FVE Computer

Graphics

<

This chapter continues developing programs that demonstrate the graphics
capabilities of your computer. The programs deal with the use of color, animation and
the generation of your own graphics characters on the screen.

The intent in this chapter is to give you some hints and examples that will help you
expand your enjoyment and use of your computer. As you begin to develop your own
graphics applications, you may want to refer to this material for ideas on how to
approach the use of color and graphics. In time, you'll discover other ways to create
specific programs and simulations. But for now the programs that are given here will
demonstrate several techniques you'll enjoy using.

Blocks of Color

In previous chapters we've experimented with several programs that placed color lines

or squares on the screen. The program below shows you how to create larger blocks of
color.

NEW
10 INPUT “COLOR CODE?":(
20 IF €<1 THEN 10
30 IF C>16 THEN 10
40 CALL CLEAR

50 CALL COLOR(2,C,C) -
60 FOR I=1 TO &

70 CALL VCHAR(2,I+2,42,4)

80 CALL VCHAR(19,1+2,42,4)

90 CALL VCHAR(2,1424,42,4) |
100 CALL VCHAR(19,I+24,42,4) Wait here.
110 CALL VCHARC(12,I+13,42,4)
120 NEXT I

130 INPUT "PRESS ENTER KEY":
KEY$

140 GOTO 10

Check for valid color code.

Each CALL VCHAR places

a vertical strip of
color on the screen.

First the program stops and asks you to input a color code. (See Appendix C for the
list of colors that correspond to the valid color codes, 1 through 16.) When you enter a
code, the screen clears, the blocks of color are displayed, and the program waits for
you to press a key before continuing. Notice the special use of the INPUT statement in
line 130. We are just using INPUT to stop the program until we are ready to go on.

Now-clear the screen and run the program. First you'll see

COLOR CODE?

flashing cursor

06 Beginner's BASIC

CHAPTER FIVE
Computer Graphics

Remember that color code 1 is transparent and code 4 is the screen color in the Run
Mode. So let's enter 7 (dark red) as our first color code. When you press ENTER, you'll
see this:

five dark red blocks

light green screen

Press ENTER when
you re ready to go on
to a new color.

\PRESS ENTER KEYD /

Experiment with several colors. Find the ones that produce clear sharp images against
the normal color of the screen. Can you see how this technique could be used to create
checkerboard patterns or the board area for a game like tic-tac-toe?

(Each block 1n this program is four "characters” wide and four "characters” high. If
youd like to see the “characters,” press CLEAR to stop the program.)

The CALL SCREEN Statement

So far, the color of the screen in the Run Mode has always been light green. Suppose,
however, that we would prefer a different color as a background for our color design.
Easy! All we have to do is to add a simple statement that changes the Run Mode
screen color:

Color code for
screen toloF we want,
enclosed in parentheses.

CALL SCREENC11)
\

gt

Let's edit the color block program we just entered so that we can use a different screen
color as a background for our blocks. Enter these lines:

Input screen color code.

32 INPUT "SCREEN COLOR?":A -
33 IF A<? THEN 32 -
34 IF A>16 THEN 32-
45 CALL SCREENCA)

Check for
valid code.

Change screen color
from hight green

to color you tnput.

Now run the program again. This time, you'll be asked to enter two color codes. The
first code determines the color of the blocks: the second sets the color of the screen.

Beginner's BASIC o7

Experiment!

Experiment with different color combinations. Which give you the sharpest, clearest
design? Which are most pleasing in an artistic sense? Then try changing the block
design produced by the program. For example, can you make the blocks rectangular?

Patterns

The two programs we'll develop next continue our exploration of computer graphics by
showing how to construct patterns out of standard characters. The statements and
tunctions used in the program are elements of BASIC you already know; however, you
may see some new applications of these features.

Rectangles and Squares

The first p;regram allows you to place a rectangle or square of standard characters on
the screen. Instead of using CALL HCHAR or CALL VCHAR and identifying the

character by its character code, we'll assign a character to a string variable from the
keyboard.

Try these examples in the Immediate Mode:

LET A$=""»"

PRINT A$

PRINT A$;AS

PRINT A$;TAB(10) ;A%

/

one asterisk

}LET A$="*"

>PRINT A%
*

two asterisks,
side by side

PPRINT A$;AS
x %k

>PRINT AS$;TABC10);:AS
*

one asterisk at
left margin; one
in column 10

Try'a few more Immediate Mode experiments on your own. For example, what would
happen if you redefine A$ as “***" or as “()"? Try it and see what results! (If you need to
review the TAB function and the print separators, see Chapter 3, page 57.)

08 Beginner's BASIC

CHAPTER FIVE
Computer Graphics

This method is convenient if you want to print only a short line of characters. But what
if you want to print a long line or vary the line length or character the program prints?

INPUT statements and a FOR-NEXT loop will solve the problem. Type NEW; then
enter this program:

20 INPUT "CHARACTER?":A% .
40 INPUT "WIDTH?":W
60 CALL CLEAR

80 FOR X=1 TO W

100 PRINT AS%;

120 NEXT X

140 END

Accept character.

Accept number
of characters
to be printed.

When you run the program, you’ll first be asked to input the character you want to use.
Just type the character and press ENTER. Then you'll be asked for the "width” or the
number of characters in the line you want to print. Type in the number and press

- ENTER to continue the program. Let's say that you entered * as the character and 28 as
the width. The screen will look something like this:

7

‘r- L b

3 L T

Ak rkx kit hkhkhkhkhhtWwhhhhkk
*kx DONE *%

| J

(Note that the semicolon in line 100 causes the characters to be printed in an
unbroken row.)

‘Run the program a few times, entering different characters and lengths. Then let's try
adding some program lines that will allow us to make rectangles and squares of
characters.

Beginner’s BASIC 09

Enter these new lines:

Replaces old Iine 40.
40 INPUT "SIZE(WIDTH,HEIGHT)":W,H

70 FOR Y=1 TO H
130 PRINT
135 NEXT Y
140 GOTO 40 - Replaces old line 140.

There are a couple of items that need to be explained about these lines. First, notice in
line 40 that we are using one INPU'T statement to assign values to fwo variables!
When you input the width and height, you'll need to use this form:

T he number of
rows you want.

The number of
characters you want
in each row.

8,5~

Second, lines 70 and 135 set up a loop on the variable Y. Your original "X loop” is now
nested inside the "Y loop.”

Finally, line 130 prints an "empty” line. This line is needed to clear away the semicolon
() 1n hne 100 so that a new row will begin the next time the program loops through the

"Y loop.” (As you've seen already, the semicolon causes the characters to be printed on
the same line throughout the loop on X.)

Before we list the program to see the changes, let's add a few more lines. We can use
IF-THEN statements to “build in” some tests:

If character is XX,
stop the program.

25 IF AS="XX" THEN 150
45 IF W+H=0 THEN 20
150 END

If both width
and height are 0
ask for new character.

100 ' Beginner's BASIC

CHAPTER FIVE
Computer Graphics

Here's what these tests provide. Line 25 gives you a handy way to stop the program by
pressing the X key twice and then pressing ENTER when youre asked for a character
input. If you want to experiment with a different character, all you have to do 1s to
enter 0,0 as size inputs. The test in line 45 then sends you back to line 20 to input a

new character.

Now clear the screen and list the program:

LIST

20 INPUT "CHARACTER?":A$%
25 IF A$="XX" THEN 150
40 INPUT "SIZE(WIDTH,HEIGHT)
":W, H
45 IF W+H=0 THEN 20 -
60 CALL CLEAR
70 FOR Y=1 TO H
80 FOR X=1 TO W
100 PRINT AS$;
120 NEXT X
130 PRINT
135 NEXT Y

If A3 =XX stop!

If W and H both=0, get
new character input.

Print a line
of characters.

Start a new line.

140 GOTO 40 -

150 END

Return for new
s1ze inputs.

Clear the screen again and run the program. For this example, enter * when the
program asks CHARACTER? Then enter 8,5 when youTe asked for width and height:

7

N\

% % % %k % k%

Akkhkkkikh

% 9 % % % % %k ¥

Lt BB & & & &)
khkhkkkkk warting for new
SIZE(WIDTH, HEIGHT) values

An 8X5 rectangle
of asterisks

Next, enter the same value for both width and height, such as 8,8 or 5,5. With these
inputs the program will create a square, rather than a rectangle.

Beginner's BASIC

101

Perhaps a flowchart will help to describe how the program works. The tollowing
diagram doesn't show the whole program in detail; it covers only the parts that relate
to program control by input values.

line 20 Input

character.

Is
fine 25 character line 150
XX?
fine 40 Input size
(width, height).
Iine 45
Iine 60 Clear screen. ___l
Display rectangle

lines 70-140 or square and retitrn -

to line 40.

Experiment!

Experiment with the program. Try entering the control values (character input =XX,
width and height both =zero) to see how the program reacts. Vary the width and height
so that the display fills the screen or makes only tall thin bars and wide flat strips.
What happens if you enter a width greater than 28 or a height greater than 24? (Try it
and see what happens.) Can you add color to this program?

102 Beginner's BASIC

CHAPTER FIVE
Computer Graphics

“Holes”

Let's expand the Rectangles and Squares program one more time. These new lines
will create rectangles or squares with a random sprinkling of "holes™ (blank spaces) in

the display field. Enter the following lines:

15
85
90
95

RANDOMI ZE INT(2*RND)
IF INT(2*RND)=0 THEN 100 - produces a0 oral.
PRINT " ";

GOTO 120

One space, enclosed in
guotation marks and
followed by a semtcolon.

Now clear the screen and list the changed program, so that we can discuss the effect ot
these additions.

LIST
15 RANDOMIZE

20 INPUT "CHARACTER?":AS$
25 IF A$="XX" THEN 150
40 INPUT "SIZECWIDTH,HEIGHT)

ll:w
45
60
70
30
85
90
95
100
120
150
135
140
150

{f true, go to

,H fine 100 and PRINT
+H= the character. If false

IFLU HLOATHEN c0 PRINT a blank space

CALL CLEAR (line 90)

FOR Y=1 T0 H

FOR X=1 T0 W
IF INT(Z2*RND)=0 THEN 100

PRINT " ";
GOTO 120

PRINT AY;
NEXT X
PRINT
NEXT Y
GOTO 40
END

Skip lhine 100.

» ,I' L

The test with the RND function in line 85 causes a character to be printed whenever
INT(2*RND) is equal to 0, a space when INT(2*RND) is equal to 1. Thus,
approximately half of the time the program prints a character and half of the time a
space. Run the program now, and observe the kind of pattern that emerges.

-Experiment!

You'll be able to see the “holes” better by making the character into a color block. Add
these lines to the program:

10
45
50

INPUT "“COLOR?":C
IF W+H=0 THEN 10
CALL COLOR(3,C,C)

Now, when the program asks, COL.OR?, type and enter a color code from 1 to 16.
Notice that, to see the character in color, you'll have to enter a character input {from

set #3 (0,1

2,3,4.,5,6, and 7 are the characters in this set).

Beginner’'s BASIC 103

Animation

Animation is the illusion of movement. In order to achieve this illusion in your graphics
programs, it's necessary to keep changing your character or sets of characters. The
following programs demonstrate some of the techniques used to create flashing and
moving graphics on the screen. |

Flashing Letters

One way to create a flashing graphic is to print a character (or set of characters), delay
the program, clear the screen, delay the program again, and then repeat the process.
The clearing of the screen and the delays have the effect of turning the character “on
and off,” making it appear to flash. Let's try a program that flashes the letter A in the
center of the screen.

NEW

10
20
30
40
50
60
70

Numeric code for A

P
CALL VCHAR(12,16,65)

FOR DELAY=1 TO 200}
NEXT DELAY
CALL CLEAR

FOR DELAY=1 TO 100}
NEXT DELAY

GOTO 10

Pause after printing.

Delay after clearing.

Repeat

Now clear the screen and run the program.

Letter A Aashes
on and off on
the screen.

104

Beginner's BASIC

CHAPTER FIVE
Computer Graphics

Another way to simulate flashing 1s to replace one character with another in the same
spot on the screen. Let's revise our program so that it alternately flashes A and B. We
can do this easily by entering a new line 4 0:

ﬁ same position

40 CALL VCHAR(12,16,66)

\ code for B

Since we're replacing A with B, we don't have to clear the screen between printing the
characters. However, we may want to add a CALL CLEAR at the beginning of the
program. S0 enter this line:

5 CALL CLEAR

and run the revised program. Do A and B appear to flash alternately on the screen?
(You may want to increase the time delay in line 50, so that A and B will each stay on
the screen the same length of time.)

From flashing characters to flashing color squares is an easy step, so we'll examine
next a program that places a flashing color square on the screen.

Flashing Color Squares

With this program we want to create a color square that flashes on the screen.
We'll write the program so that we can input the color we want, and we'll use character
4 2 (the asterisk, in character set 2) to make our square. Here's the program:

NEW Accept color code (1-16).

T0 CALL CLEAR

20 INPUT "COLOR CODE?":X
30 CALL CLEAR

40 CALL COLOR(2,X,X) -
50 CALL VCHAR(12,16,42)
60 FOR DELAY=1 TO 2090
70 NEXT DELAY |
80 CALL CLEAR = Print square of color.
90 FOR DELAY=T TO 200
100 NEXT DELAY

110 GOTO 40

Define color for character

set 2, which contains the
asterisk, and make
foreground and

background the same

color.

Clear screen.

Repeat.

Beginner's BASIC 105

Now run the program. First, it asks
COLOR CODE?

and waits tor you to input a valid color code. The codes are 1 through 16; remember,
however, that code 1 is transparent and code 4 is the normal screen color in the RUN
Mode. Squares of these colors will not show up on the screen.

When you type in a color code and press ENTER, you'll see the square flashing near the
center of the screen.

Next, let's change the program to create two color squares that alternately flash on the
screen. To do so, we'll need to input two color codes. So enter these lines first:

Accept cofor for
first square.

20 INPUT "COLOR1?2":X
25 INPUT "COLORZ2?":Y -

Accept color for
second square.

Now we'll replace our original line 80 with two new lines, to set the color and display
the second square:

Set color for
second square.

80 CALL COLOR(2,Y,Y)
85 CALL VCHAR(12,16,42) ~

Print second square.

Let's review these changes by listing the program. Clear the screen; then type LIST
and press ENTER: S

LIST
10 CALL CLEAR

20 INPUT "COLOR1?":X

25 INPUT "COLOR2?":Y

30 CALL CLEAR

40 CALL COLOR(2,X,X)

50 CALL VCHAR(12,16,42)
60 FOR DELAY=1 TO 200
70 NEXT DELAY

80 CALL COLOR(2,Y,Y)

85 CALL VCHAR(12,16,42)
90 FOR DELAY=1 TO 200
100 NEXT DELAY

110 60TO 40 -

First color square
is on the screen.

Second color square
is on the screen.

Select your two colors and run the program, typing in the color codes as the program
asks for them. The two color squares will alternately flash on the screen.

106 éeginner's BASIC

CHAPTER FIVE
Computer Graphics

il
i k-

Experiment with several color combinations to find those that give a good contrast.
Here are a tew examples to try:

Color 1 Color 2
6 5
11 14
14 16
9 11
Moving Color Squares

With just a few simple changes in the previous program, we can make the color
squares move across the screen as they flash. Add these lines:

35 FOR I=3 TO 28

50 CALL VCHAR(12,I,42)
85 CALL VCHAR(12,I,42)
105 CALL CLEAR

110 NEXT I

120 GOTO 10

Now list the program to review the changes:

CALL CLEAR

LIST

10 CALL CLEAR

20 INPUT "COLOR1?":X
25 INPUT "COLOR27?":Y
30 CALL CLEAR

35 FOR I=3 TO 28

40 CALL COLORC2,X,X)
50 CALL VCHAR(12,I,42)
60 FOR DELAY=1 TO 200
70 NEXT DELAY

80 CALL COLOR(2,Y,Y) ERRO
85 CALL VCHAR(12,I,42)
90 FOR DELAY=1 TO 200
100 NEXT DELAY

105 CALL CLEAR

110 NEXT I

120 GOTO 10

When you've checked the program for accuracy, run it. Starting at column 3, the
squares flash and travel across the screen, ending at column 28. Then the screen
‘clears, and the program asks you for new color inputs.

Experiment!

[f you want to speed up the flashing, shorten the time delay loops in lines 60 and 90.

For a challenge, you might like to make the program flash three color squares! How
would you do it?

By this time you ve seen several examples of the kind of graphics you can create with
the standard characters ot your computer. Next we'll show you how to develop
characters of your own.

Beginner's BASIC 107

The CALL CHAR Statement

The CALL CHAR statement gives you the capability of creating your own screen
characters. In our first program we'll redefine some of the standard characters. Before

we redefine a character, however, we must first look at the way a character is
represented on the screen.

Each printing position on the screen is made up of sixty-four tiny dots. The dots are
arranged in eight rows of eight dots each. Each row is partitioned into two blocks of
tour dots each. The diagrams below show how an 8-by-8 grid of dots would look if it
were greatly enlarged.

LEFT RIGHT _
BLOCKS BLOCKS

ROW 1 [_
ROW 2

ROW 3
ROW 4 |
ROW 5
ROW 6
ROW 7
ROW & |

§ left bfocks
and & right
blocks= 16 total blocks.

Each block is 4 dots
wide and I dot high.

Any Row | I _I | J

left right
block block

A character on the screen, either a standard character or one that you invent, is
tormed by dots within the 8-by-8 grid. By turning some dots “on" and leaving others
"off,” a character is created. Leaving all the dots "eff " creates the space character

(character code 32), for example. Turning all the dots “on” produces a solid spot on the
screern.

Al turned
on; visible!

All turned
off: invisible!

All the standard characters are automatically set so that they turn on the appropriate
dots to produce the images you have seen. To create a new character, we must tell the
computer which dots to turn on or leave off in each of the 16 blocks within the printing
region that contains the character. In your computer a shorthand system is used to
specify which dots are on or off within a particular block. The table that follows

contains all the possibie on/off conditions for the dots within a given block and the
shorthand notation for each condition.

108 Beginner's BASIC

CHAPTER FIVE
Computer Graphics

BLOCKS DOT CODE

SHORT-
(0=off;,] =on) HAND
CODE

0000
0001
0010
0011
0100
0101
110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMOCm P OO0 U A& WK = O

Lets take a look at one row {two blocks) to see how the "shorthand code” works.

DotCode 01t 011011

LEFT RIGHT
BLOCK BLOCK

Shorthand 5 B

The shorthand code for the row, then, is 5B.

The shorthand codes for an entire grid can be determined block by block, just by
converting the on/off conditions of each row. The following example provides a
translation of an entire grid into the shorthand code.

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

-

LEFT RIGHT CODE
BLOCK BLOCK

X

X

X

X

X

X

X

X

X

X

ol Bl balialle

TR EEE

{ left block code

7E
A5 \
81

99 7EA5819981BD817E
81
BD
81
7E

right block code

shorthand for
all blocks

Beginner's BASIC

109

w—

Therefore, if we want to “define” a character shaped as the X's on the grid indicate, we
enter all the shorthand codes of the blocks as a single “string™

"TEA5819981BD817E"

In the shorthand code, then, one number or letter represents a whole block (4 dots) on
the grid. Two letters and/or numbers represent a whole row.

Based on the table, if all the dots in all the blocks were to be turned on, the shorthand
code for this condition would be:

"EFFFFFEFFEFFEFFE" One F for each block

This code.may seem long, since it represents all 16 blocks within the grid. But it is still
shorter than trying to write down all 64 separate conditions dot by dot.

Once you've decided which dots you want on and off and worked out the code, you're
ready to use the CALL CHAR statement. It looks like this:

CALL CHAR(33,"FFFFFFFFFFFFFFFF")

code for character
you are redefining

"string " that turns
the dots on and off

Let’s try a simple program that redefines character code 33(!) as a character with all
the dots turned on. The new character is then printed in the center of the screen,
giving you a chance to see exactly how big one of the individual print areas really is.
Enter these lines:

NEW

10 CALL CLEAR
20 CALL CHAR(33,"FFFFFFFFFFFFFFFF")
30 CALL VCHAR(12,16,33)
40 GOTO 40

Redefining this character

String of shorthand codes

What does this do?

New character 33 in
center of screen

110 B-ég‘inner‘s BASIC

CHAPTER FIVE
Computer Graphics

Run the program and observe your newly defined character on the screen!

Solid block character;
all dots ON.

So that you can experiment with other shorthand codes, let's edit the program. Type
these new lines:

> INPUT "SHORTHAND?":A$

20 CALL CHAR(33,AS$)
40 GOTO 5

This time, when you run the program, you'll be asked to input the shorthand code for
the character you are defining. Try the following examples.

Enter: FFFFFFFF

Top 32 dots
sef ‘on’

Same character as
"FFFFFFFFOO0O0000

SHORTHAND?[]

When you stop the program by pressing CLEAR, the character that you created
changes back into the character from the standard character set. In this case,

character code 33 is restored to an exclamation point (!), and that symbol appears near
the center of the screen.

Beginner's BASIC - 111

o

Entering FFFFFFFF is the same as entering FFFFFFFF00000000. That is, the
CHAR routine fills out the right side of the string variable with zeros when there are
less than 16 characters in the string. Knowing this fact allows you to easily examine all
the shorthand codes individually. Just enter 0, 1, and so on up to F at the INPUT
request.

Enter: F

4 N\

All dots "on" 1in
left block of row 1

\SHURTHAHD?D /

Try different combinations of the shorthand codes. See if you can generate any

interesting characters. Then let’s revise the program again to print more than just one
of our redefined characters. Enter these lines:

30 FOR I=1 TO 4

40 CALL VCHAR(12,I+13,33,4)
50 NEXT I

60 GOTO 5

Now list the program to see the changes: AR

LIST
5 INPUT "SHORTHAND?":A$

10 CALL CLEAR

20 CALL CHAR(33,AS)

30 FOR I=1 TO 4

40 CALL VCHAR(12,1+13,33,4)
50 NEXT 1

60 GOTO 5

112 Beginner's BASIC

CHAPTER FIVE
Computer Graphics

When you run this program and enter a shorthand code for a new character, that
character is displayed 16 times in the center of the screen. The 16 characters appear
in a square four characters wide by four characters high. Try the following:

4 N\

Enter: FF

KSHDRTHAND?D j

A single print of the character with the shorthand code FF puts something like a long
~ dash on the screen. Printing four of these characters side by side draws a line on the

screen! To get dashes across the screen you must leave a space by setting two dots in
each block “off.” To do this, the code is 33.

Enter: 33

8 dashes
per hne

SHORTHAND?O

Notice that, when you stop the program, the center of the screen fills with 16
“exclamation points (!).

Now enter some other codes and experiment with the program until you feel
comfortable with the shorthand codes. To help you work out the codes, draw up

several 8-by-8 grids and mark off your "dots-on, dots-off” design. Then figure out the
code you need for each block of the grid.

Beginner's BASIC 113

A Block Figure with CALL CHAR

Now that you've had some experience with defining your own characters, let’s see if we
can create a small "human’ figure by turning dots on and off.

To begin, you need to create the hgure on a character grid worksheet, like the one
below. (Later, when you are creating your own characters, you may want to make

copies of the worksheet, not only to design your symbols, but also to use in translating
the symbol into the shorthand code of the CALL CHAR statement.)

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

INPUT TO CHAR:

LEFT
BLOCK

CHAR Worksheet

SHORT-
RIGHT HAND

BLOCK CODE CODE DOTS
0600

0001

0010

0011

0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

MO ODOWP 0O da s LN =

114

Beginner's BASIC

CHAPTER FIVE

Computer Graphics

Using the worksheet, we'll mark ones (1's) in the positions where the dots will be

turned on:

Now, let's look at the same figure with the "on" dots shaded in, and let's fill in the
shorthand codes for developing the character. This form of the worksheet shows you

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

INPUT TO CHAR:

CHAR Worksheet

RIGHT

BLOCK CODE

¥

1

.q. -
(W HIH T
- .

pd |t |t |t |y | e

SHORT-

HAND
CODE

TMMOCDEP 00T ds =

what the character will look like on the screen.

ROW 1
ROW 2
ROW 3
ROW 4
ROW §
ROW 6
ROW 7
ROW 8

INPUT TO CHAR: _995A3C3C3C3C24 24

LEFT
BLOCK

CHAR Worksheet
ST

RIGHT
BLOCK

CODE

99
5A
3C
3C
3C
3C
24
24

SHORT-

HAND
CODE

ﬂMUOm}@mq@mnmeg

DOTS

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

1010
1011

1100
1101

1110
1111

DOTS

(J0O00
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Beginner's BASIC

115

By filling in the worksheet for both the character and the shorthand codes, we know
that one line of our program will be

LET A$="995A3C3C3C3C2424"

But before we actually start our program, we need to discuss a bit further the process
of defining a character. In our previous examples we redefined an already existing
character, the exclamation point (character code 33). There are other character codes,
however, that are undefined by the computer. These are available for you to use in
building a customized character set in your graphics programs. The undefined
character codes are grouped into the following sets (for color graphics):

Set#13 Set#l4 Set#HlS Set#lé

128 136 144 152
129 137 145 153
130 138 146 154
131 139 147 155
132 140 148 156
133 141 149 157
134 142 150 158
135 143 151 159

These extra character codes allow you to design special graphics characters for use in
your own programs without giving up the standard keyboard characters. For example,
you might want to design differently colored underline characters to highlight certain
parts of a displayed message or develop a gameboard on the screen with directions
displayed in standard text characters.

116 Beginner's BASIC

CHAPTER FIVE
Computer Graphics

These codes and their corresponding set numbers are used in the CALL CHAR,
CALL HCHAR, CALL VCHAR, and CALIL. COLOR statements exactly as we used

the defined character codes and their set numbers. Let's use code 128 in our sample
program.

OK, we're ready to begin our program. Enter these lines:

NEW
10 CALL CLEAR

20 LET A$="995A3C3C3C3C2424"
30 CALL CHAR(128,A%)
40 CALL c0L0R(1E,§,1p)

T he shorthand code
for our "'figure."

Define character code 1238.

50 CALL VCHAR(12,16,128)
60 GOTO 60

Display character.

Beginner’s BASIC 117

e

Now run the program and observe the small “person” on the screen. Remember, the

hgure 1s only one character in size, so look closely. When you're ready to stop the
program, press CLEAR.

Would it be possible to animate our little figure? Yes, it would! By changing our

program and incorporating one of the techniques we covered under ANIMATION, we
can turn our character into Mr. Bojangles, the dancing man!

Mr. Bojangles

As it's written presently, our program defines only one character. To make Mr.
Bojangles appear to move, we'll need to define two characters that are alternately

displayed in the same position. So we'll go to our CHAR Worksheets to design our two
new characters.

CHAR Worksheet

First Figure
SHORT-
LEFT | RIGHT HAND
BLOCK | BLOCK CODE CODE DOTS
ROW 1 99 0 0000
ROW 2 SA 1 0001
ROW 3 3C 2 0010
ROW 4 3C 3 0011
ROW 5 3C 4 0100
ROW 6 3C 5 0101
ROW 7 44 6 0110
ROW 8 84 7 0111
8 1000
9 - 1001
A 1010
B 1011
C 1100
INPUT TO CHAR: _"995A3C3C3C3C4484" D 1101
E 1110
F 1111

118 l Beginner's BASIC

CHAPTER FIVE

Computer Graphics

CHAR Worksheet

Second Figure

SHORT-

LEFT | RIGHT HAND

BLOCK | BLOCK CODE CODE
ROW 1 l [1]1] 18 0
ROw?2 [1] T 1i]1 1] 99 1
ROw3 [1[1[1[1]1[1}1[1] FF 2
Row4 [[T1J1[nf1] [3C 3
ROW 5 1[1]1]1] 3C 4
ROW 6 BRORE 3C 5
ROW 7 THERE 22 6
ROW 8 1 1] 21 7
3
9
A
B
C
INPUT TO CHAR: "1899FF3C3C3C2221" D
E
F

Now we're ready to edit the program. Enter these lines:

20 A$="995A3C3C3C3CA4484"
B$="1899FF3C3C3C2221"
CALL CHAR(129,B$)

25
35
60
70
80
90

110 GOTO 50

FOR DELAY=1 TO
NEXT DELAY

CALL VCHAR(12,16,129)]

100

FOR DELAY=1 T0 100
100 NEXT DELAY

Return and display
first character, repeating
the whole procedure.

first character

Define character
code 129 as BY.

Display second figure.

DOTS

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

second character

Display first figure.

Beginner’s BASIC

119

<

Clear the screen and list the changed program so that you can see how it fits together:

LIST
10 CALL CLEAR .
20 A$="995A3C3C3C3C4484"

25 B$="1899FF3(C3C3C2221"

30 CALL CHAR(128,A$)

35 CALL CHAR(129,8B$)

40 CALL COLOR(13,2,16)

50 CALL VCHAR(12,16,128)

60 FOR DELAY=1 TO 100

70 NEXT DELAY

80 CALL VCHAR(12,16,129)

90 FOR DELAY=1 TO 100

100 NEXT DELAY

110 GOTO 50

Now run the program and watch Mr. Bojangles dance! (To stop the program, press
CLEAR.)

Experiment!

After running the program a few times, you might like to add a FOR-NEXT loop to
make Mr. Bojangles dance across the screen (see page 107 for an example of this
technique). Also, try creating other pairs of characters and placing their shorthand
codes 1n lines 20 and 25. Can you turn Mr. BOJangles into an acrobat who flips from
his hands to his feet and back again?

As we've mentioned, Mr. Bojangles is pretty small — only one character in size. Not all
the designs you can create are limited to this small size. You can combine several small
characters to construct bigger graphics that cover more of the screen. Qur next

program shows how to design a larger graphic using one small color character as our
“building block.”

120 Beginner's BASIC

CHAPTER FIVE
Computer Graphics

T he Giant

If you define one special character where all the dots are “on,” you can then use it to

paint in the rest of a large figure. The following program takes the small character just

mentioned and creates a “giant” figure similar to the Mr. Bojangles character. Enter

the program and see what it does:

Set character color —
dark blue (foreground
and background).

Shorthand code fo
furn on all the dots
in the character.

NEW
10 CALL CLEAR
20 AS="FFFFFFFFFFFFFFFF"
30 CALL CHAR({128,A$)
40 CALL COLOR(13,5,5)
50 CALL VCHAR(7,15,128,8)
60 CALL VCHAR(7,16,128,8).
70 CALL VCHAR(9,14,128,10)
80 CALL VCHAR(9,17,128,10)-
90 CALL VCHAR(7,12,128,3)

R

R

R

"Build” head and
center of forso.

Left torso and leg.

Right torso and leg.

100 CALL VCHAR(9,13,128) _
110 CALL VCHAR(9,19,128,3)
120 CALL VCHAR(9,18,128)
130 GOTO 130~

- Right arm.

Hold graphic on screen.

When you run the program, you'll see a larger version of Mr. Bojangles:

4 N

Beginner's BASIC

121

Our dark-blue "giant” is rather angular and blocky, since it's created from a single
angular character. You might like to rework the program, adding extra defined

characters that allow you to soften the edges of the figure.

Experiment!

¥

Experiment with some other block designs using your “all-dots-on” character. Then try

defining other characters to include in your graphics programs. The examples shown
below will help to get you started.

INPUT TO CHA

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW §

.1.

LEFT
BLOCK

ﬂ

" CHAR Worksheet

RIGHT
BLOCK

CODE

"0103070F1F3F7FFF"

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

CHAR Worksheet

LEFT
BLOCK

RIGHT
BLOCK

CHAR Worksheet
LEFT | RIGHT

INPUT TO CHAR: "FF7E3C18183C7EFF"

BLOCK [BLOCK o
ROW 1 [_I[|1\1 [T1 18
ROW 2 1[1{1]1 3C
ROW 3 L[1[1[1a[a] | 7E
ROW4 [1]1]1]1]1]1]1]1 FF
ROWS [1ft1]1]1]1]1]1]1] FF
ROW 6 i1 afafaf1] 7] 7E
ROW 7 11[1] 1]1 3C
ROW 8 _J 1 1‘ 171 718
INPUT TO CHAR: _"183C7EFFFF7E3C18’

122

Becinner's RAQICT

CHAPTER FIVE
Computer Graphics

Summary of Chapter 5

Chapter 5 has dealt entirely with computer graphics — the colorful patterns and

designs you can create with your computer. Only two new statements have been
introduced: '

CALL Allows you to change the Run Mode screen to any color you choose.
SCREEN

CALL Defines a character code for a character you create.

CHAR

In addition to these two statements, you've experimented with the following
techniques:

» Creating large color blocks on the screen

® Making patterns and designs from standard characters

® Animating your graphics

m Creating your own characters by turning dots "on" and "off”

The ability to create color graphics can add a lot of excitement to your computer
- programming. We hope that you've enjoyed this introduction to graphics and that youll
find even more creative ways to use your computer.

This chapter concludes our "introductory tour” through the TI BASIC language. You
are now well launched into your programming career. For more advanced features you
may want to consult the "BASIC Reference” section of the User’s Reference Guide.
Here are some sections we suggest:

» Additional editing techniques — see EDIT
® Automatic line numbering — see NUMBER
s BREAK

s TRACE

» Recording programs on the TI Disk Memory System or a cassette tape
recorder — see SAVE and OLD

If you'd like to consult a programming book on an intermediate level, we can

recommend an excellent one: Herbert Peckham's Programming BASIC with the Tl

Home Computer (New York: McGraw-Hill Book Company, 1979). You'll ind a coupon
for ordering this book on page 143.

.- Congratulations and best wishes for continued success in BASIC programming!

Beginner's BASIC | 123

APPENDIX A

Musical Tone Frequencies

The tones produced by the computer are generated by the CALL SOUND statement.
(See Chapter 1 for an explanation of the CALL SOUND statement.)

The frequency designated in the CALL SOUND statement determines the tone that is
produced. The acceptable value range for frequencies is from 110 to 44.733 Hertz
(cycles per second). Noninteger entries within this range are acceptable as Inputs in
the CALL SOUND statement, but they are rounded to nearest integers by the
computer before execution.

The following table gives frequency values (rounded to integers) for four octaves in the
tempered scale (one half-step between notes). While these values do not, of course.
represent the entire range of tones — or even of musical tones — they can give you a
basis for musical programs. (See Appendix D for a frequency-generating program.)

Frequency

110
117
123
131
139
147
156
165
175
185
196
208
220

220
233
247
262
277
294
311
330
349
370
392
415
440

Note

A
A#* BP
B
C (low C)
C# D"
D
D# E?
E
F
F* G
G
G# AP
A (below middle C)

A (below middle C)
A7 B

B

C (middle C)
C# DP

D
D# EY

E

F# G?
G
G AP
A {above middle C)

Frequency

440
466
494
523
554
587
622
659
698
740
784

831

880

880

032

0883
1047
1109
1175
1245
1319
1397
1480
1568
1661
1760

Note

A (above middle C)
A# BP

B

C (high C)
C# Db

D
D# E?

E

F
F# GP

G
G# A?

A (above high C)

A (above high C)
A# BY

¥
O w
=

nm.* o,
mﬂ"

-

oy
3
O‘ﬂ'

3
> F 0.
:E?ﬂ"

124

Beginner's BASIC

APPENDIX B
Character Codes

All characters that print on the screen (letters, numbers, and symbols) are identified by
numeric character codes. The standard characters are represented by character codes

32 through 127. These ninety-six codes are grouped into twelve character sets for color
graphics purposes. '

Standard Character Codes

Set #1 Set #2 Set #3 Set #4
Code # Character Code # Character Code # Character Code # Character
32 {space) 4() (48 0 56 8
33 ! 41) 49 1 57 0
34 ” 42 * 50 2 58 .
35 # 43 + 51 3 59 ;
36 $ 44 : 52 4 60 <
37 % 45 - 53 5 61 =
38 8 46 . 54 6 62 -
30 ’ 47 / 55 7 63 I
Set #5 Set #6 Set #7 Set #8
Code # Character Code # Character Code # Character Code # Character
64 & 72 H 80 P 88 X
65 A 73 I 81 Q 89 Y
66 B 74] 82 R 90 74
67 C 75 K 83 S 01 [
68 D 76 L 84 T 02 AN
69 E 77 M 85 U 03)
70 F 78 N 86 \Y 04 A\
71 G 70 O 87 W 95 —
Set #9 Set #10 Set #11 Set #12
Code Character Code Character Code Character Code Character
96) 104 H 112 P 120 X
Q7 A 105 I 113 G 121 Y
08 B 106 J 114 R 122 Z
99 C 107 K 115 S 123 {
100 D 108 L 116 T 124 I
101 E 109 M 117 U 125)
102 F 110 N 118 \Y 126 T
103 G 111 O 110 W 127 DEL

There are thirty-two additional character codes (128-159) available for use 1n defining
special characters for graphics programs. (See Chapter 5 for a discussion of character
definition.) Again, these codes are grouped into four sets tor color graphics.

.- Special Character Codes
Set #13 Set #14 Set #15 Set #16

128 136 144 152
129 137 145 153
130 138 146 154
131 139 147 155
132 140 148 156
133 141 149 157
134 142 150 158
135 143 151 159

Beginner's BASIC - 125

APPENDIX C
Color Codes

Sixteen colors are available for color graphics programs in TI BASIC. These colors

are designated by numeric codes in the CALL COLOR and CALL SCREEN
statements. (See Chapter 2 for a discussion of CALL COLOR and Chapter 5 for an

explanation of CALL. SCREEN)

Color Codes

Color Code # Color Code #

Transparent 1 Medium Red g

Black 2 Light Red 10

Medium Green 3 Dark Yellow 11

Light Green 4 Light Yellow 12

Dark Blue 5 Dark Green 13

Light Blue 6 Magenta 14

Dark Red 7 Gray 15

Cyan 8 White 16

126 Beginner's BASIC

APPENDIX D
Mathematical Operations

If your computer is to be a useful tool, you'll need to know about some of its
computational powers. This appendix first discusses the ways your computer handles
and displays numbers and then shows you how to perform exponentiation (powers and
roots of numbers). Next is a section on the order in which mathematiqgal operations are
performed. Finally, certain other mathematical functions are listed for you. You'll find
that your computer can eliminate much of the drudgery of computation, leaving you
with more time to explore the theory and fun of mathematics.

Decimal Notation

The Texas Instruments computer accepts and displays numbers, within certain limits,
in the traditional decimal form.

In Chapter 3, we mentioned briefly that numbers are displayed with a leading space
and a trailing space. The leading space is reserved for the sign (positive or negative) of
the number. If the number is positive, this space will be blank. If the number 1s
negative, this space will show a minus sign. Here's an example of both situations:

(N\

leading space
blank

>PRINT 1
1

leading space
shows minus sign

>PRINT =1
-1

N\ J

The trailing space is there to make sure that two numbers on the same line of the
screen will always have at least one space between them, even if you use a semicolon
as a PRINT separator. (The semicolon instructs the computer to leave no spaces
between PRINT items.) Try this Immediate Mode example to see the effect of the

trailing space:
4 N\

>PRINT 1;:-1
1 =1

A J

trailing space
for first number

Beginner's BASIC 127

APPENDIX D
Mathematical Operations

Without this trailing space the two numbers would appear like this:
1=1

The screen shows a maximum of ten digits for any number. If an integer (whole

number) consists of ten digits or less, the computer shows the number without a
decimal point to the right:

*PRINT 1;12345;1234567890
T 12345 1234567890

>0

If the number is a decimal fraction with ten digits or less, the computer automatically
places the decimal point in the correct position:

"'-1 -

>PRINT 1/8;7.525/5;159.1395/5
.125 1.505 31.8279

>0

Notice the first example above, 1/8=.125. If a number is less than +1 and greater
than —1, so that the digit to the left of the decimal point would be zero, the zero is not
displayed.

Most of the time, the numbers you see and work with will be shown in this normal
display format. But what about numbers that consist of more than ten digits, such as
723,895,274.524
0.0000000001489¢6

The computer can also handle numbers like these, but it must use a special display
format to do so.

128 . . | o PR T . 0 T .Y e

APPENDIX D
Mathematical Operations

Floating Point Form or Scientific Notation

To display numbers with more than ten digits, your computer uses a special kind of
notation. You'll see several names in computer books referring to this type of notation;
two of the more common names are floating point form and scientific notation. Here
we'll refer to the special display format as scientific notation.

Before we discuss scientific notation, let’s try a program to see how whole numbers
(integers) look in this display format. Enter these lines:

NEW

10 LET A=10

20 FOR I=1 T0 12
30 PRINT A

40 LET A=A*10

50 NEXT I

60 END

Now clear the screen and run the program. You'll see these results:

10

100

1000

10000
100000
1000000
10000000
100000000
1000000000
1.E+10 -
1.E+11
1.E+12

Scientific notation
starts here.

As soon as the value of A becomes an integer-with- more than ten digits, the computer
switches over to the special display format. Here's what this format represents:

1. E4+10 means 1Xx10%or 10,000,000,000

1.E+11 means 1X1011 or 100,000,000,000

1. E4+12 means 1X1012or 1,000,000,000,000

Numbers that are printed in scientific notation will always have this form:
base number E exponent

_ The base number (mantissa) is always displayed with one digit (1 through 9) to the left
of the decimal point. There can be a maximum of six digits in the mantissa (one to the
left of the decimal point; up to five to the right of the decimal). "E” stands for " X (times)
10 raised to some power,” and the exponent (power) is always displayed with a plus or
minus sign (+ or —) followed by a one- or two-digit number (1 through 99).

Note: If you attempt to print a number with an exponent greater than 99 but less than
the computer’s limits, you'll see this format:
mantissa E + **
or
mantissa E — **

Eeginner‘s BASIC 129

APPENDIX D
Mathematical Operations

The two asterisks indicate that the number is within the valid computing range of the
computer, but the exponent is too large to be displayed in the allotted space. (For a
discussion of the computational ranges, see the "BASIC Reference” section of the
User’s Reference Guide.) \

Here are several examples of integers that are displayed by the computer in scientific

notation:

>PRINT 1234512345123
1.23451E+12

>PRINT 45678900000000
4.56789E+13

>PRINT 98765432100
9.87654E+10

\La /

Notice that the sign of the exponent tells us how to convert scientific notation back
into standard decimal form. If the sign is a +, we move the decimal point to the right.
If the sign is a —, we move the decimal point to the left. The exponent tells us how
many places to move the decimal point:

1.11111E+10 means 11111100000

We have moved the decimal ten places to the right:

11111100000,
\AAAANAAANS

Integers with more than ten digits, then, are always displayed in scientific notation.
Now let's see how the computer handles noninteger numbérs (numbers with fractional
parts). Consider the number 0.000000000000123. It will not fit into the ten-digit
display, so the computer shows it in scientific notation. Try this:

4 N

>PRINT 0.000000000000123

1.23E~13 - Tells how many

places to move
the decimal to
the left.

130 Beginner's BASIC

P iyl il eyl

APPENDIX D
Mathematical Operations

The following program generates some very small noninteger numbers:

NEW

10 LET A=10

20 FOR I=1 TO 14
30 PRINT A

40 LET A=A/10

50 NEXT I

60 END

Clear the screen and run the program. The results are:

10

1

.

.01

.001

.0001
.00001
000001
0000001
.00000001
.000000001
0000000001
1.E=11
1.E-12

This program and the previous examples we've seen might lead us to think that
nonintegers with more than ten digits are always displayed in scientific notation, just
as integers are. This is not always true, however. Noninteger numbers with more than

ten digits are printed in scientific notation only if they can be presented more accurately
in scientific notation than in the normal form.

o o

This point is very important. Consider an example that we've tried before:

4 N\

>PRINT 1/3
.3333333333

| S

Beginner's BASIC 131

APPENDIX D
Mathematical Operations

We know that .3333333333...is a repeating decimal that goes on infinitely. Why, then,
does the display show the result in normal form? The answer 1S that .3333333333 is
more accurate than 3.33333E —1; that is, more significant digits (digits that reflect the

actual mathematical value of the number) can be shown in normal form than in
scientific notation.

Scientific notation is just a “shorthand” method for writing long numbers, whether they
are very large or very small quantities. It allows the computer to handle, in the most
accurate form possible, numbers that otherwise could not be adequately displayed in

the ten-digit normal form.
Entering Numbers in Scientific Notation

Up to this point, we've only entered numbers in the normal decimal form. It is also
possible, however, to enter numbers in scientific notation. Try this example:

NOTE: "E" must be
an upper-case letter
when you enter a number
1n screntific notation.

*>PRINT 1.23456E10
1.23456E+10

Notice that, unless you enter a minus sign before the mantissa and/or the exponent,
these are assumed to be positive. |

>PRINT 2.574E13
2.5THLE+13

>PRINT =-5.5E-11
-5.5E-11

APPENDIX D
Mathematical Operations

If you enter a number in scientific notation, but the computer can show it in normal
form, it will do so. Try this:

7

>PRINT 5.555E3
3555

N\ J

Whenever you are using extremely large or small numbers in a computation, entering
the numbers in scientific notation can be very handy.

Exponentiation

In the previous section we talked about exponents and powers of 10. Now we need to

discuss some of the "higher math” capabilities of your computer; specifically, powers
and roots.

Powers

Quite often in mathematical calculations, we must raise some number to a power, such
as

83 (or 8X8X8)
252 (or 25X%25)

To perform exponentiation (raising a number to a power) on the computer, we do this:

¢ N\

>PRINT B8A3
512

>PRINT 2542
625

N\ J

The exponentiation symbol (A) tells the computer that the number that follows is a
power.

Beginner's BASIC 133

APPENDIX D
Mathematical Operations

Let’s say that we have this mathematical expression to evaluate:
y=x°

We want to find all the values for y where x equals 1 through 10. So we enter this short

program:

NEW

10 CALL CLEAR
20 FOR X=1 T0 10
30 Y=XA3

40 PRINT "y=";Y
20 NEXT X

60 END

When we run the program, we'll see the following values for y:

= 1

Y= 8
= 27
= 64
= 125
= 216
= 343
= 512
= 729
= 1000

The computer completes the program for us very quickly! We have the values we need

and can go on to other computations.

Roots

Finding a root of a number is another very common mathematical problem. The square
root 1s one we've all heard of — and probably used — at Some point in our educations.
Since many, many calculations call for square roots, this function is built into the

comptter:

*LET A=SGQGR(4)

*PRINT A
2

>PRINT SQR{16)

134

- ¥
S EEaE b aBale e aa am

APPENDIX D
Mathematical Operations

e e il

The letters SQR stand for "square root of " and instruct the computer to find the square
root of the number or expression contained within the parentheses.

Other roots must be computed by using a form of exponentiation. Computing a root of

a number 1S the same function as raising the number to a power which is the reciprocal
of the root; that is,

\3/125 1s the same as 125173)
Try this example:

N

>PRINT 125A(1/73)
5.

N\ J
Notice that we had to use parentheses around the exponent 1/3. The parentheses

notify the computer that the whole expression makes up the exponent. (You'll see why
this 1s necessary when we discuss "Order of Operations.”)

Here's a program that helps you compute any root of any number (within the
computer's limits and the bounds of mathematical rules, of course).

NEW

10 CALL CLEAR

20 INPUT "NUMBER?":N
30 INPUT "ROOT?":R
40 CALL CLEAR

50 PRINT N;R,NAC1/R)
60 END

When you run the program, you'll first be asked to input the number for which you
want to iind the root. Let's enter 27 for our example.

Beoinner's BASIC 13I8

APPENDIX D
Mathematical Operations

Next youre asked for the root you want to find. Let's say we want the cube root, so we
type 3 and press ENTER.

27 3

T he cube root
of 27 is 3.

#% DONE #%

o J
Run the program again, and this time enter 240! for the number and 4 for the root. Did
you get the answer 77

Of course, not all numbers work out to results that are nice, neat integers. Try the

program again, entering 25 for the number and 3 for the root. You'll get 2.924017738
as your answer. Now check the answer in the Immediate Mode, by raising
2.924017738 to the power of 3:

7

PPRINT 2.924017738A3
24.99999999

N\ J
You don't quite get back to your original 25. That's because 2.924017738 is not the

“exact” cube root of 25; it's an "approximate” root, rounded to ten digits so that it can
be displayed.

All computing devices must "round off” calculated results at some point. Where a
computer rounds a result depends on the computational and display limits of the
machine. To make sure that the accuracy of the last displayed digit is within certain
limits, most computers and many calculators actually perform computations internally
with more digits than they can display. These extra or "guard” digits are retained in

the computer's internal registers, but they can't be shown on the screen, due to space
limitations.

136 Beginner's BASIC

APPENDIX D
Mathematical Operations

We can, however, demonstrate the presence of these internal “computational” digits.
Let's use the same problem we performed earlier:

7

>LET A=25A(1/3)

>PRINT A
2.924017738

*PRINT AAS
25.

N\ /

The "memory box" labeled A retains all the internal digits as well as the rounded result
shown on the screen. Therefore, with the greater accuracy provided by the internal
digits, we get back our original 25 when we raise A to the power of 3.

One special note of caution: Your computer will give you an error message if you try to
raise a negative number of a fractional power; therefore, you cannot use the
exponentiation routine to find roots of a negative number without taking other steps.

See the Sign (SGN) and Absolute Value (ABS) functions in the "BASIC Reference”
section of the User's Reference Guide.

Order of Operations

In Chapter 3 we discussed the order the computer follows to complete problems
involving multiplication division, addition, and subtraction. We also demonstrated that
an expression within parentheses is evaluated before the rest of the problem is solved.
The order of operations, then, was listed as: »°

(1) Complete everything inside parentheses.

(2) Complete multiplication and division.

(3) Complete addition and subtraction.

Now we need to add another level to this order. Exponentiation (raising a number to a
power or finding a root of a number) is performed before any other mathematical
operation. So our new order hecomes:

(1) Complete parenthetical expressions.

(2) Complete exponentiation.

(3) Complete multiplication and division.
(

4) Complete addition and subtraction,

Let's try some examples that help to demonstrate these concepts.

Beginner's BASIC 137

APPENDIX D
Mathematical Operations

First, we'll define some variable names for the quantities we'll be using in our
calculations. Enter these lines:

LET A=5

LET B=2 '
LET €=10

LET D=4

Now weTe ready for the calculations:

7

?PRINT B*CAB
200

*PRINT A+BxCAB
205

>PRINT ((A+B)*CIAB/D
1225

s J
Here's the order the computer followed in each of these examples:

First problem 10°=100
2X100=200

Second problem 102=100
2X100=200
5+200=205

Third problem 5+42=7
7X10=70 i
702=4900
4900+4=1225

Notice that this last problem utilized two sets of parentheses, one within the other. In
this situation the computer evaluates the innermost set of parentheses first.

138 ' Beginner's BASIC

APPENDIX D
Mathematical Operations

As you saw when we discussed the roots of numbers, the exponent of a number can
also be a numeric expression enclosed in parentheses. Let's try a few more examples,
using the values already stored in the computer’s memory.

7

>PRINT ((A+BI*x(A+BIIA(B/D)
7.

>PRINT BA(D/B)+AX(
34,

N\ J

The first problem essentially squared the number 7 and then took the square root of
the result:

(A+B)=5+2=7
(A+B)*(A+B)=7%x7=49
B/D=2+4=75

495=/49=7

- The second problem is solved like this:
D/B=4+2=2
BA(D/B)=22=4
A*C=5X10=50
4+50=54

The following program not only demonstrates the computational power of your
computer, but also plays a scale for you!

The relationship between the frequencies of notes in the tempered scale can be
algebraically expressed as

y =xkn
where x =the frequency of the first note of the scale,
12
k =a constant, /2,

n=the number of half-steps between note x and note y
y =the frequency of the next note you want to play

Beginner's BASIC 139

APPENDIX D
Mathematical Operations

P Sl

There are twelve notes in the tempered scale, and between each note and the next is
one half-step. The following program, starting with a frequency of 440 (A above middle
C on a piano keyboard), calculates and plays each note in the scale:

Beginning frequency.

20 X=440 -
30 K=2A(1/12) -
40 CALL SOUND(200,X,2)
50 FOR N=1 TO 12

60 Y=X*KAN .
70 CALL SOUND (200,Y,2)—
‘80 NEXT N
90 END

Calculates
the constant, K.

Plays first note.

Calculates Y, the
next note in the scale.

Loops back Plays note
fo play next note.

Run the program and listen to the music!

Other Mathematical Functions

Several other mathematical functions, in addition to those we've already covered, are
available in TI BASIC. We won't discuss these in detail, but we want to list some of

them for you, because they can be a great help in performing mathematics with your
computer.

Trigonometric Functions
These trigonometric functions are available: U

SINC) — Finds the sine of the number or numeric expression enclosed in
\ parentheses.

/

A number or numeric
expression goes here.

c0sS() — Finds the cosine of the number or numeric expression enclosed in
parentheses.
TANC) — Finds the tangent of the number or numeric expression enclosed in
parentheses.
ATNC) — Finds the arctangent of the number or numeric expression enclosed in
parentheses.

Note: All trigonometric functions are performed by the computer in radians, rather
than degrees. Therefore, if your data is measured in degrees, you'll need to
convert the measurement to radians before using it with the function. (To convert
an angle trom degrees to radians, multiply by 7/180. To convert from radians to
degrees, multiply by 180/7.)

™ Tl - e .

140 _Beginner's BASIC

APPENDIX D
Mathematical Operations

Logarithins

The computer calculates the natural log and natural antilog (based on e =2.718281828)
of a number:

/

LOG() Computes the natural logarithm of the number or numeric expression
enclosed in parentheses.

A number or numeric
expression goes here.

EXPC) Computes the natural antilogarithm of the number or numeric expression
enclosed in parentheses.

‘To convert the natural logarithm of a number to the common log of the number, simply
divide the natural log by the natural log of 10. For example, if you want to find the
common log of 3, you would use this procedure:

7

common log of 3
>A=L0G(3)/LOG(10)

>PRINT A
4771212547

NS J

» F -

ll;'\-\'_ L e

Absolute Value

Calculations often require the use of the absolute value of a number. This has the
etfect of making the number positive, regardless of its sign. Here's how to instruct the
computer to find and utilize the absolute value of a number:

/

ABS() Finds the absolute value of the number or numeric expression in
parentheses.

A number or numeric
expression goes here.

There are other mathematical functions available, and you'll find them listed and
discussed under “Functions” in the "BASIC Reference"” section of the User’s Reference
Guide. The functions we've illustrated here, however, should help you discover many
ways to use your computer as a computational tool.

Beginner's BASIC 141

IndeX

A Page | R
Absolute value 141 [F-THEN statement 83-85 Random numbers 73-80
Adding program lines. 31-32 Immediate mode, definitionof 7 Changingrange 75-79
Animation. 104-120 INPUT statement 33-35 Setting limits, 82
B INT tunction 69-72 RANDOMIZE 74-75
BASIC. definitionof. 5 L RND function . .Y 73-80
Branching 83-84 LET statement. 13-17 Roots. 134137
c Line number 78 RUNcommand 27-20
CALL CHAR. 108-110 LISTcommand 2829 S
CALL CLEAR. 10-11 Logarithms 141 Scientific notation. 69.129-133
CALLCOLOR. 40-45 Loop Scrolling, definitionof 0
CALL HCHAR 20-25 delayloop 41-43,51-53 with Immediate Mode graphics. 24
CALLXEY. 03.94 FOR-NEXT 48-57 “Shorthand " codes. 108-114
CALLSCREEN 9798 GOTO.............. 38-45 Simulation, defimtionof 73
CALLSOUND 17-20 loop counter. 54 Dice-rolling simulations . . . 77-79
for noise 18-19 nestedloop 53-57 Statements
for one tone 17 CALL CHAR. 108-110
for threetones 13 M | CALLCLEAR. 106-11
fortwotones 18-19 Mathematics CALLCOLOR. 4045
CALL VCHAR . 20-25 Abs.r:]lute valut? 141 CALL HCHAR == 20-25
Character codes 21, 41-42,125 Decimal notation 127-128 CALL SCREEN 97-98
Character, definitionof. 21 Exponentiation. 133-137 CALLSOUND 17-20
dﬂﬁﬂiﬂg CUStDmiZEd Lugarlthms e 141 CALL VCHAR ‘‘‘‘‘‘ 20_25
characterset 108-118 Order of operation. 67-69,137-140 FOR-NEXT 4857
corid”. .. 108-113 Parentheses. 67-69,137-140 GOTO.. 38-45
standard set 42.125 SCllEntlﬁC notation. . . 69, 120-133 I[F-THEN _ 8385
Character grid worksheet . . . 114-116 Trlgnnnmetrlc func_tmns """ 140 INPUT. 33-35
Colorcodes42.126 Musical tone frequencies. 124 LeT 13-17
Commands 28290 N PRINT. 8-10
Computer programming, NEW command 26, 28-29 RANDOMIZE 74-75
definitionof 5 Normaldisplay form . 58,61,127-128 OStringvanables 35-37
Cursor-controlkeys 1213 Numbers T
Cursor, definitionof. 8 Display of numbers 127-133 TAB function 63-66
D Random numbers 7378 Tones................. 17-20
Defining characters108-118 Rounding of numbers 136 Trigonometric functions 140
Deleting program lines 32-33 Numeric vanables. 13-17 Vv
Durationoftone, 17 O Variables, definitionof 13
E Order of operation Numernic. 1317
Editing programs 31-37 ?I‘l mathematics. . . 67-69,137-140 String 35.37
Error correction 12-13, 26 in programs5 ... 27028 Volumeof Tone, 17
Error messages. 11-12, 45-46, P . W
56-57,80,85 Powers. 133-134 "Wrap-around” line 55
Exponentiation. 133-137 PRINT statement
F definition 8
FOR-NEXT statement 48-57 with anthmetic operations. . . . 16
Functions withcolon. 62
INT . . 69-72 with comma. 57-60
RND ... 2378 with numeric variables 14-16
TAB . 63-66 with semicolon 60-62
G with string variables . 35-36. 59-62
: withTAB 6366
GQ--TQ stflteim.n‘snt """"" 38-45 ngr;m structure 27-28, 47
Gralp*hlcls grid " {character Prompting message with INPUT. . 34
pGﬂSalt']?zlsnﬁ} ot 20'%5 Prompting symbol, purpose of . . &, 26
raphicsline
Graphics subprograms
CALLCOLOR. 40-45
CALL HCHAR 20-25
CALLSCREEN 97
CALL VCHAR 20-25
6/81

142 Beginner's BASIC

Programming BASIC with the TI| Home Computer
by Herbert D. Peckham

When you've completed Beginner’'s BASIC, you may want to explore further with the

help of an intermediate level book. We recommend Programming BASIC with the TI
Home Computer by Herbert D. Peckham (McGraw-Hill. 1979).

A well-known author and educator, Mr. Peckham has published numerous books on
programming in BASIC. His new book takes you further into the full range and power
of TI BASIC and your Texas Instruments computer. The easy-to-understand
examples and relaxed style of the book can help you expand your programming skills
and develop your own customized computer applications.

Use the coupon below to order Programming BASIC with the TI Home Computer from
Texas Instruments Incorporated.

ORDERING INSTRUCTIONS

Shipping Inside U.S. Prepaid orders (check or money order) will be sent by postage-
paid Third or Fourth Class postage. Allow 4 to 6 weeks for delivery. If you desire
shipment other than Third or Fourth Class, additional postage should be included with
your order along with specific directions as to method of shipment. Enter additional
amount for shipping on order form.

Shipping Outside U.S. Orders prepaid in U.S. funds only will be accepted. Specify
method of shipment and enter postage or shipping charge amount in proper blank on
order form. This amount should be included in book payment.

Please send orders to: Texas Instruments Incorporated
P. O Box 3640, M.S. 84M
Dallas, Texas 75285

To: Texas Instruments Incorporated
P. O. Box 3640, M.S., 84M
Dallas, Texas 75285

Please send me Programming BASIC with the TI Home Computer.

|

| Name:

| Address:

! City: State: Zip:
| (LCB-4190) copites @ $19.95each
| State and local sales tax (If applicable)*
- Shipping method**

- Additional postage enclosed** ...

Total payment amount enclosed
*State and local sales taxes required by every state except AK, DE, HI, MT, NH, OR.

**For mailing other than Third or Fourth Class.

Price effective October 1, 1982 subject to change without notice. BB-79

Beginner's BASIC 143

Beginner's BASIC is u step-by-step gitidle 1hsat tukes vou froun the "ground op” inty
an adveniurs — {he adventure of communicating widh a comptee o @ sinple. vt
pawertul languaee, Quickly and cosily wou'l fioe voorsedl in comrol of o system that
can caleulate, wake decisiung, cducaw. and eateriany. Bven if this = oie fisse toee
v ve Seen a connpater, vou'll beouble to follow thes casyto-understand, bands-o)
ipprach.
i Slarts at the Beginning. Gelling started, dos and deses, ull of the very fiest things
yuun need o knew. Simple bt exeiting firse experiences with the ceonpuler make it
fon froom The stert,
It Quickly Gives You Confidencs. Altheugh the appenach is step-by-steq, il tast
ael Leight, Carefully thought-om uschul upplicstinos are bailt inte dhe | arning. 1n 4
short while you'll koow all of the lgey clemems af 1he BAS{C compuer laneuage, os
well a3 luow o apply it o bnildneg poweriul progea; v out exacy whinl poy
want Your coanputer to e On completion of this book. you're ready to explore more
advanced wehingues cxplained in vour sers Beference Goide — or o the T 1Y
e published materials available on BASIC progranyning
A Learn-by-Daing Approach thar shows wealn Jugwe L

W Commawd 1 computer o Toonediade Mede”

W Wi simple progrims sl explote eatures that ley vou edit, caloulare and

make decivions
W Croeate praphic desimzs in 16 colors on 1he AT SO0

M Binld wmusical tooes, patterns, and chords — 0 theee voices witl a rang nd
inare {han four eetaves cach

B Develop more advanced prograony Thay "pud it all ingether” — compulation.
decizion making, graphics and souned — o o the things that are niust
importang we vy

An Jmportant Part pf Teday's Literacy. Your Texas Lisuuments con e,

along wilh s book, offers an excelleot ramwework Jor learping showt the warkd of
corpuiers. You'll koow Hrst hand what cotnpaers do = and what 1hey ean't do
Fou'll be familear with the BASIC voulputer lanpuage — oov of the mos iy ersally
applied lauguages inothe world. Yo'l De s compoter "Terate” = better able to
clizcuss, Londersteawl, aned decwhe o e rale 4_'|r|;:|."_'.|j'|_'jp|_|1:1|':-'i 11 YT Il [n [nf];:]_:rl'::j wrll
I'Ilf_'lI.]l[.'l'I.I[IZ'Z!:I' lileea Lol !':fi"-'[:: WO an illtljl::l]'lilnl |‘.|:_|_g:|;': A% VO et rurnputer
apphications ioeducation, entertatmmenst, sud Busicess,

