 K=K+1 Reassigns a new value to
| K (the old value + 1)
60 GO TO 30 Transfers the program
back to line 30

38 Beginner's BASIC

i

CHAPTER TWO:
Simple Programming

Now run the program, putting in 1 for the beginning value of K. Watch how quickly the
computer counts — almost too fast to follow! That's why we added the blank line (line
40). This line spaces out the numbers a bit so that you can see them better.

Let the computer count as long as you want to. When you are ready to stop the
program, press CLEAR. You'll see ¥ BREAKPOINT AT (#) on the screen, indicating
where the program stopped. Run the program as many times as you want, using
whatever number you wish as the initial value for K (50,100,500,etc.).

GO TO can be typed as GOTO in your program. The computer isn’t fussy about that.

If you try to send the program to a non-existent line number, however, you'll get an
error message.

Suppose, for example, we type in
60 GO0 TO 25

and press ENTER. Try it, run the program, and see what happens! You'll see this error
message:

* BAD LINE NUMBER IN 60

So correct the line by typing and entering

60 60 TO 30

and run the program again.

Can we change the program to make it count by 2's, or 5's? You bet we can! By making
one program change, let's make the computer count by 2's: Type:

50 K=K+2

and press ENTER. Now run the program, typing in-2 when the computer asks for the
starting value of K. 1

Experiment with the program for a while, making it count by 3's, 5's, 10’s, etc.

A GO TO Loop With CALL SOUND

GO TO loops have many applications, of course, beyond simple counting. We could use
a loop, for example, to practice a musical scale.

. Before we start the program, you might want to review the CALL SOUND section in
Chapter 1 (see page 17) to help you remember how the CALL SOUND statement

performs in the Immediate Mode. (It behaves essentially the same way in a program.)

When you're ready to start the program, type NEW and press ENTER. Qur first task in
the program will be to assign values to the variables we’ll use. Type these lines:

Beginner's BASIC 39

10 LET T=300
20 LET v=2

30 €=262
40 D=294
>0 E=330

1|:V?l' ﬁ)r ‘1VGfume].

This is 60 F=349 frequency m‘f‘ middie C
a C-scale. 70 6=392 on the piano —
80 A=440 note that the
90 B=494 word LET is optional.

“HIC” for “high C”

100 HIC=523 ~——

Now you're ready for the CALL SOUND statements to tell the computer when to play
each note:

200 CALL SOUND(T,C,V)
300 CALL SOUNDC(T,D,V)
400 CALL SOUND(T,E,V)
500 CALL SOUNDCT,F,V)
600 CALL SOUND(T,G,V)
700 CALL SOUND(T,A,V)
800 CALL SOUND(T,B,V)
900 CALL SOUND(T,HIC,V)

Finally, set up the loop with a GO TO statement:

950 GOTO 200

Check the program now for errors, and correct any that you hind. When everything is
correct, run the program. Again, this is an endless loop. (Notice that the screen

background stays light green until you stop the program.).You'll have to press CLEAR
to stop it.

Experiment!

Practice building other musical scales and patterns, using the note frequencies listed in
Appendix A.

A GO TO Loop with CALL COLOR

Up to now, you've seen only three colors in BASIC on your display screen. (Maybe
you've only noticed two — but there really are three.) First, while youre entering a
program, the screen background is cyan (a light blue color), and the characters (letters
and numbers) that you're typing are black. Then, while the program is running, the

screen becomes a light green color. When the program stops, the screen returns to
cyan with black characters.

40 Eeginner’s BASIC

CHAPTER TWO:
Simple Programming

These are only three of the sixteen colors available with your computer, and the way
you control the colors in a program is through the CALL COLOR statement. Let's try
a program with a CALL COILLOR statement and a slightly different GO TO loop. Clear
your old program from the computer’s memory (NEW; press ENTER), and type these
lines:

10 CALL CLEAR
20 CALL COLOR(2,7,12)

30 CALL HCHAR(12,3,42,28)
40 6O TO 40 -

A GO TO loop that
“goes to’’ itself!

Now run the program, and the screen should look like this:

4 N

28 dark red asterisks
on a yellow
backg_mund

T he rest of the screen
1s light green.

N\ /)

Our program prints twenty-eight asterisks across the screen. The asterisks are dark
red. In the area where the asterisks are displayed, the screen color 1s a light yellow.
The rest of the screen remains light green.

(Line 40 puts your program into a holding pattern that keeps your graphic on the

screen. When you're ready to stop the progran:, press CLEAR to break the loop.
Remember, you can run the program as many times as you like.)

A CALL COLOR statement requires three numbers, enclosed in parentheses and
separated by commas:

20 CALL COLOR(Z2,7,12)

The first number after the open parenthesis symbol is a character set number. As we
‘mentioned in Chapter 1, each character (letters, numbers, and symbols) that prints on
" the screen has its own numeric code, ranging from 32 through 127 for a total of ninety-
six characters. These characters are organized by the computer into twelve sets with
eight characters in each:

Beginner's BASIC 41

L vl - i, . iy

Set #1 Set #2 Set 83 Set #4

Code Character Code Character Code Character Code Character
32 (space) 40 { 48 0 56 8
33 ! 41) 49 1 57 g
34 " 42 * 50 2 58 :
35 H# 43 + 51 3 59 ,
36 b 44 . 52 4 60 <
37 % 45 . 53 5 61 =
38 & 46 + 54 6 62 =
39 ' 47 / 55 7 63 7
Set #5 Set #6 Set #7 Set #8
Code Character Code Character Code Character Code Character
64 @ 72 H 80 P 88 X
65 A 73 i 81 Q 89 Y
66 B 74] 82 R 90 Z
67 C 75 K 83 S | 1
68 D, 76 L 84 T g2 N
69 E 77 M 85 U 03 |
70 F 78 N 86 V 04 A
71 G 70 O 87 W 05 —
Set #9 Set #10 Set #11 Set #12
Code Character Code Character Code Character Code Character
06) 104 H 112 P 120 X
97 A 105 I 113 0 121 Y
08 B 106] 114 R 122 Z
90 C 107 K 115 s 123 {
100 D 108 L 116 T 124 :
101 E 109 M 117 U 125)
102 F 110 N 118 v 126)
103 G 111 8] 119 w 127 DEL

The set number you use in a CALL COLOR statement, then, is determined by the
character you want to print. (And what happens if you want to print characters from
different sets in the same colors? We'll discuss that in a few minutes.)

The second and third numbers in parentheses determine the colors used in your
graphic. Each of the sixteen colors has its own numeric code.

Color Code # Color Code
Transparent 1 Medium Red 0
Black 2 Light Red 10
Medium Green 3 Dark Yellow 11
Light Green 4 Light Yellow 12
Dark Blue 5 Dark Green 13
- Light Blue 6 Magenta 14
* Dark Red 7 Gray 15
Cyan 8 White 16

The second number sets the foreground color; that is, the color of the character you
designate. The third number sets the background color — the color of the block or
square i1n which the character is printed.

20 CALL COLORC(2,7,12)

7

47 Beginner’s BAS&C

Bachkground color —
Light Yellow

Foreground color —
Dark Red

CHAPTER TWO:
Simple Programming

The next line in your program is

30 CALL HCHAR(12,3,42,28)

number of repetitions

numeric code for *

(If you need to review the CALL HCHAR examples in Chapter 1, this would be a good
time to do it.)

Now you know why we indicated Set #2 in our CALL COLOR statement! The
asterisk (code number 42) 1s a part of Set 2.

Line 40 of the program is a GO TO statement that "goes to” itself. It keeps the
computer “1dling” until you press CLEAR. When you do, the program stops, and the
screen changes back to its normal color. All the reds, yellows, and greens disappear.

Now let's change line 20 of the program to see some new colors. Stop the program, 1f
it's still running, and type this:

20 CALL CcOLOR(Z2,12, 5)

same set
number

Press ENTER to store your new line, and list the program (LIST; press ENTER) to review
your prograim.

When you're ready, run the program. You'll see 28 light yellow asterisks against a dark
blue background this time.

You could, of course, continue to experiment by stoppiag the program, entering a new
line 20 and running the modified program over and over. Don't. Instead, save wear and
tear on your fingers by entering the following program which allows you to experiment

more easily. With this program, you enter foreground (F) and background (B) colors in
response to INPUT statements.

INPUT color codes.

NE W

10 CALL CLEAR

20 INPUT "FOREGROUND?":F
30 INPUT "BACKGROUND?":B
40 CALL COLOR(2,F,B)—
50 CALL HCHAR(12,3,42,28)
60 GO TO 60

Set colors based on
INPUT color codes.

You know what
this does.

Beginner's BASIC 43

When the computer asks you for the “foreground” and “background” colors you want to
use, you can type in any color code from I through /6. Remember, however, that color
number 1 is transparent and color 4 is the screen color when the program is running.
These may not be satisfactory in this program. {(Also, color number 2, black, can cause

display distortion on some screens.) Here are some combinations you might find
interesting:

Foreground Background
Color Color
3 16
2 11
5 16
2 14
7 15
7 12
13 12
14 16

OK, have you checked your program for typographical errors? Have you chosen the
foreground and background colors you want to use first? Then run the program.

After you've experimented with different color combinations, you might enjoy trying
some other characters, as well. You can do this by retyping line 50, substituting a
different character code number for the "42" (asterisk code number). Just remember, if

you select a character from any set other than #2, you'll also have to change line 40 to
reflect the new set number. For example:

40 CALL COLOR(4,7,12)
50 CALL HCHAR(12,3,61,28)

repetitions

numeric code
for = (set #4)

Earlier we brought up this subject: What happens if you want to print characters from
different sets, all in the same color? One way to do this is to include in your program
twelve CALL COLOR statements — one for each set of characters. You'll have to do

quite a bit of typing, but you'll be free to use any of the characters you choose. Try the
following program, which covers eight character sets.

44 Beginner's BASIC

CHAPTER TWO:
Simple Programming

NEW
100
110
120
130
140
150
160
170
180
190
200

CALL
CALL
CALL
CALL
CALL
CALL
CALL

CLEAR S
COLORC1,6,16)
COLOR(2,6,16)
COLOR(3,6,16)
COLOR(4,6,16)
COLOR(5,6,16)
COLOR(6,6,16)
CALL COLOR(7,6,16)
CALL COLOR(S8,6,16)

PRINT "‘,—/
GOTO 200

Light blue

You decide
what to do here!

Use any message you want in line 190; just remember to enclose it in quotation marks.
With these CALL COLOR statements you have told the computer to print any of the
sixty-four characters in light blue (6) on a white (16) background.

Experiment!

Put a little COLOR in your life! Try some experiments of your own with different

colors and character sets. For example, what happens if you enter the same color code
for foreground and background? Try it!

Error Messages

We haven't talked much in this chapter about error messages because, for the most
part, the ones you'd run into in these program examples are the same as — or very
similar to — those you learned about in Chapter 1. For example, a spelling or typing
error in NEW, RUN, or LIST will cause the computer to return an “INCORRECT
STATEMENT" message as soon as you press ENTER. |

Errors in program statements may be detected by the computer either when the line 1s
entered or when the program is run. Here is a sample of error conditions and messages
you might see when you enter an incorrect line:

Condition Message
Omitting a quotation mark:

10 INPUT "WHAT COLOR:F * INCORRECT STATEMENT

Below are some examples of line errors that would cause error messages when you run

a program:
~ Condition Message

Misspelling a statement:
10 INPT "WHAT COLOR":F

Omitting necessary punctuation or

typing an incorrect punctuation mark: * INCORRECT STATEMENT IN 10

10 INPUT
10 INPUT

"WHAT COLOR"F
"WHAT COLOR"™;F

Beginner's BASIC

45

Leaving the variable out of an
INPUT statement:

10 INPUT "WHAT COLOR":

L.eaving out the space between * INCORRECT STATEMERT IN 10
(O TO and the line number:

10 60 TO30

Using a non-existent line number
in a GO TO statement:

* BAD LINE NUMBER IN 30

10 LET A=5___
20 PRINT A
30 60 TO 15—

? There is
no line 15/

Notice that the error messages given during a program run usually indicate the
number of the troublesome line. If you'd like to view the line in question (let’s say it's
line 10), just type

LIST 10

and press ENTER. The computer will obediently print line 10 on the screen for you to
review. You can also list the whole program on the screen if you prefer. Type

LIST

and press ENTER.

Remember, too, that failing to press ENTER at the end of each program line may cause

the computer to give you an error message or an incorrect result, depending on the
kind of operation you're performing.

Making mistakes is a normal part of learning — so don't be disturbed when the
computer gives you an error message. Just list the line or the program, identify the
error; retype the line correctly, and go right on your way!

(Note: If you'd like to see all the error messages your computer can give you, or if you
don’t understand a message you're given, you'll find a complete list of error messages —

and when they occur — in the "BASIC Reference Section” of your User’s Reference
Guide.)

46 B—eginner‘s BASIC

CHAPTER TWO:
Simple Programming

SUMMARY OF CHAPTER 2

In this chapter you've covered a lot of very important ground. You've learned how to:
m Enter a program
m Use the commands NEW, LIST, and RUN
B "Edit” or change a program
® Use INPUT statements with numeric variables and string variables
® Build a mathematical conversion program
B Create a GO TO loop within a program
® Stop an endless loop with CLEAR
B Use a GO TO loop in a CALL SOUND program
m Use the CALL COLOR statement and a GO TO loop in a graphics
program

When you started working with Chapter 2, you were a beginner in learning BASIC

and programming. Now you're well on your way to becoming an experienced computer
programmer.

Quick Review of Program Structure

1. Begin each line with an identifying line number (1-32767).

2. Number the lines in the order you want the computer to follow in performing the
program.

3. Press ENTER when you have finished typing a program line.

Beginner's BASIC 47

