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CHAPTER 1 

INTRODUCTION 

This book introduces assembly language programming with the TI Home Computer. 

1.1 Purpose of the Book 

Texas Instruments offers a variety of hardware (equipment) and software to use for 
running and developing assembly language programs. The software includes the 
Editor/Assembler package, the line-by-line assembler and the debugger which come 
with the Mini Memory Module, and the software available with the UCSD p-System. 

The specific operation and unique features of these products are described in the 
documentation that accompanies each one. A lot of this documentation assumes that you 
have previous assembly language experience and already know the assembly language 
of the TI Home Computer. If you don't have that kind of experience or knowledge, this 
book is for you. This book doesn't replace the existing documentation but, rather, 
supplements it. 

The purpose of this book is to help you learn the basic concepts of assembly language 
programming using the Texas Instruments Home Computer. It's designed to help you 
learn the TI Home Computer's assembly language instruction set and the structure of 
assembly language programs. With this knowledge, you can 

• understand existing programs 

• customize programs 

• create your own assembly language programs 

With an understanding of assembly language, you begin to know the detailed architecture 
of the TI Home Computer and can apply your understanding to directly control the 
computer's programmable components. 
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Chapter 2 

language, the translation program is called either an interpreter or a compiler. For an 
assembly language program, the translation program is called an assembler. 

Here are a few "buzzwords" associated with the assembly process. They are: 

• source program 

• object program 

• listing 

A "source" program is the collection of assembly language statements which is translated 
by the assembler. The machine language program that results is called an "object" 
program. The assembler usually also produces a "listing." A listing is a printed document 
that shows: 

• the assembly language statements that were given to the assembler 
• the resulting machine code into which they were translated 
• the locations in memory for the machine code 
• other information such as a list of symbols used in the program 

The listing also contains error messages if the assembler can't understand the assembly 
language statements, or if for some other reason, it can't produce the correct machine 
code. You can visualize the assembly process this way. 

Source 

Program 

Assembler 



What is Assembly Language? 

2.4 Procedures for Developing an Assembly Language Program 

The steps for developing an assembly language program aren't that much different from 
the steps used to develop a high-level language program. The steps are as follows: 

1. Define the program. 
2. Compose the source program. 
3. Assemble the source program into an object program. 
4. Load the (object) program into memory. 
5. Run the program. 
6. Test the program. 
7. Modify the program. 
8. Document the program. 

First, define what you want the program to do and how you want it to do its job. 

When writing a program in BASIC, you can type in the statements of a program, compose 
the statements in the right order, and run the program. The BASIC interpreter translates 
and performs the instructions at one time. 

When developing a program in assembly language, you perform these separate steps: 

• compose the statements in the source program 
• have the source program assembled into an object program 
• run the object program 

With assembly language, you write the statements of your program and compose them 
into a source program. Usually, there is an Editor to help in composing the source 
program. An Editor is a program that lets you type in statements, collect them, and arrange 
them in the right order. After creating the source program, you use an Assembler to 
translate the source program into an object program and to produce a listing. Next, you 
load the object program into memory using a Loader. A loader is a program that reads 
an object program and stores the object code in memory. Then you run the program. 

When you run your program, a Debugger is sometimes available to help you test your 
program and remove "bugs", or mistakes in the logic of a program. Often, as a result of 
testing a program, you modify it to fix bugs or change features. 

Documentation is an important part of developing any program. By describing a program 
clearly and completely, you can more easily debug and modify it when necessary. Good 
documentation helps others understand your program, or, more importantly, helps you 
understand your program after being away from it. 
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Chapter 2 

This description provides an overview of the steps that are used to develop an assembly 
language program. Other chapters describe these steps in more detail. 

2.5 Main Ideas 

Computer languages are used to give directions to a computer. There are three levels: 
high-level language, assembly language, and machine language. 

A high-level language is more oriented to human language than machine language. A 
high-level language is less efficient in terms of the required memory storage and the time 
required to run the program. 

Assembly language is used to express machine language by using characters that people 
understand. 

An assembler is a program that translates the assembler language statements of a source 
program into the machine code of an object program. The assembler usually produces 
a printed document called a listing that shows the result of the assembly process. 

10 



Chapter 3 

THE STRUCTURE OF DATA 

An assembly language program, like a high-level language program, consists of a 
collection of statements. The main purpose of these statements is to give an instruction 
to the computer or to define data. This chapter examines the structure of data and its 
relationship to a program. 

3.1 Relationship of Data to a Program 

Consider the following BASIC language program. 

100 DATA 3,-8 

110 READ A,B 

120 C = A + B 

Statement 100 defines two data items: a value of 3 and a value of —8. Statement 110 
assigns the name A to the value 3 and the name B to the value —8. Statement 120 directs 
the computer to add the value called A and the value called B and call the sum C. 

Consider a similar assembly language program for the TI Home Computer. 

A 6, DATA 3 

B 	DATA -8 

C 	BSS 	2 
MOV 	@A,R0 

MOV 	@B,R1 

A 	R0,R1 

MOV 	R1,@C 

The first three statements define data. The last four statements are instructions that 
specify an action for the computer to perform. 

The first statement assigns the name A to the value 3. The second statement assigns the 
name B to the value —8. The third statement assigns the name C to a storage location. 
The BSS is an abbreviation for "Block Starting with Symbol". It reserves a block of 
memory and assigns a name to the beginning of that block. The 2 in the statement specifies 

11 



Chapter 3 

the number of bytes of memory to reserve. Memory is measured in bytes. A byte is a group 
of 8 bits. 

The fourth statement is an instruction that moves, or copies, the number called A to a 
register numbered zero. A register is a special storage location that can be accessed faster 
than other storage locations. The fifth statement is an instruction that moves the number 
called B to a register numbered one. 

The sixth statement is an instruction that adds the number in Register 0 to the number 
in Register 1 and replaces the number in Register 1 with the sum. The seventh statement 
is an instruction that moves the number in Register 1 (the sum) to the storage location 
called C. 

The point is, an assembly language program, like a high-level language program, includes 
statements that define data and statements that direct the computer to perform some 
action. One step that you must take in assembly language programming is to allocate 
memory for data and define the structure of that data. 

3.2 Bit Quantities 

To the computer, all data is simply a collection of one and zero bits. With assembly 
language, you can directly manipulate individual bits. 

The most basic unit of data that a computer can access is a bit. A bit is a single binary 
digit: a zero or a one. A single bit is usually too small a unit of data to be very useful by 
itself. More commonly, bits are grouped together to form larger numbers. 

(list like a group of 12 doughnuts is called a dozen, names are also given to groups of 
bits. A group of 8 bits is called a "byte." A group of 4 bits is called a "nibble." Sometimes, 
it's convenient to refer to a pair of bits by a name. Let's call a two-bit quantity a "niblet" 
(a petite nibble). 

Another name given to a quantity of bits is "word." It's a term given to the maximum 
number of bits that a computer can handle at one time. The number of bits in a word 
depends upon the computer. Different computers have different word sizes. If someone 
asks you how many bits are in a word, you must first know what computer that person 
is talking about. 

Note 

The word size of the TI Home Computer is 16 bits. 

12 



The Structure of Data 

Sometimes, the expression "double word" is used. Just as you might expect, a double word 
contains twice as many bits as a word. The number of bits in a double word depends 
upon the number of bits in a word which, in turn, depends upon the computer. 

Here's a summary list of these bit quantities. 

Bit 	 A single binary digit (0 or 1) 
Niblet 	 Two bits 
Nibble 	 Four bits 
Byte 	 Eight bits 
Word 	 The number of bits in a word varies with the computer. For 

the TI Home Computer, it's 16 bits. 
Double Word 	The number of bits in a double word depends upon the 

word size of the computer and equals two times the word 
size. 

3.3 Number Conversions 

When writing programs in assembly language, you often deal with word and byte 
quantities and, sometimes, even smaller quantities of bits. Bits, of course, represent binary 
numbers. You need to be familiar with the binary number system; because you need to 
be able to convert a binary number into a decimal value and a decimal value into a binary 
value. 

When reading or writing assembly language programs for the TI Home Computer, you 
also need to be familiar with the hexadecimal number system. The hexadecimal, or "hex", 
number system expresses binary values more concisely. For example, rather than writing 
out a 16-bit number like 1010011110011100, it's more concise to simply write the 
hexadecimal equivalent value, A79C. 

Most of the time, binary numbers are expressed as hex numbers. If you can convert binary 
numbers to hex equivalents and hex numbers to binary equivalents, it is helpful. 
Additionally, knowing how to convert hex numbers into decimal equivalents and decimal 
numbers into hex equivalents is helpful as well. 

In summary, knowing how to perform six kinds of number conversions is helpful when 
learning to program using assembly language. These conversions are: 

1. a binary number number to a decimal equivalent 

2. a hexadecimal number to a decimal equivalent 
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Chapter 3 

3. a binary number to a hexadecimal equivalent 

4. a hexadecimal number to a binary equivalent 

5. a decimal number to a binary equivalent 

6. a decimal number to a hexadecimal equivalent 

Let's explore some techniques for performing these number conversions. These are not 
the only ways to convert numbers, but they'll get you started. 

Binary, decimal, and hexadecimal number systems use positional notation. With 
positional notation, the value of an individual digit in a number depends upon its position 
in the number. 

For example, in comparing the decimal number 735 and the number 357, the 5 digits have 
different positions and have different values in the two numbers. In the number 735, the 
5 digit has a value of 5; in the number 357, the 5 digit has a value of 50. The position of 
the 5 in these decimal numbers determines its value. 

With positional notation, the position of each digit determines its value. To be more 
specific, the position of a digit determines the power of the radix by which the digit is 
multiplied. The radix, or the base, of a number system is the number of digits that can 
be used to express values. For example, the decimal number system has a radix of ten; 
there are ten digits, 0 through 9, that can be used to express values. The binary number 
system has a radix of two since there are only two digits, 0 and 1, that can be used to 
express values. 

The value of an individual digit in a number can be determined by this procedure. 

• Start at the position of that digit and count the number of other digits to the right 
of it. 

• Use this count as an exponent for the radix of the number. 

• Multiply the digit times the radix raised to that exponent. 

For example, to determine the value of the digit 3 in the decimal number 6357: 

• Start at the position of the 3 digit and count the number of digits to the right of it. 
There are 2 digits to the right of the 3. 
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The Structure of Data 

1 	2 

+ 	> 

1 
6 	3 	5 	7 

• Use this count (2) as an exponent for the radix of the number. A decimal number 
has a radix of 10. The number 10 raised to the 2nd power is 100. 

2 = 10 0 10 = 100 	 10 

• Multiply the digit (3) times 100. 

3 X 100 = 300 

The value of the digit 3 in 6357 is 300. 

Using the same procedure with 6357, you can determine that the value of the 6 digit is 
6 10', or 6000; the value of the 5 digit is 5 10', or 50; and the value of the 7 digit is 7 10°, 
or 7. 

Note 

Any number with a zero exponent equals one. For example, 

0=1 10 

0=1 53 

0=1 18927 

The value of a complete number can be calculated by adding the values of the individual 
digits. For example, the value of the number 6357 is 6000 + 300 + 50 + 7, or 6357. 

Knowing how to perform these calculations with decimal numbers helps you calculate 
the value of numbers that use other number systems. 

3.3.1 Converting a Binary Number to a Decimal Equivalent 

The binary number system is the one used by digital computers. The two digits in the 
binary number system (0 and 1) are used to represent the on/off or true/false states of 
binary data in a computer. 
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Chapter 3 

The binary number system is the "natural" number system for a computer. The natural 
number system for people is decimal. When confronted with a binary number, you may 
want to convert it to decimal so you can think about it more easily. 

The binary number system uses positional notation just like the decimal number system. 
You can take advantage of this common element to convert a binary number to an 
equivalent decimal value. You can use the same technique to evaluate a binary number 
as you use to evaluate a decimal number. 

For example, suppose you want to convert the binary number 10101 into a decimal 
equivalent. First, determine the value of each digit in the number. Specifically, you only 
need to determine the value of each 1 digit since the value of each 0 digit is zero. 

In the binary number 10101, the leftmost 1 digit has 4 digits to the right of it. 

1 2 3 4 

1 0 1 0 1 

Use this count (4) as an exponent for the radix of the number. The radix of a binary 
number is 2. The number 2 raised to the 4th power is 16. 

4 = 2 X 2 X 2 X 2 = 16 	2 

Therefore, the value of the leftmost 1 bit is decimal 16. 

The value of the middle 1 bit is 4 and the value of the rightmost 1 bit is 1. The value of 
the entire binary number is 16 + 4 + 1, or decimal 21. 

3.3.2 Converting a Hexadecimal Number to a Decimal Equivalent 

The hexadecimal number system is a radix-16 number system. There are 16 unique digits 
in the hexadecimal number system. The 16 hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 
8, 9, A, 13, C, D, E, and F. In the hexadecimal number system, the digits 0 through 9 have 
the same value as the digits 0 through 9 in the decimal number system. The digits A 
through F represent the decimal values 10 through 15. 

The following table illustrates the relationship between a hexadecimal digit and its 
corresponding binary and decimal equivalent value. 

16 



The Structure of Data 

HEXADECIMAL-BINARY-DECIMAL EQUIVALENCY (HBDE) TABLE 

Hexadecimal Binary 	 Decimal 

0 0000 0 

1 0001 1 

2 0010 2 

3 0011 3 

4 0100 4 

5 0101 5 

6 0110 6 

7 0111 7 

8 1000 8 

9 1001 9 

A 1010 10 

B 1011 11 

C 1100 12 

D 1101 13 

E 1110 14 

F 1111 15 

Let's refer to this table as the HBDE Table. You can use the HBDE table to determine 
the equivalent values in the three number systems. For example, to determine the 

17 



Chapter 3 

equivalent decimal value for the hexadecimal digit B, first locate the B in the 
Hexadecimal column. Then follow across on the same row under the Decimal column 
and find the equivalent decimal value (11). 

The hexadecimal number system is useful because it's a more concise way of expressing 
binary values. For example, it takes four digits to express the decimal value 10 in binary 
(1010), but it takes only a single digit (A) to express the same value in the hexadecimal 
number system. 

Just like the binary and decimal number systems, the hexadecimal number system 
employs positional notation. This commonality helps you convert a hexadecimal number 
to an equivalent decimal value. 

Suppose you want to convert the number hexadecimal 3AD4 to an equivalent decimal 
value. You can use the same basic procedure you use to convert a binary number to 
decimal. Start with the leftmost digit and count the number of digits to right of it. There 
are 3 digits to the right of the leftmost digit. 

1 2 3 

3 A D 4 

Use this count (3) as an exponent for the radix of the number. The radix of a hexadecimal 
number is 16. Sixteen raised to the 3rd power is 4096. 

3 = 16 X 16 X 16 = 4096 	16 

Multiply the digit 3 times 4096. 

3 X 4096 = 12288 

Thus, the value of the 3 digit is 12288. 

In the same way, evaluate the value of the hex digit A in 3AD4. Use the HBDE Table 
to find the decimal value for the digit hex A. Its decimal value is 10. Then multiply the 
decimal value of the digit times 256 (which is 161 to determine the value of the digit in 
the hex number. The value of the A digit in hex 3AD4 is 2560. 

10 X 256 = 2560 

Using the same technique, you find the value of the D digit in the hex number is 208 
and the value of the 4 digit is 4. 

18 
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Therefore, the decimal value of the entire hexadecimal number is 12288 + 2560 + 208 
+ 4 = 15060. 

3.3.3 Converting a Binary Number to a Hexadecimal Equivalent 

Hexadecimal numbers are more concise than binary numbers. For example, the 4-bit 
binary number 1100 can be expressed with the single hexadecimal digit C. The concisness 
of the hexadecimal number system when compared to the binary number system becomes 
more important as the number of bits in the binary value increase. For example, to express 
the binary value 1000010011011001 requires 16 bits. The same value can be expressed 
in hexadecimal with only 4 digits — 84D9. 

To convert a binary number to a hexadecimal equivalent, follow these procedures. First, 
start with the rightmost bit in the number and move toward the left, dividing the bits in 
the binary number into groups of four. You can add leading zeros to the leftmost group 
of bits to make the number of bits in that group exactly four. 

After dividing the binary number into nibble-sized groups of bits, simply write down the 
hexadecimal digit that is equivalent to the binary value of each nibble. You can use the 
HBDE Table for this, or use your memory. 

Follow this example to convert the 10-bit binary number 1010100011 into an equivalent 
hexadecimal number. Start at the right, and moving left-to-right, divide the bits into 
groups of four. 

10 1010 0011 

You can add leading zeros to force the binary number to have an even multiple of four 
bits. 

0010 1010 0011 

Then, using the HBDE Table or your memory, jot down the hex digit that is equal to each 
nibble. 

0010 1010 0011 
2 	A 	3 

And that's all there is to it. 

Use the same procedure and confirm that a binary value of 1001110101101111 is equal 
to a hexadecimal 9D6F. 
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3.3.4 Converting a Hexadecimal Number to a Binary Equivalent 

Sometimes you may encounter a hexadecimal value (say, from using a debugger to inspect 
the contents of a memory location) and want to convert the hex value to a binary 
equivalent. You can perform a hexadecimal-to-binary conversion as follows. Use the 
HBDE Table or your memory to find the binary nibble that is equivalent to each 
hexadecimal digit and write down the binary equivalent for each hex digit. You can begin 
at the left or right hexadecimal digit. Group these nibbles together and you have the binary 
equivalent. 

For example, to convert the hexadecimal number 96C7 to an equivalent binary number, 
start with the leftmost digit and write down the 4-bit binary equivalent for each hex digit. 

9 	6 	C 	7 

1001 0110 1100 0111 

Hexadecimal 96C7 equals a binary 1001011011000111. 

When converting a hexadecimal number into a binary equivalent, it's conventional, 
though not required, to add enough leading zeros to end up with even multiples of four 
bits; that is, complete nibbles. 

For example, the number hexadecimal 27E6 can be expressed as the 14-bit binary number 
10011111100110 (expressed in three-and-a-half nibbles), but it's conventional to add 
enough leading zeros to end up with whole nibbles. Hexadecimal 27E6 equals binary 
0010 0111 1110 0110 (four complete nibbles). 

3.3.5 Converting a Decimal Number to a Binary Equivalent 

When you want to convert a decimal number to a binary equivalent, you can use the 
following procedure. To illustrate the procedure, let's convert the decimal number 22 into 
an equivalent binary value. 

Start by making a table like this. 

	

Radix 	Decimal 

	  Remainder 

2 
	

22 

20 



The Structure of Data 

The 2 in the Radix column of the table is the radix of the number system into which the 
decimal number is being converted. We are converting a decimal number into a binary 
(radix-2) system. The 22 in the Decimal column is the decimal number to be converted. 
The column titled Remainder is used to record the remainders from a series of divisions. 

Proceed this way. Divide the number in the Radix column, 2, into the number in the 
Decimal column, 22. Record the quotient under the number in the Decimal column and 
record the remainder in the same row as the quotient but in the Remainder column. 

Radix 	I 	Decimal 

2 

 

22 
11 

   

Remainder 

0 

Two goes into 22 eleven times with a remainder of 0. The first remainder is the rightmost 
digit of the converted result. 

Continue the process by making the quotient of the first division, 11, a dividend for a 
subsequent division. Divide the new dividend by 2 and, again, record the quotient and 
the remainder from this second division. 

1 
	

Radix 	I 	Decimal 

2 
2 

 

22 
11 

5 

   

Remainder 

0 

1 

Two goes into 11 five times with a remainder of 1. The second remainder,1, is the next 
digit to the left in the converted result. 

Use this second quotient as the new dividend for a subsequent division by 2 and continue 
the procedure, recording quotients and remainders as you perform the divisions. 

When a division produces a quotient of zero, stop. At that point, the last remainder is 
the leftmost digit of the converted result. 
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Radix 	Decimal 

Remainder 

2 	 22 

2 	 11 	 0 

2 	 5 	 1 

2 	 2 	 1 

2 	 1 	 0 

0 	 1 

V V 

1 0 

Notice that the remainders are written down from right-to-left where the first remainder 
is the rightmost digit of the converted result. 

Thus, a decimal 22 equals a binary 10110. 

You can use three leading zeros, if you like, to express the byte value of 00010110. 

3.3.6 Converting a Decimal Number into a Hexadecimal Equivalent 

Converting a decimal number into an equivalent hexadecimal value follows the same 
basic process as converting a decimal number into a binary number. The major difference 
is that you divide the decimal number by 16, rather than by 2. You use 16 because you 
are converting the decimal number into a radix-16 number. 

To convert the decimal number 27823 into a hexadecimal number, use the following 
procedure. Begin by making a table similar to the one used for a decimal-to-binary 
conversion. 

Radix 	Decimal 

	  Remainder 

16 	 27823 

22 



16 

16 

16 

27823 

1738 

108 
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Notice that the number in the Radix column is 16, rather than 2, because you're converting 
to a radix-16 number. The decimal number to be converted is in the Decimal column 
and the Remainder column is used to record the remainders resulting from a series of 
divisions. 

Proceed as in a decimal-to-binary conversion. Divide the number in the Radix column 
into the number in the Decimal column. Record the quotient under the number in the 
Decimal column. Record the remainder in the same row as the quotient but in the 
Remainder column. 

i 
+ Remainder 

Radix 	I 	Decimal 

27823 + 

1738 
	

15 

Sixteen divided into 27823 produces a quotient of 1738 with a remainder of 15. The first 
remainder represents the rightmost digit of the converted result. Since 15 is the decimal 
value of the remainder, write down the equivalent hexadecimal digit for the remainder. 

Radix 	I 	Decimal 

16 

 

27823 

1738 

Remainder I Remainder 

(Hex) 

15 	= 	F 

Continue the procedure by taking 1738 as the dividend for a subsequent division by 16. 

Record the quotient and remainder from the second division. 

Radix 	Decimal 

Remainder I Remainder 

(Hex) 

15 	= 	F 

10 
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The second remainder of 10 represents the decimal value of the next digit to the left in 
the converted result. Express this decimal value as an equivalent hex digit. 

Radix 	Decimal 

	  + Remainder Remainder 

16 27823 (Hex) 

16 1738 15 F 

108 10 A 

Use this new quotient as a dividend for a subsequent division by 16 and continue the 
procedure, recording the quotients in the Decimal column and remainders in first decimal 
and then hexadecimal form as you perform the divisions. 

Stop when a division produces a quotient of zero. At that point, the last remainder 
represents the leftmost digit of the converted result. 

Radix 	Decimal 

	 + Remainder 	Remainder 

16 27823 	 (Hex) 

16 1738 15 

16 108 10 = 	A 	 

16 6 12 C 	 

0 6 = 	6 

V V V 

Notice that the hexadecimal digit remainders are written down from right-to- left just 
like the remainders for a decimal-to-binary conversion. 

Therefore, decimal 27823 equals hexadecimal 6CAF. 

3.3.7 Number Conversion Shortcuts 

As you perform more number conversions, you discover shortcuts that make the process 
faster. 

You can use the Debugger with the Editor/Assembler Package to convert hexadecimal 
numbers to decimal and decimal numbers to hexadecimal. 
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An even easier way to perform these conversions is to use the Texas Instruments 
calculator that performs the conversions by simply pressing a few keys. The calculator 
is called the TI Programmer. 

3.4 Data Representation 

To the computer, all data is simply a collection of one and zero bits. But these bits can 
represent different things. The data in a program can represent numeric values, 
characters, or special codes. For example, in the BASIC statement 

PRINT A;"13" 

The A represents a numeric value and "B" is a character. 

The same is true with assembly language; data can represent numeric values, characters, 
or special codes. For example, in the following assembly language statements, A 
represents a numeric value and B represents the character "B." 

A DATA 3 

B TEXT 'B' 

Sometimes data may represent a special code unique to a program. In a payroll program, 
for example, the number 33 may mean "overtime." 

The information represented by a data quantity depends upon the interpretation of that 
data quantity. For example, consider the binary byte value 01000001. It might represent 
a numerical value, a character, or it could be a code meaning a size 8 green Stetson with 
a polka dot hatband. 

3.4.1 Data Representing Numbers 

If a data value does represent a number, the number may be an unsigned value or a signed 
value. For example, if the 16-bit quantity 1111 1111 1111 1011 represents a number and 
you want to know the decimal value of the number, you can't proceed until you know 
whether this quantity represents an unsigned or a signed value. Its unsigned (or absolute) 
value is decimal 65531, but its signed value is —5. 

If a binary number represents a signed value, the value is represented in two's 
complement notation. Two's complement notation is the most common way for computers 
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to represent signed numbers. With two's complement notation, positive numbers are 
expressed as their absolute value, but negative numbers are expressed as the two's 
complement of their absolute value. 

The two's complement of a binary number is the result of taking the one's complement 
and adding one. The one's complement is the result of inverting (changing the state of) 
the bits. 

As an example, let's form the two's complement of the 16-bit binary number 0000 0000 
0000 0110 (the absolute value is decimal 6). 

First, form the one's complement by inverting the bits. 

1111 1111 1111 1001 

Then, form the two's complement by adding one to the one's complement. 

1111 1111 1111 1001 the one's complement 

+ 	0000 0000 0000 0001 plus 	one 

1111 1111 1111 1010 equals the two's complement 

Taking the two's complement of a number results in a number of equal absolute value, 
but of opposite sign. 

For example, if a binary 0000 0000 0000 0110 is a positive 6, then the two's complement, 
1111 1111 1111 1010 represents a negative 6. 

There are some rules to observe with two's complement notation. Remember that these 
rules apply only to signed numbers. If the number doesn't represent a signed number, 
you don't even have to think about the rules. But if the number does represent a signed 
number, here are the rules. 

The sign of the number is indicated by the leftmost bit, called the "sign bit." A positive 
number has a zero sign bit and a negative number has a sign bit of one. 

Sign Bit 

0 	- 	Positive 

1 	= 	Negative 

A positive number with a sign bit of zero represents the absolute value of the number 
directly. For example, the 16-bit number 0000 0000 0000 1001 has a sign bit of zero and 
an absolute value of decimal 9. A binary 0000 0000 0000 1001 equals +9. 
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With a negative number that has a sign bit of one, you must take the two's complement 
of the number to determine its absolute value. For example, the 16-bit number 1111 1111 
1111 0111 has a sign bit of one. It's a negative number, so you must take the two's 
complement of the number to find out its absolute value. 

the number 

the one's complement 

plus one 

equals the two's complement (decimal 9) 

A binary 1111 1111 1111 0111 equals —9. 

A quicker way to take the two's complement of a binary number is to start with the 
rightmost digit and move to the left, writing down the 0 bits until you come to the first 
1 bit. Write down the 1 bit and then invert the rest of the bits to its left. Inverting a bit 
means to change a zero to one and a one to zero. 

Look at this example of how to take the two's complement of a binary 0111 0000 1010 
0000. 

Moving left-to-right, (1) 

0111 0000 1010 0000 

I   1 	1 	1 
+-- -V 	+ +--v-+ 

(4) 	invert 	jot down 

these bits 	these zero bits 

jot down this one bit <----+ (3) 

The two's complement of 	0111 0000 1010 0000 	is 

1000 1111 0110 0000. 

With the TI Home Computer, most binary values are expressed as hex equivalents. When 
you have a hex number that represents a signed number, you can tell the sign of the 
number by the leftmost hex digit. If the hex digit is 0 through 7, the number is positive. 
If the hex digit is 8 through F, the number is negative. 

For example, if the value hexadecimal C3D2 represents a 16-bit signed number, the 
number is negative since the leftmost hex digit is greater than 7. 

If the value hexadecimal B8A represents a 16-bit signed number, the number is positive 
since the leftmost hex digit is smaller than 8. Remember that it takes four hex digits to 

1111 1111 1111 0111 

0000 0000 0000 1000 

+ 	0000 0000 0000 0001 

0000 0000 0000 1001 

(2) 
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express a full 16-bit value. Therefore, a leading zero must be attached to B8A for it to 
represent a 16-bit value, thus B8A equals OB8A. 

Since binary numbers are often expressed in hexadecimal, it is usually more convenient 
to work directly with the hex digits when taking the two's complement of a number. Here's 
how to take the two's complement of a number expressed in hexadecimal. 

1. Beginning with the rightmost digit and moving to the left, write down any zeros until 
you come to the first nonzero digit. 

2. Subtract the decimal value of this first nonzero digit from 16. 

3. Subtract the decimal value of the remaining digits to the left from 15. 

4. Record the differences as hex digits. 

Here's an example of how to take the two's complement a number expressed as 
hexadecimal 70A0. 

Moving left-to-right (1)  

15 	15 	16 

- 	 7 	-0 	-A 0 

8 	F 6 	0 

+-- Write down this zero (2)  

	 Subtract the first nonzero 	digit from 16 (3)  

Subtract remaining digits 	from 15 (4)  

The two's complement (expressed in hex) is 8F60. 

When the TI Home Computer is executing instructions that use binary numbers, it 
handles the numbers in the same whether they represent unsigned or signed values. It's 
up to the logic of the program to define whether the numbers are signed or not. 

Likewise, the computer treats the binary values as integers. It's up to the logic of the 
program to define data as non-integer numbers. 

The unsigned value of a number is called its "logical" value; the signed value is called 
its "arithmetic" value. For example, the number hexadecimal FFED has a logical value 
of decimal 65,517 and an arithmetic value of decimal —19. 
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3.4.2 Data Representing Characters 

If a data item represents a character, very likely that character is expressed in ASCII code. 
ASCII, an abbreviation for American Standard Code for Information Interchange, is the 
most commonly used code among microcomputers for representing character data. 

Each of the 128 characters in the ASCII character set is assigned a unique seven-bit code. 
The characters and their codes are listed in the ASCII Character Table in Appendix C. 

Turn to the ASCII Character Table in Appendix C and you'll find the letter "A" (capital 
A) has a seven-bit ASCII character code of binary 1000001. If you place a leading zero 
with the seven-bit code, it becomes the binary byte value 01000001, or a hexadecimal 
41. The binary value 01000001, as an ASCII character, represents a capital A. 

Most of the time, an ASCII character is expressed as a byte value (8 bits) where the most 
significant (left-most) bit is called the parity bit. The parity bit is sometimes used for error 
checking purposes when characters are transmitted between data processing devices over 
communication lines. 

Note 

When ASCII characters are discussed in this book, you can assume they're 
8-bit character codes where the parity bit is zero. 

While looking at the ASCII character table, notice that the 128 characters include both 
printable and non-printable characters. For example, the character capital B (binary code 
of 01000010 or hexadecimal 42) is a printable character. However, the character ETX (End 
of TeXt) is a non- printable character. The ETX character (binary code 00000011 or 
hexadecimal 03) is a character sometimes used to indicate the end of the text portion 
of a message that is transmitted over communication lines. 

Two non-printable characters that are used often are the carriage return (CR) and line 
feed (LF) characters. When CR is sent to a terminal such as a printer or a video display, 
the CR character usually causes the carriage or the cursor to return to the left margin. 
When LF is sent to a terminal, the LF character usually causes the carriage or cursor to 
move down to the next line. 

Notice that the ASCII character codes for the digits 0 through 9 have sequential values. 
The character code for "0" is a binary byte value of 00110000 (hex 30), the character code 
for "1" is a binary value of 00110001 (hex 31), the character code for "2' is a binary byte 
value of 00110010 (hex 32), and so forth. 
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The ASCII character codes for the upper-case (capital) letters have sequential values also. 
The character code for "A" is a binary byte value of 01000001 (hex 41), the character code 
for "B" is a binary byte value of 01000010 (hex 42), the character code for "C" is a binary 
byte value of 01000011 (hex 43), and so forth. 

Likewise, the ASCII character codes for lower-case letters have sequential values. 

3.5 Constants and Variables 

In a program, the data can be either a constant or a variable. For example, in the BASIC 
statement 

A = 3 

the 3 is a constant and the A is a variable. The value of 3 is constant; it's always 3. The 
value of A, however, is variable; its value can change. You can reassign the value of A 
to 4 as follows. 

A = 4 

In the same way, data in an assembly language program can be a constant or a variable. 
For example, in the assembly language statement 

A DATA 3 

the 3 is a constant and the A is a variable. Specifically, A is the name of a location that 
contains the value of 3. You can reassign the value of A by putting a different value into 
that location. One method to reassign the value of A is to use this instruction. 

MOV RO,@A 

The instruction replaces the value in location A with a copy of the value in Register 0. 
If Register 0 has a 4 in it, then the variable A has the value 4. 

Character data in a program can also be either constant or variable. For example, in the 
BASIC statement 

A; = "FUDGE" 

the characters FUDGE are constants and the A$ is a variable. 
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Likewise, characters in an assembly language program can be constant or variable. For 
example, the assembly language statement 

A 	TEXT °FUDGE' 

assigns the characters FUDGE to the variable A. Specifically, A is the name of the 
beginning of a series of consecutive memory bytes whose contents are the ASCII 
character codes for the characters F, U, D, G, and E. 

3.6 Main Ideas 

This chapter discusses the role of data in a program. All data is represented as binary 
digits. For convenience, bits are commonly grouped into larger quantities: niblets, nibbles, 
bytes, words, and double words. 

The word size of the TI Home Computer is 16 bits. 

Values can be expressed in different number systems. You need to be able to convert 
values between the binary, hexadecimal, and decimal number systems. 

Like high-level languages, data in an assembly language program can represent numbers, 
characters, or special codes. Character data is usually expressed in ASCII character code 
as an 8-bit (byte) value with a zero parity bit. Data in a program can be constant or variable. 
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THE STRUCTURE OF THE TI HOME COMPUTER 

Assembly language is a civilized form of machine language. Using assembly language 
provides you with precise control of a computer. A specific assembly language reflects 
the architecture of a specific computer. The assembly language of the TI Home Computer 
fits the architecture of that computer. 

This chapter describes the basic structure of the TI Home Computer and introduces the 
specific computer parts of importance. 

4.1 The Parts of a Computer System 

A computer system has three main parts: 

1. an input/output section 
2. a memory 
3. a central processing unit 

Although these parts are not always clearly distinguishable, they must all be present in 
a complete system. 

4.1.1 The I/O Section 

The input/output section includes devices for sending and retrieving information in and 
out of the computer system. Some examples of input/output devices are the keyboard, 
a video display, and a disk drive to name some common devices. 

4.1.2 Memory 

Every computer system has memory. The computer uses memory to store programs and 
other data. The computer memory within the computer is of two major types: read-only 	ri 
memory, or ROM, and read/write memory,or RAM. 
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ROM contains programs and data that cannot be changed. The computer can read the 
information in ROM but cannot write data into this kind of memory. (There are two kinds 
of ROM in the TI Home Computer, ROM and GROM, but the distinction is not that 
important at this point.) 

The computer can read from and write to RAM memory. RAM holds programs and data 
that have been loaded from I/O devices. RAM stores data produced by a program. The 
TI Home Computer has two kinds of RAM: VDP RAM and CPU RAM. VDP RAM stores 
information that is displayed on the video screen, and it also stores BASIC language 
programs. CPU RAM is the read/write memory that the central processor unit (CPU) 
accesses directly. When an assembly language program's object code is loaded into 
memory, it must be loaded into CPU RAM. 

The TI Home Computer console has over 16 thousand bytes of VDP RAM but only 256 
bytes of CPU RAM. Additional CPU RAM is needed for assembly language programs. 
The TI Memory Expansion Card and the Mini Memory Module contain CPU RAM 
which can be used with assembly language programs. 

A byte is the smallest addressable unit in memory. With the TI Home Computer, each 
byte of memory has an address. Many of the instructions in the TI Home Computer's 
instruction set access an individual byte. Most of the instructions, though, access a whole 
word of memory at a time. 

A 16-bit word consists of two 8-bit bytes. A word looks like this. 

Bit Position: 	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

	 MSB 	 

(Left Byte) 

 

> < 

 

	 LSB 	 
Right Byte) 

 

    

The left byte in a word is named the MSB or Most Significant Byte and the right byte 
is named the LSB or Least Significant Byte. Notice how the bits are numbered in a word. 
The leftmost bit is numbered 0 and the rightmost bit is numbered 15. 

A memory word contains two bytes. Each byte has its own address; each word has an 
address. The address of a word and the address of the left byte are the same. 
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Here's a chart that illustrates the addresses of the first few words in memory. 

Left Byte 	 Word 	 Right Byte 

Address 	 Address 	 Address 

+ 	 + 
0 

1 	
Word Address 0 

2 
1 	

Word Address 2 3 

4 I 	Word Address 	4 	I 5 

6 1 	Word Address 	6 	I 7 

124 1 	Word Address 124 	I 125 

126 I 	Word 	Address 	126 	1 127 

The first word contains two bytes. The left byte's address is 0 and the right byte's address 
is 1. The first word's memory address is 0, the same address as the left byte. 

The second word's memory address is 2. The second word in memory contains two bytes: 
a left byte with an address of 2 and a right byte with an address of 3. 

Word addresses are numbered by twos (0, 2, 4, 6, etc.) and a word address is always an 
even number. The left byte of a word is an even number and the right byte of a word 
is an odd number. 

4.1.3 The Central Processing Unit 

The central processing unit (CPU) controls a computer system. 

All computers perform basically the same operations, but each computer does them 
differently. The TI Home Computer's CPU utilizes a 9900 family microprocessor chip 
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that unique characteristics. Since assembly language allows you to control the CPU 
directly, it's helpful to know the characteristics of its operation. You don't need to know 
enough to be a computer designer, but enough to understand what you can control in 
assembly language. 

The TI Home Computer's CPU is a 16-bit microprocessor. This means that it can handle 
16 bits of data at one time and has word size of 16 bits. It can also operate with byte-sized 
quantities. 

There are three internal registers in the CPU: 

• the Program Counter 

• the Workspace Pointer 

• the Status Register 

The Program Counter (PC) is a special register that contains the address of the next 
instruction to be performed. Before running a program, the Program Counter is loaded 
with the address of the first machine code instruction. As each instruction is performed, 
the CPU automatically adjusts the address in the Program Counter to the next address 
following the current instruction's machine code. As shown in the following illustration, 
the Program Counter points to the next instruction to be performed by the CPU. 

Instructions 

Program Counter 

(PC) 

+ 

The second internal register is the Workspace Pointer (WP). The Workspace Pointer, like 
the Program Counter, is simply a register that contains an address. The Workspace Pointer 
contains the address of a program's workspace. A workspace is a special area of memory 
whose contents a program can access faster than the rest of memory. A workspace consists 
of 16 words of memory. Each of the 16 words is called a "working register" or, more often, 
is referred to as simply a "register". The first word in a workspace is numbered 0 and 
is named Register 0. The second word is numbered 1 and is named Register 1. The third 
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word is Register 2 and so forth. The sixteenth word is Register 15. The names and order 
the the registers in a workspace are shown below. 

Workspace 

+ 	 + 

+--> 	I 	Register 0 
1+ 1- 	  

1+ 	
Register 1 

I+ 
Workspace Pointer ---+ 

+ 	
Register 2 	1 (WP) 

+ 

I 	Register 15 	1 
Every program requires a workspace and the CPU has to know the location of the 
workspace. The CPU uses the address in the Workspace Pointer for the workspace 
location. Specifically, the address in the Workspace Pointer tells the CPU the location 
of the first word of the workspace (Register 0) and the CPU knows that Registers 1 through 
15 are located in the next 15 words of memory. 

Most computers have working registers within the CPU itself. One of the most unique 
features of the TI Home Computer is that working registers are located in RAM. 

For the most part, it's advantageous to have a program use the registers in the workspace 
to hold the data used by instructions as much as possible. The CPU can access the data 
in registers faster than data in other areas of memory. The memory outside a workspace 
is called "general" memory. In addition, using the registers to hold data reduces the 
amount of memory required to define an instruction's machine code. 

The third internal register is the Status Register. The Status Register (SR) holds the 
individual status bits that are affected by the performance of instructions. Most 
instructions affect one or more status bits. The status bits are a record of the results of 
the last instruction. 

For example, one of the status bits is the Equal (EQ) status bit. When the CPU performs 
an add operation, it automatically compares the sum to zero. If the sum is equal to zero, 
the CPU sets the Equal status bit to one. If the sum is not equal to zero, the CPU clears 
the Equal status bit to zero. 
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The state of the status bits can be tested by the "conditional jump" instructions to allow 
a program to make decisions about what to do next, based upon status conditions resulting 
from previous instructions. 

As a brief example, in BASIC, these statements 

C = A + B 
IF C = 0 THEN 650 

add the variable A to the variable B, assigns the sum to variable C, and performs a transfer 
of program control to statement 650 if the variable C equals zero. 

In assembly language, these statements 
A 	R0,R1 
JEQ NULL 

add a number in Register 0 to a number in Register 1, store the sum in Register 1, and 
perform a transfer of program control to an instruction labeled NULL if the sum equals 
zero. 

When the CPU performs the first instruction (an add operation), it automatically compares 
the sum to zero and either sets or clears the Equal status bit. The second instruction, Jump 
if Equal, tests the state of the Equal status bit and performs a transfer of control if the 
Equal status bit is set to one. 

The Status Register, like the Program Counter and the Workspace Pointer, is a 16-bit 
register. Not all of the bits in the Status Register are used, however. 

The Status Register looks like this. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

L> A> EQ CY OV OP X 	 IO Il 12 13 
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This list names the status bits in the Status Register, their abbreviations and their bit 
positions. 

Name 	 Abbreviation 	Bit Position 

Logical Greater Than 	L> 	 0 
Arithmetic Greater Than 	A> 	 1 
Equal 	 EQ 	 2 
Carry 	 CY 	 3 
Overflow 	 OV 	 4 
Odd Parity 	 OP 	 5 
Extended Operation 	 X 	 6 
Not Used 	 — 	 7-11 
Interrupt Mask 	 10-13 	 12-15 

The ways these status bits are affected by the instructions are explained in the chapters 
that describe the detailed operation of the instructions and in the instruction summaries 
in Appendix A. 

One of the CPU's input/output ports is the Communication Register Unit (CRU). The 
CRU is one way that the CPU controls the operation of devices attached to the computer. 
You can use assembly language instructions to directly control the CRU. 

There are some other components inside the computer console that assist the CPU. The 
TI Home Computer has a video display processor (VDP) to handle the detailed work of 
displaying information on the video screen, a special component, named a sound 
generator, to handle producing sound, and other special components for various other 
functions. All of these components are accessed by instructions to the computer's CPU. 

This book provides information for using the instructions that control the CPU. 

4.2 Main Ideas 

This chapter introduces and describes the basic structure of the TI Home Computer. 
Other chapters provide more insight into the computer's architecture. 

A complete computer system has three parts: 
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• an I/O section 
• a memory 
• a central processing unit (CPU) 

There are two main kinds of memory: ROM (or read-only memory) and RAM (read-and-
write memory). The TI Home Computer has two kinds of RAM: VDP RAM and CPU 
RAM. When machine code is loaded into RAM, it must be loaded into CPU RAM before 
it can be performed. 

A byte is the smallest addressable unit in memory. Each byte has an address. There are 
two bytes in each of the TI Home Computer's 16-bit words. The most significant byte 
in each word has an even address; the least significant byte has an odd address. 

The CPU performs instructions. The CPU has three registers of special interest. The 
Program Counter (PC) remembers the address of the next machine code instruction to 
be performed. The Workspace Pointer (WP) contains the address of a program's 
workspace. The Status Register (SR) contains individual status bits that record results from 
the performance of instructions. 

The CRU is a part of the CPU. The CRU is one way that the CPU controls the operation 
of devices attached to the computer. 
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ANATOMY OF ASSEMBLY 
LANGUAGE STATEMENTS 

Most program statements specify an action for the computer to perform or define data. 
There are some statements that simply make comments and others that give directions 
to the assembler. This chapter describes how assembly language statements are 
structured and dissects the statements in a short program. 

5.1 Statement Fields 

An assembly language statement can contain up to four fields, or groups of information: 

• label 

• instruction operation code or an assembler directive 

• operand(s) 

• comment 

In a statement, the fields appear in this order: 

Label 	Op-Code or Directive 	Operand 	Comments 

A label appears first in a statement, followed by the operation code or assembler directive, 
followed next by the operand(s), and, finally, the comment. 

Although an assembly language statement can contain four fields of information, not all 
statements use all four fields. 

5.1.1 Label Field 

The first field is a label. A label names the statement. A label is required only when you 
want to refer to the statement from another statement. 
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5.1.2 Instruction Operation Code or Assembler Directive Field 

The second field contains either an instruction operation code or an assembler directive. 
An instruction operation code identifies an operation for the computer to perform. An 
assembler directive directs the assembler to do something when the program is 
assembled. Almost every statement has either an instruction operation code or assembler 
directive. 

5.1.3 Operand Field 

The third field is the operand field. The operand field identifies the data for an instruction 
operation or it gives additional information for an assembler directive. Most statements 
require one or more operands. 

5.1.4 Comment Field 

The last field is the comment field. The comment field is used to document the statement. 
It contains information for someone reading the source program. It helps that person 
understand the program. The comment field is optional but highly recommended. 

5.2 Program Example 

Let's examine the statements in a program which simply add two numbers together and 
save the sum. 

In a BASIC program you might use these statements. 

100 X = 2 

110 Y = 3 

120 Z = X + Y 

In TI Home Computer assembly language, a similar program that does the same thing 
looks as follows: 

START 	MOV @X,RO 

MOV @Y,R1 

A R0,R1 

MOV R1,@Z 

BLWP @0 

PUT X VALUE IN REGISTER 0 

PUT Y VALUE IN REGISTER 1 

ADD X AND Y 

SAVE SUM IN Z 

EXIT PROGRAM 
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X 	DATA 2 	 X EQUALS 2 

Y 	DATA 3 	 Y EQUALS 3 

Z 	DATA 0 	 Z EQUALS SUM OF X+ Y 

END 

Let's analyze the assembly language program one statement at a time. 

First, locate the statement that adds the X and Y values. (The comments to the right of 
the statements can help you find it.) The third statement adds the two numbers. Look 
at the statement in more detail. The statement is 

A 	RO,R1 	 ADD X AND Y 

The statement has no label. The A is an instruction operation code (often called "op-
code"). The A is an operation code for the "Add Words" operation. In assembly language 
terminology, the A is called a "mnemonic" operation code. The word, mnemonic, is from 
a Greek word meaning memory aid. A mnemonic helps you remember that A means Add 
Words. 

In the operand field of the Add Words instruction, there are two operands. The first 
operand is RO; the second is R1. Notice that the two operands are separated by a comma. 
The operands specify what data to use for the Add Words operation. The operands don't 
specify the data directly, but, rather, the location of the data. 

The purpose of the Add Words instruction is to add two numbers together. The operand 
field identifies the location of the two numbers. The first number is located in RO (Register 
0). The second number is located in R1 (Register 1). The Add Words instruction adds the 
two numbers together and puts the sum into the second operand. 

The Add Words instruction has a comment field. The comment is ADD X AND Y. It tells 
you what the instruction does. 

When this Add Words instruction is performed, it adds the two numbers in Register 0 
and Register 1 and places the sum into Register 1. The value contained in Register 1 before 
the instruction was performed is replaced by the sum. What happens to the number in 
Register 0? Nothing. It's still in Register 0. 

Before performing the Add Words instruction, the two numbers must be in RO and R1. 
The two instructions listed before the Add Words instruction put the two numbers into 
the registers. The first instruction in the program is a Move Word instruction. The 
statement is 
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START 	MOV @X,RO 	 PUT X VALUE IN REGISTER 0 

START is the label. It's the name given to this statement. The mnemonic operation code 
is MOV which stands for "Move Word." There are two operands in the operand field. 
The first operand (@X) identifies the location of the data. The second operand (RO) 
identifies the location to move the data. The data is moved, actually, it's copied, from 
one location to another. The first operand (@X) identifies the location of the data to be 
moved. The at sign (@) means that the location is a general memory location rather than 
a register or some device attached to the computer. The specific location in memory where 
the data is located is called X. The second operand (RO) identifies where the data is copied. 
It's copied into Register 0. 

The comment field (PUT X VALUE IN REGISTER 0) tells you what the instruction does. 

The second statement in the program is also a Move Word instruction. It causes the data 
in general memory location Y to be moved where? I hope you said Register 1 (or Ri). 

The purpose of the two Move Word instructions is to put the two numbers into RO and 
R1 so the Add Words instruction can add them. 

At this point, you might want to know the reason for putting numbers in registers before 
adding them. As a matter of fact, you don't have to. You can add the two numbers directly 
in memory. The purpose for discussing this program is that it helps you understand the 
difference between addressing data in registers and data in "general" memory. 

After the Add Words instruction is performed, the sum is in R1. The instruction 
immediately after the Add Words instruction is another Move Word instruction which 
moves the contents of R1 (R1 has the sum) into the contents of memory location Z. 

The instruction following this Move Word instruction has a mnemonic operation code 
of BLWP. The "op-code" stands for Branch and Load Workspace Pointer. It's an 
instruction that allows you to exit the program. If you write a program in BASIC, you 
can put an END statement to exit a program. In the same way, the Branch and Load 
Workspace Pointer instruction is one way to exit an assembly language program. The 
operand with the BLWP instruction identifies where the exit is. The comment with the 
BLWP instruction tells you what the instruction does. 

Following the Branch and Load Workspace Pointer instruction, the last four statements 
each contain an assembler directive. A directive does not cause the computer to perform 
some action when the program runs. A directive gives directions to the assembler when 
the source program is assembled into an object program. 
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DATA is an assembler directive rather than an instruction operation code. The DATA 
directive directs the assembler to reserve a word of memory. Each DATA directive in 
this program has a label. The labels tell the assembler what to name the words of memory. 
The operand with each directive tells the assembler what number to put in the word of 
memory. The comments tell you what the statements do. 

The first DATA directive tells the assembler to reserve a word of memory, name that 
memory location X, and put a 2 in the location. The second DATA directive tells the 
assembler to reserve a word of memory, name the memory location Y, and put a 3 in 
the location. The third DATA directive tells the assembler to reserve a word of memory, 
and name it Z. What number is the assembler to place in the location called Z? Right, 
a zero. 

It's not really important what number is placed in location Z. The DATA statement is 
a way to make sure a memory location named Z is reserved. When the program runs, 
it stores the sum in place of the number originally in Z. 

One of the program characteristics to note is that it allocates space for all the data values 
the program uses or produces. In BASIC, you can simply write 

C = A + B 

and the BASIC interpreter will find some place for the variable C automatically. In 
assembly language, however, you must reserve data space explicitly. 

The last statement (which has no label) contains the assembler directive END. The END 
directive tells the assembler that this statement ends the program. 

In BASIC, the END statement tells the BASIC interpreter to stop running a program, but 
in assembly language, an END directive simply marks the physical end of the program. 
The last statement in every assembly language program should have an END directive. 

The important thing to notice is that END is a directive to the assembler and not an 
instruction to be performed by the computer. It simply tells the assembler to stop 
translating and is not an instruction. 

5.3 Statement Syntax 

Contrary to what my Auntie Blossom thinks, syntax is not a government levy on immoral 
deeds. Rather, syntax is a term for the orderly arrangement of the fields in a statement. 
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The English language has rules of syntax that govern sentence construction. For example, 
the first letter of the first word in a sentence is capitalized; words are separated by spaces; 
items in a list are separated by commas; and sentences are terminated by a period, 
question mark, or exclamation mark. Likewise, assembly language statements also follow 
rules. 

There are rules of syntax for writing assembly language programs with the Editor/Assem-
bler package. Other assemblers may have slightly different rules. 

Rules for labels 

• A label, if one is used, must come first in a statement. 

• A label must have at least one character and no more than six characters. 

• The first character of a label must be the first character on the line (even ahead of 
any space). 

• The first character of a label must be a letter (A through Z). 

• Any following characters in a label can be letters or numbers (1 through 9). 

• A statement can have only a label. In this case, the label is associated with the 
following statement. 

• When a label is used in a statement with an operation code or assembler directive, 
there must be at least one space between the last character of the label and the first 
character of the operation code or directive. If a label is not used in a statement with 
an operation code or directive, there must be at least one space before the first letter 
of the operation code or directive. 

Operation code/assembler directive rules 

• An operation code or assembler directive is the second field in a statement. 
• About the only thing you need to remember about them is to spell them correctly. 

For example, the operation code for Move Word is MOV, not MOVE. 

Operand field rules 

• The third field of a statement is the operand field. 
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• There are a few operation codes and directives which don't require any operands, 
but most do. 

• There must be at least one space between the last character of the operation code 
or directive and the first character of the operand field. 

• If there's more than one operand, the individual operands are separated by a comma. 

• There can be no spaces between the first character and the last character of the 
operand field unless the spaces appear between a pair of apostrophes. 

Comment field rules 

• The last field in a statement is the comment field. 

• There must be at least one space between the last character of the operand field 
and the first character of the comment field. 

• The comment field can contain any printable characters, including spaces, and can 
extend to the end of the line. 

The fields in a statement must be separated from each other by at least one space. 
Although only one space is required, it is common practice to align the fields of a statement 
in columns. This makes the source statement easier to read. For example, the following 
program is syntactically correct, but difficult to read. 

MOV @X,R0 PUT X VALUE IN REGISTER 0 

MOV @Y,R1 PUT Y VALUE IN REGISTER 1 

A RO,R1 ADD X AND Y 

MOV R1,@Z SAVE SUM IN Z 

BLWP @0 EXIT PROGRAM 

X DATA 2 X EQUALS 2 
Y DATA 3 Y EQUALS 3 

Z DATA 0 Z EQUALS SUM OF X+ Y 

By arranging the statements so that each field is aligned in a column with the same field 
in the other statements, the program is easier to read. 
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MOV @X,RO 	 PUT X VALUE IN REGISTER 0 

MOV @Y,R1 	 PUT Y VALUE IN REGISTER 1 

A 	RO,R1 	 ADD X AND Y 

MOV R1,@Z 	 SAVE SUM IN Z 

BLWP @0 	 EXIT PROGRAM 

X 	DATA 2 	 X EQUALS 2 

Y 	DATA 3 	 Y EQUALS 3 

I. 	DATA 0 	 Z EQUALS SUM OF X+  Y 

Exception to rules 

Finally, nearly all rules have exceptions. There is a special kind of statement in assembly 
language which is largely free from the constraints of syntax. This free spirit is the 
comment statement. With a comment statement, you can use a whole line to make 
comments about the program, call attention to the brilliance of your clever design, or chat 
about your cat's new kittens. To designate a comment line, place an asterisk (*) as the 
first character in the statement. After the asterisk, you can put any characters you want. 

For example, we can add some comment statements to the program as follows. 

* THIS PROGRAM ADDS TWO NUMBERS TOGETHER. 

* THE FIRST NUMBER IS STORED IN MEMORY LOCATION X AND 

* THE SECOND NUMBER IS STORED IN MEMORY LOCATION Y. 

* THE SUM IS STORED IN MEMORY LOCATION Z. 

MOV @X,RO 	 PUT X VALUE IN REGISTER 0 

MOV @Y,R1 	 PUT Y VALUE IN REGISTER 1 

A 	RO,R1 	 ADD X AND Y 

MOV R1,@Z 	 SAVE SUM IN Z 

BLWP @0 	 EXIT PROGRAM 

X 	DATA 2 	 X EQUALS 2 

Y 	DATA 3 	 Y EQUALS 3 

Z 	DATA 0 	 Z EQUALS SUM OF X+ Y 

In assembly language, a comment statement is like a REMark statement in BASIC. 

Any numeric constants in a statement are treated as decimal values by the assembler 
unless you indicate otherwise. For example, in the statement 

DATA 	11 
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the constant 11 is assumed to be decimal eleven. 

If you want to specify a hexadecimal number, you can do so by putting a greater-than 
symbol (>) in front of the number. For example, in the statement 

DATA 	>11 

the constant >11 is hexadecimal 11 which is equal to decimal 17. 

After working with this first program, you may have some more questions such as: 

• How do you know exactly what those mnemonic op-codes stand for? 

• How do you know exactly what those instructions do? 

• How do you know that DATA is an assembler directive and not an instruction 
operation code? 

• Is this the only sequence of instructions you can write to add two words together? 

• Why does the program reserve a word of memory for the numbers instead of a byte? 

Don't despair. The answers to all these questions are found in the following chapters. 

5.4 Main Ideas 

When writing assembly language statements, you must follow certain syntax rules which 
govern the way you write statements. 

An assembly language statement can contain up to four fields: 

• a label 

• an instruction operation code or an assembler directive 

• one or more operands 

• comments 

A label is required when you want to refer to the statement from another statement. When 
a label is used, it must come first in the statement. 
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Most statements require either an instruction operation code or an assembler directive. 
An instruction operation code specifies an action for the computer to perform. An 
assembler directive gives directions to the assembler when the source program is 
assembled into machine code. 

Operands identify the data to be used for an instruction operation or give additional 
information to be used with an assembler directive. 

Comments describe the purpose of the statement. 

Each of the four fields must be separated by at least one space. It is common practice, 
however, to align each of the fields in columns. 

A comment statement has an asterisk as the first character. A comment statement in 
assembly language is like a REMARK statement in BASIC. 

The last statement in an assembly language program should contain an END directive. 
The END directive tells the assembler to stop translating. The END directive does not 
result in any machine code which is performed by the computer. 
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INSTRUCTION SET OVERVIEW 

This chapter provides an overview of the TI Home Computer assembly language 
instruction set. It introduces all the operation codes in the instruction set, classifies the 
instructions according to the operation they perform, and briefly describes what each 
instruction does. 

The first field in a statement is a label. The second field is either an instruction operation 
code or an assembler directive. 

The purpose of an instruction operation code is to define an operation for the computer 
to perform. These defined operations make up the computer's instruction set. The TI 
Home Computer has 69 operation codes in its instruction set. 

6.1 Functional Categories 

There are several ways to classify the instructions. To begin, let's classify the instructions 
by functional categories based upon what kind of function they perform. 

The instructions can be classified into seven functional categories. 

1. Data Movement 

2. Compare 

3. Jump 

4. Arithmetic 

5. Logical 

6. Branch and Subroutine 

7. CRU and External 
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Let's look at the specific instructions that belong in each functional category. 

6.2 Data Movement Instructions 

The data movement instructions are those which move data. The main job of a data 
movement instruction is to move data or rearrange data. 

The 12 data movement instructions are listed below. 

Mnemonic 	Instruction Name 
Op-code 

	

MOV 	Move Word 
MOVB 	Move Byte 

	

SWPB 	Swap Bytes 
LI 	 Load Immediate 

	

LWPI 	Load Workspace Pointer Immediate 

	

LIMI 	Load Interrupt Mask Immediate 

	

STWP 	Store Workspace Pointer 

	

STST 	Store Status 

	

SRL 	Shift Right Logical 

	

SRA 	Shift Right Arithmetic 

	

SRC 	Shift Right Circular 

	

SLA 	Shift Left Arithmetic 

The most often-used instruction in the entire instruction set is the Move Word instruction 
(MOV). It moves (copies) a word (16 bits) from one location to another. Its little brother, 
the Move Byte instruction (MOVB), moves a byte (8 bits) from one location to another. 

With the TI Home Computer, a word has 16 bits. Since there are 8 bits in a byte, there 
are two bytes in a word: a left byte and a right byte. You can visualize a word like this. 

A word 

	  16 Bits 	  
................................................... 

Left Byte I 	Right Byte  ................................................ 

	

< 		8 bits 	> < 	 8 bits 	> 
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The Swap Bytes instruction (SWPB) simply exchanges the two bytes in a word. Why would 
you want to do that, you ask? You'll see some uses for it when you learn more about 
addressing formats. 

The Load Immediate instruction (LI) puts a constant into a register; the constant appears 
directly in the operand field of the instruction. 

The Load Workspace Pointer Immediate instruction (LWPI) puts an address into the 
Workspace Pointer. The Workspace Pointer is the special CPU register that tells the 
computer the locations of the working registers. The Load Interrupt Mask Immediate 
instruction (LIMI) puts a number into the computer's interrupt mask. LIMI helps control 
peripheral devices attached to the computer. 

The Store Workspace Pointer instruction (SWPI) copies the contents of the Workspace 
Pointer into a working register. The SWPI is used to remember the contents of the 
Workspace Pointer. The Store Status instruction (STST) copies the contents of the Status 
Register into a working register. It's sometimes used to remember the condition codes 
before performing another operation. 

There are four shift instructions: 

• Shift Right Logical (SRL) 

• Shift Right Arithmetic (SRA) 

• Shift Right Circular (SRC) 

• Shift Left Arithmetic (SLA) 

The shift instructions move bits within a register to different positions. You can review 
some examples of how shift instructions are used in Chapter 11. 

6.3 Compare Instructions 

The Compare instructions compare values and determine their relationships. The 5 
instructions in this group are listed below. 
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Mnemonic 	Instruction Name 
Op-code 

C 	 Compare Words 
CB 	 Compare Bytes 
CI 	 Compare Immediate 
COC 	Compare Ones Corresponding 
CZC 	Compare Zeros Corresponding 

The Compare Words instruction (C) compares two 16-bit values. The Compare Bytes 
instruction (CB) compares two 8-bit values. The Compare Immediate instruction (CI) 
compares two 16-bit values; one is in a register and the other is a constant that appears 
directly in the operand field of the instruction. 

The Compare Ones Corresponding instruction (COC) analyzes specific bits in a word and 
determines whether they are all ones. The Compare Zeros Corresponding instruction 
(CZC) analyzes specific bits in a word and determines whether they are all zeros. 

6.4 Jump Instructions 

The jump instructions are very important because they allow you to make decisions in 
a program. The 13 jump instructions are listed below. 

Mnemonic 
Op-code 

EQ 
NE 
OC 
NC 
NO 
OP 
H 
HE 
LE 
L 
GT 
LT 
MP 

Instruction Name 

ump if Equal 
ump if Not Equal 
ump On Carry 
Limp if No Carry 
ump if No Overflow 
ump if Odd Parity 
ump if High 
ump if High or Equal 
ump if Low or Equal 
ump if Low 
ump if Greater Than 
ump if Less Than 
ump Unconditionally 

The first twelve jump instructions are conditional ones. They may, or may not, cause a 
jump (go to an instruction) based upon certain conditions. The conditional jump 
instructions let you make decisions about what to do next in a program. 
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The thirteenth jump instruction, the JMP instruction, is an unconditional one. It causes 
a jump to a specific instruction unconditionally. 

The jump instructions are limited to relatively short-range transfers of control; that is, 
they can only jump to instructions that are relatively close to them. Each of the jump 
instructions is discussed in detail in a later chapter. 

6.5 Arithmetic Instructions 

The Arithmetic instructions are those which perform arithmetic operations. The 13 
Arithmetic instructions are listed below. 

Mnemonic 	Instruction Name 
Op-code 
AI 	 Add Immediate 
A 	 Acid Words 
AB 	 Add Bytes 
S 	 Subtract Words 
SB 	 Subtract Bytes 
INC 	 Increment 
INCT 	Increment by Two 
DEC 	Decrement 
DECT 	Decrement by Two 
NEG 	Negate 
ABS 	Absolute Value 
MPY 	Multiply 
DIV 	Divide 

The Add Immediate instruction, Al, adds a 16-bit constant to the contents of a register 
and replaces the original contents of the register with the sum. 

The Add Words instruction,A, adds two 16-bit numbers and produces a 16-bit sum. The 
Add Bytes instruction, AB, adds two 8-bit numbers and produces an 8-bit sum. 

The Subtract Words instruction, S, subtracts a 16-bit number from another and produces 
a 16-bit difference. The Subtract Bytes instruction, SB, subtracts an 8-bit number from 
another and produces an 8-bit difference. 

There are four instructions that increase or decrease an operand by a fixed amount. The 
Increment instruction, INC, increases an operand by one and the Increment by Two 
instruction, INCT, increases an operand by two. The Decrement instruction, DEC, 
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decreases an operand by one and the Decrement by Two instruction, DECT, deceases 
an operand by two. 

Perhaps you are wondering why there are instructions that increase or decrease an 
operand by fixed amounts of one or two and not amounts like three, ten, or thirteen-and-
a-half. The answer is that these amounts are useful for address manipulations. For 
example, if you increment an address value by one, you point to the next byte address. 
If you decrement an address value by one, you point to the previous byte address. If you 
increment an address value by two, you point to the next word address. If you decrement 
an address value by two, you point to the previous word address. 

The Negate instruction, NEG, negates a value by forming the two's complement) of the 
value. The Absolute Value instruction (ABS) forms the absolute value of a number. 

The Multiply instruction, MPY, multiplies two 16-bit numbers together and results in a 
32-bit product. The Divide instruction (DIV) divides a 16-bit divisor into a 32-bit dividend 
and produces a 16-bit quotient and 16-bit remainder. The Multiply and Divide 
instructions are both unsigned operations; that is, the numbers are treated as absolute 
values by the computer. 

6.6 Logical Instructions 

The logical instructions are those which perform the AND, OR, exclusive OR, and NOT 
logic operations or they perform functions related to logic operations. The ten instructions 
in this group are listed below. 

Mnemonic 	Instruction Name 
Op-code 
ANDI 	And Immediate 
SZC 	Set Zeros Corresponding 
SZCB 	Set Zeros Corresponding Byte 
ORI 	Or Immediate 
SOC 	Set Ones Corresponding 
SOCB 	Set Ones Corresponding Byte 
XOR 	Exclusive Or 
INV 	Invert 
CLR 	Clear 
SETO 	Set to One 

The AND Immediate instruction, ANDI, performs a logical AND operation between the 
contents of a register and a constant value. The Set Zeros Corresponding instruction, SZC, 
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performs an operation similar to a logical AND operation between two 16-bit quantities. 
The Set Zeros Corresponding Byte, SZCB, instruction performs an operation similar to 
a logical AND operation between two 8-bit quantities. 

The OR Immediate instruction, ORI, performs a logical OR operation between the 
contents of a register and a constant value. The Set Ones Corresponding instruction, SOC, 
performs a logical OR operation between two 16-bit quantities. The Set Ones 
Corresponding Byte instruction, SOCB, performs a logical OR operation between two 8-
bit quantities. 

The Exclusive Or instruction, XOR, performs an exclusive OR logical operation between 
two 16-bit quantities. 

The Invert instruction, INV, inverts the bits in an operand. When an INV instruction is 
used, all the one bits are changed to zero bits and all the zero bits are changed to one 
bits. This procedure produces the one's complement of a number.) 

The Clear instruction, CLR, provides a simple way of setting the contents of an operand 
to zero. The Set to One instruction (SETO) sets the contents of an operand to binary ones. 

6.7 Branch and Subroutine Instructions 

The group of instructions called Branch and Subroutine instructions call subroutines, 
return from subroutines, or perform long-range transfers of control. The six instructions 
in this group are listed below. 

Mnemonic 	Instruction Name 
Op-code 

BL 	 Branch and Link 
B 	 Branch 
X 	 Execute 
XOP 	Extended Operation 
BLWP 	Branch and Load Workspace Pointer 
RTWP 	Return with Workspace Pointer 

The Branch and Link instruction, BL is a subroutine-calling instruction. The Branch 
instruction, B is used to return from a subroutine that is called with a Branch and Link 
instruction. The Branch instruction also performs a long-range unconditional transfer of 
control whenever it's needed. 

The Execute instruction, X, performs a one-instruction subroutine. You can use it to 
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perform (execute) an instruction at another location. After that instruction is performed, 
control returns to the instruction immediately following the Execute instruction. 
Both the Extended Operation instruction, XOP, and the Branch and Load Workspace 
Pointer instruction, BLWP, are instructions for calling a subroutine when the calling 
program and the subroutine each have their own set of working registers. These two 
instructions perform what is called a "context switch". The Return with Workspace 
Pointer instruction (RTWP) is used to return from a subroutine which is called by a context 
switch. 

6.8 CRU and External Instructions 

Finally, there's a group called CRU and External instructions. The 10 instructions in this 
group are listed below. 

Mnemonic 	Instruction Name 
Op-code 
SBO 	Set Bit to One 
SBZ 	Set Bit to Zero 
TB 	 Test Bit 
LDCR 	Load Communication Register Unit 
STCR 	Store Communication Register Unit 
IDLE 	Idle 
RSET 	Reset 
LREX 	Load or Restart Execution 
CKON 	Clock On 
CKOF 	Clock Off 

The first five instructions are the CRU instructions. They're I/O instructions that transfer 
data between the CPU and peripheral devices. 

The last five instructions are the External instructions. They can be used to control 
peripheral devices or perform other functions unique to a particular application. 

These instructions comprise the TI Home Computer assembly language instruction set. 
Each instruction's operation is described in detail in following chapters. 
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ADDRESSING FORMATS: GENERAL 

Addressing formats, or addressing modes, is a term that refers to the different ways that 
the computer addresses data. The operand field in an instruction specifies the data, or 
the device, used in an operation. Usually, an operand specifies the address of data rather 
than the actual data. There are different ways to specify the address of a data item. This 
chapter introduces the TI Home Computer assembly language addressing formats and 
describes those formats classified as general addressing modes. 

7.1 Addressing Formats Overview 

There are eight addressing formats used by the TI Home Computer. They're listed below. 

1. Register Direct 
2. Register Indirect General 
3. Register Indirect Autoincrement Addressing 
4. Memory (Direct)/"Symbolic" Modes 
5. Memory (Indexed)/"Indexed" 

6. Immediate 

7. PC-Relative 

8. CRU 
Single-bit 
Multi-bit 

The first five are general addressing modes. You need to remember which ones are 
general addressing modes. 
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The sixth is immediate addressing. The seventh is PC-relative addressing. PC stands for 
Program Counter. 

The eighth addressing mode is CRU addressing. This mode is used for CRU instructions. 
The CRU is an input/output (I/O) channel or "port." There are two variations of CRU 
addressing: single-bit and multi-bit. 

This chapter describes the five general addressing modes. 

7.2 General Addressing Modes 

The five general addressing modes are: 

• Register Direct 

• Register Indirect 

• Register Indirect Autoincrement 

• Memory (Direct), often referred to as "Symbolic" addressing 

• Memory (Indexed), often referred to as "Indexed" addressing 

To learn how each of the general addressing modes operates you can follow several 
examples of each addressing mode used with the Move Word instruction. The Move 
Word instruction is the one most frequently used in programs. Before exploring the 
addressing modes, however, review the Move Word instruction. 

Each instruction is described in a summary found in Appendix A. The instruction 
summaries are arranged alphabetically according to the mnemonic operation codes. Turn 
to the Move Word instruction summary. The mnemonic operation code is MOV. 

An instruction summary describes a specific instruction. Each summary follows the same 
orma t. 

'he first line contains the name of the instruction on the left and the instruction's 
memonic operation code on the right. The name of this instruction is Move Word and 
s mnemonic operation code is MOV. 

he second line provides the mnemonic operation code, the number of operands required 
it the instruction, and the kind of addressing formats the operands can have. An 
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instruction requires none, one, or two operands. If no operands are required, nothing 
appears on the second line with the mnemonic operation code. If two operands are 
required, a comma separates them. Otherwise, the instruction requires one operand. 

The following codes are used for the operands. 

S 
	

indicates a general source operand. It means the operand can 
use any of the five general addressing modes. If two operands 
are required, it is the first one. It's called a source operand 
because it's the operand that is the source, or supplies, the data 
for an operation. 

D 
	

indicates a general destination operand. The operand can use 
any of the five general addressing modes. If two operands are 
required by the instruction, it is the second one. The term 
destination operand is used to indicate it's the destination that 
receives the result of an operation. 

R 	 means that the operand must be one of the sixteen working 
registers. (The operand can use only register direct addressing.) 

C 	 indicates a count value and must be a number from 0 through 
15. 

IOP 
	

indicates an immediate operand. The operand uses only 
immediate addressing. The operand is treated as a data item 
rather than the address of a data item. Immediate operands are 
16-bit values. 

Target 	indicates the operand specifies the target for a jump instruction. 
This code appears only in a jump instruction summary. 

Displacement indicates a displacement for a CRU single-bit instruction. The 
value of the displacement must be from —128 through +127. 

Notice that the MOV instruction requires two operands, an S and a D. Both operands 
can use any of the five general addressing modes. 

The third item of information in an instruction summary is titled "Result". The result is 
a summarized description of the instruction's operation. A pair of parentheses can be 
read as "the content of." For example, (S) means "the content of the S operand." For the 
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MOV instruction, the content of the source operand replaces the content of the destination 
operand. 

The fourth item in the instruction summary is titled "Operation." It is a narrative 
description of the instruction's operation. The MOV instruction copies a word from the 
source operand address to the destination operand address. 

The fifth item, titled "Status Bits Affected," includes a graphic description of the status 
bits affected by the instruction's operation, The specific status bits affected by the 
instruction are shown within the Status Register box.Only those status bits that are 
affected appear within the Status Register box. Status bits not affected by the instruction 
are not shown. The MOV instruction affects only the Logical Greater Than (L>), 
Arithmetic Greater Than (A>), and Equal (EQ) status bits. 

Below the Status Register box is a description of how the status bits are affected by the 
instruction. (In the case of the conditional jump instructions, there's a description of the 
status bits analyzed by the jump instruction.) With the MOV instruction, the three status 
bits are affected based upon comparing the word operand to zero. 

The sixth item, "Notes," is a collection of notes, examples, and suggested uses for the 
instruction. 

The seventh item, "Machine Code," describes the instruction's machine code. 

The line labeled "Hex" contains the hex digits that correspond to the first word of the 
binary machine code. Only those hex digits are given for which the corresponding 
machine code nibble is completely defined. A hex digit is not shown for any nibble which 
contains bits that are not completely defined; that is, the bits vary depending upon the 
operand(s). Hex digits are shown only for the first word because any other words of 
machine code always vary depending upon the operand(s). In the case of a MOV 
instruction, only the first nibble of machine code is completely defined. The nibble 
contains a binary value of 1100 (a hex C). 

The line labeled "Binary" contains the state of the specific bits in the machine code that 
are fixed and do not change for the instruction. Any group of bits which do vary depending 
upon the operand(s) contains a code in that field. These codes and their meanings are 
described in Chapter 19 which describes the structure of machine code. 

With this overview of the format of an instruction summary and a closer look at the MOV 
instruction, let's explore how the general addressing modes work. 
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The Move Word instruction is a good choice for illustrating the general addressing modes. 
Not only is it the most commonly used instruction, but it's also the kind of instruction 
that has two operands, both of which can use any of the five general addressing modes. 
This is the most flexible kind of instruction in the instruction set. 

7.2.1 Register Direct Addressing 

The first of the five general addressing modes is register direct addressing. Register direct 
addressing is used when the data is located directly in one of the sixteen working registers 
in a workspace. A workspace is a special area of memory that can be accessed faster than 
any other area of memory. A workspace consists of 16 words of memory. The first word 
is called Register 0, or RO. The second word is called Register 1. The third word is called 
Register 2, or R2 and so forth. The sixteenth word (the last word) in a register set is called 
Register 15, or R15. 

Consider this instruction. 

MOV R10,R1 

Both the first operand and the second operand are using register direct addressing. The 
instruction copies the content of Register 10 to Register 1. After the instruction is 
performed, the content of Register 1 is the same as the content of Register 10. 

Unchanged 	 Charged 

After 	 After 

R10 I 	1 2 3 4 I 	> I 	I 2 3 4 	I RI 

The first operand, named a "source" operand, supplies the data for the operation. The 
second operand, named a "destination" operand, receives the result of the operation. In 
this example, Register 10 is the source operand; Register 1 is the destination operand. 

By convention, an R precedes a register number. This convention helps the reader of 
the program to understand that the number in the operand field is a register number. 

To specify that you want an operand to use Register direct addressing, write an R and 
then the register number. 

When the assembler, which translates an assembly language instruction into machine 
code, encounters an operand that can use any of the five general addressing modes, the 
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Memory 

MOV R10,*R3 Before 	After 

+ + 	+ 

+ + 	+ 
R° 	I 	I 	I 

+ + 	+ 

+ + 	 + Memory Pointer 

R3 	1 	837E 	I 	03 7E1 	  

+ + 	 + 

eta Moved 	+ 	 + 	 + 

	  RIO 	1 A0 62 1 A0  6 2 	1 

+ + 

 

* 

 

> B37E 	I - - . - I A 0 6 2 I < 
+ + 	+ 

+ 

Suppose there is a number in memory location hexadecimal B7E2 that you want to copy 
into Register 1. And suppose as luck (or planning) would have it, there is a hexadecimal 
B7E2 in Register 11. What instruction could you write to copy that number into Register 
1? You could write the instruction 

MOV *R15,51 

After the instruction is performed, Register 1 has a copy of what is in memory location 
hexadecimal B7E2 and Register 11 still has the hexadecimal B7E2 in it. 

7.2.3 Register Indirect Autoincrement Addressing 

The third of the five general addressing modes is register indirect autoincrement 
addressing. It works almost exactly like register indirect addressing. With register indirect 
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autoincrement addressing mode, a register contains the address of the data, but after the 
data is accessed, the content of the register is automatically incremented. 

Register indirect autoincrement addressing mode is specified by writing an asterisk 
followed by a register number (with its R prefix) and followed by a plus (+) sign. 

In the following instruction 

MOV R10,*R3+ 

the source operand is using register direct addressing and the destination operand is using 
register indirect autoincrement addressing mode. 

Assume that before the instruction is performed, Register 10 contains the number 
hexadecimal A062 and that Register 3 contains a hexadecimal B37E. 

When the instruction is peformed, the number hexadecimal A062 in Register 10 is copied 
into memory location hexadecimal B37E and the content of Register 3 is automatically 
incremented by two (to hexadecimal B380). 

Memory 

MOV R10,*R3+ 
	

Before 	After 

+ + 	+ 
RO 	1 	I 	I 

+ + 	+ 

	 + Memory Pointe 

R3 	I 

• 

B37E I B 3 8 0 

Bata Moved 	+ 	 + 	 + 

+ 	  R10 	I A062 I A062 

+ + 	+ 

+ + 	 + 

> 837E 	I 	 1 	A 0 6 2 	I< 
+ + 	 + 
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Notice that the address in the register is automatically incremented after the data at that 
address is accessed. 

The content of the indirect register are incremented by two because the Move Word 
instruction peforms a word operation. If the instruction using register indirect 
autoincrement addressing mode performs a byte operation (as does a Move Byte 
instruction, for example), the content of the indirect register is incremented by one. 

Autoincrementing by two allows a word-operation instruction to access a word and 
automatically adjusts the address in the indirect register to the next word in memory. 
Autoincrementing by one allows a byte-operation instruction to access a byte and 
automatically adjusts the address in the indirect register to the next byte in memory. 

Using register indirect autoincrement addressing mode is helpful when accessing several 
sequential data items in a list. You can point to the first item in the list by putting the 
address of that item into a register. Then, by using register indirect autoincrement 
addressing mode, you can access the item and have the address in the indirect register 
automatically adjusted so that it points to the next sequential data item. Each time you 
access an item, the address in the indirect register is automatically adjusted to point to 
the next item. 

The TI Home Computer has a register indirect autoincrement addressing mode but it does 
not have an autodecrement addressing mode. 

Suppose there are several data items in consecutive words of memory beginning at 
location hexadecimal A0A4 and you want to copy the first word to Register 7 and 
automatically be ready to access the second word. And suppose that hexadecimal A0A4 
happens to be in Register 10. What instruction could you write to do this? The instruction 
would look like this. 

MOY •R10+,R7 

It copies the contents of memory location hexadecimal A0A4 into Register 7 and 
automatically adjusts the address in Register 10 to hexadecimal ADM, the address of the 
second word. 

7.2.4 Symbolic Addressing 

The fourth general addressing modes is direct memory addressing, or as it is more often 
called, "symbolic" addressing. Symbolic addressing is used to address directly a data item 
in general memory by putting its address directly in the operand field. 
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If the data item is in a register, you can use register direct addressing. But if it's not in 
a register, you can address it directly using symbolic addressing. 

Symbolic addressing is specified by writing the address of the memory location preceded 
by an "at" sign (@). 

In the following instruction 

MOV @>B37E,R10 

the source operand uses symbolic addressing and the destination operand is uses register 
direct addressing. Suppose that memory location hexadecimal B37E contains the number 
hexadecimal A062 before the instruction is performed. After the instruction is performed, 
Register 10 contains the number hexadecimal A062 also. 

Memory 

MOV @>B37E,R10 	Before 	After 

+ + 	 + 

RO 	I 	1 	I 
+ + 	 + 

Data Moved 

4—, ----- > R10 I 	I 	A062 

B37E 	

I• 

A062 	IAD6 2 	1 

This addressing mode is called symbolic addressing because, most of the time, the 
operand uses a symbolic address rather than a numeric address. For example, if location 
hexadecimal B37E were assigned the name DOG, the same instruction could be written 
as 

MOV @DOG,R10 
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Suppose there's a word of data at a memory location named CAT and you want to copy 
it to Register 15. What instruction could you write? 

This instruction would do the job: 

MOV @CAT,R15 

What if you want to copy the data item in Register 0 to a memory location named GERBIL. 
What instruction could you write to do it? 

The instruction below serves the purpose. 

MOV RO,@GERBIL 

7.2.5 Indexed Addressing 

The fifth of the five general addressing modes is commonly called indexed addressing. 
Indexed addressing is used when you want to specify a data item with a combination 
of symbolic addressing and an address in a register. 

Indexed addressing mode is specified by writing a memory location preceded by an "at" 
sign, @, that is followed by a register number in parenthesis. The register within the 
parenthesis is called the index register. 

The following instruction uses indexed addressing for the source operand and register 
direct addressing for the destination operand. The index register is Register 3. 

MOV @PICKLE(R3),R10 

Since Register 10 is the destination operand, a word of data is moved into Register 10. 
The location of the data item moved into Register 10 is determined by adding the content 
of the index register to the address value of the memory location in the source operand. 
The sum is the address of the data item. 

Suppose that Register 3 contains the number 4 and that the address value of PICKLE 
is hexadecimal B37E. The effective address of the source operand is hexadecimal B37E 
plus 4, or hexadecimal B382. The contents of memory location hexadecimal B382 
(PICKLE+ 4) is copied into Register 10. 
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Memory 

MOV PRICKLE (03) ,010  Before 	After 

   

RO 

R3 	I 

• 

 0 0 0 4 I 0 0 0 4 I 

Data Moved 

+---> RIO I 	I 	0062 	I 

+ + 	 + 

PICKLE 	I I 	 I 

	

PICKLE+2 I 	 I 	 I 
+ + 	 + 

PICKLE+4 I A 0 6 2 I  A 0 6 2 I 
+ + 	 + 

If Register 10 contains hexadecimal B37E, the following instruction accomplishes the 
same thing. 

MOV @ 4(010),R9 

Indexed addressing is useful for accessing specific data items from a set of data. For 
example, assume that memory location LIMITS is the first word of a table of several 
contiguous words of data. Then this instruction can be used to access a partiacular word 
in the table and copy that word into Register 5: 
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MOV @LIMITS(R2),R5 

The particular word accessed is determined by the number in Register 2. If Register 2 
contains 0, the first word is accessed. If Register 2 contains 2, the second item is accessed. 
If Register 2 contains 4, the third item is accessed; and so forth. 

To understand indexed addressing better, study the following two instructions. Both 
accomplish the same objective. 

Coy 00(R6),R0 

MOO *R6,R0 

Both instructions copy a word into Register 0. The address of the word of data that's copied 
is determined by the address in Register 6. In the first instruction, Register 6 is an index 
register. In the second instruction, Register 6 is an indirect register. 

With indexed addressing, except for register 0, any of the registers can be used as an index 
register. Register 0 can't be used as an index register due to the structure of the machine 
code. 

7.3 Word and Byte Addressing 

The Move Word instruction performs a word operation. It uses a 16-bit value for its 
operation. Some instructions perform byte operations and use 8-bit values. 

An example of an instruction that performs a byte operation is the Move Byte (MOVB) 
instruction. It operates almost exactly like the MOV instruction except that it copies an 
8-bit value from one location to another. 

The MOVB instruction requires two operands. Like the MOV instruction, both operands 
can use any of the five general addressing modes. In the case of the MOVB instruction, 
however, the operands are byte addresses rather than word addresses. 

For example, this instruction moves a byte from byte address decimal 100 to byte address 
hexadecimal A084: 

MOVB 0100,0>A084 

Assume that word address decimal 100 contains a hexadecimal 9E63 and word address 
hexadecimal A084 contains a hexadecimal C072 before the instruction is performed. The 
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instruction moves the content of byte address decimal 100, the byte value hex 9E, to byte 
address hexadecimal A084. 

After the instruction is performed, byte address hexadecimal A084 has a byte value of 
hex 9E also. 

Word Address 
	

Before 	After 

	

(100) 
	

>9E63 	>9E63 

	

(>A084) 
	

>0072 	>9E72 

Whenever a byte operation is performed with an operand using register direct addressing, 
the left byte of the register is always used. For example, before the following instruction 
is performed, assume that Register 4 contains a hexadecimal D19F and memory word 
hexadecimal A084 contains a hexadecimal C072. 

MOVB R4,@>A084 

After the instruction is performed, byte address hexadecimal A084 has a copy of the value 
in the left byte of Register 4. 

	

Before 	After 

(R4) 	 >D19F 	>D19F 

	

(A084) 	 >0072 	>D172 

Recall that the left byte of a word has an even-numbered address and the right byte of 
a word has an odd-numbered address. 

Let's look at this instruction: 

MOVB *R7,RII 

Suppose that before the instruction is performed, Register 7 contains a hexadecimal A085, 
Register 11 contains a hexadecimal D19F, and memory word hexadecimal A084 contains 
a hexadecimal C072. 

After the instruction is performed, Register 7 still contains a hexadecimal A085, Register 
11 contains a hexadecimal 729F, and memory word hexadecimal A084 still contains a 
hexadecimal C072. 
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Before After 

(R7) >A085 >A085 

(R11) >D19F >729F 

(A084) >C072 >C072 

Its possible that sometimes the computer can be directed by an instruction to perform 
a word operation with an odd-numbered address. For example, suppose that Register 
7 contains a hexadecimal A085, Register 11 contains a hexadecimal D19F, and memory 
word hexadecimal A084 contains a hexadecimal C072 before the following instruction 
is performed. 

MOV *R7,R11 

The instruction asks for the performance of a word operation, Move Word, with the odd-
numbered address, hexadecimal A085. In this situation, the computer rounds the odd-
numbered address down to the next lower even number to establish word alignment for 
the operation. In this example, the computer rounds the odd-numbered address 
hexadecimal A085 down to A084 and performs the operation with the contents of word 
address hexadecimal A084. 

Before After 

(R7) >A085 >A085 

(R11) >D19F >C072 

(A084) >C072 >C072 

You probably wouldn't intentionally use an odd-numbered address for a word operation, 
but if you do, the computer rounds the odd-numbered address down to the next lower 
even address. 

7.4 A Look at Another Instruction (Add Words) 

Several examples have illustrated the five general addressing modes using the Move 
Word instruction. The Move Word instruction is one that uses two operands, both of 
which let you use any of the general addressing modes. 

A similar instruction is the Add Words instruction. Look at the Add Words, mnemonic 
op-code A, in Appendix A. Notice that both the first and second operand can use any 
of the general addressing modes. (The operands have S and D codes.) The Add Words 
instruction adds the content of the first operand to the content of the second operand, 
placing the results in the second operand. 
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For example, suppose that Register 14 contains the number 23 and that Register 3 contains 
the number 54, then the instruction 

A 	R14,R3 

adds 23 to 54 and places the sum, 77, in Register 3. The contents of Register 14 is still 
23. 

As another example, the instruction 

A 	*R2,@GENIE 

adds the number whose address is in Register 2 to the contents of the memory location 
called GENIE. The sum is placed in memory location GENIE. 

An example program in the next chapter uses the Add Words instruction. 

7.5 Summary 

This chapter introduces the general addressing modes. The five general addressing 
modes and the assembly language syntax for specifying each addressing mode is listed 
below. 

General Addressing Mode 	Assembly Language Syntax 

1. Register Direct 	 Rx 

2. Register Indirect 	 *Rx 

3. Register Indirect Autoincrement 	 *Rx+ 

4. Memory (Direct)/"Symbolic" 	 @location 

5. Memory (Indexed)/"Indexed" 	 @location(Ry) 

x is any number 0 through 15 
y is any number 1 through 15 
location is a numeric or symbolic address 
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ADDRESSING FORMATS: 
IMMEDIATE AND PC-RELATIVE 

The previous chapter identifies the TI Home Computer's eight addressing modes and 
describes the operation of the first five addressing modes (the ones which together are 
classified as general addressing modes). 

This chapter describes two more addressing formats: immediate and PC-relative. The 
eighth addressing mode, CRU addressing, is described in another chapter. 

This chapter illustrates the immediate and PC-relative addressing formats and how to 
structure a program loop in assembly language. 

8.1 Immediate Addressing 

The sixth addressing mode is immediate addressing. Immediate addressing is not a 
general addressing mode. With a general addressing mode, the operand specifies the 
address of a data item rather than the data item itself. With immediate addressing, the 
data item itself appears directly, or "immediately," in the operand field. 

8.1.1 The Load Immediate Instruction 

As an example of an instruction that uses immediate addressing, look in Appendix A at 
the instruction summary for the Load Immediate instruction. The mnemonic op-code is 
LI. 

Notice that the instruction requires two operands in the operand field. The first is an R-
type operand. The R means that the first operand must be a register; that is, only register 
direct addressing can be used for that operand. The second operand is an I0P-type 
operand. TOP means that the operand is an immediate operand. The instruction uses the 
second operand as a data value rather than the address of a data value. 

Consider the following Load Immediate instruction. 
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LI 	R7,26 

The first operand is R7. The second operand is 26. The first operand uses register direct 
addressing, which is the only addressing mode that can be used for the first operand. 
The second operand uses immediate addressing, which is the only addressing mode that 
can be used for the second operand. The second operand is said to be an immediate 
operand. 

Register 7 	 Immediate Operand 

< 	 26 

The instruction copies the immediate operand to into the register. The Load Immediate 
instruction is useful when you want to put a specific data value in a register. 

8.1.1.1 Comparison of LI instruction with MOV Instruction 

You can also use a Move Word instruction to put a data value into a register. For example, 
you can use a Move Word instruction like 

MOV R2,R7 

to put a 26 into R7. Of course, Register 2 must have a 26 in it first. It would be simpler 
just to use a Load Immediate instruction to put the 26 directly into Register 7. 

You could also use a Move Word instruction like this 

MOV @LAMP,R7 

to copy a 26 into R7 (assuming, that memory location LAMP contains a 261. This Move 
Word instruction requires two words of memory for its machine code and another word 
of memory, called LAMP, is needed to hold the 26. The Move Word instruction, therefore, 
requires three words of memory; wheras the instruction 

LI 	R7,26 

requires only two words of memory for its machine code. The advantage of the Load 
Immediate instruction is that is saves memory. 

The Move Word instruction, however, has the advantage of allowing you to use a wide 
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variety of addressing modes. Remember the Load Immediate instruction only lets you 
use register direct addressing for the first operand and only immediate addressing for 
the second operand. The Move Word instruction lets you use your choice of any of the 
five general addressing modes for both operands. For example, if you want to copy a word 
stored in a general memory location to another general memory location, you can do it 
with a Move Word instruction. You can't do it, though, with a Load Immediate instruction. 

Suppose you want to copy a number in general memory location PENCIL to memory 
location PAPER. The single instruction 

MOV CoPENCIL,@PAPER 

works fine, but you couldn't use a single Load Immediate instruction. 

If you were to write an instruction like 

LI 	@PAPER,@PENCIL 

the assembler would not translate it because the first operand is required to be a register 
and the second operand must be a data item, not the address of a data item. 

Both the Load Immediate and the Move Word instruction have advantages in some 
situations. You can choose the best instruction for a particular situation. 

8.1.1.2 Using the LI Instruction in a Loop 

You can use the Load Immediate instruction to put a constant into a register. You may 
want to use this instruction at the beginning of a loop. A loop performs a series of 
instructions repeatedly. Usually, the loop repeats a fixed number of times or until some 
condition is true. 

Suppose you want to repeat a series of instructions four times. In BASIC, you can build 
a FOR-NEXT loop like this. 

900 FOR Z = 1 TO 4 

910 	 

9XX 

9XX 

9XX 	 
9XX NEXT Z 
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Assembly language, does not have FOR and NEXT instructions. You must control the 
loop explicitly by adjusting the loop count and analyzing the resulting loop count. You 
must build a loop which is more like this. 

900 Z = 4 

910 	 

9XX 

9XX 

9XX 	 

9XX Z = Z -1 

9XX IF Z <> 0 THEN 910 

To build this kind of loop in assembly language, put the loop count (4) into a register, 
perform the series of instructions, subtract one from the loop count in the register; if the 
loop count is not zero, perform the loop again. When the loop count becomes zero, the 
program falls out of the loop and goes on to the next instruction after the loop. Here's 
a general structure of the loop: 

<Set loop count in a register> 

<Perform the instructions in the loop> 

<Subtract one from the loop count> 

<If loop count 	not equal to zero> 

The Load Immediate instruction is useful for setting up the loop count in the register. 
You can use any one of the sixteen registers to hold the loop count. If you use Register 
8, the loop looks like this. 

LI 	R8,4 	SET LOOP COUNT IN R8 

<Perform the instructions in the loop> 

<Subtract one from the loop count> 

<If loop count 	not equal to zero> 
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8.1.2 The Add Immediate Instruction 

While exploring the subject of immediate addressing, let's look at another example of 
an instruction that uses immediate addressing. Locate the instruction summary for the 
Add Immediate instruction in Appendix A. (The mnemonic op-code is AI). 

Like the Load Immediate instruction, the Add Immediate instruction requires two 
operands. The first operand must be a register; the second operand must be an immediate 
value. 

The Add Immediate instruction adds the immediate operand to the contents of the register 
and leaves the sum in the register. Notice from the instruction summary that several status 
bits are affected by the Add Immediate instruction. The instruction automatically 
compares the sum to zero and either sets or clears the Arithmetic Greater Than, Logical 
Greater Than, and Equal status bits. For example, if the sum equals zero, the Equal status 
bit is set to one. If the sum does not equal zero, the Equal status bit is cleared to zero. 

You can use the Add Immediate instruction in the above loop. You can use it to subtract 
one from the content of the loop counter register. You can subtract by adding a negative 
number. For example, an instruction like 

AI 	R8,-1 

subtracts one from the contents of Register 8. 

With an Add Immediate instruction, the loop looks like this. 

LI 	R8,4 	SET LOOP COUNT IN R8 

<Perform the instructions in the loop> 

AI 	RB,-I SUBTRACT ONE FROM LOOP COUNT IN RB 
<If loop count 	not equal to zero> 

8.2 PC-Relative Addressing 

The seventh addressing mode is PC-relative or Program Counter- relative addressing. 
The only instructions that use PC-relative addressing are the jump instructions. PC- 
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relative addressing is the only addressing mode the jump instructions can use. Let's 
review jump instructions and see how they use PC-relative addressing. 

If you recall, there are thirteen jump instructions. Twelve are conditional jump 
instructions. They may, or may not, cause a transfer of program control depending upon 
whether certain conditions are true or untrue. Each conditional jump instruction is 
designed to analyze a particular condition. If that condition is true, the jump instruction 
causes a jump to a target instruction. If the condition is not true, the program goes on 
to the next sequential instruction. 

A conditional jump instruction determines whether a condition is true or not by analyzing 
one or more status bits. For example, one conditional jump instruction is the Jump if Equal 
instruction (JEQ). It determines whether or not to jump by analyzing the Equal status bit. 
If the status bit is true, or a one, the Jump if Equal instruction causes a jump; if the status 
bit is not true, or a zero, it doesn't jump and program control continues to the next 
sequential instruction. 

Another conditional jump instruction that analyzes the Equal status bit is the Jump if Not 
Equal instruction (JNE). If the Equal status bit is not true (zero), the Jump if Not Equal 
instruction causes a jump. If the Equal status bit is true (one), the Jump if Not Equal 
instruction does not jump. You can see that the JEQ instruction and the JNE instruction 
analyze the same status bit but check for different conditions. 

One unconditional jump instruction exists among the thirteen jump instructions. This 
instruction is called Jump Unconditionally and its mnemonic op-code is JMP. The JMP 
instruction doesn't analyze any status bits. It simply causes a jump no matter what. 

8.2.1 Jump Instruction Targets 

Every jump instruction requires an operand. The purpose of the operand is to specify 
the next instruction to be performed next if there is a jump. The instruction that receives 
control from a jump instruction is called the target of the jump. 

The operand of a jump instruction uses PC-relative addressing. The target of the jump 
is specified as relative to the Program Counter. The Program Counter, or PC, is a special 
counter in the computer that keeps track of the address of the next instruction to be 
performed. Although it's called a counter, the PC is simply a special register that holds 
the address of the next instruction to be performed. 

Whenever an instruction is performed, the computer automatically adjusts the address 
in the Program Counter to the address following the instruction. When a jump instruction 
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is performed that results in a jump, the value of the jump instruction's operand is added 
to the contents of the Program Counter. When the computer finishes the jump instruction 
and is ready to perform the next instruction, it goes to the adjusted address in the Program 
Counter to get the next instruction; it jumps. 

The jump instruction's operand specifies how much to add to the contents of the Program 
Counter to reach the target of the jump; therefore, the operand of a jump instruction is 
a "PC-relative" address. 

Another way to think about the target of a jump instruction is to think about its relative 
distance from the location of the jump instruction. After all, when a jump instruction is 
performed, the address in the Program Counter is always the next word after the address 
of the jump instruction itself. 

8.2.1.1 Distance to the Target 

The target for a jump instruction must be relatively close to the location of the jump 
instruction itself. Without a lengthy explanation here, the jump range of a jump 
instruction is limited to plus 256 bytes and minus 254 bytes from the location of the 
instruction. 

8.2.1.2 Methods for Specifying a Target 

When writing programs in assembly language, there are three ways you can specify the 
target of a jump instruction. 

1. The best way for many situations is to use the name (label) attached to the target 
instruction. For example, if you want your program to jump when the Equal Status 
bit is true, you can write an instruction like this: 

JEQ MICKEY 

MICKEY is a label attached to the target instruction. In this example, the target 
instruction must be labeled MICKEY or the assembler cannot translate the 
instruction into the right machine code. 

2. You can specify a numeric address. After all, a label is simply a name assigned to 
the numeric location of a statement so you can use the numeric address itself. For 
example, you can write an instruction like this: 
JEQ 42826 
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42826 is the address of the target instruction. 

3. You can specify how far to jump (rather than where to jump). Here's an example. 

dEp $436 

This instruction causes a jump if the the Equal status bit is true to a location that 
is a distance of plus 36 bytes from the location of the JEQ instruction. The $ symbol 
means the location of the statement in which it appears. If this JEQ instruction is 
located at address 42000, then the target is located at address 42036. 

As another example, the instruction 

JEQ $-100 

specifies a target that is a distance of minus 100 bytes from the location of the JEQ 
instruction. If this JEQ instruction is located at address 53982, its target is at address 
53882. 

These are the three ways to specify the target of a jump instruction: 

• use a label 

• use a numeric address 

• use a dollar sign and a relative distance from the location of the jump instruction. 

Using a label is usually the best way. Regardless of which method you use, the target 
of the jump instruction must be within range. That range is not more than — 254 to +256 
bytes from the location of the jump instruction. 

Range of a Jump Instruction 

- 254 Bytes 

+---- Jump Instruction 

+----> 	+ 256 Bytes 
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<Perform the instructions in the loop> 

	

AI 	R8,-1 	SUBTRACT ONE FROM LOOP COUNT IN R8 

	

JNE LOOP 	IF COUNT NOT ZERO, GO TO LOOP START 

Next, use the Load Immediate instruction again to set a register, say Register 9, to zero. 
This register accumulates the results of the repetitive addition. 

	

LI 	R7,5 	PUT NUMBER TO BE SQUARED IN R7 

MOW R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT 

	

LI 	R9,0 	INITIALIZE CUMULATIVE SUM TO ZERO 

LOOP 

<Perform the instructions in the loop> 

AI 	R8,—I SUBTRACT ONE FROM LOOP COUNT IN R8 

JNE LOOP 	IF COUNT NOT ZERO, GO TO LOOP START 

After all these initialization procedures, constructing the body of the loop is straight 
forward. Add the number in Register 7 to the number in Register 9. 

LI 	R7,5 	PUT NUMBER TO BE SQUARED IN R7 

MOV R7,18 COPY NUMBER INTO R8 FOR LOOP COUNT 

LI 	R9,0 	INITIALIZE CUMULATIVE SUM TO ZERO 

LOOP 	A 	R7,R9 ADD NUMBER TO CUMULATIVE SUM 

AI 	R8, —I SUBTRACT ONE FROM LOOP COUNT IN R8 
JNE LOOP 	IF COUNT NOT ZERO, GO TO LOOP START 

The program repeatedly adds the 5 in Register 7 to the contents of Register 9 and subtracts 
one from the loop count in Register 8 until the loop count is zero. 

The program is almost complete. It now adds five to the number in Register 9 until the 
loop count in Register 8 is zero. Then the program comes to the end of the loop and goes 
to the 'NE instruction. The problem is: there isn't an instruction following the Jump if 
Not Equal instruction. 

Ending an assembly language program is different from ending a BASIC program. When 
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a BASIC program is finished and the last instruction is performed, the BASIC interpreter 
waits for the next instruction. The BASIC interpreter is a program that interprets and 
performs the instructions in a program. When the program runs out of instructions, the 
BASIC interpreter is still controlling the computer. 

In assembly language program, however, the program controls the computer directly. 
Once you have used your program to have the computer do what you want, you must 
include an instruction to have your program give control to another program. If you fail 
to include such an instruction, the computer's response is unpredictable. 

At this point, let's introduce an instruction that will keep the computer under control. 
Right after the JNE instruction, let's place a "Go-Home" instruction. 

LI 	R7,5 	PUT NUMBER TO BE SQUARED IN R7 

MOV R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT 

LI 	R9,0 	INITIALIZE CUMULATIVE SUM TO ZERO 
LOOP 	A 	R7,R9 ADD NUMBER TO CUMULATIVE SUM 

AI 	08,-1 SUBTRACT ONE FROM LOOP COUNT IN R8 

JNE LOOP 	IF COUNT NOT ZERO, GO TO LOOP START 
BLWP @0 	OTHERWISE, GO HOME 

The Go-Home instruction has been added to the program. Later, a discussion of exactly 
how the BLWP instruction operates is given. For right now, understanding what it does 
in this program is sufficient. It causes the computer to display the title screen, as if you 
had just turned the computer on. 

One more statement is needed. If you recall, every program ends with an END statement, 
a statement containing an END directive. The END directive marks the end of the 
program and instructs the assembler to stop assembling. 

LI 	R7,5 	PUT NUMBER TO BE SQUARED IN R7 

MOV R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT 

LI 	R9,0 	INITIALIZE CUMULATIVE SUM TO ZERO 

LOOP 	A 	R7,R9 ADD NUMBER TO CUMULATIVE SUM 

AI 	08,-1 SUBTRACT ONE FROM LOOP COUNT IN R8 

JNE LOOP 	IF COUNT NOT ZERO, GO TO LOOP START 

BLWP @0 	OTHERWISE, GO HOME 

END 

Now you have an assembly language program that does something useful. When the 
program is finished, it relinquishes control of the computer in an orderly fashion. 

Once the program construction is complete you've reached a major milestone, but you're 
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8.2.2 Using a Jump Instruction in a Loop 

You can use a conditional jump instruction in the example loop. 

As discussed previously, you can use the Add Immediate instruction to subtract one from 
the loop counter register each time the loop is performed. The Add Immediate instruction 
automatically compares the result remaining in the register with zero and affects several 
status bits, including the Equal status bit. If the result in the loop counter register equals 
zero, the Equal status bit is set to one. If the result does not equal zero, the Equal status 
bit is cleared to zero. 

After the Add Immediate instruction is performed, you can have the program check if 
the result of subtracting one from the loop counter produced a zero or not, If the result 
is not zero, you want the program to jump back and perform the series of instructions 
in the loop again. If the result is zero, you know that the loop has been performed enough 
times and you can allow the program to precede to the next instruction after the loop. 

You can use a conditional jump instruction after the Add Immediate instruction to check 
if the Equal status bit was set or not. There are two jump instructions that check the state 
of the Equal status bit: Jump if Equal jjEQ) and Jump if Not Equal (JNE). You want the 
program to jump back to the beginning of the loop if the result in the loop counter is not 
equal to zero, so use the JNE instruction. 

The INE instruction, like all jump instructions, must specify a target in the operand field. 
The target of the 'NE instruction is the first instruction within the loop. Choose a name 
for that instruction, say LOOP, and attach the name as a label to the instruction. Then 
use that name as the target for the INE instruction. The program segment now looks like 
this. 

LI 	R8,4 	SET LOOP COUNT IN R8 

LOOP 

<Perform the instructions in the loop> 

AI 	R8,-1 SUBTRACT ONE FROM LOOP COUNT IN R8 
JNE LOOP 	IF COUNT NOT ZERO, GO TO LOOP START 
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8.3 Building a Program Example 

This shell allows for a loop to perform four times. By putting a different number into 
Register 8, you determine the number of times the loop is performed. For example, if 
you put 100 into Register ft, the loop is performed 100 times. 

This loop can be modified slightly to do something specific. Let's have the program square 
a number. To square a number, you multiply the number times itself. 

Multiplication is simply repetitive addition. For example, if you want to find out how 
much 8 times 3 is, you can get the answer by adding 8 three times or by adding 3 eight 
times. 

To square a number, you multiply the number times itself. You can achieve the same 
result by repeatedly adding the number until you've added it a number of times equal 
to the number itself. For example, you can square the number 4 by adding it four times. 

4+4+4+4 -16 

To modify the loop to square a number, start by using a Load Immediate instruction to 
put the number you want to square in a register, say Register 7. Let's choose the number 
5 and square it. 

LI 	R7,5 	PUT NUMBER TO BE SQUARED IN R7 

LI 	RBA 	SET LOOP COUNT IN RB 

LOOP 

<Perform the instructions in the loop> 

AI 	R8,-1 SUBTRACT ONE FROM LOOP COUNT IN R8 

JNE LOOP 	IF COUNT NOT ZERO, GO TO LOOP START 

Use a Move Word instruction instead of the second Load Immediate instruction to copy 
the number into the loop counter register (Register 8). 

LI 	R7,5 	PUT NUMBER TO BE SQUARED IN R7 

MOV R7,R8 COPY NUMBER INTO R8 FOR LOOP COUNT 

LOOP 
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not through yet. Next, you run the program. 

In the next chapter, you can use this program to learn more about the Editor, the 
Assembler, the Loader, and the Debugger utility programs which come with the 
Editor/Assembler package. fA utility program helps you develop your application 
program.) 

8.4 Summary 

This chapter introduces the immediate and PC-relative addressing modes. The Load 
Immediate and Add Immediate instructions are two instructions that use immediate 
addressing. The jump instructions use PC-relative addressing. 

In this chapter, the program loop that squares a number illustrates the use of instructions 
that employ immediate and PC-relative addressing. In the following chapters, the 
program loop is used to help you learn to use the utility programs to develop assembly 
language programs. 
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INTRODUCTION TO 
THE EDITOR AND ASSEMBLER 

Chapters 9 and 10 explain the role of utility programs in the development of assembly 
language programs. A utility program is one that is designed to aid in the development 
of another program. Utility programs for assembly language include editors, assemblers, 
loaders, and debuggers. 

• An editor helps you compose a source program. 

• An assembler translates a source program into an object program. 

• A loader loads the machine code of an object program into memory. 

• A debugger helps you test a program and detect bugs. 

There are several utility packages available to help you develop assembly language 
programs. For example, Texas Instruments offers an Editor/Assembler package which 
includes an editor, assembler, loader, and debugger. The Mini Memory Module that 
includes a line-by-line assembler and a debugger and the UCSD p-System with an 
assembler and loader are both available. 

This book describes the use of the TI Editor/Assembler package as an example of the 
role of utilities in developing a program and as an example of what the utilities do. If 
you don't have the Editor/Assembler package, you can use these examples as guidelines 
and adapt the concepts to the utility programs that you use. 

Chapters 9 and 10 use the program from Chapter 8 (the program that squares a number) 
to illustrate the use of the utility programs with the Editor/ Assembler package. Chapter 
9 introduces the Editor and Assembler utility programs. Chapter 10 introduces the Loader 
and Debugger. 

If you have the Editor/Assembler package, you can use the guidelines that are presented 
to help you edit, assemble, load, and run the program you developed in the previous 
chapter. 

91 



Chapter 9 

NOTE 

The descriptions of the operation of the utility programs are simplified 
descriptions. The Editor/Assembler manual contains cautionary notes, 
hints, troubleshooting suggestions, and more precise details about the 
utility programs. 

If you have the Editor/Assembler manual, read Sections 1 and 2 of the 
manual before continuing. 

9.1 The Editor 

The Editor is a utility program that helps you create a source program. You can use the 
Editor to type your program and compose the statements like you want them to appear 
before passing the source program to the Assembler. 

9.1.1 Bringing Up the Editor/Assembler Package 

The steps for getting the Editor/Assembler package up and running are: 

Make sure the computer and its associated equipment are connected 
correctly and plugged into power outlets. 

Turn on all the peripheral devices such as the Peripheral Expansion 
System, the disk drives, printer, etc. 

Turn on the computer. The title screen is displayed. 

Insert the Editor/Assembler command module into the slot on the console. 
The screen goes blank momentarily and then the title screen reappears. 

Press any one of the keys to have the master selection screen appear on 
the display. 

Press the number that selects the Editor/Assembler package. The number 
varies based upon whether you have the model 99/4 or 99/4A. After 
pressing the right number, the Editor/Assembler selection screen is 
displayed. 
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9.1.2 Using the Editor to Compose the Source Program 

Here's the procedure for calling up the Editor and using it to compose the source program. 

Bring up the Editor/Assembler package and get the Editor/Assembler 
selection screen displayed. 

Insert the diskette labeled Part A into Disk Drive 1. 

Press the 1 key to select the Editor. After pressing 1, the Editor's selection 
screen appears on the display. The Editor selection screen lets you choose 
the following functions. 

• Load an existing source program from disk into memory 

• Edit a source program in memory 

• Save a source program from memory to disk 

• Print a source program 

• Delete (purge) a source program in memory. 

Press the 2 key to edit the source program. After pressing the 2 key, the 
Editor displays the message 

ONE MOMENT PLEASE... 

and the Editor utility program is loaded from disk into memory. Then the 
Editor clears the screen and you can begin typing in the source statements. 
The Editor displays the message 

*EOF (VERSION X.Y) 

where X.Y is the version number of the Editor, to mark the end of the 
program being edited. 

Use the Editor to type the program statements and arrange the fields as 
you want them. Remember the syntactical rules for the statements. Use 
a <tab>, function, 7 to align the fields of the statements. 
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After you've typed the statements, return to the Editor selection screen 
by pressing the <escape> key, function 9, twice. 

To save the program on a diskette, press the 3 key. The Editor displays 
the prompt 

VARIABLE 80 FORMAT (Y/N)? 

Press Y to choose the variable 80 format. This tells the Editor to use the 
least amount of disk space possible for storing the program. The Editor 
responds by displaying the prompt 

FILE NAME? 

Place a diskette that has been initialized by the Disk Manager into a disk 
drive and type in 

USKn.XXXXXXXX 

where n is the number of the disk drive where you put the diskette to save 
the source program and XXXXXXXX is the name you choose for the source 
program file. For example, if you put a disk into Disk Drive 1, you might 
type in 

DSK1.SQRSRC 

You can use -SRC" as the last 3 letters of a Source file name to remind 
you that it is an assembly language source file. Remember to press the 
<enter> key after typing in a file name. 

The Editor saves the source program on disk and returns to the Editor 
selection screen. 

Press the <escape> key to return to the Editor/Assembler selection 
screen. 

9.2 The Assembler 

Here are the steps for assembling the program. 
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Get the Editor/Assembler selection screen displayed. 

Insert the Part A diskette from the Editor/Assembler package in Disk 
Drive 1. 

Press the 2 key to select the Assembler. After pressing 2, the prompt 

LOAD ASSEMBLER (Y/N) 

is displayed. (If the Assembler is already in memory, you don't get the 
prompt.) 

When you press Y, the message 

ONE MOMENT PLEASE... 

is displayed and the Assembler is loaded from disk into memory. 

After the Assembler is loaded, the prompt 

SOURCE FILE NAME? 

is displayed. 

Make sure the diskette with the source file is in a disk drive and then type 
the file name of the source program as follows. (If you have only one disk 
drive, you must remove the Part A diskette from the drive and place the 
diskette with the source file in that drive.) 

OSKn.XXXXXXXX 

The n is the number of the disk drive that contains the source program 
diskette in it and XXXXXXXX is the name of the source program file. After 
typing in the source file name and pressing the <enter> key, the prompt 

OBJECT FILE NAME? 

is displayed. The Assembler is asking for a name to assign to the object 
program that is stored on disk as a result of assembling the source program. 
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Type in 

OSKn.YYYYYYYY 

where n is the disk drive number that contains the diskette to receive the 
object program and YYYYYYYY represents the name you choose for the 
object program file. For example, if the program disk is in Disk Drive 1, 
you might type DSKI.SQUARE. After typing in the object file name and 
pressing the <enter> key, the prompt 

LIST FILE NAME? 

is displayed. The Assembler is asking you to name the location for the 
listing. 

If you have a printer, type in one of the following. 

1. If you have a serial printer attached to the RS232 Interface unit, 
type in RS232.BA—n where n is the baud rate (speed in bits per 
second) of your printer. For example, it you have a 300 baud printer, 
type RS232.BA =300. If you have a 1200 baud printer, type 
RS232.BA = 1200, etc. 

2. If you have a parallel printer attached to the RS232 Interface unit, 
type in PIO. to select the printer. 

3. If you have a thermal printer, type in TP to select the thermal 
printer. 

If you don't have a printer, you can type 

DSKn.ZZUZZZZ 

where n represents the number of the disk drive that is to receive the 
listing and ZZZZZZZZ is the name you choose for the listing file. For 
example, if the program disk is in Disk Drive 1, you might type in 
DSK1.SQRLIST. After typing in the list file name, the prompt 

OPTIONS? 

is displayed. 
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Each option has a character code. The option character codes and their 
meanings are as follows: 

Code 	 Meaning 

R 	Instructs the Assembler to expect an R prefix with register 
numbers in the source program statements such as R8 for 
Register 8. If you do not use the R option and you put R's in front 
of the register numbers, the Assembler flags those statement as 
being wrong. 

L 	Instructs the Assembler to produce a listing when it assembles. 
Even though you type in a file name in response to the LIST 
FILE NAME? prompt, you still must use the L option to actually 
get a listing. 

S 	Instructs the Assembler to produce a symbol table with the 
listing. A symbol table is a list of all the names in your program 
and the address or value assigned with each name. A symbol 
table is especially useful when you have a long program and a 
listing of several pages. It helps you find the statement where 
a symbol is defined. 

C 	Instructs the Assembler to store the object program on disk in 
a compressed format. This option saves disk space. 

In response to the OPTIONS? prompt, type in RLSC to choose all the 
options. Type in all four letters as they appear without spaces. The letters 
can be in any order. Then press <enter>. 

After typing in the options, the message 

ASSEMBLER EXECUTING 

is displayed at the bottom of the screen. The Assembler assembles the 
source program on disk and builds an object program on disk. It also 
produces a listing. You can hear the assembler turning on the disk and, 
if a printer is connected, the listing is printed. If the assembler encounters 
any statements it does not understand or finds something it cannot 
assemble, it displays an error message on the screen. The error message 
also appears on the listing. 
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When the assembler is finished, the total number of errors is displayed 
and the message 

PRESS ENTER TO CONTINUE 

is displayed. 

Press the <enter> key and the Editor/Assembler selection screen is 
displayed again. 

If there are any errors in the assembly, use the Editor to load the source program from 
disk into memory and correct any statements that are syntactically incorrect. 

Once you get an error-free assembly, take a moment to look at the listing produced by 
the Assembler. If you have a printed listing, remove it from the printer and place it before 
you. If you directed the listing to a disk file, get the listing displayed on the screen. Here's 
the way you get a listing displayed on the screen. 

Get the Editor/Assembler selection screen displayed. 

Press the 1 key to choose the Editor. After pressing 1, the Editor selection 
screen appears on the display. 

Insert the Part A diskette is in Disk Drive 1 and press the I key to choose 
the Load option. After pressing 1, the message 

ONE MOMENT PLEASE . . . 

is displayed as the Editor is loaded from diskette into memory and then 
the prompt 

FILE NAME7 

is displayed. 

Make sure the diskette with the list file is in a disk drive. Then type in 
the file name of the list file as follows: 

OSKn.XXXXXXXX 

The n is the number of the disk drive that contains the list file and 
XXXXXXXX represents the name of the list file. After typing in the file 
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name and pressing <enter>, the list file is loaded into the edit buffer. 
You can examine it using the Editor. If you should get the message 

CONTROL CHARACTERS REMOVED 

PRESS ENTER TO CONTINUE 

press <enter>. The Editor is simply telling you it has removed some 
control characters that are needed if the file is sent to a printer. These 
control characters are still present in the file on the diskette. 

The Editor selection screen is displayed. 

Press the 2 key to choose the Edit option. The list file is displayed on the 
screen. 

Study the listing and make sure you know what it's telling you. Here is a copy of a printed 
listing. 

IDENTIFIES ASSEMBLER THAT PRODUCED LISTING 

PAGE NUMBER 

99/4 AETTEmPIER }/ 

vEREIUN 	1.:' 	 PAGE 0001 

0001 0000 0207 LI R7.5 PUT NUMBER 10 DE SOUARED IN R7 

0002 0000 
0004 C207 MDV R7.00 COPY NUMeFR INTO RE FOR LOOP COUNT 

000E 0209 LI R0.0 INITIALIZE CUMULATIVE SUM TO ZERO 

000E 0000 
0004 0001 0247 	LOOP n R7.R9 ADD NomDER 	10 CUMULATIVE SUM 

19005 000C 03:E AI R2.-1 SUF1RAC1 ONE FORM LOOP COUNT IN RE 

0006 EFFE 
000E 0010 1EFC ]NE LOOP IF COUNT NOT ZERO. 	GO TO LOOP START 

0007 0012 04..0 eLoP 40 ELSE GO HOME 

0014 0000 

0008 END 

MACHINE CODE 
SOURCE PROGRAM STATEMENTS 

MEMORY LOCATIONS WHERE 
MACHINE CODE IS LOADED 

(RELATIVE) 

LINE NUMBERS 

99/4 ASSEMBLER 
VERSION 1.2 PAGE 0002 

' 	LOOP 0000 RO 0000 RI 0001 RIO 0000 
Ril 0008 512 0000 RI3 000D R14 000E 
RI5 000F 52 0002 53 0003 R4 0004 
R5 0005 56 000E R7 0007 Re 0008 
R9 0009 

0000 ERRORS 
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The listing consists of two pages. The first page shows the source program 
statements, the machine code into which they are assembled, and other 
information. The second page is a symbol table. It's a list of all the symbols 
in the source program. 

On the first page, the left-most column contains the line numbers for the 
source statements. The line numbers are in decimal. The second column 
shows the relative memory locations where the machine code will be 
loaded. The actual locations for the machine code is determined by the 
Loader when the object program is loaded. These relative locations are 
in hexadecimal. The third column lists the machine code values of the 
assembled source statements. The numbers are in hexadecimal. The 
source statements are listed to the right of the third column. 

Some source statements produce more than one word of machine code. 
For example, statement number 1 (the LI R7,5 statement) produced two 
words of machine code. The first machine code word occupies relative 
word address 0000. The second machine code word occupies relative 
word address 0002. The first machine code word is hexadecimal 0207; the 
second machine code word is hexadecimal 0005. 

Statement number 2 (the MOV instruction) requires only one word of 
machine code. The machine code word is hexadecimal C207 and occupies 
relative word address 0004. 

Notice the END directive, statement number 8, doesn't produce any 
machine code words and doesn't require any memory words for machine 
code. 

The second page is a symbol table. Each of the symbols used in the 
program is listed in alphabetical order from left-to-right on each line. 
Beside each symbol is a hexadecimal number which is the value of that 
symbol. 

For example, the symbol LOOP is a label in the program and its value 
is hexadecimal 000A. The number is the relative word address of the 
instruction's machine code. The symbol LOOP has a relative address code 
of hexadecimal 000A. 

The other symbols in the table are automatically assigned values by the 
assembler when you choose the R assembler option. The R option tells 
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the assembler to associate the symbol RO with the value 0; the symbol R1, 
with the value 1; and so forth. 

The last line of the listing tells you how many errors were found when 
the program was assembled. You want this number to be zero. 

At this point, you have a listing, a source program, and an object program. The next step 
is to load and run the object program. 

9.3 Summary 

This chapter summarizes the use of the Editor and Assembler utility programs to edit and 
assemble the program from the previous chapter. 

The Editor helps you compose or change a source program. The Assembler translates 
the source program into an object program for the computer to run. The Assembler also 
creates a listing to show the results of the assembly process. 

The following chapter summarizes the use of the Loader and Debugger utility programs. 
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INTRODUCTION TO 
THE LOADER AND DEBUGGER 

Chapter 9 uses a program example to illustrate the use of the Editor and Assembler utility 
programs in the Editor/Assembler package. This chapter uses the object program 
produced by the Assembler to illustrate the use of the Loader and Debugger included 
with the Editor/Assembler package. 

10.1 Using the Loader 

Here are the steps for using the Loader to load the object program. 

Get the Editor/Assembler selection screen. 

Press the 3 key to select the LOAD AND RUN choice. After pressing the 
3 key, the prompt 

FILE NAME? 

is displayed. 

Make sure you've got the diskette containing the object program in a disk 
drive, then type 

DSKn.ZZZZZZZZ 

The n is the number of the disk drive in which the diskette with the object 
program is inserted. ZZZZZZZZ is the name of the object program. Always 
press the <enter> key after typing in a file name. The Loader loads the 
object program into memory and the prompt 

FILE NAME? 

is displayed again. The Loader is asking for the name of another object 
program to load. You can load more than one program into memory. 
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Another program that you can load with this program is the Debugger 
program. The Debugger program is used to control your application 
program, for checking the results, and even helping you detect and remove 
bugs from your program should you have any. The Debugger is a helpful 
companion for your program. 

The Debugger is on the Part A diskette that is included with the 
Editor/Assembler package. Place that diskette into a disk drive and 
respond to the FILE NAME? prompt by typing 

DSKn.DEBUG 

The n is the number of the disk drive where the Part A diskette is installed. 
DEBUG is the name of the DEBUG object program. The Loader loads the 
DEBUG program into memory along with the application program and 
the prompt 

FILE NAME? 

is displayed again. Since there are not any more programs to load, simply 
press the <enter> key. 

The following prompt is displayed: 

PROGRAM NAME? 

The Loader is asking for the name of the program to run. You can run the 
program directly; but, if you do. it takes over the computer, does its job, 
and returns to the title screen. You will not see the results. Instead, run 
the Debugger, and then have the Debugger run the program when you're 
ready. You can also use the Debugger to help you check the results. 

In response to the PROGRAM NAME? pompt, type 

DEBUG 

and press the <enter> key. The Debugger starts running. 
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10.2 Using the Debugger 

When the Degugger starts running, it displays the identification message 

*** 99/4 DEBUGGER *** 

and then displays a dot on the screen (the Debugger is a program of few words). The dot 
is the Debugger's way of asking for what you want to do. You respond to the Debugger 
by typing in a single-character code followed by some other information. The information 
is based upon what you want the Debugger to do. 

There are over 20 commands for the Debugger. Although you are not going to use all of 
them at this point, you can learn to use the ones required to run this first program. 

First, use the Debugger to look at the object code that was loaded into memory by the 
Loader. Unless the program specifies otherwise, the Loader loads the first program into 
memory beginning at address hexadecimal A000. Let's use a Debugger command to 
examine the memory location and see if the object code is really there. 

10.2.1 The Memory Inspect/Change Command (M) 

To examine the contents of memory with the Debugger, follow this procedure. In response 
to the dot prompt, type M (for Memory Inspect/Change). Don't press the <enter> key. 

Following the M, type the address for the contents you want to examine. Type in A000. 
The Debugger understands this number is hexadecimal. In fact, the Debugger assumes 
all numbers are hexadecimal. 

After typing in A000, press the <enter> key. All Debugger commands are terminated 
by the <enter> key. 

The Debugger responds by displaying 

A000-0207 

This tells you that the contents of memory address hexadecimal A000 is hexadecimal 0207. 

Recall from looking at the listing, or look at the listing now if you had it printed,) that 
the first assembly language instruction (The LI R7,5 instruction) results in two words of 
machine code. The first word of machine code is hexadecimal 0207. So, it appears that 
the first word of machine code was loaded at address hexadecimal A000. 
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According to the listing, the second word of machine code is 0005. This means that the 
next word of memory (address A002) should have a 0005 in it. Does it? Let's find out. 

After displaying the content of memory location hexadecimal A000, the Debugger waits 
to give you a chance to change the content of that memory location. If you don't want 
to change the content, but you want to inspect the next location, simply press the space 
bar. 

The Debugger responds to the space by displaying on the next line 

A002=0005 

This shows that the contents of the next word (whose address is A002) is 0005. 

Look at the next several memory locations to see what they contain. Keep pressing the 
space bar until the address A014 appears. The display should look like this. 

A000 - 0207 

A002 = 0005 

A004 = C207 

A006 = 0209 

A008 = 0000 

900A = A247 

AOOC = 0228 

A008 = FFFF 

A010 = I6FC 

A012 = 0420 

A014 = 0000 

These are the addresses and machine code values for the object program. Confirm from 
the listing that the machine code values and their relative locations are correct. 

Address A014 is the last location into which your program's machine code was loaded. 
If you press the space bar too many times and pass address A014, that's okay. You're just 
looking at the machine code for the Debugger program. 

When you're finished examining memory locations, press the <enter> key to terminate 
the Memory Inspect/Change command and the Debugger gives you another dot prompt 
for another command. 
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10.2.2 The (Internal) Registers Command (R) 

Another Debugger command you can use is the R command. It lets you inspect and, 
optionally, change the contents of the Workspace Pointer, Program Counter, and Status 
Register. 

To use the command, type in R. Don't press the <enter> key. 

The Debugger responds by displaying 

W=XXXX 	(where XXXX is some four-digit hexadecimal 

number) 

The Debugger is showing you the contents of the Workspace Pointer (WP). The Workspace 
Pointer tells the computer what area of memory to use for a program's workspace. For 
now, type in 2000. Don't press <enter>. You're telling the Debugger to let your program 
use the area of memory beginning at hexadecimal 2000 for its workspace. 

Press the space bar. The Debugger displays on the next line 

P=YYYY 	(where YYYY is some four-digit hexadecimal 

number) 

The Debugger is showing you the contents of the Program Counter (PC). You may 
remember that the Program Counter is the computer register that tells the computer the 
address of the next instruction to be performed in a program. The address of the first 
instruction is A000. 

Type A000 followed by a space. The Debugger puts A000 into the Program Counter and 
on the next line displays 

S=ZZZZ 	(where ZZZZ is some four-digit hexadecimal 

number) 

The Debugger is showing you the content of the Status Register (SR). The Status Register 
is the computer register in which the computer stores status conditions resulting from the 
performance of instructions. The Status Register contains the status bits that the 
conditional jump instructions use to make decisions. 

Before running a program, it's a good idea to set the Status Register to zero. Simply type 
a 0 followed by the <enter> key. The Debugger puts a zero into the Status Register and 
displays a dot prompt again. 
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Note 

The R command does not directly put values into the CPU's Workspace 
Pointer, Program Counter, or Status Register. The R command saves these 
values in memory; these values are placed in the CPU's internal registers 
when you tell the Debugger to run a program. 

10.2.3 The Breakpoint Command (B) 

You can use a Breakpoint command to control how much of the program to run. 

The B command lets you set a breakpoint. A breakpoint is a roadblock in a program. When 
the program comes to a breakpoint, it stops and gives control to the Debugger. 

Without a breakpoint, if you tell the Debugger to run the program, the program starts at 
the first instruction and keeps performing instructions until it performs the BLWP @0 
instruction. When it performs that Go-Home instruction, the computer returns to the title 
screen just as when you first turn on the computer. 

Before you allow the computer to go home, use a breakpoint to stop the program so you 
can check the results produced by the program 

Set a roadblock (a breakpoint) at the Go-Home instruction. You can allow the program 
to run until it comes to the Go-Home instruction and then have the Debugger stop the 
program before it goes any further. Here's how you do that. 

In response to the dot prompt, simply type a B. 

Now tell the Debugger where to set the breakpoint. Set the breakpoint at the BLWP 
instruction. The beginning address of the BLWP instruction is A012. You can confirm 
this from the listing. Following the B, type A012 and press the <enter> key. These steps 
set a "trap" at the BLWP instruction. A trap is the location of a breakpoint. 

You may get the message, "BKPT USES 2 WORDS." That's fine, just keep going. 

You have used the Debugger to check the machine code in memory and verify that it's 
what you expected. You have used the R command to inspect the content of the 
Workspace Register, to set the content of the Program Counter to the starting address of 
the program, and to zero out the content of the Status Register. And you've used the 
Breakpoint command to set a trap for the program so the Debugger can stop the program 
before it goes to the title screen. 
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10.2.4 The Execute Command (E) 

To actually run the program, here's all you do. In response to the dot prompt, simply type 
in E (for Execute) and press the <enter> key. 

The Debugger starts running the program at the address you set in the Program Counter 
and allows the program to run until it comes to the breakpoint. When the program reaches 
the breakpoint, the Debugger takes over and displays 

B 	2000 	A012 3000 

The B means the Debugger has hit a breakpoint. The first number is the address of the 
program's workspace. The second number is the address in the Program Counter when 
the breakpoint was encountered (it's the address of the breakpoint). The third number 
is the contents of the Status Register. 

Now, you can use the Debugger to check the results. 

If everything went according to plan, the program should have squared the number 5 
and left the square in Register 9. 

10.2.5 The Working Register inspect/Change Command (W) 

You can use the W command to inspect and, optionally, change the contents of working 
registers. Here are the steps to follow. 

In response to the Debugger's dot prompt, type in the letter W. (Don't press the <enter> 
key yet.) 

The W command tells the Debugger you want to inspect the content of a register but the 
Debugger needs to know which one. After the W, type the number of the register you 
want to inspect. Type 9 (not R9, the Debugger doesn't understand R prefixes). After typing 
9, press the <enter> key. 

The Debugger responds by displaying 

129=0019 

This message tells you that the content of Register 9 is 0019. Register 9 has the square 
of 5 in it. Remember, the Debugger only speaks hexadecimal. Register 9 holds a 
hexadecima119, which is a decimal 25. 

109 



Chapter 10 

After examining Register 9, press <enter> to get a dot prompt from the Debugger. 

10.2.6 The Hex -to -Decimal Conversion Command (>) 

Often when using the Debugger, you need to convert a hexadecimal number to a decimal 
equivalent. The Debugger provides a convenient way to do those conversions. Here's 
how. 

First, make sure you have a dot prompt from the Debugger. In response to the dot prompt, 
type a greater-than sign (> ). This is a command to the Debugger to convert a hex number 
to a decimal number. Then, type the hex number, say 19, and press the <enter> key. 
The Debugger responds by displaying 

>.19 

=25 

This shows that hex 19 equals decimal 25. 

There are some other Debugger commands which are especially useful. 

10.2.7 The Set Bias Commands (X, Y, and Z) 

By looking at a listing, you can see the machine code that was produced from the assembly 
language statements. You also can see the relative locations in which the machine code 
values are placed in memory when the object program is loaded. Normally, when the 
first object program is loaded into memory, it's loaded beginning at address hexadecimal 
A000. When a program is loaded into memory, it's sometimes a brain twister to transform 
a relative address from the listing into the physical address where the program was 
actually loaded. 

Again, the Debugger can help. One feature of the Debugger is setting a bias. Here's the 
way it works. 

Suppose you have the program in memory beginning at address hexadecimal A000 and 
you want to look at the machine code for the instruction 

JNE LOOP 

From the listing, you discover that the instruction's machine code is a hexadecimal 10' 
distance from the beginning of the program. You could do a mental calculation and add 
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a hex 10 to the beginning of the program (hex A000) and come up with the physical location 
hex A010 (hex A000 + hex 0010). An easier way, however, is to use a bias. 

To set a bias, follow this procedure. In response to the dot prompt, type in an X. The 
Debugger displays 

.X ZZZZ 	(where ZZZZ is some four-digit hexadecimal 

number). 

To set an X bias at A000, type in A000 and press the <enter> key. You've just set a bias 
of A000. Now, whenever you use any Debugger command that requires an address (like 
the Memory Inspect/Change command) you can use X as part of the address calculation. 
For example, if you want to examine the contents of the memory address that is a relative 
hex 10 from the starting point of the program (hex A000) you can type in X as part of the 
address. 

For example, in response to the dot prompt, type in M, then type in 10X, and press the 

<enter> key. 

The Debugger responds by displaying 

A010=16FC 

It automatically added hex 10 (the displacement) to hex A000 (the bias). 

Press <enter> to get a dot prompt from the Debugger. 

The Debugger lets you establish up to three bias. The biases are called X, Y, and Z. 

10.2.8 More Experiments with the Program 

If you run the square program again just the way it is, it would repeat the results from 
the first time you ran it. It would square the number 5. If you want the program to do 
something different (like square a different number), you must have it do something 
different. 

Suppose you want the program to square the number 6. You must change the program 
so that it starts with a 6 in Register 7. One way to do that is to change the first statement 
in the program from 
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LI 	R7,5 

to 

LI 	R7,6 

This change requires changing the source program, reassembling, and reloading. This 
approach is a time-consuming process. You can change the machine code directly in 
memory. This approach takes more knowledge of the machine code than explored to this 
point. 

Use the Debugger to put a 6 into Register 7 before running the program again and have 
the Debugger start running the program at the second instruction, rather than the first. 

Here's how you can do that. Use the W command to change the contents of Register 7. 
You can do it this way. 

Get a dot prompt from the Debugger. Then, type in W 7 and press the <enter> key. The 
Debugger responds by displaying 

07=0005 

This tells you that the current content of Register 7 is 5. The program put a 5 in Register 
7 when it ran the first time. The Debugger gives you a chance to change the content of 
Register 7 if you want to. Change the content of Register 7 to 6 by simply typing in 6 
followed by the <enter> key. 

If you were to run the program again, it would start off with a 6 in Register 7. But there's 
a problem. If you start running the program at the first instruction, then the first thing 
the program does is put a 5 into Register 7 and you'll end up with the square of 5 again. 

But, if start running the program at the second instruction, the program uses the 6 in 
Register 7 and squares it. 

How can you start running the program at the second instruction? Use the R command 
to set the Program Counter to the address of the second instruction. Do it this way. 

Get a dot prompt and then type the letter R. 

The Debugger responds by displaying 

14=2000 
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Hexadecimal 2000 is the address in memory for the workspace that the program is using 
for the registers. Since you don't want to change that address, simply press the space bar. 

The Debugger responds by displaying 

P-A012 

Hexadecimal A012 is the address where the program stopped the last time you ran it. 
To change this number to the address of the second instruction, you can type either A004 
or you can type 4X if you set the X bias to A000. Press the space key after the entry. 

The Debugger responds by displaying 

S.,ZZZZ 	( ZZZZ is some four-digit hexadecimal number) 

Zero out the Status Register by typing a 0 and press the <enter> key. After pressing the 
<enter> key, the Debugger gives you a dot prompt. 

Now you're ready to run the program again, but this time the program starts running at 
the second instruction (at address hex A004) and with a 6 in Register 7. 

Before running the program, set a breakpoint by typing in B A012 (or you can type B 12X, 
if you set the X bias to A000) and press the <enter> key. 

After setting the breakpoint, run the program by typing in E and press the <enter> key. 

The program runs until it reaches the breakpoint, then the Debugger takes over. The 
Debugger reacts by displaying the three addresses, including the address of the 
breakpoint (A012), and a dot prompt. 

Check the results of the program by inspecting the contents of Register 9. Use the W 
command to see what's in the register. There should be a hexadecimal 0024 in Register 
9. Use the hexadecimal-to-decimal conversion command (>) to confirm that a 
hexadecimal 24 is equal to a decimal 36 (the square of 6). 

10.2.9 The Decimal-to-Hex Conversion Command (.) 

There's another Debugger command you can use to convert a decimal number to a 
hexadecimal equivalent. 

Suppose you want to convert a decimal number like 100 to a hexadecimal equivalent. 
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Here's how you can use the Debugger to do that conversion for you. 

In response to the dot prompt, type a decimal point and type the decimal number you 
want to convert. 

Type in .100 and press the space bar or the <enter> key. The Debugger shows you the 
hexadecimal equivalent value. The Debugger shows you that a decimal 100 is equal to 
a hex 64. 

10.2.10 The Hexadecimal Arithmetic Command (H) 

Another useful Debugger command is the hexadecimal arithmetic command. It lets you 
type in two hex numbers and it shows: 

• the sum of the two numbers 

• the difference of the first number minus the second 

• the product of multiplying the two numbers 

• the quotient and remainder resulting from dividing the first number by the second 

The results are given in hexadecimal. 

Try this. In response to the dot prompt, type in the letter H. The H is the command to 
perform hexadecimal arithmetic. Then type two hex numbers separated by a space, or 
a comma, and followed by pressing the <enter> key. For example, type 

Fl 20,6 

and press the <enter> key. 

The Debugger responds by displaying 

H1=0020 H2=0006 61+112=0026 

H1-H2-001A H1*H2 = 0000 MO 

111/H2=0005 R 0002 

The Debugger shows you that it's naming the first number (hex 20) H1 and the second 
number (6) H2. 
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• H1 plus H2 (or hex 20 plus 6) is hex 26 

• H1 minus H2 (or hex 20 minus 6) is hex 1A 

• H1 times H2 (or hex 20 times 6) is hex CO. Notice that the product is given as an 
8-digit hex number 

• H1 divided by H2 (or hex 20 divided by 6) results in a quotient of 5 and a remainder 
of 2. (Hex 20 is a decimal 32 and 32 divided by 6 is 5, with a remainder of 2.) 

10.2.11 The Quit Command (Q) 

The Q command lets you leave the Debugger. 

It works like this. In response to the Debugger dot prompt, simply type in Q and press 
the <enter> key. The Debugger runs the program beginning at the address in the 
Program Counter. But if the Program Counter contains zero, the Debugger returns to the 
Editor/Assembler selection screen. 

At this point, you can let the program run without a breakpoint. Use the R command to 
set the Program Counter to A000 and the Status Register to zero. 

Then type Q and press the <enter> key. The program runs and the master title screen 
appears after the BLWP instruction is performed. 

10.3 Summary 

Chapters 9 and 10 describe: 

• how to use the Editor to create or change a source program 

• how to use the Assembler to assemble a program 

• how to read a listing 

• how to load an object program into memory along with the Debugger 

• how to use several Debugger commands 
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In the following chapters, the rest of the instructions are examined in detail. Also, you 
can learn more about assembler directives, the Loader, the Debugger, and more of the 
techniques of assembly language programming. 

The next chapter examines the Data Manipulation instructions. 
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DATA MOVEMENT INSTRUCTIONS 

This chapter introduces the Data Movement group of instructions. The main job of these 
instructions is to move data or to rearrange data. There are 12 Data Movement 
instructions. The instructions are listed below with their names, operation codes, and a 
description of the kinds of addressing modes you can use with the instructions. 

In the following list, G means that an operand is a general addressing mode operand (one 
that can use any of the five general addressing modes). An R means that an operand must 
be a working register and can use only the register direct addressing mode). An TOP means 
that an operand must use immediate addressing. TOP is a data value, rather than the 
address of a data value. A C means that the operand is a count value and it must be a 
number from 0 through 15. 

Operation 	Addressing 
Name 
	

Code 	 Mode 

Move Word 	 MOV 	 G,G 
Move Byte 	 MOVB 	 G,G 
Swap Bytes 	 SWPB 	 G 
Load Immediate 	 LI 	 R,IOP 
Load Workspace Pointer Immediate 	LWPI 	 IOP 
Load Interrupt Mask Immediate 	 LIMI 	 IOP 
Store Workspace Pointer 	 STWP 	 R 
Store Status 	 STST 	 R 
Shift Right Logical 	 SRL 	 R,C 
Shift Right Arithmetic 	 SRA 	 R,C 
Shift Right Circular 	 SRC 	 R,C 
Shift Left Arithmetic 	 SLA 	 R,C 

11.1 The Move Instructions (MOV and MOVB) 

The Move Word (MOV) and Move Byte (MOVB) instructions copy a data item from one 
location to another. The MOV instruction moves a word (16 bits) and the MOVB 
instruction moves a byte (8 bits). 
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11.1.1 The Move Word Instruction (MOV) 

The Move Word instruction was introduced in Chapter 7. It moves, or copies, a word 
(16 bits) from one location to another. It requires two operands; both operands can use 
any of the five general addressing modes. The first operand is called the source operand; 
the second is called the destination operand. The source operand specifies the location 
of the word that is moved; the destination operand specifies where the copy is placed. 
Since the source operand appears to the left of the destination operand in the operand 
field, you can visualize a left-to-right movement between the operands from the location 
specified by the source operand into the location specified by the destination operand. 

MOV 	Source Operand,Oestination Operand 

The data word that is moved is automatically compared to zero and its relationship to 
zero affects the Logical Greater Than (L> ), Arithmetic Greater Than (A> ), and the Equal 
(EQ) status hits. 

As an example, suppose memory location hexadecimal A102 contains the value 
hexadecimal 9ABC, and suppose memory location B87E contains hexadecimal 5D6F. 
Further suppose Register 10 contains a hexadecimal A102 and Register 3 contains a 
hexadecimal B800 before the following instruction is performed. 

MOV *R10,@>7E(R3) 

After the instruction is performed, memory location hex B87E contains a hex 9ABC. The 
contents of memory location A102 is still 9ABC and the contents of Registers 3 and 10 
are unchanged. 

Location 	Before 	After 

(R3) 	 >0800 	>0800 

(R10) 	. 	>A102 	>A102 

(>A012) 	>9ABC 	>9ABC 

(>087E) 	>506F 	>9ABC 

The data word is moved; hex 9ABC is compared to zero and affects the Logical Greater 
Than, Arithmetic Greater Than, and Equal status bits as follows. 

Logical Greater Than (L>) Status Bit = 1 

Arithmetic Greater Than (A>) Status Bit = 0 
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Equal (EQ) Status Bit = 0 

Imagine that the computer responds to these questions in deciding whether to set or clear 
these status hits. 

The computer asks if hex 9ABC is logically greater than zero; that is, if 9ABC is thought 
of as a logical value (an absolute or unsigned number, is it bigger than zero. It is, so the 
computer sets the Logical Greater Than status bit true (a one). 

The computer asks if hex 9ABC is arithmetically greater than zero; that is, if 9ABC is 
thought of as an arithmetic value (a signed number), is it larger than zero. It isn't, so the 
computer clears the Arithmetic Greater Than status bit to zero (meaning that the condition 
is not true). 

If you think about hex 9ABC as a signed number using two's complement notation, what 
is the sign of the number? It's negative because the sign bit is one. In binary, hex 9ABC 
is 1001101010111100. You can determine if a hex number that represents a signed number 
is positive or negative by looking at the left-most digit. If the most-significant digit is 7 
or less, the number is positive; and if it is 8 or greater, the number is negative. 

The computer asks if hex 9ABC equals zero. It doesn't, so the computer clears the Equal 
status bit. 

11.1.2 The Move Byte Instruction (MOVB) 

The Move Byte instruction (MOVB) is the little brother of the Move Word instruction. 
It does the light duty work. It moves an 8-bit chunk of data. 

The MOVB instruction requires two operands that can use any of the five general 
addressing modes. The first operand, called the source operand, specifies where the byte 
is to be copied; and the second operand, called the destination operand, specifies where 
the data is copied. 

Both the source and destination operands are byte addresses. As an example, suppose 
memory word A012 contains a hex 9ABC, memory word B87E contains 5D6F, Register 
10 contains hex A103 and Register 3 contains hex B800 before the following instruction 
is performed. 

MOVB *R10,@>7E(R3) 
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After the instruction is performed, memory word hex B87E contains hex BC6F. The 
instruction moves the contents of byte address hex A103, hex BC, to byte address hex 
B87E, the left byte of word address hex B87E. 

Location 	Before 	After 

(R3) 	>BM 	>B800 

(R10) 	= 	>A103 	>A103 

(>A012) 	= 	>9ABC 	>9ABC 

(>1387E) 	= 	>5066 	>BC6F 

Just like the Move Word instruction, the Move Byte instruction has the computer compare 
the moved value to zero and affects the Logical Greater Than, Arithmetic Greater Than, 
and Equal status bits. 

In this example, the byte value, hex BC, is compared to zero, causing the Logical Greater 
Than status bit to be set, the Arithmetic Greater Than status bit to be cleared, and the 
Equal status bit to be cleared. 

Because the Move Byte instruction performs a byte operation, which means it uses an 
8-bit value, the Odd Parity (OP) status bit is also affected based on the number of one 
bits in byte. The byte value hex BC is a binary 10111100. There are 5 one bits, an odd 
number, in the byte, so the Odd Parity status bit is set one (true). 

The Odd Parity status bit is affected only by byte operations, and not word operations. 
It is affected by the number of one bits in a byte. If there is an odd number of one bits 
(1, 3, 5, or 7), the Odd Parity status bit is set. If there is an even number of one bits (2, 
4, 6, or 8), the Odd Parity status bit is cleared. 

You might wonder exactly what use is the Odd Parity status bit? Often, byte values 
represent ASCII character codes. For some communication applications, parity, the 
number of one bits, is used to detect possible errors in the transmission of the character 
codes. After a byte operation, the Odd Parity status bit tells you if the byte had even or 
odd parity. 

11.2 The Swap Bytes Instruction (SWPB) 

The Swap Bytes instruction requires only one operand and can use any of the five general 
addressing modes. The instruction simply exchanges the two bytes in a word, exchanging 
the left byte with the right byte. No status bits are affected by the instruction. 

Although the operand can specify a general memory location, the SWPB instruction is 
used most often to exchange the two bytes in a register. SWPB is used to put the right 
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t
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byte of a register into the left-byte position, so the byte can be accessed by a byte-operation 
instruction using register direct addressing mode. 

For example, suppose you want to copy the right byte of Register 6 to memory location 
MEOW. You can use the instruction 

MOVE R6,@MEOW 

to move a byte in Register 6 to memory location MEOW, but it's the left byte of Register 
6 that is moved. (Any time the computer performs a byte operation using register direct 
addressing, it can only access the left byte of the register.) If you want to move the right 
byte of Register 6 to memory location MEOW, you can use a Swap Byte instruction to 
exchange the bytes first, as follows. 

SW PO R6 

11.3 The Load Immediate Instruction (LI) 

The Load Immediate instruction (LI) is probably an old friend by now. It was used in 
the program example that was presented in a previous chapter. 

The LI instruction has two operands. The first is an R-type operand. This means that the 
first operand must be a register. It can only use register direct addressing. The second 
operand is an I0P-type operand. This means that it's an immediate operand and uses 
the immediate addressing mode. 

The LI instruction places the immediate operand into the register. It's useful for 
initializing the contents of a register to a constant. In the previous program example, 
you've seen how to use it for establishing a loop count in a register, for example. 

An immediate operand is always a 16-bit value. There are no 8-bit immediate operands. 

The Load Immediate instruction copies the immediate operand into the register. Just as 
with the Move Word instruction, the computer automatically compares the value of the 
word to zero and affects the Logical Greater Than, Arithmetic Greater Than, and Equal 
status bits in the same way. 

The Load Immediate instruction is used to set an address value in a register. Suppose 
you want to access several sequential data items in a list. Register indirect autoincrement 
addressing mode is designed especially for that. To use that addressing mode, you need 
to have an address in a register. The Load Immediate instruction can help. Suppose the 
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data items are located in memory beginning at address hex CA62. You can use the LI 
instruction to put the first data item's address in a register, such as Register 8. 

LI R8,>CA62 

Then the instruction 

MOV .11.8+,R0 

moves the first word to RO and automatically points R8 to the second word so that you 
are ready to access it with another instruction. 

In the previous example, suppose memory location hex CA62 is labeled LIST, then the 
instruction 

LI R8,LIST 

puts a hex CA62 in R8. Remember, with a Load Immediate instruction, the second 
operand is an immediate operand; it's treated as the data value itself, not the address 
of data. 

An instruction like 

MOV @LIST,R8 

moves the contents of address LIST into R8, but 

LI R8,LIST 

moves the address value of LIST into R8. 

11.4 The Load Internal Registers Instructions (LWPI and LIMI) 

Two instructions load values into two of the computer's special internal registers. The 
Load Workspace Pointer Immediate (LWPI) instruction loads a value into the Workspace 
Pointer, and the Load Interrupt Mask Immediate (LIMI) instruction loads a value into 
the interrupt mask portion of the Status Register (LIMI). 
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11.4.1 The Load Workspace Pointer Immediate Instruction (LWPI) 

The Load Workspace Pointer Immediate Instruction (LWPI) is designed specifically to 
put an address value into the Workspace Pointer. You may remember that the Workspace 
Pointer is a special computer register that holds the address that tells the computer the 
location of the program's register set in memory. 

The LWPI instruction has only one operand, an immediate operand. A copy of the 
immediate operand is placed in the Workspace Pointer. Sometimes you may want to 
define explicitly the location of a program's register set. The LWPI instruction lets you 
do that. 

As an example, suppose you want to use the area of memory beginning at hex DE80 for 
a register set. The instruction 

LWPI >DE80 

sets the Workspace Pointer to hex DE80. 

Just as with any instruction using immediate addressing, the immediate operand can be 
given a name. For example, if memory location hex DE80 is named WRKSPC, then the 
instruction 

LWPI WRKSPC 

puts a hex DE80 into the Workspace pointer. 

11.4.2 The Load Interrupt Mask Immediate Instruction (LIMI) 

The Load Interrupt Mask Immediate instruction (LIMI) sets a value into the interrupt 
mask. The interrupt mask is the low-order [rightmost) four bits of the Status Register. The 
interrupt mask is used by the computer to help control peripheral devices. 

Like the LWPI instruction, the LIMI instruction has one operand, an immediate operand. 
Recall that all immediate operands are 16-bit values. The interrupt mask, however, is 
only 4-bits big. With the Load Interrupt Mask Immediate instruction, only the low-order 
nibble (4 bits) of the immediate operand is placed into the interrupt mask. 

For example, the instruction 

LIMI 	4 
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causes a 4 to be placed into the interrupt mask. 

The instruction 

LIMI >1234 

also causes a 4 to be placed into the interrupt mask. 

11.5 The Store Internal Registers Instructions (STWP and STST) 

Two instructions copy values from two of the computer's special internal registers into 
a program's working registers. One instruction, Store Workspace Pointer (STWP), copies 
the value in the Workspace Pointer into a working register. The other instruction, Store 
Status (STST), copies the value in the Status Register into a working register. 

These two instructions are not used often in most programs. 

11.5.1 The Store Workspace Pointer Instruction (STWP) 

The Store Workspace Pointer instruction (STWP) puts the address of the program's 
working registers (which is in the Workspace Pointer) into one of the working registers. 
It's a way of remembering the address of the working registers. 

Here's an example of how it works. Suppose these two instructions were in a program. 

LWPI >C2E0 

STWP R9 

The STWP instruction stores a hex C2E0 into Register 9. 

11.5.2 The Store Status Instruction (STST) 

The Store Status instruction (STST) copies the 16-bit value in the Status Register into a 
working register. It's a way of remembering what's in the status register. 

As an example, the instruction 

STST 515 

copies the current contents of the Status Register into Register 15. 
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11.6 The Shift Instructions (SRL, SRA, SRC, and SLA) 

There are four instructions which rearrange bits in a register. These are the shift 
instructions. They are most often used in applications where individual bits represent 
one-bit information items. 

A shift instructions requires two operands. The first is an R-type operand and can use 
only register direct addressing. The second is a C-type operand and is a number in the 
range of 0 through 15. 

The first operand identifies the register that contains the bits to be shifted. The second 
operand specifies how many bit positions to shift. A word must be in a register before 
you can shift it. You can't directly shift the contents of a general memory location. 

The four shift instructions are alike in many ways. They each require that a value be 
in a register before it can be shifted. The second operand identifies how much to shift. 
The second operand can be 0 or a non-zero number of 1 through 15. If the second operand 
is a non-zero number, the contents of the register are shifted that number of positions. 
If the operand is 0, the contents of the register are shifted the number of positions equal 
to the number in the rightmost nibble of Register 0. When the operand is 0 and the 
rightmost nibble of Register 0 contains a non-zero number, that number in Register 0 is 
the number of bits shifted. When the operand is 0 and the rightmost nibble of Register 
0 is also 0, the bits are shifted 16 positions. 

Also, after the shift operation is performed, the computer compares the result in the 
register to zero and affects the Logical Greater Than, Arithmetic Greater Than, and Equal 
status bits accordingly. Each of the instructions also affects the Carry status bit. The state 
of the last bit shifted out of the register is recorded in the Carry status bit. If the last bit 
shifted out is a one, the Carry status bit is set; if the last bit shifted out is a zero, the Carry 
status bit is cleared. You might say that the last bit shifted out leaves its footprint in the 
Carry status bit. 

Those are the ways the instructions are alike. Now look at the ways in which they're 
different. 

11.6.1 The Shift Right Logical Instruction (SRL) 

The Shift Right Logical instruction (SRL) shifts the bits in a register to the right the number 
of positions determined by the second operand. The bits shifted out of the right end of 
the register are gone. (They are said to fall into the "bit bucket", the fictitious final resting 
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place for departed bits.) As the bits are shifted to the right, zero bits fill the vacated bit 
positions on the left. The state of the last bit shifted out of the right end of the register 
is recorded in the Carry status bit. After the shift, the 16-bit result in the register is 
compared to zero and that comparison affects the Logical Greater Than, Arithmetic 

Greater Than, and Equal status bits accordingly. 

Bits Move This Way 

I 	I 	1 	.-- 	1 	I 	I 

Take an example. Suppose register 2 contains a hex C873 or a binary 1100100001110011. 

The instruction 

SRL R2,4 

shifts the contents of Register 2 four bit positions to the right and zero bits fill the vacated 
bit positions on the left. 

After the instruction is performed, Register 2 contains a hex 0087 or a binary 
0000110010000111. The Carry status bit is not set, because the last bit shifted out was a 
zero bit. The Logical Greater Than status bit is one, the Arithmetic Greater Than status 
bit is one, and the Equal status bit is zero as a result of comparing the result (hex 0087) 

to zero. 

(R2) Before 

0 1 2 3 4 5 	6 	7 	8 	9 10 11 12 13 14 15 

1 11 11 01 01 11 01 	01 	01 	01 	11 11 11 01 01 11 11 

V (R2) 	After 

0 1 2 3 4 5 	6 	7 	8 	9 10 11 12 13 14 15 

o ---> 	1 01 01 01 01 11 11 	01 	01 	1 	0 1 01 01 01 11 II 

The instruction is called Shift Right Logical because it treats the contents of the register 
as a logical, or unsigned, value. Shifting a number to the right is a simple way of 
performing a division by a power of two. For example, if Register 2 contains a hex 8004 
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(a binary 1000 0000 0000 0100) and you shift the contents one position to the right, the 
contents become a binary 0100 0000 0000 0010 (a hex 4002). 

The number is divided by two. Shift the number right again and it's divided by two again. 
It becomes a binary 0010 0000 0000 0001 or hex 2001. 

This works as long as you're thinking about the number as an unsigned value (which 
means that you don't care what happens to the sign bit because the number has no sign). 

Notice that with the SRL instruction, zero bits always fill the vacated bit positions on the 
left. 

11.6.2 The Shift Right Arithmetic Instruction (SRA) 

The Shift Right Arithmetic instruction (SRA) works almost exactly like the Shift Right 
Logical instruction. The only difference is what happens to the vacated bit positions. With 
the SRA instruction, the vacated bit positions are filled with bits equal to the state of the 
original sign bit (the leftmost bit). 

Bits Move This Way 

+--+--+-/ /-+--+--+ 

4---->  I 	I 	I 	I 	I 
+--+--+-/ 

Sign Bit 

Consider an example like the one from the previous section. Suppose register 2 contains 
a hex C873 or a binary 1100100001110011. 

The instruction 

SRA R2,4 

causes the contents of Register 2 to be shifted four bit positions to the right and one bits 
fill the vacated bit positions on the left since the sign bit is a one. 

After the instruction is performed, Register 2 contains a hex FC87 or a binary 
1111110010000111. The Carry status bit is not set, because the last bit shifted out was a 
zero bit. The Logical Greater Than status bit is one, the Arithmetic Greater Than status 
bit is zero, and the Equal status bit is zero as a result of comparing the result (hex FC87) 
to zero. 
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fR21 	Before 
0 1 2 3 4 5 	6 	7 	8 	9 10 11 12 13 14 15 

1 11 11 01 01 11 01 	01 	01 	01 	11 11 11 01 01 11 11 

V 022) 	After V 

0 1 2 3 4 5 	6 	7 	8 	9 10 11 12 13 14 15 

- - - -> 	1 11 11 11 11 11 il 	01 	01 	11 	0 1 01 01 01 11 1.1 11 

The instruction is called Shift Right Arithmetic because it treats the value in the register 
as a signed number. Shifting a number to the right is a simple way of dividing the number 
by a power of two. If you're thinking about the number as a signed number, however, 
you need to maintain the sign. 

Suppose that Register 2 contains a hex FFFA (a binary 1111 1111 1111 1010). If you're 
thinking about the number as a signed number, it's a minus 6. It's a minus number because 
the sign bit is a one. The absolute value, 6, is found by taking the two's complement of 
the number. 

What do you get if you divide —6 by two? You get —3. If you shift the contents of Register 
2 one bit position to the right, you get a binary 1111 1111 1111 1101 (or a —3). You get 
the correct signed number as long as you maintain the sign bit. 

Notice that with the SRA instruction, the state of the original sign bit fills the vacated 
bit positions on the left. 

11.6.3 The Shift Right Circular Instruction (SRC) 

The Shift Right Circular instruction (SRC) rotates the contents of a register. This 
instruction works just about like the SRL and SRA instructions where bits are shifted 
right in a register. The difference is what happens to the bits shoved out of the right end. 
With the SRC instruction, when a bit is shifted out of the right end of a register, rather 
than landing in the bit bucket, it walks around and hops right back into the register on 
the left side. Effectively, the bits are simply rotated to the right in the register. 

128 



Data Movement Instructions 

Bits Move This Way 

+-->1 	1 	I 	I 	I ---+  

Suppose Register 2 contains a hex C873 (a binary 1100 1000 0111 0011). The instruction 

SRC R2,4 

shifts the bits four positions to the right and the bits displaced on the right fill the vacated 
bit position on the left. The result in Register 2 is a binary 0011 1100 1000 0111 (or hex 
3C87(. 

(R2) Before 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

11 1 1 01  ol 1 1 ol ol ol ol 11 11 11 01 ol 1 1 11 

V 	(02) After 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 01 01 11 1 1 11 11 01 01 11 01 01 01 01 11 11 11 ---+ 

The Carry status bit is zero because the last bit shifted out is a zero. With the SRC 
instruction, the Carry status bit is always left equal to the state of the leftmost bit in the 
register. 

The Logical Greater Than status bit and the Arithmetic Greater Than status bit are one; 
the Equal status bit is zero as a result of comparing the result in Register 2 to zero. 

11.6.4 The Shift Left Arithmetic Instruction (SLA) 

The Shift Left Arithmetic instruction (SLA) is the only shift instruction that directly shifts 
the contents of a register to the left. The bits shifted out of the left end of the register fall 
into the bit bucket and zero bits fill the vacated bit positions on the right. 
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Bits Move This Way 

-/ 1-+--+--+ 

1 	I 	0 
--+-/ /-+--+--+ 

The instruction is called Shift Left Arithmetic because it treats the value in the register 
as a signed number. It pays attention to the sign bit. The SLA instruction is the only shift 
instruction that affects the Overflow status bit. It sets the Overflow status bit to one should 
the sign bit change any time during the shift operation; otherwise, the instruction clears 
the Overflow status bit. 

For example, suppose Register 2 contains a hex C873 (a binary 1100 1000 0111 0011). The 
following instruction shifts the contents of Register 2 four positions to the left and fills 
the vacated bit positions on the right with zero bits. 

	

SLA 	02,4 

The result in Register 2 is a binary 1000 0111 0011 0000 (or hex 8730). 

(02) 	Before 

	

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15 

1 	l 1 	1I 	01 	01 1 	01 0I 0 1 	o 1 	it 	11 	11 	°I 	0I 	ii iJ 

(02) After 	V 
0 	1 	2 	3 	4 	5 6 7 	8 	9 	10 	11 	12 13 	14 	15 

I11 	0 1 	0 1 	0 1 	0 1 	11 11 11 	01 	01 	11 	11 	01010101<--- 0 

The Overflow status bit becomes a one because the sign bit changed during the shift 
operation. Even though the sign bit is the same after the shift as it was before the shift, 
the sign bit did change during the shift operation (at least one zero bit passed through 
the sign bit). 

Shifting a number to the left is a simple way of multiplying by a power of two. If you're 
thinking of the number as a signed number, that's true as long as you preserve the sign 
(don't change the sign bit). 
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The computer doesn't know how you're thinking about the number, as a signed number 
or as an unsigned number. But, in case you are thinking about it as a signed number, 
the computer tells you if the sign bit changes by setting the Overflow status bit. 

As an example, suppose Register 2 contains a hex 4002 (a binary 0100 0000 0000 0010). 
The instruction 

SLA R2,I 

shifts the contents of Register 2 one bit position to the left, leaving in Register 2 a binary 
1000 0000 0000 0100 (or hex 8004). 

(62) 	Before 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 13 	14 	15 

IOIII OI01 01 	01 	01 	01 °1 	01 	01 	01 	01 01iiII 

(62) 	After V 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 13 	14 	15 

11 	01 	01 	0 1 	01 	0 1 	ol 	oi 	01 	o l 	oi 	01 	01 11 	DI 	01 	<-- - 	o 

If you think of hex 4002 as an unsigned number, then hex 8004 is, indeed, two times hex 
4002. But, if you think of hex 4002 as a signed number, then hex 8004 is not two times 
hex 4002. Why? Because the sign bit is different; it changed. If you think of hex 4002 as 
a signed number, it's a positive number (the sign bit is a zero), but the sign of hex 8004 
is negative (the sign bit is a one). 

11.6.5 Using Register 0 for a Shift Count 

The purpose of the second operand with a shift instruction is to tell the computer how 
many bit positions to shift. That number must be in the range of 0 through 15. A non-zero 
number (1 through 15) tells the computer directly how many bits to shift, but an operand 
of 0 tells the computer that it's to look in Register 0 for the shift count. Specifically, the 
computer looks in the rightmost nibble of Register 0 for the shift count. 

Consider these three instructions. 
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LI R0,>D573 
LI R11,>1234 
SLA R11,0 

The SLA instruction shifts the bits in Register 11 to the left three positions. The second 
operand is 0, which directs the processor to find the shift count in Register 0. Since the 
rightmost nibble of Register 0 is 3, the contents of Register 11 are shifted 3 positions to 
the left, so that a hex 91A0 remains in the register. 

(R11) Before 

0 	1 2 	3 	4 5 	6 7 	8 	9 10 11 12 13 14 	15 

1 	01 	01 01 	'I  01 01 	11 01 	0 1 	01 11 11 0 1 11 01 	01 

V (011) After V 
0 	1 2 	3 	4 5 	6 7 	B 	9 10 11 12 13 14 	15 

11 I 	01 01 	11 	01 01 	01 11 	11 	01 11 01 01 01 01 	01 	<--- 	o 

Consider these instructions. 

LI R0,0 
LI 1111,>1234 
SLA R11,0 

The SLA instruction shifts the bits in Register 11 to the left 16 positions, because the second 
operand is 0 and the rightmost nibble of Register 0 is 0. The SLA instruction shifts the 
bits 16 positions and fills the vacated bit positions on the right with zeros. Upon 
completion of the SLA instruction, Register 11 contains zero. 

11.6.6 Testing the Carry Status Bit 

With the shift instructions, the Carry status bit is set to the state of the last bit shifted out 
of the register. There are two instructions that let you check the state of the Carry status 
bit: jump On Carry (JOCJ and jump if No Carry (INC). The JOC causes a jump if the Carry 
status bit is one; the INC causes a jump if the Carry status bit is zero. 
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11.7 Program Example 

The following is a printed listing from the assembly of a source program that uses several 
of the data movement instructions. 

VI 
93/4 ASSEMBLER 

11.: PAGE 000! 

1DT 'B1TCNTR' 
e.: 0000 02E0 LAP' WS INITIALIZE WORKSPACE POINTER 

0002 004E' 
0003 0004 0200 LI 00./1000 POINT R0 TO BITS 

0006 1000 
0004 0000 0201 LI R1.COUNTS POINT RI TO COUNTS STORAGE 

000A 0026' 

0005 000C 020: LI R2,16 SET LOOP COUNTER 	∎ BYTES TO EXAMINE/ 
000E 0010 

0006 0010 0203 NXTBYT LI R7.0 INIT BIT COUNT TO ZERO 
0012 0000 

0007 0014 0204 LI 94.0 SET LOOP COUNTER 	(BITS TO EXAMINE) 
0016 000E 

0000 001E D170 MOVE. 4170+,175 COPY A BETE 	INTO RS 

0009 001A 0015 SHIFT SLR R5.1 SHIFT OUT A BIT 
0010 001C 1702 JNC BITISO IF BIT IS ZERO. 	JUMP 
0011 001E 0223 AI 03.1 ELSE ADD TO BIT COUNT 

0020 0001 
0012 0022 0224 BITISO AI R4.-1 DECREMENT BIT LOOP COUNT 

0024 FFFF 
0013 00',  16F9 JNE SHIFT IF NOT ZERO. 	GO EXAMINE NEXT BIT 
0014 ee OE= SWPB R3 F. CF PUT BIT COUNT IN RI LEFT BET 
0015 ee DC43 MOVB • . 	STORE 	IT 
0016 ee 0222 AI R2.-1 DI 	-ENT BYTE LOOP COUNTER 

FFFF 
0017 ee e IEEE JNE 	NXTBYT IF NOT ZERO. 	GO GET NEXT BYTE 
0010 ee 	. 0420 BLWP DO ELSE GO HOME 

0019 00,,, COUNTS 16 BIT COUNTS STORED HERE 
0020 0046 WS 32 WORKSPACE 
0021 ' 

99/4 ASSEMBLER 

	

VERSION 	1.2 	 PAGE 0002 

	

BITISO 0022 	. COUNTS 003E 	' NXTBYT 0010 	R0 	0000 

	

RI 	0001 	RIO 	000A 	FIll 	0000 	R12 	000C 

	

R13 	000D 	R14 	000E 	R15 	000F 	R2 	0002 

	

R3 	0003 	R4 	0004 	R5 	0005 	RE 	0006 

	

R7 	0007 	RR 	0009 	R9 	0009 	' SHIFT 	0010 

	

' WS 	0046 
0000 ERRORS 

The program counts the number of one bits in each of 16 successive bytes of memory 
and stores each count in 16 other successive bytes of memory. 
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Bits Counts 

1st 	Byte 	1 : I2nd Byte 1st Count I2nd count 

3rd 	Byte 	1 : 14th Byte 3rd Count 14th count 

15th Bytel 	: 	116th Byte 15th Count] 	: 	116th Count 

In general, this is how the program works. The program copies a byte of memory into 
a register and then shifts each bit of the byte out of the register one bit at a time. As each 
bit is shifted out, the program analyzes the Carry status bit. If the Carry status bit is one, 
this means the bit shifted out is a one bit and the program adds one to a count of the 
number of bits. If the Carry status bit is zero after the shift, the shifted bit is a zero, so 
the program does not add to the count of the number of one bits. 

Each of the eight bits in a byte are analyzed and the accumulated count is stored into 
a byte of memory. The program then accesses the second byte of memory, analyzes each 
bit, counts the number of one bits, stores the count, and accesses the next byte of memory. 
The program continues this repetitive process until the bits in all sixteen bytes have been 
counted and the counts stored in memory. 

Review the listing. All of the instructions were introduced in previous chapters. 

The program contains four assembler directives: an IDT in the first statement, an END 
in the last statement, and two BSS directives just before the END directive. 

The IDT and END directives are like bookends for a source program. The IDT directive 
identifies the name of the program and is optional. The END directive is required. It tells 
the assembler to stop assembling. 

The IDT directive is optional, but if it is used, it must come before any instruction or any 
other directive that defines data within the program. The IDT directive simply names 
the program. 

The operand field of an IDT directive is the name assigned to the program. The name 
must be enclosed in single quote marks (apostrophes) and is limited to a maximum of 
eight characters. 
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The last statement of every source program should have an END directive. If it doesn't, 
the assembler either doesn't stop assembling when it should, or it gives you an error 
message. Notice that END is a directive to the assembler and is not an instruction to the 
computer. END simply tells the assembler when to stop translating, but it results in no 
machine code instructions. 

The END directive can have an operand. The operand, if used, is the name of a statement 
in the program. The operand identifies the entry point of the program (the name of the 
instruction to perform first). If you use an operand with the END directive, the program 
begins running at that entry point as soon as the object program is loaded. 

There are two BSS directives in the program. The BSS (Block Starting with Symbol) 
directive tells the assembler to set aside a block of memory. The label is the name assigned 
to the beginning of the block. The operand tells the assembler how much memory, in 
bytes, to set aside. 

In this program, the first BSS directive (statement 19) reserves 16 bytes of memory and 
the first location in the block is named COUNTS. The second BSS directive (statement 
20) reserves 32 bytes (16 words) of memory and the first location in the block is named 
WS (as in WorkSpace). This 16-word block is the area of memory that the program uses 
for its workspace. 

Examine the instructions. The first instruction (statement 2) is Load Workspace Pointer 
Immediate (LWPI). It explicitly puts into the Workspace Pointer the address of the block 
of memory to be used for the program's working registers. Notice WS is the operand and 
WS is the label attached to a 32-byte block of memory at the end of the program. WS 
has an address value and that address value is the immediate operand which is loaded 
into the Workspace Pointer. The relative address value of WS is hexadecimal 46. 

The next three instructions (statements 3, 4, and 5) are Load Immediate instructions which 
perform initialization prior to examining the bits in all the bytes. The first of these three 
instructions puts into Register 0 the beginning address of the bytes to be examined. This 
address is hex 1000. (This is an arbitrary choice and points to a location in the computer's 
fixed-contents memory, or ROM). The second Load Immediate instruction puts into 
Register 1 the beginning address of the memory locations where the bit counts are stored. 
The immediate operand is COUNTS. This the name of the area of memory reserved by 
the first BSS directive. The third Load Immediate instruction puts a 16 into Register 2. 
The number 16 is a loop count equal to the number of bytes to examine. 

There are two more Load Immediate instructions (statements 6 and 7) after the first three. 
The first one initializes Register 3 to zero. As the one bits in each byte are counted, the 
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count is accumulated in Register 3. Register 3 must start off with a zero in it or the count 
will be wrong. The second of these two Load Immediate instructions puts an 8 into 
Register 4. The 8 is a loop count equal to the number of bits to examine in each byte. 

Notice the structure of the program. There is a loop within a loop. The outer loop is 
performed 16 times or once for each byte and the inner loop is performed 8 times or once 
for each bit in a byte. The outer loop begins at the instruction labeled NXTBYT; the inner 
loop begins at the instruction labeled SHIFT. 

After the LI instructions, there is a Move Byte instruction (statement 8). It accesses the 
byte pointed to by the address in Register 0 and copies the byte into Register 5. Since 
this is a byte operation using register direct addressing for the destination operand, the 
byte is moved into the left byte of Register 5. Notice the MOVB instruction uses register 
indirect autoincrement addressing mode for the source operand. Once the byte is 
accessed, the address in Register 0 is automatically incremented by one since MOVB 
performs a byte operation. After the MOVB instruction is performed, Register 0 points 
to the next sequential byte in memory. 

The SLA instruction, labeled SHIFT, begins the inner loop. The instruction shifts the 
contents of Register 5 one bit position to the left. The left half of Register 5 has a copy 
of the byte taken from memory. Remember what happens to the last bit shifted out of 
a register? Its state (1 or 0) is recorded in the Carry status bit. After the SLA instruction 
is performed, the Carry status bit tells you whether the bit is a one or zero. 

A Jump if No Carry, INC, instruction is next (statement 10). If the Carry status bit is zero, 
the Jump if No Garry instruction jumps. If the Carry status bit is one, it doesn't jump. 
If the JNC instruction does jump, it goes to the instruction labeled BITISO (as in "Bit Is 
0"). It jumps when the status bit is zero and skips the next instruction (which means the 
bit is not counted). 

Statement 11, the AI instruction, adds one to the contents of Register 3. The AI instruction 
adds one to the accumulated count of one bits in Register 3 if the last bit shifted out of 
the register is a one. 

The following AI instruction, labeled BITISO, subtracts one from the inner loop counter 
(the one used to count the number of bits to examine in each byte). The AI instruction 
was used in the program example in the previous chapters. 

Recall that the sum of an AI instruction is compared to zero and the Equal status bit is 
affected by that comparison. 

136 



Data Movement Instructions 

Following the second AI instruction is the Jump if Not Equal instruction (statement 13). 
It analyzes the Equal status bit and jumps to the instruction labeled SHIFT if the Equal 
status bit is not set. The 1NE instruction closes the inner loop and causes a jump back 
to the beginning of the inner loop until the count in Register 4 goes to zero. When the 
inner loop is performed 8 times, the program falls out of the loop to the SWPB instruction. 

The Swap Bytes instruction, statement 14, is performed when all eight bits in a byte have 
been examined. At this step in the program, there is a count of the number of one bits 
in Register 3. The count is a 16-bit number but since that count is never larger than 8, 
the count is contained in the least significant (rightmost) byte of Register 3. The count 
needs to be stored in a byte of memory. In order to move a single byte of data in a register, 
the data needs to be in the left byte of the register. The SWPB instruction swaps the two 
bytes in Register 3 so that the right byte is placed in the left-byte position. The count is 
now ready to be moved. 

The Move Byte instruction, statement 15, moves the count from the left byte of Register 
3 into the byte of memory pointed to by the address in Register 1. Notice that the 
destination operand is using register indirect autoincrement addressing mode. As soon 
as a count is placed in memory, the address in Register 1 is automatically adjusted to point 
to the next byte. 

The Add Immediate instruction, statement 16, decrements the outer loop counter (in 
Register 2). 

Another 1NE instruction, statement 17, follows and closes the outer loop by causing a jump 
to NXTBYT if the loop count is not yet zero. 

The last instruction is the "Go-home" instruction (BLWP). The instruction was used in 
the program example in the previous chapters. 

That's the program. If you have the equipment and the utility programs, you can edit, 
assemble, load, and run it. 

Before running the program, set a breakpoint at the BLWP instruction. Use the Debugger 
to examine the 16 bytes of memory beginning at hex 1000 and to examine the counts stored 
in the 16 bytes of memory beginning at COUNTS. 

This program illustrates how to use some of the data movement instructions. The next 
chapter introduces the Compare instructions. 
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COMPARE INSTRUCTIONS 

This chapter introduces the group of Compare instructions. The main job of these 
instructions is to compare values and establish the relationships of the values, or to 
analyze specific bits in data. There are 5 instructions in this group. The instructions are 
listed below with their names, operation codes, and a description of the kinds of 
addressing modes you can use with the instructions. 

In the following list, G indicates a general addressing mode operand (one that can use 
any of the five general addressing modes). R indicates a working register, which means 
the operand can use only register direct addressing mode. IOP indicates that an operand 
must use immediate addressing and it is a data value, rather than the address of a data 
value. 

Operation 	Addressing 
Name 

Code 	 Mode 

Compare Words 	 C 	 G,G 
Compare Bytes 	 CB 	 G,G 
Compare Immediate 	 CI 	 R,IOP 
Compare Ones Corresponding 	 COC 	 G,R 
Compare Zeros Corresponding 	 CZC 	 G,R 

12.1 The Compare Values Instructions (C, CB, and CI) 

The first three instructions, Compare Words, Compare Bytes, and Compare Immediate, 
compare two values and establish the relationships between the values by affecting status 
bits. With all three instructions, the data values are not changed. The two values are 
simply compared and that comparison affects the Logical Greater Than, Arithmetic 
Greater Than, and Equal status bits. 

139 



Chapter 12 

12.1.1 The Compare Words Instruction (C) 

The Compare Words instruction (C) compares two words together. The instruction 
requires two operands. Both operands can use any of the five general addressing modes. 
The word addressed by the first operand is compared to the word addressed by the second 
operand and the comparison affects the status bits. 

As an example, assume that memory location BEAGLE contains a —100 (hex FF9C) and 
Register 14 contains a 13 (hex 000D). The instruction 

C 	@BEAGLE,R14 

compares —100 to 13 and establishes their relationships by affecting the Logical Greater 
Than, Arithmetic Greater Than, and Equal status bits. 

The Logical Greater Than status bit is set to a one since the absolute value of —100 is 
larger than the absolute value of 13. The Arithmetic Greater Than status bit is cleared 
to a zero because —100 is not arithmetically greater than 13, in fact, its signed value is 
smaller than 13. And the Equal status bit is cleared to zero since the two values are not 
equal. 

After the instruction is performed, memory location BEAGLE still contains a hex FF9C 
and Register 14 still contains a hex 000D. 

12.1.2 The Compare Bytes Instruction (CB) 

The Compare Bytes instruction (CB) works just like the Compare Words instruction except 
it compares two bytes, rather than words. Another difference is that the CB instruction 
affects the Odd Parity status bit and the C instruction does not. The Odd Parity status 
bit is affected based upon the number of bits in the first operand. 

Assume that the memory word with address hex D36C contains a hex 6A8F, Register 10 
contains a hex D360, and Register 4 contains a hex F20B. The following instruction 
compares the byte value hex 8F to the byte value hex F2. The contents of byte address 
hex D36D is hex 8F and the left byte of Register 4 is hex F2. 

CB @13(R10),R4 

The comparison causes the Logical Greater Than status bit to be cleared to zero. The 
Arithmetic Greater Than status bit to be cleared to zero (since hex 8F or —113 is 
arithmetically smaller than hex F2 or —14). And the Equal status bit is cleared to zero. 

140 



Compare Instructions 

The Odd Parity status bit is set to one since a binary 1000 1111 [hex 8F) contains an odd 
number of one bits. 

12.1.3 The Compare Immediate Instruction (CI) 

The Compare Immediate instruction (CI), like the Compare Words instruction, compares 
two words. And like the Compare Words instruction, the Compare Immediate instruction 
requires two operands. However, with the Compare Immediate instruction, the first 
operand is limited to register direct addressing and the second operand is limited to 
immediate addressing. 

The Compare Immediate instruction compares the contents of a register to an immediate 
operand. It's often used to compare a variable address value in a register being used as 
an index register or indirect register with a specific anticipated address value. For 
example, suppose a list of data is being accessed in a loop and the data is accessed using 
Register 6 as an indirect register for register indirect autoincrement addressing mode. 
Rather than using a loop count to determine when all the data has been accessed, the 
program can, instead, use a CI instruction to await the appearance of the address at the 
end of the table. Let's say the last data word is at address hex FC20. The instruction 

CI R6,>FC20 

can be used to determine when the last item is accessed. 

The contents of Register 6 is autoincremented to hex FC22 when the last word in the table 
is accessed. The contents of Register 6 becomes logically greater than hex FC20 after the 
last word is accessed. 

You can visualize the loop like this. 

MOV 	*R6+,R0 ACCESS A LIST ITEM 

   

CI 	R6,>FC20 
	

END OF LIST? 
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12.2 Using the Jump if Low or Equal Instruction (JLE) 

After the Compare Immediate instruction, you can use a lump if Low or Equal (ILE) 
instruction to close the loop. 

LOOP 	MOV 	*R6+,R0 	 ACCESS A LIST ITEM 

CI 	R6,>FC20 

JLE 	LOOP 

END OF LIST? 

JUMP IF NOT END? 

The ILE instruction causes a jump if the Logical Greater Than status bit is zero or the 
Equal status bits is a one. In this example, it causes a jump to LOOP as long as the content 
of Register 6 is logically less than or equal to hex FC20. When the content of Register 
6 becomes logically greater than >FC20, which occurs after the last data word in the 
list is accessed, it lets the program fall out of the loop to the instruction following the ILE. 

12.3 The Compare Bits Instructions (COC and CZC) 

The Compare Ones Corresponding (COC) and Compare Zeros Corresponding (CZC) 
instructions analyze individual bits in a word. 

12.3.1 The Compare Ones Corresponding Instruction (COC) 

The Compare Ones Corresponding instruction (COC) analyzes specific bits in a word to 
determine if those selected bits are all ones. If they are, it sets the Equal status bit to one. 
If they're not, it clears the Equal status bit to zero. The only thing affected by the COC 
instruction is the Equal status bit. No other status bits are affected, and the contents of 
neither operand are changed. 

The instruction requires two operands. The first operand can use any of the five general 
addressing modes, but the second operand can use only register direct addressing. 

The first operand is the address of a "bit mask." The bit mask is a word used to select 
bit positions in another word. The position of the one bits in the bit mask select bits in 
the same positions in another word. 
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Here's an example. Suppose memory location FONZOE contains a hex A6F0, and 
Register 7 contains a hex 953D. 

The instruction 

COC @FONZOE,R7 

compares (analyzes) the bits in Register 7 selected by the bit mask to see if they are all 
ones. 

The bit mask is a hex A6F0, or a binary 1010 0110 1111 0000. It looks like this. 

< 	Bit Mask (in memory location FONZOE 	> 

Positions - 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Bits - 0 0 0 1 0 0 0 

<-- 	A 	--> 	<-- 	6 	--> <-- 	F 	--> <-- 	0 	--) 

Bit positions 0, 2, 5, 6, 8, 9, 10, and 11 are one bits. 

Register 7 contains a hex 953D, or binary 1001 0101 0011 1101. It looks like this. 

Contents of Register 7 	 

positions - 

Bits- 

0 
	

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 0 
	

0 
	

0 
	

0 0 
	

1 
	

0 1 

You can imagine the computer performs the instruction this way. The bit mask is a 
checklist. Everywhere there is a one bit in the bit mask, the computer checks the 
corresponding bit position in the second operand (Register 7) to see if the bit is a one or 
not. If the bit is a one, the computer makes a check on the checklist. If all the selected 
bits are one bits, the computer sets the Equal status bit to one, indicating that all the bits 
are ones. If any or all of the selected bits are not a one bit, the computer clears the Equal 
flag to zero, indicating they are not all equal to ones. 

In this example, the computer checks bits positions 0, 2, 5. 6, 8, 9, 10, and 11 in Register 
7. That's where the bit mask says to look. The computer finds that the bits in positions 
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0, 5, 10, and 11 are one bits. But the bits in positions 2, 6, 8, and 9 are not one bits; therefore, 
the computer clears the Equal status bit. 

Suppose that Register 7 contains hex B7F9 (a binary 1011 0111 1111 1001). It looks like 
this. 

Contents of Register 7 

Positions — 

Bits — 

0 

1 

<-- 

1 

0 

2 

1 

B 

3 

1 

—> 

4 

<-- 

5 

7 

6 

--> 

7 8 

<-- 

9 10 

1 

F 

11 

--> 

12 

1 

<-- 

13 

0 

14 

0 

9  --> 

15 

1 

In this case, the computer sets the Equal status bit to one because each of the selected 
bit positions in Register 7 contains a one. 

12.3.2 The Compare Zeros Corresponding Instruction (CZC) 

The Compare Zeros Corresponding instruction (CZC) analyzes specific bits in a word to 
determine if those selected bits are all zeros. If they are, it sets the Equal status bit to 
one. If they are not, it clears the Equal status bit to zero. The only thing affected by the 
CZC instruction is the Equal status bit. No other status bits are affected, and the contents 
of neither operand are changed. 

The instruction requires two operands. The first operand can use any of the five general 
addressing modes, but the second operand can use only register direct addressing. 

The first operand is the address of a "bit mask." The bit mask is a word used to select 
bit positions in another word. The position of the one bits in the bit mask select bits in 
the same positions in another word. 

Take an example. Suppose memory location FONZOE contains a hex A6F0 and Register 
7 contains a hex 953D. 

The instruction 

CZC DFONZOE,R7 
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1 0 0 
	

0 
	

0 
	

0 0 
	

1 
	

0 
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compares (analyzes) the bits in Register 7 selected by the bit mask to see if they're all 
zeros. 

The bit mask is a hex A6F0 (a binary 1010 0110 1111 0000). It looks like this. 

< -- Bit Mask (in memory location FONZOE) 	> 

Positions - 

Bits- 

0 

1 

<-- 

1 

0 

A 

2 

1 

--> 

3 

0 

4 

0 

<-- 

5 

1 

6 

6 7 

0 

--> 

8 

<-- 

9 

F 

10 11 

1 

--> 

12 

0 

<-- 

13 

-- 

0 

0 

14 

-- 

0 

15 

0 

--> 

Bit positions 0, 2, 5, 6, 8, 9, 10, and 11 are one bits. 

Register 7 contains a hex 953D or a binary 1001 0101 0011 1101. It looks like this. 

	 Contents of Register 7 

Positions - 

Bits- 

You can imagine the computer performs the instruction this way. The bit mask is a 
checklist. Everywhere a one bit occurs in the bit mask, the computer checks the 
corresponding bit position in the second operand (Register 7) to see if the bit is a zero. 
If the bit is a zero, the computer makes a check on the checklist. If all the selected bits 
are zero bits, the computer sets the Equal status bit to one, indicating that all the bits there 
are zeros. If any or all of the selected bits are not a zero bit, the computer clears the Equal 
flag to zero, indicating they are not all zeros. 

In this example, the computer checks bits positions 0, 2, 5, 6, 8, 9, 10, and 11 in Register 
7 where the bit mask says to look. The computer finds that the bits in positions 2, 6, 8, 
and 9 are zero bits. But the bits in positions 0, 5, 10, and 11 are not; therefore, the computer 
clears the Equal status bit. 
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0 
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Suppose that Register 7 contains hex 410D or a binary 0100 0001 0000 1101. It looks like 
this. 

Contents of Register 7 

Positions - 

Bits - 

<-- 0 --> 	0 

In this case, the computer sets the Equal status bit to one because each of the selected 
bit positions in Register 7 contains a one. 

12.4 Program Example 

Here's the listing of a program that uses two of the Compare instructions. 

99/4 A5LEM1LER 
VERSION 1.2' I- 	0001 

0001 ID1 'SOR1' PROGRAM TO SORT IN 	(DING ORDER 
moor-  0000 02E0 LWP1 WS INITIALIZE WORKSPAL_ 

000: 0050' 
0007 0004 0200 LI RO.FILE POINT 110 TO BEGINNING OF FILE 

0000 002C' 
0004 0008 C040 PASS MOV R0.R1 POINT 	RI 	TO WHERE RO POINTS 
0005 000A 0150 CO,WAR C 4/70..R1. COMPARE TWO WORDS 
000E. 000.E 1205 JLE INORDR JUMP IF 	IN ORDER 
0007 000E COAL MOV G-2 , 171I.R2 SAVE SMALLER NUMBER IN R2 

0010 FFFE 
0000 0012 CE50 MOO •R0.0-2(31) PUT BIGGER NUMBER WHERE SMALLER WAS 

0014 FFFE 
0009 0016 C402 MOV PUT SMALLER NUMBER WHERE IT BELONGS 
0010 0016 0261 INORDR CI RI.FILEND FINISHED THIS PASS? 

001A 002A' 
0011 0010 1216 JLE COMPAR IF NOT. 	JUMP 
0012 001E 0220 AI R0.2 IF SO, MOVE RO DOWN A WORD 

0020 0002 

0013 0022 0200 CI RO.FILEND FINISHED ALL PASSES? 
0024 002A' 

0014 0026 1610 JNE PASS IF NOT. 	JUMP 
0015 00:8 00E0 SLOP al IF SO. 	GO HOME 

DO:A 0000 
0016 OOLC 0003 FILE DATA 246.2.1.7.2.10.5 

002E 0006 
007.0 0002 
0072 0001 
0024 0007 
0036 0002 
0038 0008 
003A 0005 

0017 002A' FILEND EDU $-2 FILEND=LOC. OF LAST ITEM 
0016 0020 WS DSS 52 WORKSPACE 
0019 END 
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99/4 ASSEMBLER 
VERSION 1.2 	 PAGE 0002 

	

' COMPAR 000A 	' FILE 	002C 	' FILEND 002A 	INORDR 0010 

' PASS 	0008 	00 	0000 	RI 	0001 	RIO 	0000 
R11 	000D 	R12 	000C 	R13 	000D 	RI4 	000E 
015 	000F 	R2 	0002 	R3 	0003 	R4 	0004 
R5 	0005 	RE 	0004 	R7 	0007 	RS 	0006 
R9 	0009 	• WS 	0030 

0000 ERRORS 

This program sorts numbers into ascending order; that is, it puts the smallest number first, 
the next larger number next, and the largest number is put last. 

The program demonstrates the use of two compare instructions and includes a new 
assembler directive. 

In general, the program works like this. It starts with a file of unsorted data words in 
memory and sorts the words in ascending order, leaving the sorted words in the same 
memory locations. 

The program uses a technique called a replacement sort. It starts at the beginning of the 
file and makes several passes through the file. On the first pass, the program compares 
pairs of words and exchanges their positions, if necessary, so that at the end of the first 
pass, the smallest number in the file is in the first location. 

For the second pass, the program begins with the second data word (the smallest is already 
in the first location) and compares pairs of words, exchanging their positions if necessary, 
so that at the end of the second pass, the next highest number (or a number equal to the 
smallest number) is in the second position. 

For the third pass, the program begins with the third data word, compares the remaining 
words in the file, and leaves the next highest number in the third position. 

On each pass, the program begins further in the file and leaves the next highest number 
in its proper position. The program continues making passes on the data until, on the last 
pass, the program ends up with the largest number in the last position. 

Take a look at the listing. Notice there is a C instruction, statement 5, and two CI 
instructions, statements 10 and 13, in the program. There are also a couple of JLE 
instructions, statements 6 and 11. The lump if Low or Equal instruction was introduced 
in this chapter. The rest of the instructions you have seen before. 

The program also has a few directives like the bookends, IDT and END. just above the 
END directive is a BSS directive that is labeled WS. This directive reserves 32 bytes (16 
words) for the program's working registers. 
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Look at the DATA directive that is labeled FILE. The DATA directive tells the assembler 
to set aside some memory words for the program to use and to put a specific value into 
the words. The operands identify how many words to set aside and the values to put in 
those words. 

Since there are 8 operands with this DATA directive, the assembler sets aside 8 words 
of memory. The assembler places 3 in the first word, 6 in the second word, 2 in the third 
word, and so forth. The first word is labeled FILE. These 8 words are the data file that 
the program sorts, and the file begins with the first data word (labeled FILE). 

Look at the EQU directive. The EQU directive equates a name to a value. The label tells 
the assembler what to call the value and the operand identifies the value. 

In this program, the EQU directive assigns the name FILEND to the value of $ —2. A dollar 
sign symbol is recognized by the assembler as the location of the statement in which it 
appears. The location of this EQU statement is at the end of the data file which is at the 
word immediately after the last data word. Therefore, the value of $-2 is the location 
of the last data word. The assembler is told to call the location of the last data word 
FILEND. 

The EQU directive does not reserve any memory locations. it simply tells the assembler 
what to call a location. 

Let's look at the instructions. The entry point of the program is the LWPI instruction in 
statement 2. 

The next instruction is a Load Immediate (statement 3). This instruction puts the address 
value for FILE in Register 0. FILE is the name assigned to the beginning data word in 
the file, File has a relative address value of hexadecimal 2C. 

The instruction labeled PASS copies the contents of Register 0, the address of where to 
start the current pass, into Register 1. At the beginning of a pass, Register 0 and Register 
1 point to the same word. 

The next instruction, labeled COMPAR, compares the word pointed to by Register 0 to 
the word pointed to by Register 1. Notice the second operand uses register indirect 
autoincrement addressing mode. After making a comparison, Register 1 points to the next 
word. 

Following the Compare Words instruction is a JLE instruction in statement 6. The JLE 
instruction causes a jump to the instruction labeled INORDR if the word pointed to 
Register 0 is less than or equal to the word pointed to by Register 1 when the Compare 
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instruction was performed. The JLE jumps if the two numbers were already in order; 
that is, the smaller word is already ahead of the larger word or the two numbers are the 
same. It does not jump if the two numbers are not in order. If the number pointed to by 
Register 0 is larger than the one pointed to by Register 1, an exchange needs to be made. 

Statements 7, 8, and 9) are MOV instructions that exchange the position of two numbers. 
The first MOV instruction copies the smaller number into R2. The second MOV 
instruction moves the larger number into the space that was occupied by the smaller 
number. The third MOV instruction copies the smaller number into the place where the 
larger number was. 

The first two MOV instructions use indexed addressing. The operand ® —2(R1) uses 
Register 1 as an index register. When these instructions are performed, Register 1 points 
to the location following the second value compared. The contents of Register 1 was 
autoincremented when the second value was accessed (statement 5). So, to refer back 
to that value, a minus 2 needs to be added to the address in Register 1. 

After comparing two values and making an exchange if necessary, the instruction labeled 
INORDR is performed. INORDR is a Compare Immediate instruction that compares the 
address value in Register 1 to the immediate operand FILEND. Remember that FILEND 
is the name of the location of the last data word. 

After this CI instruction, the JLE instruction (statement 11) jumps if the address value 
in Register 1 is less than or equal to FILEND. As long as it is, the pass is not complete, 
there are more words to compare, and the JLE jumps to COMPAR. The address value 
in Register 1 becomes bigger than FILEND when the last word in the file is accessed. 
At that time, the contents of Register 1 is autoincremented to an address value larger than 
FILEND and the JLE instruction allows the program to fall out of the loop to the Add 
Immediate instruction at statement 12. 

The Al instruction adds 2 to the address value in Register 0 in preparation for the next 
pass. But before performing another pass, the program determines if another pass is 
necessary. 

The next instruction, statement 13, is a CI instruction which compares the address value 
in Register 0 with FILEND. If the address value is not yet equal to FILEND, there are 
more passes to complete and the (NE instruction (statement 14] causes a jump to PASS. 

When the address value in Register 0 is equal to FILEND (when Register 0 has been 
bumped to point to the last data item), the 'NE instruction allows the program to fall out 
of the outer loop and go on to the next instruction. 
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The last instruction (statement 15) is the Go-home instruction. 

You can use the assembler to assemble the program and then use the Loader to load th 
resulting object program. Load the Debugger along with the program and use the 
Debugger to control the program. 

Set a breakpoint at the BLWP instruction and run the program. Use the Debugger t 
examine the 8 words of memory beginning at FILE to confirm that the numbers wer 
sorted correctly. 

Then use the Debugger's Memory Inspect/Change command to change the contents c 
the file. Run the program again and check the results. It should sort as well the seconi 
time as it did the first. 

This an example of how you can use the compare instructions. The next chapter discusse 
the jump instructions. 
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THE JUMP INSTRUCTIONS 

This chapter introduces the Jump instructions. The main purpose of the Jump instructions 
is to make decisions in a program. These decisions are based upon an evaluation of the 
status bits that are affected by the performance of previous instructions. It's important 
to notice that the Jump instructions do not affect the status bits; they simply examine them. 
After a jump instruction is performed, the status bits are in the same state as they were 
before the instruction was performed. 

Some of these instructions have been introduced already, such as the JNE, iNC, and ILE 
instructions. 

Below is a list of all of the 13 Jump instructions, their names, their mnemonic operation 
codes, and the conditions that cause them to jump. 

Operation 	 Jump 

Name 
	

Code 	 Conditions 

ump if Equal 	 EQ 	 EQ = 1 
ump if Not Equal 	 NE 	 EQ = 0 
ump On Carry 	 OC 	 CY = 1 
ump if No Carry 	 NC 	 CY = 0 
ump if No Overflow 	 NO 	 OV = 0 
ump if Odd Parity 	 OP 	 OP = 1 
ump if High 	 H 	 L> = 1 
ump if High or Equal 	 HE 	 L> = 1 or EQ = 1 
ump if Low or Equal 	 LE 	 L> = 0 or EQ = 0 
ump if Low 	 L 	 L> = 0 and EQ = 0 
ump if Greater Than 	 GT 	 A> = 1 
ump if Less Than 	 LT 	 A> = 0 and EQ = 0 
ump Unconditionally 	 MP 	 Always 

151 



Chapter 13 

There are 12 conditional jump instructions which may or not cause a jump, based upon 
the condition of the status bits. The thirteenth jump instruction is unconditional and jumps 
under any conditions. 

All jump instructions use PC-relative addressing and have a limited transfer-of-control 
range. A jump instruction can jump only as far as 254 bytes behind its location and only 
up to 256 bytes ahead of its location. 

A jump instruction requires one operand. The operand designates the target of the jump. 
The target can be specified in three ways. 

One way and, usually, the best way, is to use a name as a target. The operand is the name 
(label) attached to the target instruction. For example, 

JMP 	CREEPY 

where CREEPY is the name of the target instruction. 

A second way is to use a numeric address for a target. For example, 

JGT 	56984 

where 56984 is the physical address for the target. 

A third way is to use a dollar sign reference to specify how far to jump based upon the 
location of the instruction. For example, 

JOP 	5+4 

where $ means the location of the jump instruction and +4 is the distance (displacement) 
in bytes of the target from this location. 

No matter which of the three ways you choose to specify the target of a jump, it must 
be within range. 

Let's look now at the jump instructions and some examples of how to use them.  

13.1 The Equal Testing Instructions (JEQ and JNE) 

Both the Jump if Equal (JEQ) and Jump if Not Equal (JNE) instructions only examine the 
Equal status bit. The JEQ jumps if it's one; the JNE jumps if it's zero. 
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Most instructions affect the Equal status bit. For example, when the arithmetic instruction 
AI is performed, the result is compared to zero. When the data movement instruction 
MOV is performed, the data value is compared to zero. When the compare instruction 
CB is performed, a byte value is compared to another byte value. All of these instructions 
affect the Equal status bit. You've also seen that the COG and CZC instructions affect 
only the Equal status bit. 

13.1.1 The Jump if Equal Instruction (JEQ) 

The Jump if Equal instruction (JEQ) causes a jump if the Equal status bit is one. 

As an example, the following JEQ instruction causes a jump if two byte values are the 
same. 

CB 	@DAISY,*R9 

JEQ SAME 

13.1.2 The Jump if Not Equal Instruction (JNE) 

The Jump if Not Equal instruction (JNE) causes a jump if the Equal status bit is zero. 

As an example, the following 'NE instruction causes a jump if the result of the AI 
instruction is not zero. 

AI 	R8,-1 

JNE LOOP 

13.2 The Carry Testing Instructions (JOC and JNC) 

The Jump on Carry (JOC) and Jump if No Carry (JNC) instructions examine only the Carry 
status bit. The JOG instruction jumps if it's one. The (NC instruction jumps if it's zero. 

Several instructions affect the Carry status bit. An arithmetic instruction like Al affects 
the Carry status bit as a result of the add operation. The shift instructions record the state 
of the last bit shifted out of a register in the Carry status bit. 

13.2.1 The Jump On Carry Instruction (JOC) 

The Jump On Carry instruction (JOC) jumps if the Carry status bit is one. As an example, 
the following JOG instruction jumps if the sign bit of the number in Register 5 is one. 
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SLA 	R5,1 

JOC 	ONEBIT 

13.2.2 The Jump if No Carry Instruction (JNC) 

The Jump if No Carry instruction (INC) jumps if the Carry status bit is zero. As an example, 
the following JNC instruction jumps if the number in Register 3 is an even number (the 
rightmost bit is zero). 

SRC 	R3,1 

JNC 	EVEN 

13.3 The Jump if No Overflow Instruction (JNO) 

The Jump if No Overflow instruction (JNO) jumps if the Overflow status bit is zero. It's 
the only jump instruction that evaluates the Overflow status bit. 

The Overflow status bit is affected by many of the arithmetic instructions. It's also affected 
by the SLA instruction. As an example, suppose Register 12 contains a hex F96E before 
these two instructions are performed. 

SLA 	R12,4 

JNO 	OK 

The (NO jumps because the sign bit does not change during the shift. 

13.4 The Jump if Odd parity Instruction (JOP) 

The Jump if Odd Parity instruction (JOP) jumps if the Odd Parity status bit is one. This 
jump instruction is the only one that evaluates the Odd Parity status bit. 

The Odd Parity status bit is affected by byte operations. It's set to one if there's an odd 
number of one bits in the byte result. It's cleared to zero if there's an even number of 
one bits. 

Suppose the memory word at address hex D3A2 contains a hex DACE and Register 6 
contains a hex D3A3 before the following instructions are performed. 

MOVB 	*R6,@DEALER 

JOP 	ODD 

The JOP does not jump because the byte value moved (hex C6) has an even number of 
one bits. 

154 



The Jump Instructions 

13.5 The Logical Evaluation Instructions (JH, JHE, JLE, and JL) 

There are four jump instructions that let you make decisions based upon a logical 
evaluation of values. They evaluate either the Logical Greater Than status bit alone, or 
the Logical Greater Than and Equal status bits together. 

Most instructions affect the Logical Greater Than status bit. For example, when the 
arithmetic instruction Al is performed, the result is compared to zero. When the data 
movement instruction MOV is performed, the data value is compared to zero. When the 
compare instruction CB is performed, one byte value is compared to another byte value. 
All of these instructions affect the Logical Greater Than status bit. 

The status bit is affected based upon a "logical" evaluation of data; that is, based on the 
absolute, or unsigned, value. 

13.5.1 The Jump if High Instruction (JH) 

The Jump if High instruction (JH) evaluates only the Logical Greater Than status bit and 
jumps if it's one. 

Suppose the fourth word in a file beginning at KNOTS contains a hex 2FB9, Register 
9 contains 6, and Register 7 contains a hex 8C3C before the following instructions are 
performed. 

C 	@KNOTS (R9) ,R7 

JH 	BIGGER 

The JH instruction does not jump because the absolute value of hex 2FB9 is smaller than 
8C3C. 

13.5.2 The Jump if High or Equal Instruction (JHE) 

The Jump if High or Equal instruction evaluates both the Logical Greater Than and Equal 
status bits. It jumps if either the Logical Greater Than or Equal status bit is one. 

In the following example, the IHE instruction jumps since the result left is Register 7 is 
equal to zero. 

LI 	R0,0 

SRL R7,0 

JHE BILKO 
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13.5.3 The Jump if Low or Equal Instruction (JLE) 

The Jump if Low or Equal instruction (JLE) evaluates both the Logical Greater Than and 
Equal status bits. It jumps if the Logical Greater Than status bit is zero or if the Equal 
status bit is one. 

As an example, suppose that memory word hex AF9C contains a hex 2FB9, Register 12 
contains a hex AF9D, and Register 1 contains a hex B93C before the following instructions 
are performed. 

Cs 	•R12,RI 
JLE 	MARGIN 

The JLE instruction jumps because the byte value hex B9, the content of byte address 
hex AF9D, is equal to the left byte of Register 1. 

13.5.4 The Jump if Low Instruction (JL) 

The Jump if Low instruction (IL) evaluates both the Logical Greater Than and Equal status 
bits. It jumps only if both status bits are zero. 

As an example, suppose that Register 10 contains a hex AE78 before the following 
instructions are performed. 

CI 	R10,>AE78 
JL 	TOOLOW 

The JL instruction does not jump because the hex AE78 in Register 10 is not smaller than 
the immediate value: it's equal to it. 

13.6 The Arithmetic Evaluation Instructions (JGT and JLT) 

There are two jump instructions that allow you to make decisions based upon an 
arithmetic evaluation of values. They evaluate either the Arithmetic Greater Than status 
bit alone or the Arithmetic Greater Than and Equal status bits together. 

Most instructions affect the Arithmetic Greater Than status bit. For example, when the 
arithmetic instruction AI is performed, the result is compared to zero. When the data 
movement instruction MOV is performed, the data value is compared to zero. When the 
compare instruction CB is performed, a byte value is compared to another. All these 
instructions affect the Arithmetic Greater Than status bit. 
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The status bit is affected by an arithmetic evaluation of data; that is, based upon the signed 
value of the data. 

13.6.1 The Jump if Greater Than Instruction (JGT) 

The jump if Greater Than instruction (JGT) evaluates only the Arithmetic Greater Than 
status bit, and jumps if it's one. 

Suppose the fourth word in a file beginning at KNOTS contains a hex 2FB9, Register 
9 contains 6, and Register 7 contains a hex 8C3C before the following instructions are 
performed. 

C 	@KNOTS(R9),R7 

JET GRATER 

The JGT instruction jumps because the signed value of hex 2FB9 (a positive number) is 
greater than 8C3C (a negative number). 

13.6.2 The Jump if Less Than Instruction (JLT) 

The Jump if Less Than instruction (JLT) evaluates both the Arithmetic Greater Than and 
Equal status bits. The JLT instruction jumps if both status bits are zero. 

As an example, suppose the memory word with address hex BD74 contains a hex 2C8E, 
Register 10 contains a hex BD75, and Register 3 contains a hex FE94 before the following 
instructions are performed. 

CB 	*R10,53 

JLT LESSER 

The JLT jumps because the contents of byte address hex BD75, or hex 8E, is arithmetically 
less than the left byte of Register 3, or hex FE. The signed value of hex 8E is — 114; the 
signed value of hex FE is —2. 

13.7 The Jump Unconditionally Instruction (JMP) 

The Jump Unconditionally instruction (JMP) does not evaluate status bits. It jumps under 
any condition, 
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You can use the IMP instruction to transfer control to another instruction as long as that 
instruction is within range. You can use the IMP instruction so that, effectively, it is a 
conditional jump instruction. For example, in the following program segment, the JMP 
instruction is, effectively, a jump on even parity instruction. Suppose Register 3 contains 
a hex 2D8C before these instructions are performed. 

MOVB R3,R8 

JOP 	$+4 

JMP 	EVEN 

The JOP does not jump because the parity of hex 2D is even. It allows the program to 
go on to the JMP instruction that does jump. Effectively, the IMP instruction is a jump 
on even parity. The JOP instruction's operand ($+4) causes the JOP instruction to simply 
skip over the IMP instruction if the Odd Parity status bit is one. 

13.8 Program Example 

Here's the listing of a program that uses several jump instructions. 

5,!,  I,y.Fmiqrn 
VOL :AA PALE 	0001 

0001 ID1 'PAPITYC4' C011P0R1 	PARITY OF 	TWO 001ES 
000. 0000 0_00 1wPI wT. INIT101175 	WOR4SPACE 

000.1 00 - 4 .  

0007. 0004 0200 LI RO.FILE POINT 	TO FIRST WORD IN FILE 
0008 

0004 0000 001 LOOP LI R1.-1 1N1T SAME/DIFFERENCE FLAG TO SAME 
0000 FFFF 

0011 5 0000 C090 mos, 4 R0.42 COPY TWO F.YTES INTO R2 

0006 000E DOE2 MOVE R2,R2 LEFT DOTE ODD PARITY? 

0007 0010 1802 JOP ODD1 IF SO. 	JUMP 
0008 0012 0221 AI R1.1 ELSE PUMP FLAG 

0014 0001 

0009 00I6 0611 ODD1 SURD R2 EXCHANGE BYTES 

0010 0018 D029 MOVE 52.02 OTHER BYTE ODD PARITY ,  
0011 0010 1CO2 JCP OD02 IF 	SO. 	JUMP 
001: 001E 0221 AI 01.1 ELSE BUMP FLAG 

001E 0001 

001:. 0020 8041 0D02 MOV RI.R1 SAME OR DIFFERENT PARITIES ,  
0014 0022 1601 JNE SAME IF SAME PARITY. 	JUMP 
0015 0024 0402 MOP /32. ..R0 ELSE REVERSE BYTES IN MEMORY 
0016 0026 0220 SAME AI R0.2 POINT RO TO NEXT WORD 

0028 0002 
0017 0020 02E0 CI RO.FILEND END OF FILE? 

002C 00E2' 
001E OOZE 12EC JLE LOOP IF NOT. 	GO EXAMINE NEXT BYTES 
0019 00,0 0420 SLAP DO ELSE GO ROME 

0000 

0020 ee WS BSS 32 WORKSPACE 
0021 .106.. FILE BEE 1E FILE OF WORDS 

0022 0062' FILEND EDU S-2 NAME OF END OF FILE 

0023 END 
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99/4 ASSEMBLER 
VERSION 1.2 	 PAGE 0002 

' FILE 	0054 	' FILEND 0062 	' LOOP 	0000 	0001 	0016 

' ODD2 	0020 	RO 	0000 	RI 	0001 	R10 	0008 

R11 	0000 	R12 	900C 	R13 	000D 	R14 	000E 

R15 	000F 	R2 	0002 	R3 	0003 	R4 	0004 

R5 	0005 	R6 	0006 	FL7 	0007 	RE 	0008 

R9 	0009 	• SAME 	0026 	' AS 	0034 

0000 ERRORS 

The program analyzes the two bytes in each word of a file. If the two bytes have the same 
parity, either both even or both odd, the program does nothing to the word. However, 
if the parity of the two bytes is different, the program exchanges the position of the two 
bytes in the word. 

The program uses a "flag" that helps to determine if two bytes have the same or different 
parity. A flag is a special code defined by a program and indicates whether a condition 
is true or not. Like most flags, this one indicates two conditions. 

1. A zero value means the parity of the two bytes is different. 

2. A non-zero value means the parity of the two bytes is the same. A —1 means both 
bytes have odd parity and a +1 means both bytes have even parity. 

Look at the listing. Notice there is a mixture of word and byte operations. There are 
instructions from the data movement group, the compare group, and the jump group. 

There are several assembler directives in the program, all of which have been introduced. 
Notice the BSS directive, labeled FILE, defines a 16-byte, or 8-word, block of memory. 
This block contains the data analyzed by the program. Notice also that the EQU directive 
defines the address of the last word in the file as FILEND. 

Now, look at the instructions. Statement 2, the entry point of the program, is the LWPI 
instruction that sets up the workspace. 

Statement 3 is a Load Immediate instruction that points Register 0 to the first word in 
the file. 

In statement 4, the LI instruction initializes the flag to —1. The program starts a loop 
assuming that both bytes in the word have odd parity. 

In statement 5, the MOV instruction copies a word from the file into Register 2. 

The MOVB instruction, statement 6, moves a byte in Register 2 back into Register 2. The 
instruction actually moves the left byte of Register 2 back into the left byte position. After 
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the instruction is performed, the contents of Register 2 is exactly the same as before the 
instruction was performed. Seems useless, doesn't it? Something has changed, however. 
As a result of moving the byte, the computer got a chance to analyze the byte and affect 
the status bits. One of the status bits affected is the Odd Parity status bit. 

After the MOVB instruction, the PP instruction, statement 7, jumps to ODD1 if the parity 
of the left byte of the word is odd. It skips the AI instruction, statement 8, if the parity 
is odd. If the parity is even, the Al instruction is performed which adds one to the contents 
of Register 1 and the contents of Register 1 becomes zero. 

The SWPB instruction, labeled ODD1, exchanges the two bytes in Register 2. The former 
right byte is now in the left byte position and vice versa. 

The MOVB instruction at statement 10 has the computer affect the status bits, including 
the Odd Parity status bit. 

If the other byte has odd parity, the JOP instruction at statement 11 skips the Al instruction 
at statement 12 and jumps to ODD2. If the other byte has even parity, the AI instruction 
at statement 12 adds one to the contents of Register 1. 

When the instruction labeled ODD2 is reached, Register 1 contains either zero or a non-
zero value. If the parity of the two bytes is different, it contains zero. If the parity of the 
two bytes is the same, it contains a non-zero value; either a —1 if the parity of both bytes 
is odd, or a +1 if the parity of both bytes is even. 

At this point, also, Register 2 contains the two bytes in reverse order from how they were 
in the file. 

The MOV instruction at ODD2 copies the flag from Register 1 back into Register 1 so 
that the status bits are affected. 

After the MOV instruction, the JNE instruction at statement 14 jumps to SAME if the 
flag is non-zero; otherwise, the MOV instruction at statement 15 moves the swapped bytes 
in Register 2 back into the memory word they came from. The AI instruction labeled 
SAME moves the pointer in Register 0 to the next word in the file. 

The Compare Immediate instruction at statement 17 compares the address value in 
Register 0 with the address of the last word in the file. If the last word in the file has 
not been analyzed, the JLE instruction at statement 18 jumps to LOOP to close the loop. 
When the last word has been analyzed, the JLE instruction allows the program to fall 
down to the Go-Home instruction. 
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When you are ready to try this program, you can use the Assembler to assemble the 
program and the Loader to load the resulting object program. Load the Debugger along 
with the program and use the Debugger to control the program. 

Before running the program, use the Debugger to inspect and change the contents of the 
file to data values of your choosing. Mix it up a bit. Choose words that have bytes of 
different parity and the same parity. 

Set a breakpoint at the BLWP instruction and run the program. Use the Debugger to 
examine the file and confirm the program worked correctly. 

This chapter illustrates the use of several jump instructions. The next chapter introduces 
the Arithmetic instructions. 
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THE ARITHMETIC INSTRUCTIONS 

This chapter introduces the Arithmetic group of instructions. These are the instructions 
that perform arithmetic operations on data. There are 13 instructions in this group. The 
instructions are listed below with their names, operation codes, and a description of the 
kinds of addressing modes you can use with the instructions. 

In the following list, G means that an operand is a general addressing mode operand and 
can use any of the five general addressing modes. An R means that an operand must be 
a working register which means it can use only register direct addressing mode. IOP 
means that an operand must use immediate addressing; the operand is a data value, rather 
than the address of a data value. 

Operation Addressing 
Name 

Code Mode 

Add Immediate Al R,IOP 
Add Words A G,G 
Add Bytes AB G,G 
Subtract Words S G,G 
Subtract Bytes SB G,G 
Increment INC G 
Increment by Two INCT G 
Decrement DEC G 
Decrement by Two DECT G 
Negate NEG G 
Absolute Value ABS G 
Multiply MPY G,R 
Divide DIV G,R 
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14.1 The Add Instructions (Al, A, and AB) 

The add instructions add two numbers together and produce a sum. The additil 
operation affects the Carry and Overflow status bits. The sum of the addition is compare 
to zero and this comparison affects the Logical Greater Than, Arithmetic Greater Tha 
and Equal status bits. 

14.1.1 The Add Immediate Instruction (Al) 

The Add Immediate instruction (AI) is probably familiar. The AI instruction w, 
introduced in Chapter 8. Perhaps, you recall how it works. It requires two operands. TI 
first operand is a register; the second operand is an immediate value. The immedial 
value is added to the contents of the register and the sum replaces the contents of th 
register. Both addends are 16-bit numbers. 

Also the sum is automatically compared to zero. Based upon this comparison, the Logic 
Greater Than, Arithmetic Greater Than, and Equal status bits are affected. 

The Carry and Overflow status bits are affected by addition. The Carry status bit 
affected based upon a logical (or unsigned) evaluation of the result and the Overflm 
status bit is affected based upon a signed evaluation of the results. These status bits to 
you whether the answer is right or wrong. 

Let's review what you have already learned about numbers. If you're given a numbe 
like hex 89AB, and asked how much that number is in decimal, you really can't say unt 
you have some more information. You need to know whether the number is signed c 
unsigned. If the number is unsigned, or a "logical" number, its absolute value is decirm 
35243. But if the number is signed, or an "arithmetic" number, it represents — 30293. 
hex 89AB represents a signed number, the number is negative since the sign bit is on( 
And the absolute value of the number is hex 7655 (hex 7655 is the two's complement c 
hex 89AB. 

When an instruction is given to the computer that includes performing an addition, tli 
computer doesn't whether the numbers are signed or unsigned. The computer simpl 
adds the numbers and provides enough information in the status bits for you to interprE 
the results. 

You can interpret the Logical Greater Than, Arithmetic Greater Than, and Equal sten, 
bits to determine the relationship of the result to zero. You can also interpret the Carr 
and Overflow status bits to determine if the answer is right or wrong. 
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In 

4:1 
n, 

e 
e 

1 

Following an add operation, the Carry status bit tells you whether the answer is right 
or wrong based upon a logical evaluation of the answer. The Overflow status bit tells 
you whether the answer is right or wrong based upon an arithmetic evaluation of the 
the answer. 

Take an example. Suppose Register 7 has the number hex 6AC5 in it. The instruction 

AI R7,>3438 

adds hex 6AC5 and hex 3438. The sum is hex 9EFD no matter how you interpret the 
numbers. But whether that sum is right or wrong does depend upon how you interpret 
the numbers. 

If you interpret the two numbers as unsigned numbers, the answer is right. But if you 
interpret the numbers as signed numbers, the answer is wrong. Hex 6AC5 is a positive 
number and hex 3438 is also positive, but the sum, hex 9EFD is negative. Adding two 
positive numbers should not produce a negative sum. 

The carry status bit is affected by the computer based upon a signed evaluation of 
the sum. If the Carry status bit is zero, the unsigned sum is correct, but if the Carry status 
bit is one, the unsigned sum is wrong. 

The Overflow status bit is affected by the computer based upon a signed evaluation of 
the sum. If the Overflow status bit is zero, the signed sum is correct, but if the Overflow 
status bit is one, the signed sum is wrong. 

Take another example. Suppose Register 7 still has a hex 6AC5 in it. The instruction 

AI R7,>B827 

produces a sum of hex 22EC. 

The Carry status bit is set to one. The real sum of hex 6AC5 and hex B827 is hex 122EC. 
It requires 17 bits to express the real sum but the computer only has 16 bits. For this reason, 
the Carry status bit is set to one which tells you the unsigned sum is wrong. 

The Overflow status bit is zero. The signed result is correct. If you interpret hex 6AC5 
as a signed number, it's positive. If you interpret hex B827 as a signed number, it's 
negative. The instruction is adds a pcsitive number to a negative number, and the sum, 
hex 22EC, is a smaller positive number. 
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Here are the rules for determining if the overflow state occurs and the Overflow status 
bit is set to one. Think of the numbers as signed numbers. If the two numbers have 
opposite signs (one positive, the other negative), the overflow state can't occur, so the 
Overflow bit is not set. However, if the two numbers have the same sign (both positive 
or both negative), the overflow state is possible and actually occurs if the sign of the result 
is opposite that of the two addends. 

Take a third example. Suppose Register 7 still has a hex 6AC5 in it. The instruction 

AI R7,>14D6 

produces a sum of hex 7F9B in Register 7. No matter how you interpret the numbers, 
the sum is correct. The unsigned sum is correct because it can be expressed in 16 bits. 
The signed sum is correct because the two numbers are positive and the result is also 
positive. (The overflow state is possible but it does not occur.) 

You can have a situation where the sum is wrong no matter how you think about it. 
Suppose Register 7 has a hex 8208 in it. The instruction 

AI R7,>A72C 

produces a 16-bit sum of hex 2A04. The sum is wrong no matter how you interpret the 
numbers. The real unsigned sum is hex 12A04 which requires 17 bits to express; therefore, 
the 16-bit sum hex 2A04 is the wrong unsigned sum and the Carry status bit is set to one. 
Interpreting the two addends as signed numbers, hex 82108 is negative and hex A72C 
is also negative. The sum, hex 2A04, is positive. The instruction added two numbers of 
the same sign and produced a sum of different sign; therefore, the signed sum is also 
wrong and the Overflow status bit is set to one. 

The Carry and Overflow status bits are affected by most of the arithmetic instructions. 

14.1.2 The Add Words Instruction (A) 

The Add Words instruction (A) adds two 16-bit numbers together. It requires two 
operands, both of which can use any of the five general addressing modes. The number 
specified by the first operand address is added to the number specified by the second 
operand address and the sum replaces the contents of the second operand address. The 
addition affects the Carry and Overflow status bits. The sum is compared to zero and 
that comparison affects the Logical Greater Than, Arithmetic Greater Than, and Equal 
status bits. 
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As an example, suppose memory word ZEBRA contains a hex 1234, memory word hex 
B74E contains a hex 8AEE, and Register 9 has a zero in it before this instruction is 
performed. 

A 	@ZEBRA.@>B74E(R9) 

The instruction adds hex 1234 and hex 8AEE, producing a sum of hex 9D22. The Logical 
Greater Than status bit is one, the Arithmetic Greater Than status bit is zero, and the 
Equal status bit is zero. The Carry status bit is zero and the Overflow status bit is zero. 

Following this instruction, would a INO instruction cause a jump? It would jump since 
the Overflow status bit is not set. Would a IOC instruction cause a jump? It wouldn't jump 
since the Carry status bit is not set. Would a IFIE instruction cause a jump. It would jump 
because the Logical Greater Than status bit is set. 

14.1.3 The Add Bytes Instruction (AB) 

The Add Bytes instruction (AB) is like the Add Words instruction except that it adds two 
bytes and it affects the Odd Party status bit. 

As an example, suppose memory word ZEBRA contains a hex 1234, memory word hex 
B74E contains a hex 8AEE, and Register 9 has a one in it before this instruction is 
performed. 

A 	@ZEBRA,@>874E (R9) 

The instruction adds hex 12 and hex EE, producing a sum of zero. The sum replaces the 
contents of byte address hex B74F so that word address hex B74E contains hex 8A00. 

The Logical Greater Than status bit is zero, the Arithmetic Greater Than status bit is zero, 
and the Equal status bit is one. The Carry status bit is one and the Overflow status bit 
is zero. 

Following this instruction, would a NO instruction cause a jump? Yes, it would jump 
since the Overflow status bit is not set. Would a IOC instruction cause a jump? Yes, it 
would jump since the Carry status bit is set. Would a IFIE instruction cause a jump. Yes, 
it would jump because the Equal status bit is set. 
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14.2 The Subtract Instructions (S and SB) 

The subtract instructions subtract one number from another to get a difference. The 
subtraction operation affects the Carry and Overflow status bits. The result is compared 
to zero and this comparison affects the Logical Greater Than, Arithmetic Greater Than, 
and Equal status bits. 

14.2.1 The Subtract Words Instruction (S) 

The Subtract Words instruction (S) requires two operands, both of which can use any 
of the five general addressing modes. The first operand specifies the address of the 
number to subtract; the second operand is the address from which the number is 
subtracted. 

As an example, suppose memory word ZEBRA contains a hex 1234, memory word hex 
B74E contains a hex 8AEE, and Register 9 has a zero in it before this instruction is 
performed. 

S 	@ZEBRA,@>B74E(R9) 

The instruction subtracts hex 1234 from hex 8AEE, producing a difference of hex 78BA. 
The Logical Greater Than status bit is one, the Arithmetic Greater Than status bit is one, 
and the Equal status bit is zero. The Carry status bit is one and the Overflow status bit 
is one. 

The computer performs the subtraction operation by adding the two's complement of the 
first operand (hex EDCC) to hex 8AEE. 

14.2.2. The Subtract Bytes Instruction (SB) 

The Subtract Bytes instruction (SB) works like the Add Words instruction except that it 
subtracts a byte value from another byte value. In addition, it affects the Odd Parity status 
bit . 

As an example, suppose memory word ZEBRA contains a hex 1234, memory word hex 
B74E contains a hex 8AEE, and Register 9 contains a one before this instruction is 
performed. 

SB @ZEBRA,@>B74E(R9) 
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The instruction subtracts hex 12 from hex EE, resulting in a difference of hex DC. The 
Logical Greater Than status bit is one, the Arithmetic Greater Than status bit is zero, and 
the Equal status bit is zero. The Carry status bit is one and the Overflow status bit is zero. 

14.3 The Increment and Decrement Instructions (INC, INCT, DEC, and DECT) 

The increment and decrement instructions are arithmetic instructions that use fixed 
numbers for one of their operators. Each instruction requires only one operand that can 
use any of the five general addressing modes. 

These four instructions are useful for addressing manipulations. For example, if you are 
using a register for indirect addressing or indexed addressing, you can adjust the address 
value in the register to adjacent addresses using these instructions. Incrementing the 
contents by one (INC) points the register to the next sequential byte address. 
Decrementing the contents by one (DEC) points to the previous byte address. 
Incrementing the contents by two (INCT) points the register to the next sequential word 
address. Decrementing the contents by two (DECT) points to the previous word address. 

The DEC instruction is also especially useful for loop control operations. Very often a 
program subtracts one from a loop counter each time the loop is performed. The DEC 
instruction is ideal for this. The programs you've seen up to this point have used the Add 
Immediate instruction for this operation. Now that it's been introduced, the DEC 
instruction is a better choice. 

Likewise, the INC instruction can be used for loop control. You can use a negative value 
for the initial loop count and increment the contents toward zero with each iteration of 
the loop. 

14.3.1 The Increment Instruction (INC) 

The Increment instruction (INC) adds one to a number. It has only one operand that can 
use any of the five general addressing modes. 

It is an arithmetic operation and affects the Carry and Overflow status bits. The result 
of the incrementing is compared to zero and that comparison affects the Logical Greater 
Than, Arithmetic Greater Than, and Equal status bits. 

As an example, the following instruction adds one to the contents of memory location 
60000. 
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INC 60000 

14.3.2 The Increment by Two Instruction (INCT) 

The Increment by Two instruction (INCT) adds two to a number. It has one operand that 
can use any of the five general addressing modes. 

The instruction performs an arithmetic operation and affects the Carry and Overflow 
status bits. The result of the incrementing is compared to zero and that comparison affects 
the Logical Greater Than, Arithmetic Greater Than, and Equal status bits. 

As an example, the following instruction adds two to the contents of the memory location 
pointed to by Register 6. 

INCT *R6 

14.3.3 The Decrement Instruction (DEC) 

The Decrement instruction (DEC) subtracts one from a number. The single operand can 
use any of the five general addressing modes. 

It is an arithmetic operation and affects the Carry and Overflow status bits. The result 
of the decrementing is compared to zero and that comparison affects the Logical Greater 
Than, Arithmetic Greater Than, and Equal status bits. 

As an example, the following instruction subtracts one from the contents of Register 8. 

DEC R8 

14.3.4 The Decrement by Two Instruction (DECT) 

The Decrement by Two instruction (DECT) subtracts two from a number. Its lone operand 
can use any of the five general addressing modes. 

It is an arithmetic operation and affects the Carry and Overflow status bits. The result 
of the incrementing is compared to zero and that comparison affects the Logical Greater 
Than, Arithmetic Greater Than, and Equal status bits. 

As an example, the following instruction subtracts two from the contents of Register 14. 
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SECT R14 

14.4 The Negate Instruction (NEG) 

The Negate instruction (NEG) negates a number by forming the two's complement of the 
number. It has one operand that can use any of the five general addressing modes. 

As an example, suppose memory location LIZARD contains a 3 (hex 0003) before the 
following instruction is performed. 

NEG @LIZARD 

The instruction leaves a hex FFFD (a —3) in LIZARD. 

The result of the negation operation is compared to zero and that comparison affects the 
Logical Greater Than, Arithmetic Greater Than, and Equal status bits. 

The computer performs this instruction by forming the two's complement of the original 
value. The two's complement is formed by, first, taking the one's complement and then 
adding one. The addition of one to the one's complement affects the Carry and Overflow 
status bits. 

In case you play assembly language trivia, the Carry status bit is set to one only when 
the original value is zero. Any other value causes the Carry status bit to be cleared to 
zero. 

Whenever you negate a number, you end up with a number of equal absolute value, but 
of opposite sign. For example, if Register 11 has a hex FFFF (a —1) in it, the instruction 

NEG 511 

leaves a hex 0001 (a +1) in Register 11. 

There is an exception, however. If the original value happens to be hex 8000 which is 
the smallest, or most negative, number possible in 16 bits, the computer can't produce 
a positive equivalent. If this happens, the Overflow status bit is set to one. Any other value 
clears the Overflow status bit. 

14.5 The Absolute Value Instruction (ABS) 

The Absolute Value instruction (ABS) does just what its name implies. It takes the absolute 
value of a number. It has one operand that lets you use any of the five general addressing 
modes. 
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Effectively, the instruction works this way. If the number specified by the operand is 
positive value, the number is left unchanged. If the number is a negative value, the twc 
complement of the number is formed. 

The Carry and Overflow status bits are affected when the two's complement of a numb 
is formed. The Logical Greater Than, Arithmetic Greater Than, and Equal status bits a 
affected also, but they are affected based upon a comparison of the original number 
zero. 

For example, suppose memory location BORNEO contains a hex FB39 (a negath 
number). The instruction 

ABS @BORNEO 

leaves a hex 04C7 (the positive counterpart to hex FB39) in BORNEO. The Logical Great 
Than status bit is one. The Arithmetic Greater Than status bit is zero because FB39 
not arithmetically greater than zero. And the Equal status bit is zero. 

As with the NEG instruction, the Overflow status bit is set to one only when the origin 
value is hex 8000. In this case, hex 8000 remains in the location. 

14.6 The Multiply and Divide Instructions (MPY and DIV) 

The arithmetic instructions include a single instruction multiply and a single instructic 
divide. Some computers don't have multiply and divide operations in their instructic 
set. You have to write a program of several instructions to perform multiplication an 
division. 

The Multiply and Divide instructions treat the numbers as unsigned numbers. If you'] 
thinking of the numbers as signed numbers, you have to keep track of the signs. 

14.6.1 The Multiply Instruction (MPY) 

The Multiply instruction (MPY) multiplies two 16-bit numbers and produces a 32-b 
product. The instruction requires two operands. The first operand can use any of the fi ∎  
general addressing modes. The second operand uses only register direct addressing moc 
and the second number must be in a register. 

The number addressed by the first operand is multiplied by the number in the regist, 
and the 32-bit product goes into the second operand. The product goes into the registe 
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This brings us to a question. How do you get a 32-bit product into a 16-bit register? The 
answer is, you don't. That 's like trying to squeeze a number 14 foot into a size 7 shoe. 
Here's how the computer handles this situation. The computer puts the most significant 
16 bits of the product into the register and the least significant 16 bits spill into the next 
register. For example, if the second operand is Register 8, the 32-product goes into 
Registers 8 and 9. 

3 

Look at the following example. Suppose memory location HOGG contains a 3, Register 
5 contains 4, and Register 6 contains 5 before the following instruction is performed. 

MPY @HOGG,R5 

The computer multiplies 3 (hex 0003) times 4 (hex 0004), producing a 32-bit product of 
12 (hex 0000 000C). The most significant 16 bits of the product (hex 0000) goes into Register 

r 	5 and the least significant 16 bits (hex 000C) goes into Register 6. 

	

Before 	 After 

1 	 (HOGG) 	>0003 	 >0003 

(R5) >0004 	 >0000 

(R6) - >0005 	 >000C 

No status bits are affected by the MPY instruction. 

You need to be aware that whatever is in the register following the one specified as the 
second operand is overlayed as a result of the multiplication. 

You can use any register for the second operand. If you use Register 15, the product is 
placed in Register 15 and in the general memory location following Register 15. If you 
use Register 15 as the second operand for a MPY instruction, make sure the word of 
memory following the workspace can be written over. 

14.6.2 The Divide Instruction (DIV) 

The Divide instruction (DIV) divides a 16-bit divisor into a 32-bit dividend. It produces 
a 16-bit quotient and a 16-bit remainder. The instruction requires two operands. The first 
operand can use any of the five general addressing modes. The second operand uses only 
register direct addressing mode. 

With the Divide instruction, the second operand is the first register of an implied register 
pair. The 32-bit dividend is in the register pair. The first 16 bits of the dividend (the most 
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significant word) are in the first register and the second word (least significant 16 bit. 
of the dividend) are in the second register of the pair. 

32-bit Divided 	> 

MSW 

Rn 	 Rn+1 

The number addressed by the first operand is divided into the 32-bit number in the 
register pair. The resulting 16-bit quotient goes into the first register of the pair and the 
16-bit remainder goes into the second register of the pair. 

<--16 bits---> 	<---16 bits---> 

Quotient 	Remainder 

Rn 	 Rn+1 

Look at an example. Suppose memory location HOGG contains a 3, Register 5 contains 
0, and Register 6 contains (hex E) 14 before the following instruction is performed. 

DIV @HOGG,R5 

The computer divides 3 (hex 0003) into 14 (a 32-bit hex 0000 000E in Register 5 and 
It produces a 16-bit quotient of 4 which goes into Register 5 and a 16-bit remainder of 
2 which goes into Register 6. When finished, the instruction leaves a hex 0004 in Register 
5 and a hex 0002 in Register 6. 

Before After 

(HOGG) = >0003 >0003 

(R5)  = >0000 >0004 

(R6)  = >000E >0002 

The DIV instruction affects one status bit — the Overflow status bit. 

Prior to performing the divide operation, the computer compares the 16-bit divisor with 
the first word of the dividend which is the contents of the register in the second operand, 
If the divisor is smaller than the first word of the dividend, the computer sets the Overflow 
status bit to one and doesn't perform the division. If the divisor is smaller than the firs) 
word of the dividend, the quotient will exceed 16 bits and, under those conditions, the 
computer sets the Overflow status bit and doesn't divide. 

LSW 
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As an example, suppose memory location R2D3 contains a hex 0003, Register 10 contains 
a hex 0005, and Register 11 contains a hex 0000. The instruction 

DIV @R2D3,R10 

causes the Overflow status bit to be set. The contents of memory location R2D3, Register 
10, and Register 11 are unchanged. 

This comparison of the divisor to the most significant word of the dividend prior to 
performing the division prevents the computer from attempting to divide by 0 (one of 
those irrational acts which produces a result approaching infinity and threatens the 
stability of the cosmos). 

14.7 Program Example 

The following program performs a signed multiplication of two 16-bit numbers and 
produces a 32-bit signed result. The program expects the two numbers to be already in 
Register 0 and Register 1 when it starts running. It leaves the 32-bit signed product in 
Registers 0 and 1. 

The program uses the Multiply instruction (MPY). Since the Multiply instruction only 
multiplies unsigned (absolute) values, the program must determine the sign of the 
numbers and the sign of the product. 

If you multiply two numbers together, the result is positive when both numbers are either 
positive or negative. The result is negative if the numbers have opposite signs. 

The program checks the sign of both numbers. If they are both positive, the number is 
already expressed as an absolute value and the numbers can be multiplied directly. The 
absolute value of the product expresses the positive result. 

If the two numbers are both negative, the program forms the absolute values of them and 
multiplies the absolute values. The absolute value of the product expresses the positive 
result. 

If the numbers have opposite signs, the program forms the absolute value of both numbers 
and multiplies them. The result is the absolute value of the negative product. The program 
then must express the 32-bit absolute product as a 32-bit signed number. The two's 
complement of a 32-bit number is formed by taking the two's complement of the least 
significant word and the one's complement of the most significant word. For example, 
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the 32-bit two's complement of hex 0000 000C (an absolute value of 12) is hex FFFF FFF ,  
(a — 12) . 

There's one exception however. If the least significant word of the 32-bit product is zero 
then the two's complement of the most significant word is formed rather than the one'; 
complement. For example, the 32-bit two's complement of hex 0001 0000 (an absolute 
value of 65,536] is hex FFFF 0000 (a —65,536). 

The program uses several instructions introduced in this chapter, including the ABS, 
MPY, NEG, and DEC instructions. The program takes advantage of the fact that the ABS 
instruction affects the Arithmetic Greater Than status bit, as well as the other status bits, 
based upon a comparison of the original value to zero. 

Look at the listing of the program. 

9s/4 8SS1MP4ER 
VERLIEN 	1.2 PAGE 0001 

0001 IRT 'SILsULT' SIGNED MULTIPLY 
000: 	0000 0:EO CUPI WS INITIALIZE 	WORKSPACE 

000: 	00. - 2' 

01,107 0004 	0740 APS RO FORCE X TO POSITIVE 
0004 0008 1104 JLI NEGX IF X NEGATIVE. 	JUMP 
0005 0008 0741 PPS RI ELSE FORCE Y POSITIVE 
000E 000A 1104 JLT NEGY IF Y NEGATIVE. 	JUMP 
0007 000C 3001 MPyPOS MPY R1.R0 MULTIPLY X AND Y (SAME SIGNS) 
000C 000E 1007 JMP EXIT GO TO EXIT 
0003 0010 0741 MFG% 	APS RI FORCE V POSITIVE 
0010 0012 	11FC JLT MPVPOS GO MULTIPLY (SAME SIGNS) 
0011 	0014 3E01 MEG)' 	mrY 611.170 MULTIPLY X AND Y (DIFFERENT SIGNS) 
0012 001E 0500 MEG RO TAKE TWO'S COMPLEMENT OF MSW 
0013 0010 0501 NEG RI TAKE TWO'S COMPLEMENT OF LSw 
0014 001A 	1301 JED EXIT IF LSW ZERO. 	JUMP 
0015 001C 0600 DEC RO ELSE FORM DNE'S COMPLEMENT OF MSW 
001E 001E 0420 EXIT 	DLWP 80 GO HOME 

0030 0000 
0017 	011:2 BSS 11 :1  WORKSPACE 
001S 8110 

99/4 ASSEMBLER 
VERSION 	1.2 PAGE 0002 

' 	EXIT 	001E ' 	SPYPOS 0008 	' NEGX 	0010 	' 	MEG)' 	0014 
RO 	0000 RI 0001 RIO 	0008 	RII 	0000 
R12 	0000 R13 0000 R14 	0006 	RI5 	000F 
172 	0003 R3 0003 R4 	0004 	 RS 	0005 
RE 	0006 R7 0007 R8 	0008 	R9 	0009 

' 	WS 	0022 
0000 ERRORS 

Following the LWPI instruction (statement 2), the ABS instruction (statement 3) takes the 
absolute value of the number in Register 0 which is called the X value. The absolute value 
is left in Register 0 and the first three status bits, including the Arithmetic Greater Than 
and Equal status bits, are affected based upon a comparison of the original value to zero. 
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If the original X value was negative, the JLT instruction at statement 4 jumps to NEGX. 
Otherwise, the program goes on to the next instruction. The ABS instruction (statement 
5) forms the absolute value of Y if X was positive. 

If the Y value was negative, the JLT instruction at statement 6 jumps. Otherwise, the 
program goes on to the MPY instruction labeled MPYPOS. This multiply instruction is 
performed only if both numbers have the same sign. It multiplies the absolute values in 
Register 0 and Register 1 and leaves the absolute value of the 32-bit product in Registers 
0 and 1. Since this MPY instruction is performed only if the two numbers have the same 
sign, the absolute value of the product expresses the positive product directly. Therefore, 
the program performs a IMP instruction (statement 8) to the Go-home instruction labeled 
EXIT. 

If the X value is negative, the ABS instruction labeled NEGX receives control. It forms 
the absolute value of Y and leaves the absolute value in Register 1. 

The JLT instruction (statement 10) jumps to the Multiply instruction labeled MPYPOS 
is Y is negative. This jump is taken only when X is negative and Y is negative. When 
the jump is taken, Register 0 has the absolute value of X and Register 1 has the absolute 
value of Y. 

If the JLT instruction (statement 10) does not jump, program control passes to the MPY 
instruction at statement 11. This multiply instruction is performed only if the X and Y 
values have opposite signs. When it's performed, the absolute value of X is in Register 
0 and the absolute value of Y is in Register 1. After it is performed, the absolute value 
of the 32- bit product is in Registers 0 and 1; the program must take the two's complement 
of this 32-bit number. 

The NEG instruction at statement 12 forms the two's complement of the most significant 
word of the product. The next NEG instruction at statement 13 forms the two's 
complement of the least significant word of the product. The result is compared to zero 
and affects several status bits, including the Equal status bit. The Equal status bit is set 
to one if the result is zero and the result is zero only if the original value was zero. 

Next, the JEQ instruction at statement 14 jumps to EXIT if the least significant word of 
the product is zero. Otherwise, program control passes to the next instruction (statement 
15). 

The DEC instruction (statement 15) is performed when the least significant word of the 
product is non-zero. In that case, the two's complement of the most significant word of 
the product in Register 0 is reduced to the one's complement by subtracting one from 
the contents of Register 0. 
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The program terminates at the Go-home instruction labeled EXIT. 

Use the assembler to assemble the program and then use the Loader to load the resulting 
object program. Load the Debugger with the program and use the Debugger to control 
the program. 

Before running the program, use the Debugger to place numbers in the program's 
Registers 0 and 1. 

Set a breakpoint at the BLWP instruction and run the program. 

After running the program, use the Debugger to look at the same registers for the results. 

Run the program several times with different numbers in RO and 111. Use two positive 
numbers, two negative numbers and two numbers of different signs. 

This chapter illustrates the use of the Arithmetic instructions. The next chapter introduces 
the Logical instructions. 
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THE LOGICAL INSTRUCTIONS 

This chapter introduces the group of logical instructions. The main job of these 
instructions is to perform the logical operations of AND, OR, Exclusive OR, or related 
operations on data. There are 10 logical instructions. They are listed below with their 
names, operation codes, and a description of the kinds of addressing modes you can use 
with the instructions. 

In the following list, G means that an operand is a general addressing mode operand and 
can use any of the five general addressing modes. An R means that an operand must be 
a working register and it can use only register direct addressing mode. An IOP means 
that an operand must use immediate addressing and the operand is a data value, rather 
than the address of a data value. 

Operation 	Addressing 

Name 
	

Code 	Mode 

And Immediate 	 ANDI 	R,IOP 
Set Zeros Corresponding 	SZC 	G,G 
Set Zeros Corresponding Byte 	SZCB 	G,G 
Or Immediate 	 ORI 	 R,IOP 
Set Ones Corresponding 	SOC 	G,G 
Set Ones Corresponding Byte 	SOCB 	G,G 
Exclusive Or 	 XOR 	 G,R 
Invert 	 INV 	 G 
Clear 	 CLR 	 G 
Set to One 	 SETO 	G 

Most of the instructions in this group work with individual bits in a data quantity and 
define the state of the selected bits. 

The first three of these instructions (ANDI, SZC, and SZCB) perform a logical AND 
operation, or something closely related to the AND operation, on data. 
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The next three instructions, ORI, SOC, and SOCB, perform a logical OR operation on 
data. The XOR instruction performs an exclusive OR operation on data. 

The INV instruction performs a logical NOT operation on the bits in a word. The last 
two instructions (CLR and SETO) set the content of a word to predefined values. 

15.1 The AND Operation Instructions (ANDI, SZC, and SCZB) 

There are three instructions that perform a logical AND operation or something closely 
related to the AND operation. 

The AND operation selects the state of a bit based upon the state of two other bits. In 
the following truth table for the AND operation, X is the state of one bit and Y is the state 
of the other bit. Notice that the result is a one only if both X and Y are ones. 

AND 

Truth Table 

X bit 	Y bit I 	Result 

0 0 

0 

0 

0 

0 

   

The AND operation is useful for selectively turning off bits in a data quantity. As an 
example, consider an AND operation between two byte values. One byte is called X and 
the other is called Y. The AND operation is performed on each of the eight pairs of X 
and Y bits and produces an 8-bit result called R. 

= 0 0 1 	1 1 	0 1 	0 

Y = 0 	1 0 	1 1 	1 0 0 

R= 0 0 0 	1 1 	0 0 0 

Notice that for each X bit that is zero, the corresponding R bit is zero. For each X bit that 
is one, the corresponding R bit is the same state as the Y bit. 

Call the 8-bit X value a "bit mask". Everywhere there is a zero in the bit mask, the 
corresponding bit in the R byte is zero; everywhere there's a one in the bit mask, the 
corresponding bit in the R byte is the same as the Y bit. Effectively, the bit mask is forcing 
zeros at selected locations of the Y value and leaving unselected locations unchanged. 
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The AND operation is useful for turning off, or setting to zero, selected bits in a data 
quantity. 

15.1.1 The And Immediate Instruction (ANDI) 

The And Immediate instruction (ANDI) performs a logical AND operation on two word 
values. The instruction requires two operands, the first uses only register direct 
addressing and the second is an immediate operand. 

The instruction performs a logical AND operation between the contents of the register 
and the immediate operand. The result replaces the content of the register. 

The result is compared to zero and that comparison affects the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits. 

As an example, suppose Register 6 contains a hex 5C69 before the following instruction 
is performed 

ANDI R6,>3AOF 

The instruction performs an AND operation between a bit in the register and a 
corresponding bit in the immediate operand. The AND result of that pair of bits replaces 
the bit in the register. As a result of this instruction, a hex 1809 is left in Register 6. 

101> 	 = 0011 1010 0000 1111 = >380F 

(R6) Before = 0101 1100 0110 1001 = >5C69 

(R6) After 	= 0001 1000 0000 1001 = >1809 

The hex 1809 is compared to zero, causing the Logical Greater Than status bit to be one, 
the Arithmetic Greater Than status bit to be one, and the Equal status bit to be zero. 

15.1.2 The Set Zeros Corresponding Instruction (SZC) 

The Set Zeros Corresponding Instruction (SZC) performs an operation similar to a logical 
AND operation on two word values. The instruction requires two operands, both of which 
can use any of the five general addressing modes. 

The instruction performs a logical AND operation between the complement of the first 
value and the uncomplemented second value. The result replaces the contents of the 
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second operand. The result is compared to zero and that comparison affects the Logical 
Greater Than, Arithmetic Greater Than, and Equal status bits. 

As an example, suppose Register 6 contains a hex 3AOF and memory word TWEETE 
contains a hex 5C69 before the following instruction is performed. 

SZC R6,@TWEETE 

The instruction performs an AND operation between the complement of a bit in Register 
6 and the corresponding bit in TWEETE. The AND result of that pair of bits replaces 
the bit in the TWEETE. As a result of this instruction, a hex 4460 is left in TWEETE . 

(R6) = 0011 1010 0000 1111 = >3AOF 

Complement 	of 	(R6) = 1100 0101 1111 0000 = >C5F0 

(TWEETE) Before = 0101 1100 0110 1001 = >5C69 

(TWEETE) After = 0100 0100 0110 0000 = 	>4460 

The hex 4460 is compared to zero, causing the Logical Greater Than status bit to be one, 
the Arithmetic Greater Than status bit to be one, and the Equal status bit to be zero. 

The instruction is called Set Zeros Corresponding because the one bits in the first operand 
(the bit mask) set zeros in the corresponding bits of the second operand. Zero bits in the 
first operand leave the corresponding bits in the second operand unchanged. 

15.1.3 The Set Zeros Corresponding Byte Instruction (SZCB) 

The Set Zeros Corresponding Byte instruction (SZCB) works just like the Set Zeros 
Corresponding (SZC) instruction except it uses two byte values, rather than word values. 
It additionally affects the Odd Parity status bit. The instruction requires two operands, 
both of which can use any of the five general addressing modes. 

As an example, suppose Register 6 contains a hex 3AOF and memory word TWEETE 
contains a hex 5C69 before the following instruction is performed. 

SZCB R6,@TWEETE 

The instruction performs an AND operation between the complement of a bit in the left 
byte of Register 6 and the corresponding bit in byte address TWEETE. The result of that 
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pair of bits replaces the bit in TWEETE. As a result of this instruction, a hex 44 is left 
in byte address TWEETE. fit hex 4469 is left in word address TWEETE). 

(R6) = 0011 1010 0000 1111 = >3AOF 

Compliment of (R6) = 1100 0101 1111 0000 = >C5F0 

("METE) 	Before = 0101 1100 0110 1001 = >5C69 

(TWEETE) After = 0100 0100 0110 1001 >4469 

+- --VV---+ 

NOT AFFECTED 

The byte result, hex 44, is compared to zero, causing the Logical Greater Than status bit 
to be one, the Arithmetic Greater Than status bit to be one, and the Equal status bit to 
be zero. The Odd Parity status bit is a zero. 

15.2 The OR Operation Instructions (ORI, SOC, and SOCB) 

There are three instructions which perform a logical OR operation. 

The OR operation selects the state of a bit based upon the state of two other bits. In the 
following truth table for the OR operation, X is the state of one bit and Y is the state of 
the other bit. Notice that the result is a one if either X or Y is one. 

OR 

Truth Table 

X bit I Y bit I 	Result 

0 0 

0 1 

1 

1 1 

The OR operation is useful for selectively turning on bits in a data quantity. As an 
example, consider an OR operation between two byte values. One byte is called X and 
the other is called Y. The OR operation is performed on each of the eight pairs of X and 
Y bits and produces an 8-bit result called R. 

x 	= 0 0 1 	1 1 	0 1 	0 

Y = 0 1 0 1 1 	1 0 0 

R= 0 	1 1 	1 1 	1 1 	0 
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Notice that for each X bit that is one, the corresponding R bit is one. For each X bit tha 
is zero, the corresponding R bit is the same state as the Y bit. 

Call the 8-bit X value a bit mask. Everywhere there is a one in the bit mask, the 
corresponding bit in the R byte is one; everywhere there's a zero in the bit mask, the 
corresponding bit in the R byte is the same as the Y bit. Effectively, the bit mask is forcing  
ones at selected locations of the Y value and leaving unselected locations unchanged.  

The OR operation is useful for turning on (setting to one) selected bits in a data quantity. 

15.2.1 The Or Immediate Instruction (ORI) 

The Or Immediate instruction (ORI) performs a logical OR operation on two word values. 
The instruction requires two operands, the first uses only register direct addressing and 
the second is an immediate operand. 

The instruction performs a logical OR operation between the contents of the register and 
the immediate operand. The result replaces the contents of the register. The result is 
compared to zero and that comparison affects the Logical Greater Than, Arithmetic 
Greater Than, and Equal status bits. 

As an example, suppose Register 6 contains a hex 5C69 before the following instruction 
is performed 

ANDI R6,>3A0F 

The instruction performs an OR operation between a bit in the register and a 
corresponding bit in the immediate operand. The OR result of that pair of bits replaces 
the bit in the register. As a result of this instruction, a hex 7E6F is left in Register 6. 

IOP = 0011 1010 0000 1111 = >3AOF 

(R6) Before = 0101 1100 0110 1001 = >5C69 

(R6) After = 0111 1110 0110 1111 = >7E6F 

The hex 7E6F is compared to zero, causing the Logical Greater Than status bit to be one, 
the Arithmetic Greater Than status bit to be one, and the Equal status bit to be zero. 
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15.2.2 The Set Ones Corresponding Instruction (SOC) 

The Set Ones Corresponding Instruction (SOC) performs a logical OR operation on two 
word values. The instruction requires two operands, both of which can use any of the 
five general addressing modes . 

The instruction performs a logical OR operation between the first value and the second 
value. The result replaces the contents of the second operand. This result is compared 
to zero and that comparison affects the Logical Greater Than, Arithmetic Greater Than, 
and Equal status bits. 

As an example, suppose Register 6 contains a hex 3AOF and memory word TWEETE 
contains a hex 5C69 before the following instruction is performed 

SOC R6,@TWEETE 

The instruction performs an OR operation between a bit in Register 6 and the 
corresponding bit in TWEETE. The result of that pair of bits replaces the bit in the 
TWEETE. As a result of this instruction, a hex 7E6F is left in TWEETE. 

(R6) = 0011 1010 0000 1111 = >3AOF 

(TWEETE) 	Before = 0101 1100 0110 1001 = >5C69 

(TWEETE) After = 0111 1110 0110 1111 = >7E6F 

The hex 7E6F is compared to zero, causing the Logical Greater Than status bit to be one, 
the Arithmetic Greater Than status bit to be one, and the Equal status bit to be zero. 

The instruction is called Set Ones Corresponding because the one bits in the first operand 
(the bit mask) set ones in the corresponding bits of the second operand. Zero bits in the 
first operand leave the corresponding bits in the second operand unchanged. 

15.2.3 The Set Ones Corresponding Byte Instruction (SOCB) 

The Set Ones Corresponding Byte instruction (SOCB) works just like the Set Ones 
Corresponding (SOC) instruction except it uses two byte values, rather than word values. 
It additionally affects the Odd Parity status bit. The instruction requires two operands, 
both of which can use any of the five general addressing modes. 

As an example, suppose Register 6 contains a hex 3AOF and memory word TWEETE 
contains a hex 5C69 before the following instruction is performed. 
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SOCB R6,@TWEETE 

The instruction performs an OR operation between a bit in the left byte of Register I 
and the corresponding bit in byte address TWEETE. The result of that pair of bits replace 
the bit in TWEETE. As a result of this instruction, a hex 7E is left in byte address TWEETE 
A hex 7E69 is left in word address TWEETE. 

(R6) 	 - 0011 	1010 0000 1111 = >3A01 

(TWEETE) Before . 0101 1100 0110 1001 = >5C64 

(TWEETE) After = 0111 	1110 0110 1001 = >7E69 

NOT AFFECTED 

The byte result, hex 7E, is compared to zero, causing the Logical Greater Than status bit 
to be one, the Arithmetic Greater Than status bit to be one, and the Equal status bit to 
be zero. The Odd Parity status bit is a zero. 

15.3 The Exclusive Or Instruction (XOR) 

The Exclusive OR instruction (XOR) is the only instruction that performs an exclusive 
OR operation. 

The Exclusive OR operation selects the state of a bit based upon the state of two other 
bits. In the following truth table for the Exclusive OR operation, X is the state of one bit 
and Y is the state of the other bit. Notice that the result is a one only if X or Y is a one, 
but not both (X and Y must be different). 

Exclusive OR 

Truth Table 

X bit 1 Y bit I 	Result 

0 
0 

0 

0 

0 

   

The Exclusive OR operation is useful for selectively changing the state of bits in a data 
quantity. As an example, consider an Exclusive OR operation between two byte values. 

186 



The AND Operation Instructions (AND', SZC, and SZCB) 

One byte is called X and the other is called Y. The Exclusive OR operation is performed 
on each of the eight pairs of X and Y bits and produces an 8-bit result called R. 

= 0 0 1 	1 1 	0 1 	0 

Y = 0 	1 0 	1 1 	1 0 0 

R= 0 	1 1 	0 0 	1 1 0 

Notice that for each X bit that is one, the corresponding R bit is changed. For each X 
bit that is zero, the corresponding R bit is the same state as the Y bit. 

Call the 8-bit X value a bit mask. Everywhere there is a one in the bit mask, the 
corresponding bit in the R byte is changed; everywhere there's a zero in the bit mask, 
the corresponding bit in the R byte is the same as the Y bit. Effectively, the bit mask is 
inverting bits at selected locations of the Y value and leaving unselected locations 
unchanged. 

The Exclusive OR operation is useful for inverting or changing the state of selected bits 
in a data quantity. 

The Exclusive OR instruction (XOR) performs an Exclusive OR operation on two word 
values. The instruction requires two operands, the first can use any of the five general 
addressing modes and the second uses only register direct addressing. 

The instruction performs an Exclusive OR operation between the contents of the first 
operand and the register. The result replaces the contents of the register. This result is 
compared to zero and that comparison affects the Logical Greater Than, Arithmetic 
Greater Than, and Equal status bits. 

As an example, suppose memory word TWEETE contains a hex 5C69 and Register 6 
contains a hex 3AOF before the following instruction is performed. 

XOR @TWEETE,R6 

The instruction performs an Exclusive OR operation between a bit in TWEETE and the 
corresponding bit in Register 6. The Exclusive OR result of that pair of bits replaces the 
bit in Register 6. As a result of this instruction, a hex 6666 is left in Register 6. 

(TWEETE) = 0101 1100 0110 1001 = >5C69 

(06) 	Before = 0011 1010 0000 1111 = >3AOF 

(06) 	After = 0110 0110 0110 0110 = >6666 
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The hex 6666 is compared to zero, causing the Logical Greater Than status bit to be o' 
the Arithmetic Greater Than Status bit to be one, and the Equal status bit to be zer( 

15.4 The Invert Instruction (INV) 

The Invert instruction (INV) performs a logical NOT function. It inverts the state of ti 
bits in a word. The instruction requires one operand and the operand can use any of tl 
five general addressing modes. The result of the operation is compared to zero and tl 
Logical Greater Than, Arithmetic Greater Than, and Equal status bits are affected bas( 
upon that comparison. 

As an example, assume that Register 2 contains 8. The following INV instruction inver 
the bits in the fifth word of a memory file called COMPS. 

INV @COMPS (R2 I 

If that word contains a hex 5E6D before the instruction is performed, it contains a he 
A192 after the instruction is performed. 

(COMPS (R2)) 	Before = 0101 	1110 0110 1101 = )5060 

After 	= 1010 0001 1001 0010 = >A192 

The Logical Greater Than status bit is one, the Arithmetic Greater Than status bit is zer 
and the Equal status bit is zero as a result of the instruction. 

When you invert the state of each bit in a data quantity, you take the one's complemel 
of the value. The Invert instruction forms the one's complement of a word. 

15.5 The Initialize to Constant Instructions (CLR and SETO) 

There are two instructions that initialize a location to a constant value. These instructior 
are useful for setting locations to common initial conditions. 

15.5.1 The Clear Instruction (CLR) 

The Clear instruction (CLR) initializes a word to zero. The instruction requires on 
operand that can use any of the five general addressing modes. No status bits are affectet 

Programs very often initialize storage locations to zero before performing operation 
Earlier, the LI instruction was used to initialize a register to zero. The Clear instructioi 
however, is a more effective way. 
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e, 	For example, the instruction 

CLR R8 

sets the contents of Register 8 to zero. 

e 	Notice that the CLR instruction always addresses a word location, not a byte. 
e 
e 
.1 15.5.2 The Set to One Instruction (SETO) 

The Set to One instruction (SETO) initializes a word to minus one (hex FFFF). The 
5 	instruction requires one operand which can use any of the five general addressing modes. 

No status bits are affected. 

The value hex FFFF, which is often called minus one, because that's its value if you 
interpret it as a signed number, is sometimes used as a marker for the end of a file or 
a special code within a program. 

As an example of how it operates, the instruction 

SETO *R7 

sets the contents of the location pointed to by Register 7 to hex FFFF. 

Notice that the SETO instruction always addresses a word location, not a byte. 

15.6 Program Example 

The following program examines the two bytes in each word of a ten-word file. If both 
bytes contain either an odd number or an even number, the program clears the word 
in a corresponding word of a second ten-word file; otherwise, the corresponding word 
of the second file is set to hex FFFF. The program takes advantage of the fact that an 
odd number has a one bit in the least significant bit position and an even number has 
a zero bit in the least significant bit position. The program illustrates the use of several 
of the logical instructions introduced in this chapter. Look at the listing. 
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99/4 	A5!,Em1 
URGION 

LED 
1.2 PAGE 0001 

0001 IDT 'EVENODD' DETECT EVEN AND ODD NUMBERS 

0002 0000 02E0 LWPI WS POINT TO WORKSPACE 

0002 0054' 
0007. 0004 0202 LI R2.BUFFER POINT TO DATA WORDS 

0001 002C' 
0004 0006 0203 LI R;. FLAGS POINT TO SAME/DIFFERENT FLAGS 

0000 0040' 

0005 000C 0204 LI R4.10 SET A COUNTER 
000E 0000 

0006 0010 C0:7.2 GTWORD MOV 402..80 GET A DATA WORD (PUTOINCREMENT) 
0007 0012 0240 ANDI R0.10101 TURN OFF ALL BITS EXCEPT LSD'S 

0014 0101 
000C 001E C040 MOV R0. R1 COPY RESULT 

0009 0018 06E1 SWPD RI EXCHANGE THE TWO BYTES IN THE COPY 
0010 001A 2840 XDR RO.R1 BOTH SAME OR DIFFERENT? 

0011 0010 04F3 CLR ASSUME SAME - SET "SAME" FLAG 
0012 0016 1302 JED SAME YES. THEY ARE SAME 
0013 0020 0563 INV G-2(R31 DIFFERENT - SET "DIFFERENT" FLAG 

0072 FFFE 
0014 0024 0604 SAME DEC R4 DECREMENT COUNTER 
0015 0026 15F4 JOT GTWORD IF COUNTER 0 0. CHECK ANOTHER WORD 
0016 0020 0420 BLAP 90 GO HOME 

0020 0000 
0017 002C BUFFER BSS 20 DATA WORDS HERE 
0018 0040 FLAGS DSS 20 FLAGS PUT HERE 
0019 0054 WS BSS 32' WORKSPACE 
0020 END 

99/4 ASSEMBLER 
VERSION 1.2 

' BUFFER 002C 
RI 	0001 
R13 	000D 
R3 	0003 

R7 	0007 
' WS 	0054 
0000 ERRORS 

' FLAGS 
RIO 
R14 
R4 
RD 

0040 
000A 
000E 
0004 
0006 

GTWORD 0010 
R11 	0008 
R15 	000F 
R5 	0005 
R9 	0009 

PAGE 0002 

RO 	0000 

RI2 	000C 
R2 	0002 
R6 	0006 

' SAME 	0024 

The BSS directive labeled BUFFER at statement 17 reserves a block of memory for the 
ten-word file containing the pairs of bytes to be analyzed. The BSS directive labeled 
FLAGS at statement 18 reserves a block of memory for the ten words used to mark the 
relationship of the bytes in BUFFER. 

The first instruction (statement 2), an LWPI, sets up the Workspace Pointer. 

Statements 3, 4, and 5 are Load Immediate instructions. The first one points Register 2 
to the file of words. The second one points Register 3 to the file FLAGS. The third one 
initializes a loop count of 10 in Register 4. 

The MOV instruction labeled GTWORD copies a word from the BUFFER file into 
Register 0. Notice it uses register indirect autoincrement addressing mode. After this 
instruction is performed, Register 0 contains the two bytes of a word and Register 2 points 
to the following word in the file. 
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In statement 7, the ANDI instruction turns off or forces to zero all the bits in Register 
0 except the rightmost bit in each byte. The MOV instruction at statement 8 copies the 
result into Register 1. The SWPB instruction (statement 9) exchanges the two bytes in 
Register 1 

The XOR instruction (statement 10) performs an Exclusive OR operation between the 
contents of Register 0 and Register 1. The result is left in Register 1. The result in register 
1 is either a value of zero or a value of one. If the rightmost bit in each byte is the same, 
the result is zero. If the rightmost bit in each byte is different, the result is one. The 
instruction compares the result to zero and affects several status bits, including the Equal 
status bit. 

The CLR instruction (statement 11) clears to zero the corresponding word in the FLAGS 
file. Notice the instruction uses register indirect autoincrement addressing mode, so that 
after it is performed, Register 3 points to the next word in the FLAGS file. The instruction 
assumes the two bytes are the same. The CLR instruction doesn't change any status bits. 
The status bits are in the same state they were after the XOR instruction was performed. 

The JEQ instruction (statement 12) analyzes the Equal status bit that was affected by the 
XOR instruction. It jumps to SAME and skips the next instruction if the result of the XOR 
instruction is zero which means the bytes are the same. Otherwise, it lets the program 
go on to the next instruction, the INV instruction. 

If the two bytes are different, the INV instruction at statement 13 is performed. It reaches 
back to the previous word in the FLAGS file and inverts it. Since the previously performed 
CLR instruction set that word to zero, the INV instruction changes it to all one bits (hex 
FFFF). 

The DEC instruction (labeled SAME) subtracts one from the loop count in Register 4 and 
closes the loop to GTWORD if the loop count is not yet zero; otherwise, it lets the program 
fall out of the loop to the Go-home instruction (BLWP). 

Use the assembler to assemble the program and then use the Loader to load the resulting 
object program. Load the Debugger with the program and use the Debugger to control 
the program. 

Before running the program, use the Debugger to place values in the BUFFER file. 

Set a breakpoint at the BLWP instruction and run the program. 

After running the program, use the Debugger to look at the FLAGS file for the results. 
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This chapter illustrates the use of the Logical instructions. The next chapter introduces 
the Branch and Subroutine instructions. 
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BRANCH AND SUBROUTINE INSTRUCTIONS 

This chapter reviews the concept of subroutines and describes those instructions which 
are used with subroutines and long-range transfers of control (branches). This chapter 
also describes context switching, the instructions that can cause a context switch, and 
explains the events that happen as a result of a context switch. 

16.1 Subroutines 

Nearly every language offers the ability to define and use subroutines. A subroutine is 
normally used in a program when a function needs to be performed several times at 
different locations in the program. By creating a subroutine to perform that function, it 
can be called from anywhere in the program where that function is needed. 

You can imagine that a subroutine looks like this. 

A Subroutine 

+ 

Entry Point ---> 

> 	Instructions 

Exit Point <— 

> Data Area 
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A subroutine consists of a set of instructions and, possibly, an associated area of data. 
The subroutine has an entry point; that is, a point where it receives control. Although 
it's possible to construct a subroutine with more than one entry point, most subroutines 
should have only one. The subroutine has an exit point; that is, the last instruction in the 
subroutine which is performed and the one that returns control to the program that called 
the subroutine. It's possible that a subroutine may have more than one exit point, but 
good programming practice recommends that you use only one. 

Within a complete program, you can have several individual programs segments. Some 
of these program segments may be subroutines that can be called from statements in other 
parts of the program. Other program segments can be "calling programs" that contain 
statements which call subroutines. When a calling program calls a subroutine, the 
subroutine receives program control, performs its job, and then exits by returning control 
to the calling program. Usually, the calling program is returned control at the location 
immediately following the instruction that called the subroutine. The location where a 
calling program is returned control from a subroutine is called the return point. 

A Program 

calling statement 

return point 

entry point 

> Subroutine 

exit point 

Often, data must be exchanged between a calling program and a subroutine. There are 
several ways of exchanging data. One way is to use defined areas of memory. For 
example, assume that the calling program and subroutine are designed to use locations 
X and Y for passing data. These are specific memory locations used only for passing data. 
The calling program places the data to be processed in memory location X and then calls 
the subroutine. The subroutine takes the data from location X, performs the operation 
on the data, and places the results in memory location Y. The subroutine exits and returns 
control to the calling program. The calling program is designed to look in memory location 
Y for the result of the subroutine's operation. 
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There are other ways of passing data between calling programs and subroutines. Another 
way is to use several areas of memory for passing data. In this case, the calling program's 
logic selects an area of memory to use and places the data in that chosen area. When 
the calling program calls the subroutine, it passes to the subroutine the address of the 
memory area containing the data to be processed. When the subroutine receives control, 
it extracts the data from that area and processes it. The subroutine also might select an 
area of memory in which to place the result. After choosing an area and placing the results 
there, the subroutine returns to the calling program and passes back to the calling program 
the address where the result was placed. 

A third common technique for exchanging data between a calling program and a 
subroutine is to use the working registers. With this technique, the calling program simply 
places data in one or more of the working registers and calls the subroutine. The 
subroutine retrieves the data from the register(s), performs its operation on the data, places 
the results in one or more registers, and returns control to the calling program. The calling 
program looks in the register(s) for the result. 

Look now at some of the ways that you can call subroutines in assembly language with 
the TI Home Computer. There are two categories of subroutine- calling techniques. One 
category is where the calling program and subroutine share the same set of working 
registers; the second category is where the calling program and the subroutine have 
different sets of registers. This technique of assigning a different set of working registers 
to the calling program and the subroutine is called "context switching." Look first at those 
ways of calling subroutines that don't use context switching. 

16.2 Non-Context Switching Subroutine Calls 

There are three instructions that can be used with subroutines without causing a context 
switch: 

• Branch and Link (BL) 

• ranch (B) 

• Execute (X) 

16.2.1 The Branch and Link Instruction (BL) 

The Branch and Link instruction (BL) calls a subroutine. Both the subroutine and the 
calling program share the same set of registers. 
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The BL instruction has one operand that can use any of the five general addressing mods 
The instruction transfers program control to the location of the instruction specified 
the operand. The return address which is the address of the location immediate 
following the BL instruction is placed in Register 11. 

As an example, suppose there's a subroutine in a program with an entry point of SW 
(SUBR is the label attached to the first instruction to be performed in the subroutin 
The following instruction calls the subroutine 

BL @SUBR 

and the address of the location immediately following the BL instruction is placed I 
Register 11. 

When the subroutine is finished and ready to return control to the calling program, 
can do so by going to the address contained in Register 11. It can do this by using a Brant 
instruction. 

16.2.2 The Branch Instruction (B) 

The Branch instruction (B) is similar to the Branch and Link instruction. The B instructi( 
has one operand that can use any of the five general addressing modes and it causes 
transfer of program control to the location specified by the operand. The B instructic 
is normally used to exit from a subroutine that's called by a Branch and Link instructio 

For example, the instruction 

B 	•R11 

transfers program control to the address in Register 11. 

In fact, a Branch instruction with this particular operand is used so often in TI Hon 
Computer assembly language programs that a pseudo-instruction has been given to 
A pseudo-instruction is a mnemonic operation code that is used in place of anoth 
operation code and assumes a specific operand. The pseudo-instruction, RT, when placE 
in the operation code field of a statement, results in machine code that is the same 
that for B *R11. 

RT = B *R11 

The B instruction is normally the last instruction performed by a subroutine called wi 
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a BL instruction, but the Branch instruction can be used anywhere in a program that you 
want to perform an unconditional transfer of control. 

The B instruction is similar to the JMP instruction. Both instructions cause an 
unconditional transfer of control within a program. But the Branch instruction has a big 
advantage over the JMP instruction. The B instruction can transfer control anywhere, 
whereas the JMP instruction has a limited transfer-of-control range. Also, the B 
instruction has a much wider choice of addressing modes available to it, since it can use 
any of the five general addressing modes; the IMP instructions is limited to PC-relative 
addressing. 

There are some advantages to the JMP instruction, however. It requires only one word 
of machine code where the B instruction might require two words. Also, the IMP 
instruction usually takes less time for the computer to perform than the B instruction. 

The limited transfer-of-control range of the IMP instruction is often not a severe 
handicap. Persons who study such things tell us that, in a high percentage of cases, when 
a program transfers control to another instruction, that instruction is within a relatively 
short distance of the instruction transferring control. 

The bottom line is this. Use a JMP instruction whenever you can for an unconditional 
transfer of control. If you can't reach the target with a JMP instruction, use a B instruction. 

16.2.3 The Execute Instruction (X) 

There's another instruction which is classified as a subroutine instruction. The Execute 
instruction (X) performs a one-instruction subroutine call. 

The Execute instruction has one operand and can use any of the five general addressing 
modes. The operand is the address of an instruction. The Execute instruction performs 
the one instruction at that address and then returns to the location following the Execute 
instruction. 

For example, suppose there are these instructions in a program. 
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X 	@PICKET 

> 	PICKET A 	RO,R1 

The X instruction causes the computer to perform the instruction labeled PICKET. After 
performing that instruction, the computer returns to the location following the X 
instruction. 

There are a couple of things to be wary of when using the Execute instruction. For 
example, if the instruction performed by an Execute instruction requires more than one 
word of machine code, the locations immediately following the Execute instruction's 
machine code are used as the addresses for the data. Also, if the instruction performed 
by an Execute instruction is a jump instruction that results in a transfer of control, the 
jump is made a relative distance from the location of the Execute instruction rather than 
from the location of the jump instruction. When using the Execute instruction, proceed 
with caution. 

16.3 Context -Switching Subroutine Calls 

Recall that context switching is a way of calling a subroutine so that the calling program 
and the subroutine can have their own set of registers. There are two instructions that 
cause a context switch — BLWP and XOP — and one instruction that reverses a context 
switch — RTWP. 

16.3.1 The Branch and Load Workspace Pointer Instruction (BLWP) 

The BLWP instruction has one operand and can use any of the five general addessing 
modes. The operand specifies the address of a two-word "vector" in memory that the 
computer uses to perform a context switch. 

A context switch vector is composed of two adjacent words in memory. The first word 
contains the 16-bit address of the subroutine's workspace; the second word contains the 
16 -bit address of the subroutine's entry point. 
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A Two-Word Vector 

First Word 
	

Address of Subroutine's Workspace 	I 
Second Word 
	

Address of Subroutine's Entry Point I 

For example, suppose there are these statements in a program. 

BLWP @GIZZ 

GIZZ 	DATA SUBWSP 

DATA SUBENT 

The BLWP instruction calls a subroutine with a context switch. The operand used with 
the BLWP instruction identifies the location of the two-word context switching vector. 
GIZZ is a label attached to the first word of a two-word vector. The first word is the 
address of the workspace used by the subroutine, SUBWSP, and the second word is the 
address of the subroutine's entry point, SUBENT. 

When a subroutine is called as a result of a context switch, the subroutine can use its 
own set of working registers. The subroutine's registers are different from the set of 
registers used by the calling program. 

When a context switch is performed, the computer automatically saves the old program 
context in the subroutine's workspace. Specifically, the computer saves what was in the 
Workspace Pointer, Program Counter, and Status Register at the moment immediately 
before the context switch in the bottom three registers of the subroutine's workspace. The 
computer saves the contents of the Workspace Pointer in Register 13, the contents of the 
Program Counter in Register 14, and the contents of the Status Register in Register 15 
of the subroutine's workspace. 

Saving an Old Program Context 

in the Subroutine's Workspace 
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R13 
	

Contents of Workspace Pointer 

R14 
	

Contents of Program Counter 

R15 
	

Contents of Status Register 

As you might expect, the contents of these internal registers are saved so that the conten 
can be eventually restored to the registers. When the subroutine finishes, it can exit an 
return program control to the calling program by using a Return with Workspace Pointi 
(RTWP) instruction. 

16.3.2 The Return with Workspace Pointer Instruction (RTWP) 

The Return with Workspace Pointer instruction (RTWP) reverses a context switch. hi 
one of the few instructions that doesn't require an operand. The operation of the RTW 
instruction is simple. It places the contents of Register 13 into the computer's Workspae 
Pointer, moves the contents of Register 14 into the Program Counter, and moves tli 
contents of Register 15 into the Status Register. 

An RTWP Instruction Reverses a Context Switch 

Computer 	 Memory 

Workspace 

R13 

R14 

R15 

WP 

PC 
	

I < 

SR 
	

I <-  
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As soon as the RTWP instruction finishes, the computer uses the workspace which is 
addressed in the Workspace Pointer and performs the instruction which is addressed in 
the Program Counter. The Status Register contains whatever was in Register 15. The 
calling program continues with the program context that it had before calling the 
subroutine. 

An RTWP instruction is normally the last instruction performed in a subroutine called 
as a result of a context switch. 

16.3.3 The Extended Operation Instruction (XOP) 

There's a second instruction that causes a context switch. It's the Extended Operation 
instruction (XOP). There are several differences, to distinguish an XOP context switch 
from a BLWP context switch. Like the BLWP instruction, the XOP instruction requires 
a two-word vector for the context switch. But with the XOP instruction, the vector must 
be located at a very precise location within a limited area of memory. This area of memory 
is the XOP vector memory space. The vector for an XOP instruction must be located in 
the area of memory between word addresses hexadecimal 40 and hexadecimal 7E, 
inclusive. 

XOP Vector Memory Space 

4- 

>0040 	
I 	

XOP 0 WS 

	 +  > XOP 0 Vector 

>0042 

1 	

XOP 0 PC 

I 	I. 

>0044 

+ 	

XOP 1 WS 	I  
> XOP 1 Vector 

>0046 	I 	
XOP 1 	PC 	I 

 

>007C 

>0070 

XOP 15 WS 

XOP 15 PC 

  

I >  XOP 15 Vector 

      

The XOP instruction requires two operands. The second operand is a C-type operand; 
it's a number that ranges from 0 through 15. The second operand identifies the precise 
location of the vector for the XOP instruction. An operand of 0 tells the computer to use 
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the first pair of words in the XOP vector memory space for the vector or memory locations 
hexadecimal 40 and 42. An operand of 1 tells the computer to use the second pair of words 
in that memory space for the vector or memory locations hexadecimal 44 and 46. An 
operand of 2 tells the computer to use the third pair of words for the vector, and so forth. 
An operand of 15 tells the computer to use the last pair of words for the vector or memory 
locations hexadecimal 7C and 7E. 

This area of memory from hexadecimal 40 through hexadecimal 7E is in the TI Home 
Computer's ROM. The contents of these vectors can't be changed. Some of the TI Home 
Computers have vectors defined for XOP numbers 1 and 2; some have vectors defined 
only for XOP number 2. 

The XOP instruction has two operands. The second operand identifies the address of 
information passed automatically to the subroutine. The address of the first operand is 
automatically placed in Register 11 of the subroutine's workspace. It's the address value 
of the operand and not the content of the address that is placed in Register 11. For 
example, the instruction 

XOP @PARAM,2 

puts the address value of PARAM, not the contents of location PARAM, in Register 11 
of the subroutine's workspace. 

An RTWP instruction is used to exit a subroutine called by XOP instruction. 

16.4 Context Switching and Interrupts 

The two instructions, BLWP and XOP, cause a context switch. A context switch is also 
performed by the computer in response to an interrupt signal from an I/O device. The 
number of the interrupting device tells the computer where to find the two-word vector. 
The vectors for interrupt-initiated context switches are located in the area of memory 
between word addresses 0 and hexadecimal 3E, inclusive. This area of memory is in ROM 
and the contents of the vectors can't be changed. 

16.5 Program Example 

The following program is designed to illustrate different ways of calling subroutines. The 
program makes use of the Branch and Link instruction (BL) to call a subroutine within 
the program itself and it uses the Branch and Load Workspace Pointer instruction (BLWP) 
to call two subroutines resident within the TI Home Computer's ROM. 
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The program generates the Morse code for messages typed in on the computer's keyboard. 
When you run the program, you can press an alphabetic key and the program immediately 
sounds the Morse code for that character. If you press a key other than an alphabetic 
character, A through Z, the program sounds a reject signal. If you press the <enter< 
key, the program stops and returns to the title screen. 

The program translates each character entered on the keyboard into Morse code and 
sounds the Morse code for each character. The program uses a subroutine called KSCAN 
to read the characters from the keyboard and uses a subroutine called SOUND to sound 
the Morse code characters. These subroutines are located in the TI Home Computer's 
ROM. A third subroutine called DELAY is included in the program itself and produces 
a time delay that determines how long a sound is heard. The length of the sound depends 
upon whether a dot or a dash is being sent. 

Look at the program listing. 

90 , 4 ASSEmBLER 
N 

eJe 
Zw2. 

1.2 
IDT 

• EXTERNAL 
REF 

'MORSE' 

REFERENCES 
ASCAN,SOUND 

PAGE 0001 
TRANSLATE CHARACTERS TO MORSE CODE 

0205 • 
00000 • EQUATED VALUES 

1104 DOTIME EDU 4500 DELAY FOR DOT TONE 

070 LWPI WS INILIALIZE WORKSPACE 

0010 GETKEY SB @)5374.9)S374 SELECT ENTIRE KEYBOARD 
8774 

,owo SZ74 
0011 000A 04=0 ELwP 2K5CAN CHECK KEYBOARD 

000C 0000 
0012 000E. D020 TOUR 4)817C.R0 READ KEYBOARD STATUS 

0010 8070 
0011 0012 :020 COC SKEYMSR,R0 CHECK KEYBOARD STATUS 

20:, 0043' 
0014 0016 1EFE JNE GETKEY JUMP IF NO KEY YET 
0015 0015 0020 MOVE 0)F:075.RO KEY PRESSED. 	PUT ASCII CODE IN RO 

001A 0075 
0015 ZZ1C 0240 ANDI R0.)7F00 STRIP OFF PARITY BIT 

021E 7., 00 
0017 0020 CB RO.@CHARA COMPARE CODE TO 

0022 
0015 002, JL NALPHA JUMP IF NOT ALPHABETIC. 	MAY BE CR 
0019 002K AA00 CB RO.BCHARZ COMPARE CODE TO "0" 

0•07.G . 

2020 JH NOGOOD JUMP IF NOT ALPHABETIC 

0001 . MOV R0.R3 COPY CHAR CODE TO NO (LEFT BYTE) 

0022 SWPB R3 PUT CHAR IN RIGHT BYTE 

0020 0000 0--, AI R3.-E5 SUBTRACT CODE FOR "A .  = INDEX 

0072 FFBF 
0024 0004 0A1Z SLA 170.1 MULTIPLY INDEX DV 2 

00•5 000E ri MOV DrICTABL,R3),R4 GET TABLE ENTRY 	IN R4 

0026 . MOV R4.113 COPY TABLE ENTRY TO R3 

0027 SRL R3.3 RIGHT JUSTIFY ELEMENT COUNT 

0000 0_4H SENDEL. LI R10.)9100 TURN ON 

3100 
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0029 0042 DSZIA MOVE R10.8SOUND TONE 
2044 0200 

0030 0046 04C2 CLR R2 PUT ZERO IN R2 
2031 0049 0914 SRL R4.1 SHIFT NEXT ELEMENT CODE INTO CARRY 
0032 004A 170:,  JNC DOT JUMP IF DOT 
0033 004C AI R2.DOTIME*2 ADD DELAY FOR DASH 

0'. 	. 
00:4 :  DOT 	AI R2.DOTIME ADD DELAY FOR DOT 

194 

0005 0054 MAO DI_ @DELAY DELAY AND END TONE 

0055 	.1002' 
0076 0059 020: LI R2.DOTIME GET INTER-ELEMENT DELAY TIME 

.. 	1194 

0037 BL @DELAY DELAY AFTER ELEMENT 

0603 DEC R3 DECREMENT ELEMENT 	•T 
ZZ.._ 	ICED JNE SENDEL JUMP IF MORE ELEM . 	TO SEND 
00E4 10CF JMP GETKEY ELSE GO GET AND .-- CHAR 

99/4 ASSEMSLER 

VERSION 1.2 PAGE 000: 
0041 006E Iee 

0060 
NALPIIA CD RO. DCHARCR IS CHAR A CARRIAGE RETURN,  

0042 006A ,O, 11- 0 EXIT IS SO. 	GO EXIT 
0043 006C 0208 NOGOOD LI R10.)F400 TORN ON 

006E .1.00 
0044 0070 • MOVB R10.@SOUND NOISE 

0072 00.. 
0045 0074 0202 LI R2. DOTIMC.2 SET DELAY TIME FOR NOISE 

0076 232E 

004E 007E1 0600 EL @DELAY DELAY AND TURN OFF NOISE 
007A 0082' 

0047 007C 10C3 JMP 	GETKEY GO GET NEXT CHAR 
0048 007E 0420 EXIT 	BLWP 30 GO HOME 

0080 0000 
0049 
0050 0002 OPEC DELAY 	SRC R12.15 KILL 	TIME 
0051 0084 0E02 DEC R2 DECREMENT DELAY COUNT 

0052 002E 1EFD JNE DELAY JUMP IF MORE DELAY 

0050 00615 020A LI R10.)9FFF TURN OFF 

0028 9FFF 
0054 0020 DOOR MOVE! R10.@SOUND TONE 

0021 	0072' 
.• 	0090 OECA SUPS R10 TURN OFF 

0092 DEOA MOVE R10.@SOUND NOISE 
0094 008E' 

0057 009E 045D S 	4R11 RETURN TO CALLER 

0050 
0059 w 	DATA CONSTANTS 

00E0 
2000 KEYMSK n.T. )2000 KEY 

41 'A' CHAR 	FOR . A .  
' ee 	5A C 'Z' CHAR 	FOR . 2 .  

OD C )0D CHAR 	FOR CARRIAGE RETURN 

9:1/4 uSSEMFLER 
VERSION 	1.2 PAGE 0003 

DOLL 
0067 TRANSLATION LOOK-UP TABLE 
00E8 
00E9 000E 0202 MCTAEL DATA )0202 
0070 0000 0401 DATA )0401 
0071 000: 0405 DATA )0405 
0072 0004 0701 DATA >0701 
0072 0065 0100 DATA >0100 E 	= 	. 
0074 0082 0404 DA1A >ohm ,  

0075 008A 0000 DATA 

0076 oonc 0400 DATA ;. 

0077 0001 0200 DATA 

0078 0050 040E DATA >0406 J = 
0079 0052 0705 DATA >0005 
0000 0054 0402 DATA >0402 

0001 0066 0203 DATA )0200 
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00E2 0008 0201 DATA )0201 
0023 OODA 0707 DATA )0307 
0024 OODC 040E DATA )040E P 
0025 000E 040B DATA )0408 O 
0086 0060 0302 DATA )0302 R 
0027 0062 0700 DATA )0720 5 = 
0022 0064 0101 DATA )0101 T = _ 
00E9 00CE 0304 DATA )0304 U = 
0090 000E 0408 DATA )0406 V 
0091 00CA 0306 DATA )0306 W 
0092 006C 0409 DATA )0409 X = 
0093 006E 040D DATA )040D 
0094 0000 0403 DATA )0403 Z 	= 
0095 
009E 0002 WS DSS 32 WORKSPACE 
0097 END 

99/4 ASSEMBLER 
VERSION 1.2 PAGE 0004 

' 	CHARA 0090 ' CHARCR 009C ' CHARZ 0098 ' DELAY 0062 
' 	DOT 0050 DOTIME 1194 ' EXIT 007E ' GETKEY 0004 
' 	KEYMSK 0096 E KSCAN 0006 ' MCTADL 009E ' NALPHA 0058 
' 	NOGOOD 0066 RO 0000 RI 0001 RIO . • . • . • 

411 0009 812 0006 513 000D 514  
515 000F 82 0002 R3 0003 R4  
R5 0005 R6 0006 R7 0007 RE .1.1.1,, 
R9 0009 ' SENDEL 003E E SOUND 0094 ' WS 0002 

0000 ERRORS 

The statements with an asterisk in the label field; for example, statements 2 and 3, are 
comments. Statement 4 is a REF directive. The REF directive references symbols that 
are defined some place other than the program in which the REF directive appears. The 
operands for the REF directive are KSCAN and SOUND. These two symbols are the 
names of entry points into two subroutines that reside in the computer's ROM. (See 
Chapter 18 for further discussion of the REF directive.) KSCAN is the name of a 
subroutine which scans the keyboard to see if a key has been pressed. Each time the 
KSCAN subroutine is called, it affects a status byte at memory location <837C. If a key 
has been pressed since the last time the KSCAN subroutine was called, a bit in the status 
byte in set to one; otherwise, the bit is cleared to zero. 

SOUND is the name of a subroutine that produces tones or sound with the sound 
processor. 

In statement 7, the symbol DOTIME is equated to the value 4500. This value is a number 
that determines the number of times to perform a program loop in the DELAY subroutine 
and, effectively, determines the length of the sound produced by the sound processor. 

The entry point of the program is the LWPI instruction at statement 9 which initializes 
the Workspace Pointer. The Subtract Bytes instruction (labeled GETKEY) zeroes out byte 
address <8374. This is the byte address used by the KSCAN subroutine to determine 
whether it should look at the whole keyboard or only a part of the keyboard. Putting a 
zero in the byte causes KSCAN to look at the whole keyboard. 
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The BLWP instruction at statement 10 calls the KSCAN subroutine. Upon return from 
the KSCAN subroutine, the MOVB instruction at statement 12 copies the status byte 
affected by the KSCAN subroutine into the left byte of Register 0. Then the Compare 
Ones Corresponding instruction at statement 13 checks the status bit in that byte. If the 
bit is set, it means that a key was pressed; if the bit is zero, no key was pressed. The INE 
instruction at statement 14 causes a jump to GETKEY if the bit is zero and the program 
calls KSCAN again. The program remains in this loop, repeatedly calling KSCAN until 
a key is pressed. When a key is pressed, the KSCAN subroutine places the character code 
for that key in byte address <8375. When a key is pressed, the program falls out of the 
loop and the Move Byte instruction at statement 15 copies the ASCII character code into 
the left byte of Register 0. 

The And Immediate instruction at statement 16 isolates the 7-bit ASCII character code 
in the left byte of Register 0. Since the program can only produce the Morse code for 
alphabetic characters, the program checks the character to determine if it's alphabetic. 
The Compare Bytes instruction at statement 17 compares the ASCII character code in 
Register 0 with the ASCII character code for the letter A (hexadecimal 41). If the character 
code in Register 0 is less than hex 41, the character is not alphabetic and the Jump if Low 
instruction at statement 18 causes a jump to the instruction labeled NALPHA. If the 
character code in Register 0 is hex 41 or greater, the Compare Bytes instruction at 
statement 19 compares it with the ASCII character code for the letter Z (hexadecimal 5A). 
If the character code in Register 0 is greater than hex 5A, the character is not alphabetic 
and the Jump High instruction at statement 20 causes a jump to the instruction labeled 
NOGOOD. If the program reaches the Move Word instruction at statement 21, the 
character is alphabetic and the Move Word instruction copies the character code into 
Register 3 (the left byte). The Swap Bytes instruction at statement 22 puts the character 
code into the right byte of Register 3 which right justifies the code. 

At this point, it would be helpful to look at the structure of the lookup table that is used 
to translate the ASCII character codes of the characters into Morse code. The table begins 
with the DATA directive labeled MCTABL, statement 69. Each of the alphabetic 
characters has a one-word entry in the table, starting with the character A and ending 
with the character Z. Each one-word entry consists of two bytes. The left byte is the 
number of Morse code elements (dots and dashes) for the character. The right byte defines 
what those elements are and the order of the elements. In the right byte, the elements 
for a character appear right-to-left. A zero represents a dot and a one represents a dash. 
The first word in the table is labeled MCTABL and is the entry for the letter A. In Morse 
code, the letter A consists of two elements; a dot followed by a dash. In the table entry 
for A, notice the left byte contains a 2 (for two elements) and the right byte contains a 
2. The binary byte value for 2 is 0000 0010. The zero in the rightmost bit position represents 
the dot and the one in the next position to the left represents the dash. 
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Take another example. Find the entry for the letter C in the table, the third word. The 
left byte is 4, meaning there are four elements in the Morse code. The right byte is 5 (a 
binary 0000 0101). The rightmost bit (a one) represents the first element, a dash; the next 
bit to the left (a zero) represents the second element, a dot; the next bit to the left (a one) 
represents the third element, a dash; and the next bit to the left (a zero) represents the 
fourth element, a dot. 

The instructions beginning with statement 23 form an index to the lookup table. The Add 
Immediate instruction at statement 23 subtracts the character code for the letter A from 
the character code in Register 3. The result is a number in the range of 0 through 25. The 
Shift Left Arithmetic instruction at statement 24 multiplies the result in Register 3 by two. 
The result in Register 3 is a word index into the lookup table that selects a specific entry 
based upon the ASCII character code of the key entered. 

The Move Word instruction at statement 25 uses indexed addressing to select the 
appropriate table entry and moves the entry to Register 4. The Move Word instruction 
at statement 26 copies the entry to Register 3. The Shift Right Logical instruction at 
statement 27 shifts the left byte of the entry into the right byte position of Register 3 and 
leaves zeros in the left byte of Register 3 (it right justifies the element count in Register 
3). At this point, the element count is right justified in Register 3 and the bits representing 
the elements are in the right byte of Register 4. 

The instructions beginning at statement 28 sound the Morse code. The Morse code for 
each character consists of a series of dot and dashes. There is a unique pattern of dots 
and dashes for each character. The sound for a dash is three times longer than the sound 
for a dot. There is an period of silence after each element equal in length to the dot time. 

The Load Immediate instruction labeled SENDEL puts a hexadecimal 91 in Register 10 
which is the value of a command to produce a tone with the sound processor and the 
Move Byte instruction at statement 29 sends the command to the sound processor. The 
Clear instruction at statement 30 zeros out Register 2. The Shift Right Logical instruction 
at statement 31 shifts an element bit out of Register 4 and the state of that bit is copied 
into the Carry status bit. The jump if No Carry instruction at statement 32 causes a jump 
to the instruction labeled DOT if the bit is a zero. Otherwise, if the bit is one (representing 
a dash), the Add Immediate instruction at statement 33 adds two times the dot time to 
Register 2. The Add Immediate instruction at statement 34 adds one dot time to the 
contents of Register 2. When the program reaches statement 35, Register 2 has one of two 
values in it: a value equal to the dot time or a value equal to three times the dot time. 
The value in Register 2 determines the length of delay before turning off the sound; it 
determines the length of the sound. 

The Branch and Link instruction at statement 35 calls the DELAY routine. The DELAY 
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routine, starting with statement 50, begins with a three-instruction loop that is perform( 
a number of times, depending upon the value in Register 2. The loop takes a finite amou 
of time to perform and while the loop is being performed, the sound processor is makii 
a sound. When the loop is finished, the subroutine turns off the sound process 
(statements 53 through 56) and returns to the calling program (statement 57). 

The program receives control from the DELAY subroutine at statement 36. The Lo[ 
Immediate instruction at statement 36 sets the delay time equal to a dot time and tI 
Branch and Link instruction at statement 37 calls the DELAY subroutine to wait for of 
dot time before sounding another element. 

The program receives control again from the DELAY subroutine at statement 38. T1 
Decrement instruction at statement 38 decrements the element count in Register 3. If the 
are more elements left to send in the character, the Jump if Not Equal instruction 
statement 39 causes a jump to the instruction labeled SENDEL and the next element 
identified and sent. 

When no more elements remain to be sent, the IMP instruction at statement 40 caus 
a jump to the instruction labeled GETKEY and the program waits for the operator to pre 
another key. 

The instruction labled NALPHA receives control if the ASCII character code is less ill. 
hex 41. The Compare Bytes instruction at statement 41 compares the character code 
that produced by the <enter< key (hex D). If the operator pressed the <enter< k( 
the JEQ instruction at statement 42 jumps to the instruction labeled EXIT, the Go - Hor 
instruction. 

The instruction labeled NOGOOD receives control if the ASCII character code is great 
than hex 5A, the code for the letter Z. The series of instructions from statement 43 throu ; 

 statement 46 sound a reject signal with the sound processor. The IMP instruction 
statement 47 jumps to the instruction labled GETKEY and the program waits for tl 
operator to press another key. 

If you have the equipment, go ahead edit, assemble, load, and run the program. 

This chapter illustrates the use of the Branch and Subroutine instructions. The n€ 
chapter introduces the CRU and External instructions. 
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CRU AND EXTERNAL INSTRUCTIONS 

All computers, no matter how complex or how simple, have some way of exchanging data 
with input and output devices. The TI Home Computer has different ways to exchange 
data with I/O devices. One of these ways is the Communication Register Unit (CRU). 
This chapter describes the CRU, the instructions that are used with the CRU, and the 
CRU addressing formats. 

17.1 The Communication Register Unit (CRU) 

The CRU is a serial I/O port that is part of the computer's central processor. Serial means 
that the data exchanged between the processor and I/O devices are exchanged in serial 
form, or one bit at a time. When performing CRU input or output operations, the processor 
uses a single line to bring information into the processor from an input device and another 
single line to send data to an output device. Each of these lines carries one bit of data 
at a time. The input line is called CRUIN; the output line is called CRUOUT. 

Just as addresses are used to select specific memory locations to supply or receive data 
for an operation, addresses are also used to select the specific input or output devices 
that supply or receive each bit of data when a CRU I/O operation is performed. 

There are five instructions in the TI Home Computer's instruction set that are used for 
CRU input and output operations. Three of these instructions are single-bit CRU 
instructions; that is, only one bit of data is sent or received with each instruction. The 
other two instructions are multi-bit CRU instructions; that is, they can be used to send 
or receive more than one bit of data. Although a multi-bit CRU instructions can cause 
a transfer of up to 16 bits of data, each bit is sent or received serially on the CRUIN or 
CRUOUT line. 

Among the five CRU instructions, three instructions cause data to be sent out to a device 
and two instructions cause data to be brought in from a device. 

Each of the five instructions can be classified as either a single-bit or a multi-bit 
instruction and each of them can be classified as an input or output instruction. You can 
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even classify them both ways at the same time, as shown below. 

CRU Instructions 

	

Input 	Output' 

Single-Bit 	1 	TB 	I 
SBZ 

Multi-Bit 	I STCR 	I LDCR 

17.2 The CRU Single-Bit Instructions (SBO, SBZ, and TB) 

The three single-bit instructions receive or send only one bit of data. The TB (Test Bit) 
instruction receives a single bit of data from an input device. The SBO and SBZ 
instructions send a single bit of data to an output device. The SBO (Set Bit to One) 
instruction sends a one bit; the SBZ (Set Bit to Zero) instruction sends a zero bit. 

Each of the single-bit CRU instructions requires only one operand. The operand is called 
a displacement and is a number from —128 through +127. The displacement is added 
to a base address. The sum of the displacement and the base address is the address of 
the device. The base address must be in Register 12. 

When a CRU instruction is performed, the computer always uses a base address in 
Register 12. It's the programmer's job to make sure that the correct base address is in the 
register before the CRU instruction is performed. 

Register 12, like all other working registers, holds 16 bits. When Register 12 is used to 
hold a base address for a CRU operation, the programmer must put the base address in 
bit positions 3 through 14 of Register 12. This 12-bit value in Register 12 is called the 
"CRU hardware base address." This address is the actual one that the computer hardware 
uses to address a device. 

Register 12 

1 01 lI  21 31 4 1 5 1 6 1 7 1 81 9110111112'13'14'151 

I I 	I 	1<--- CRU Hardware Base Address 
---> 1 	1 

When Register 12 holds a base address for CRU operations, it doesn't matter what the 
bits in positions 0, 1, and 15 are. In most cases, though, these bit positions contain zeros. 
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When these bit positions contain zeros, the entire 16-bit value in Register 12 is called the 
"CRU software base address." This is address is the one that the program (software) puts 
in the register. 

Register 12 

01 11 21 31 41 
5 1 61 7 .  8 ,  9.10,11,12.13.14.15, 1 1 1 1 1 1 1 1 1 

01 01 01<--- CRU Hardware Base Address --->1 01 

  CRU Software Base Address   

Notice that the CRU hardware base address is simply shifted one bit position to the left 
in Register 12. Shifting a number to the left is the same as multiplying the number times 
2. This means that the CRU software base address is two times the CRU hardware base 
address. 

	

CRU Software Base Address 	2 X CRU Hardware Base Address 

Or, to say the same thing another way, the CRU hardware base address is one- half the 
CRU software base address. 

CRU Hardware Base Address = 1/2 CRU Software Base Address 

Register 12 actually contains two base addresses at the same time, but there is a fixed 
relationship between the two of them. 

All CRU instructions require that a base address be established in Register 12. The Load 
Immediate (LI) instruction can be used to establish the base address. 

For example, to establish a hardware base address of hexadecimal 40 in Register 12, you 
could use the following instruction. 

LI R12,>80 

Or, if you don't want to go through the mental gymnastics of multiplying the CRU 
hardware base address times two, you can let the assembler calculate the CRU software 
base address for you. You can write the instruction this way. 

LI R12,>40*2 

Most TI assemblers (the line-by-line assembler with the Mini Memory Module is one 
exception) calculate the expression >40*2 as hexadecimal 40 times 2, or hexadecimal 
80. 
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When a single-bit CRU instruction is performed, the address of the selected devicd 
the sum of a base address in Register 12 and the displacement which appears in 
operand field of the instruction. The sum is a bit address; it's the address of a single' 
of data. 

The displacement operand of a single-bit CRU instruction is a number that is added 
the CRU hardware base address or to say it another way: The displacement of a Cl 
single-bit instruction is added to the CRU hardware base address in register 12. 1 

For example, suppose Register 12 contains hexadecimal 2A6. The software base addii 
is hex 2A6, and the hardware base address is hex 153. A single- bit CRU instruction w 
an operand of 2 addresses bit address hex 155. 

With that background, let's see how the three single-bit CRU instructions work. 

17.2.1 The Set Bit to One Instruction (SBO) 

The Set Bit to One instruction (SBO) sends a one bit to an output device. The instruct' 
requires one operand that is a displacement added to the CRU hardware base addd 
in Register 12. The sum is the address that selects a specific device. The displacem 
must be a number from —128 through +127. 

For example, consider the following program segment. 

LI 	R12,>200 

SBO 12 

The LI instruction establishes a CRU software base address of hexadecimal ma 
Register 12. Consequently, the CRU hardware base address is hexadecimal 100. WI 
the SBO instruction is performed, a one bit is sent to the device whose bit addres! 
hexadecimal 10C which is the hardware base address plus the displacement, decid 
12. 

17.2.2 The Set Bit to Zero Instruction (SBZ) 

The Set Bit to Zero instruction (SBZ) sends a zero bit to an output device. The instrucd 
requires one operand which is a displacement added to the CRU hardware base adds 
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is 	in Register 12. The sum is the address which selects a specific device. The displacement 
le 	must be a number from —128 through +127. 
)it 

For example, consider the following program segment. 

to 	 R12,>1E3*2 

U 

SBZ -9 
SS 

The LI instruction establishes a CRU hardware base address of hexadecimal 1E3 in 
Register 12. When the SBZ instruction is performed, a single zero bit is sent to the device 
with bit address hexadecimal 1DA. The bit address is the sum of the hardware base 
address, hex 1E3, plus the displacement, decimal —9. 

17.2.3 The Test Bit Instruction (TB) 

The Test Bit Instruction (TB) is the only single-bit instruction that performs an input 
operation. H reads one bit of data from an input device and places the state of that bit 
into the Equal status bit. The instruction requires one operand which is a displacement 
added to the CRU hardware base address in Register 12. The sum is the address which 
selects a specific device. The displacement must be a number from —128 through +127. 

For example, consider the following program segment. 

LI 	R12,>39C*2 

TB 	23 

The LI instruction establishes a CRU hardware base address of hexadecimal 39C in 
Register 12. When the TB instruction is performed, a single bit is read in from the device 
with bit address hexadecimal 3B3 (the sum of the hardware base address, 39C, plus the 
displacement, decimal 23). 

The device might be a switch where a one bit means the switch is on and a zero bit means 
the switch is off. Following the TB instruction, the state of the switch is recorded in the 
Equal status bit. You can use a conditional jump instruction to determine if the switch 
is on or off. A JEQ instruction causes a jump if the switch is on, and a JNE instruction 
causes a jump if the switch is off. 

is 
at 

n 
n 
is 
il 

n 
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In the following program segment, the (NE instruction cause a jump to the instruction 
labeled OFF if the switch is off; that is, where the state of the tested bit is zero. 

TB 	23 

JNE OFF 

17.3 The CRU Multi-Bit Instructions (LOCH and STCR) 

There are two CRU instructions that transfer more than one bit of data. The LDCR (Load 
Communication Register) instruction sends a number of bits out serially on the CRUOUT 
line to output devices with consecutive addresses. The STCR (Store Communication 
Register) instruction reads in a number of bits serially on the CRUIN line from input 
devices with consecutive addresses. 

Each of the multi-bit CRU instructions requires two operands. The first operand can use 
any of the five general addressing modes and is the word or byte address for the data 
bits. The second operand is a count that specifies how many data bits to transfer. The 
count is a number that must be in the range of 0 through 15. 

A non-zero count, 1 through 15, specifies directly the number of bits transferred. A count 
of 0 means that 16 bits are transferred. 

lust as with the single-bit CRU instructions, when a multi-bit CRU instruction is 
performed, the computer always uses a base address in Register 12. It is the programmer's 
job to make sure that the correct base address is in the register before the CRU instruction 
is performed. 

17.3.1 The Load Communication Register Instruction (LDCR) 

The Load Communication Register instruction (LDCR) transfers a number of bits from 
memory to output devices with consecutive bit addresses. The instruction requires two 
operands. The first operand can use any of the five general addressing modes and is the 
word or byte address of the memory location containing the bits to be transferred. The 
second operand is a number in the range of 0 through 15 which specifies how many bits 
to transfer. A number of 0 means that 16 bits are transferred. 

If the second operand is a number from 1 through 8, the first operand is a byte address. 
If the second operand is a number from 9 through 15 or is a 0, the first operand is a word 
address. 
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The base address in Register 12 determines the address of the device to which the first 
data bit is sent. Subsequent bits are sent to devices having the next consecutive sequential 
addresses. 

The bit sent to the first device comes from the rightmost bit in the byte or word. The second 
bit sent out comes from the next bit to the left in the byte or word. Any other bits sent 
out come from the next bits to the left in the byte or word; that is, bits are sent out from 
the byte or word from right to left. 

For example, consider the following program segment. 

LI 	R12,>200 

• 
LDCR @PUTTY,10 

Suppose word address PUTTY contains hexadecimal 9ABC, a binary 1001 1010 1011 1100. 

The first bit sent out comes from the rightmost bit in PUTTY or bit position 15. It goes 
to the device whose address is hexadecimal 100. Hex 100 is the CRU hardware base 
address in Register 12. The second bit sent out comes from bit position 14 in PUTTY and 
goes to the device with an address of hexadecimal 101. The third bit sent out comes from 
bit position 13 in PUTTY and goes to the device with an address of hexadecimal 102. 
Ten bits are transferred. The last bit sent out comes from bit position 6 in PUTTY and 
goes to the device with address hexadecimal 109. 

	 > 10th bit to >109 

	 > 	3rd 	bit 	to 	>102 

	> 	2nd 	bit 	to 	>101 

	> 	lot bit to >100 

1 0 1 I 1 1131141151 

PUTTY 111  .. 111 	. 	• 1 	11 	01 	01 
-/- +--+ -/- 
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17.3.2 The Store Communication Register Instruction (STCR) 

The Store Communication Register instruction (STCR) transfers a number of bits it 
memory from output devices with consecutive bit addresses. The instruction requires t1 
operands. The first operand can use any of the five general addressing modes and is t 
word or byte address of the memory location that receives the transferred bits. The secoc 
operand is a number in the range of 0 through 15 that specifies the number of bits to sen 
A number of 0 means that 16 bits are transferred. 

If the second operand is a number from 1 through 8, the first operand is a byte addre 
If the second operand is a number from 9 through 15 or is a 0, the first operand is a wo 
address. 

The base address in Register 12 determines the address of the device from which tl 
first data bit is transferred. Subsequent bits are transferred from devices having the 11€ 

consecutive sequential addresses. 

The bit transferred from the first device goes into the rightmost bit in the byte or wor 
The second bit goes to the next bit to the left in the byte or word. Any other bits transferr 
in go to the next bits to the left; that is, bits transferred in fill the byte or word from rig 
to left. Any unfilled bit positions in the byte or word are forced to zero. 

For example, consider the following program segment. 

LI 	R12038D*2 

STCR R9,5 

Suppose Register 9 contains hexadecimal F72D (a binary 1111 0111 0010 1101) before 
STCR instruction is performed. 

The STCR instruction transfers five bits into Register 9. A count of 5 establishes the fi 
operand as a byte address. Since register direct addressing is used for the byte operatic 
the left byte of Register 9 receives the five data bits. The first bit transferred goes to 
position 7 in Register 9; the second bit goes to bit position 6; the third bit goes to bit positi 
5; and the fifth, and last bit, transferred in goes to bit position 3 in Register 9. Since 
positions 0 through 2 in the left byte are unfilled, these bit positions are forced to ze 
The right byte of the register is unaffected. 

The first bit transferred is determined by the base address in Register 12. Since Regis 
12 contains a hardware base address of hexadecimal 38D, the first bit comes from t 
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+ 

R9 	1 

01 

01 

11 

01 

21 

01 

1 

11 

+ 	 

, 
1 	51 

11 	01 

61 71 81 91101111121131141151 
+ 

01 11 01 01 11 01 11 11 01 11 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

< Zeros> 	 <---- Unaffected ----> 

+ 

1 	i 

< 5th bit from >391 
< 4th bit from >390 
< 3rd bit from >38F 
< 2nd bit from >38E 
< 1st bit from >380 

CRU and External Instructions 

device with an address of hex 38D. The second bit comes from the device with an address 
of hex 38E, and so forth. The fifth bit comes from the device with an address of hex 391. 

Suppose these devices are individual switches where a one bit means a switch is on and 
a zero bit means the switch is off. Further suppose that the switches at the following 
addresses are on or off as indicated below. 

Switch Address 	 State 

>380 	 On 

>38E 	 Off 

>38F 	 Off 

>390 	 On 

>391 	 On 

After the STCR instruction is performed, Register 9 contains hexadecimal 192D. 

17.4 The External Instructions (IDLE, RSET, LREX, CKON, CKOF) 

There are five instructions in the TI Home Computer's instruction set classified as 
external instructions. These instructions are reserved for very special functions within 
the computer and, generally, should not be used in your programs. 

Each of these instructions causes the central processor to generate specific signals that 
can trigger functions defined by other electronic components in the computer. The 
inappropriate use of these instructions can cause unpredictable results. None of these 
five instructions require an operand. 

17.4.1 The Idle Instruction (IDLE) 

The Idle instruction (IDLE) places the central processor in the idle state. When an IDLE 
instruction is performed, the computer stops performing any other instructions and simply 
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performs the IDLE instruction over and over again. The computer remains in the idle 
state until an interrupt signal occurs from some device. 

17.4.2 The Reset Instruction (RSET) 

The Reset instruction (RSET) puts zeros into the interrupt mask which is the rightmost 
four bits in the Status Register. This is a way of preventing all but the most important 
interrupt signals from causing an interrupt. 

17.4.3 The Other External Instructions (LREX, CKON, and CKOF) 

The other External instructions (LREX, CKON, and CKOF) do not directly affect the 
operation of the central processor. 

Program Example 

In the last chapter, the example program accepted an alphabetic key pressed on the 
keyboard and translated and sounded the Morse code for that that character. This 
program simulates a telegraph key. Whenever you press the <function> key, a sound 
is made. When you release the key, the sound stops. The program uses one of the CRU 
instructions to determine when a specific key is pressed and when it's released. 

Look at the listing for the program. 

99/4 RCIEMIJLER 
VERSION 

0001 
0002 

1.2 
IDT 'SOUND' 

PAGE 0001 
MAKE A SOUND BY PRESSING A KEY 

0003 4 	 EXTERNAL REFERENCES 
0004 REF SOUND REFERENCE SOUND PORT 

000E 
000E 4 	 ETUATED VALUES 

0007 2000 DEBNCE ECU )2000 DELAY TIME TO WAIT ON BOUNCING KEY 
000E 0007 FUNCTN EOU 7 DISPLACEMENT FOR FUNCTION KEY 

0009 
0010 0000 02E0 LWPI WS INITIALIZE WORKSPACE POINTER 

0002 0028' 
0011 0004 04CC CLR R12 POINT TO KEYBOARD 

0012 000E 1F07 CHEKEY TD FUNCTN TEST KEY 

0013 000C 13FE JET S-2 WAIT UNTIL 	IT'S DOWN 

0014 000A 0300 LI R10.)9100 TURN ON 

000C 9100 

0015 000E DEOP MOVE R10. ABOUND TONE 

0010 0000 

0016 0012 0202 LI R2.DEBNCE INIT R2 TO DEROUNCE DELAY COUNT 

0014 2000 

0017 001E. 0602 DEC R2 WAIT FOR KEY 

0018 0018 IEEE JNE 9 - 2 TO STOP BOUNCING 

0019 001A 1F07 TB FUNCTN TEST KEY 

0020 001C IEEE JNE s-2 WAIT UNTIL 	IT'S UP 
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0021 001E 020A 	 LI 	R10,)9F00 	TURN OFF 
0020 9F00 

0022 0022 DEOA 	 MOVB RIO,ASOUND 	TONE 

0024 0010' 

e: 0026 10EF 	 2116 CHEKEY 	GD WRIT FOR KEY TO BE PRESSED AGAIN 
e:. 
Z0-5 0028 	 WS 	BSS 32 	 WORKSPACE 

0026 	 END 

99/4 ASSEMBLER 
VERSION 1.2 PAGE 0002 

' 	CHEKEY 000E DUNCE 2000 FUNCTN 0007 RO 0000 

R1 0001 RIO 000A RII 0006 R12 000C 
R13 000D R14 000E 1115 000F R2 0002 
R3 0007 R4 0004 115 0005 RG 0006 
R7 0007 RE 000E R9 0009 E SOUND 0024 

' 	WS 0028 

0000 ERRORS 

The REF directive (statement 4) references the symbol SOUND, a byte address that is 
used to give commands to the sound processor. 

There are two EQUated values. DEBNCE is equated to hexadecimal 2000 in statement 
DEBNCE is a loop counter used to create a program controlled timing loop to wait for 

the key to stop bouncing (making intermittent contact) when the operator presses it. The 
second EQUated value is FUNCTN. FUNCTN is equated to the value 7 in statement 
8. This value is the CRU I/O address of the <function> key on the keyboard. This is 
the key the operator presses to make a sound. 

The entry point of the program is the LWPI instruction at statement 10. Statement 11 
establishes a base address of zero in Register 12 for CRU addressing. 

The TB instruction labeled CHEKEY tests the state of the <function> key. The state 
of the key is a logic one if it is not pressed and a logic zero if it is pressed. If the key is 
not pressed, the JEQ instruction at statement 13 jumps back to the TB instruction to test 
the key again. The program remains in this two-instruction loop, repeatedly testing the 
key until the key is pressed. 

When the key is pressed, the program falls out of the loop and the two instructions at 
statements 14 and 15 command the sound processor to make a sound. The program then 
initializes the contents of Register 2 to DEBNCE (statement 16) and performs a two-
instruction programmed control timing loop (statements 17 and 18). The purpose of this 
loop is to wait for the key to stop bouncing before checking for the release of the key. 

In statement 19, the program uses another TB instruction to determine when the key is 
released. The two-instruction loop composed of statements 19 and 20 is performed 
repeatedly until the key is released. At that time, the program falls out of the loop and 
the two instructions at statements 21 and 22 command the sound processor to be silent. 
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Then the IMP instruction at statement 23 jumps back to the CHEKEY instruction to 
for the key to be pressed again. The program is composed as an infinite loop. It has 
exit point. 

Edit, assemble, load, and run the program. 

This chapter describes the CRU and External instructions. Now all of the instructio 
in the instruction set have been described. The remaining chapters discuss other asseml 
language concepts and describe the structure of the TI Home Computer's machine cod 
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OTHER ASSEMBLER LANGUAGE CONCEPTS 

This chapter discusses a variety of topics relevant to assembly language programming: 

• operand expressions 

• program relocation 

• assembler directives 

• assembler errors 

• a comparison of some of the different utility packages for running and developing 
assembly language programs 

18.1 Operand Expressions 

Expressions are used in the operand field of a statement. An expression can include one 
or more constants or symbols and arithmetic operators. The most common arithmetic 
operators are these. 

Arithmetic 
Meaning 

Operator 

positive or addition. 

minus or substraction. 

multiplication. 

division. 

As an example, in the statement 
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ORANGE MOV @PEEL+2,R6 

PEEL + 2 is an expression. The instruction moves the contents of the location with the 
address PEEL + 2 to register 6. If PEEL has an address value of hexadecimal B4A2, then 
the address value of PEEL + 2 is hexadecimal B4A4. 

Expressions can be simple or they can be complex. An expression can consist of simply 
a constant. The following statements are examples of this. 

SBO 9 

TO 	-3 

Expressions may include several constants and symbols with more than one arithmetic 
operator. For example, the statement 

CLR @QUARK+14/6*2 

clears the contents of the word with the address that is determined by the expression 
QUARK +14/6*2. When evaluating an expression, most assemblers perform the 
arithmetic operations from left to right. In this example, suppose the address value of 
QUARK is hexadecimal A6B4 (decimal 42676). The assembler evaluates the expression 
left to right like this. 

QUARK 	= 42676 
QUARK +14 = 42690 
QUARK+14/6= 7115 
QUARK +14/2 14230 (hexadecimal 3796) 

The instruction clears the contents of location hexadecimal 3796. This example is extreme. 
Most likely, you won't encounter expressions that complex. 

18.2 Relocation 

The Assembler included with the Editor/Assembler package is a relocatable assembler. 
This means that it can assemble a source program and construct an object program so 
the object code can be loaded at different locations in memory. The object program 
requires a relocating loader to be able to load the object code into different locations. 

There may be some statements, though, that you don't want to be relocatable. For 
example, you might want the constant ten in a specific, physical memory location with 
an address that remains the same. Sections of a program may be relocatable and other 
sections non-relocatable (absolute). 
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During assembly, the Assembler uses a location counter to assign location values to 
program statements. As each statement is assembled, the location counter is incremented 
by the length of the assembled item. 

The $ symbol is used to represent the current value of the location counter. When the 
$ symbol is used in an expression in the operand field of a statement, you can read the 
symbol as "this location." For example, the statement 

JMP $.+5 

can be read as jump to "this location" plus 8. 

18.3 Assembler Directives 

An assembler directive gives directions to the assembler during the assembly process. 
The previous chapters have introduced a few assembler directives such as BSS, DATA, 
and END. This section describes several of the more commonly used directives. 

18.3.1 Directives that Define the Contents of Memory 

Some directives define the contents of memory. These directives include DATA, BYTE, 
and TEXT. 

18.3.1.1 The DATA Directive 

The DATA directive defines a word of memory with a specific value in it. For example, 
the statement 

DATA 10 

defines a word of memory that contains ten. 

You can assign a name to the value with the DATA directive. For example, the statement 

DECA DATA 10 

assigns the name DECA to the constant 10. 
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You can use symbols in expressions in the operand field of a DATA directive. 
example, the statement 

DONUT DATA HOOPLA-6 

assigns the name DONUT to a memory word containing the value of HOOPLA m 
6. 

You can use more than one operand in the operand field of a DATA directive. 
example, the statement 

CTABLE DATA 5,4,3,2,1,0, - 1, -2, -3, -4, - 5 

defines a table of eleven consecutive words. The first word, containing a constant c 
is named CTABLE. The second word, containing a constant of 4, could be addressed v 
the expression CTABLE+2. 

18.3.1.2 The BYTE Directive 

The BYTE directive is similar to the DATA directive except it defines a byte of mem 
with a specific value it, rather than a word.  

For example, the statement 

COUZO BYTE 8,-128,>40,0 

defines the content of four consecutive bytes in memory. The first byte contains the va 
8; the second byte contains the value minus 128; the third byte contains the va 
hexadecimal 40; and the fourth byte contains the value 0. The name of the first byte 
CRUZO. 

If Register 9 contains the value 2 and Register 4 contains hexadecimal 0A7C, then 
statement 

AO @CRUZO(R9),R4 

adds the two byte values hexadecimal 40 and OA. 
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'or 18.3.1.3 The TEXT Directive 

The TEXT directive causes the assembler to put the ASCII character codes for specific 
characters into consecutive bytes of memory. The characters whose character codes are 
assembled are in the operand field surrounded by single quote marks (apostrophes). 

For example, the statement 

or 	MESS 	TEXT 'GERONIMO!' 

places the ASCII character codes for the characters G, E, R,0, N, I, M, 0, and ! in 
consecutive bytes of memory. 

The name MESG is assigned to the address of the first character. 

Suppose the assembler's location counter contains hexadecimal 106 when this TEXT 
directive is encountered. 

The Assembler places the following hexadecimal values into the following words of 
memory. 

Word Address Contents 

>0106 >4745 
>01C8 >524F 
>01CA >4E49 
>01CC >4D4F 
>010E >21?? 

Immediately after assembling the TEXT directive, the location counter contains 
hexadecimal 01CF and the contents of byte address hexadecimal 01CF is not yet defined. 

The TEXT directive is often used to compose a message that can be displayed on a screen 
or printed. Sometimes a message may have several lines of text. To end a line of text 
and begin another, you can embed the ASCII character codes for a carriage return and 
line feed within the text string. 

For example, the statements 

PROMPT TEXT 'WHEN READY' 

BYTE >05,>05 

TEXT 'PRESS ANY KEY' 

1us 

5, 
th 

y 
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causes the characters WHEN READY to appear on one line and the characters PRESS 
ANY KEY to appear on another line. Hexadecimal OD is the ASCII character code for 
a carriage return and hexadecimal OA is the ASCII character code for a line feed. There 
are some video displays, printers, and other similar devices which may not require the 
line feed character in order to put characters on another line. 

18.3.2 The EVEN Directive 

Sometimes, especially following a BYTE or TEXT directive, the location counter value 
is an odd number. The EVEN directive forces the location counter value to the next larger 
even number so that the object code assembled after the EVEN directive will begin on 
a word boundary. 

For example, suppose the statement 

BYTE -88,12,-1 

left the location counter with a value of hexadecimal 13D (an odd number). An EVEN 
directive following the BYTE directive 

BYTE -88,12,-1 

EVEN 

forces the location counter value to hexadecimal 13E, the next larger even value. If the 
location counter value is already an even number, the EVEN directive doesn't change 
it. 

18.3.3 Directives that Reserve But Do Not Define the Contents of Memory 

Two directives that reserve memory space for use in a program but don't define the 
contents of those memory locations are BSS and BES. 

18.3.3.1 The Block Starting with Symbol Directive (BSS) 

The Block Starting with Symbol Directive (BSS) reserves one or more bytes of memory 
but doesn't define the values those bytes contain. The operand of the BSS directive 
specifies how many bytes to reserve. For example, the statement 

BSS 20 
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reserves 20 bytes (10 words) of memory. 

You can use a label with the BSS directive. A label is the name given to the first location 
of the area of memory. 

For example, the statement 

BUFFER BSS 80 

reserves 80 bytes (40 words) of memory and BUFFER is the name assigned to the first 
location. 

The BSS directive is often used to reserve an area of memory for a program's workspace. 
For example, the statement 

USE 	BSS 32 

reserves a 32-byte (16-word) area of memory and assigns the name WSP to the first 
location. The statement 

LUPI WSP 

can be used to load the Workspace Pointer with the address value of WSP. 

18.3.3.2 The Block Ending with Symbol Directive (BES) 

The Block Ending with Symbol directive (BES), like the BSS directive, also reserves a 
block of memory. The BES directive, though, assigns to the label the value of the address 
immediately following the block of memory. 

For example, the statement 

STACK BES >100 

reserves a 256-byte (hexadecimal 100) area of memory. If the value of the location counter 
is hexadecimal 10E when the BES directive is encountered, the location counter value 
is advanced to hexadecimal 20E and the label STACK is assigned the address value 
hexadecimal 20E. 
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18.3.4 Directives that Initialize the Location Counter 

Two directives that initialize the assembler's location counter are RORG and AOR 

18.3.4.1 The Relocatable Origin Directive (RORG) 

The Relocatable Origin Directive (RORG) causes the section of the program that foil 
to be relocatable. It permits the object code for that section of the program to be loa 
into different physical memory locations. With the Editor/ Assembler packa 
assembler, the object code is relocatable by default and an RORG directive isn't nee 
unless you want it. 

If an operand is used with the RORG directive, the location counter is set to that va 
If no operand is used, the location counter is set to zero or to the last value it had w 
assembling the last relocatable section of the program. 

For example, the statement 

RORG 

specifies that the following section of the program is relocatable and, if this is the 
relocatable section of the program, the location counter is set to zero. 

The statement 

RORG $+16 

advances the location counter by 16 from its current value. 

18.3.4.2 The Absolute Origin Directive (AORG) 

The Absolute Origin directive (AORG) causes the section of the program following 
be non-relocatable. It causes the object code for that section of the program to be loE 
into specific and fixed (absolute) memory locations. 

If an operand is used with the AORG directive, the location counter is set to that v, 
For example, the statements 

AORG >FFFC 

DATA LOADWP 

DATA LOADPC 
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cause the two word values LOADWP and LOADPC to occupy the fixed locations 
hexadecimal FFFC and FFFE. 

18.3.5 The Equate Directive (EQU) 

The Equate directive (EQU) assigns (or equates) a name to a value without reserving a 
NS 
	word in the program's memory space. For example, the statement 

TWELVE EQU 12 

assigns the name TWELVE to the constant 12. TWELVE can then be used anywhere in 
a statement where the constant 12 can be used. For example, the statement 

ie. 
	 LI R7,TWELVE 

en 	
is the equivalent to the statement 

LI 57,12 

As another example, the statement 

NEG @BLADE (TWELVE ) 
rst 

is equivalent to the statement 

NEG @BLADE (12) 

which is equivalent to the statement 

NEG @BLADE (R12) 

You can even use the equated name with an assembler directive. For example, the 
statement 

DATA TWELVE 

to 
	reserves a word of memory with a content of 12. 

ad 

e. 

18.3.6 The Book End Directives (IDT and END) 

There are two directives that you can think of as bookends for a program. These directives 
are the IDT and END directives. 
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18.3.6.1 The End Directive (END) 

The End directive (END) should be in the last statement of a program. It tells the 
Assembler to stop assembling. You can use a label with the END directive. A label is 
simply assigned the value of the location counter when the directive is encountered. You 
can also use an operand with the END directive. The operand lets you define the entry 
point of the program. That is, it specifies the instruction to be performed first when the 
program runs. 

For example, the statement 

END OPEN 

identifies OPEN as the name of the instruction to be performed first when the program 
runs. OPEN should be a label attached to that instruction. 

Note 

With the Editor/Assembler package's Loader, using an operand with an 
END directive causes the program to start running as soon as it's loaded. 

18.3.6.2 The Identification Directive (IDT) 

The Identification directive (IDT) is optional. However, if its used, it should be the first 
statement in a program. It assigns a name to the program. The name of the program is 
specified in the operand field. The name can have up to eight characters and the 
characters are surrounded by single quote marks (apostrophes). For example, the 
statement 

NT 'MODULE X' 

assigns the name MODULE X to a program. 

18.3.7 The External Linkage Directives (DEF and REF) 

When creating lengthy programs, it is often convenient to divide the program into 
separately assembled modules and have a linking loader load the object programs into 
memory together. The DEF and REF directives help link together separately assembled 
programs. 
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18.3.7.1 The External Definition Directive (DEF) 

The External Definition directive (DEF) identifies those symbols that are defined in a 
program and that can be referenced by other programs. To be used by other programs, 
a symbol must appear in the label field of a statement in the program and also be included 
in the operand of the DEF statement 

For example, the statement 

DEF OPEN,TWELVE 

identifies the symbols OPEN and TWELVE as symbols that can be referenced by other 
programs. These symbols must be defined by the program that includes the DEF directive. 
To be defined, a symbol must appear in the label field of a statement. 

18.3.7.2 The External Reference Directive (REF) 

The External Reference directive (REF) identifies those symbols which are used in a 
program and defined in another program. These symbols are included in the operand 
field of the REF statement. For example, the statement 

REF PIGARN,CRAZYR,CUPID 

identifies the symbols PIGARN, CRAZY8, and CUPID as symbols used in the program 
and defined in another program. 

As an example, the statement 

MOv *R6+,@PIGARN 

moves a word to memory location PIGARN that is defined in a different program from 
this one. 

When programs are assembled separately and reference symbols between them, the 
object programs must be loaded and linked together by a linking loader. Before you run 
a program that references a symbol in another program, the program that defines the 
symbol must be loaded. The loader included with the Editor/Assembler package is 
capable of loading and linking programs together. 
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18.4 Assembler Errors 

Some things can go wrong when you assemble a program. Whenever the assembler fie 
a statement that it can't assemble or encounters a situation that it can't handle, it gil 
you an error message. These error conditions are classified as fatal or nonfatal. 

Fatal errors are grim. The assembler just can't go on. Fortunately, fatal errors dd 
happen often. Fatal errors occur when the assembler can't read or write to a disk for sol 
reason, or the assembler runs out of memory. If the assembler encounters a fa 
condition, it displays an error message on the screen and stops the assembly proces 

Nonfatal error conditions don't stop the assembly process. They nearly always result fri 
writing a statement incorrectly. These are the error conditions that you'll encounter trE 
often. Write enough programs and you'll get quite a collection of them. When i 
assembler encounters a nonfatal error, it displays the statement in error and 
appropriate admonishment on the screen. And to further add to your embarassemd 
it also prints the error message right on the listing. 

Even a program that's not up to the assembler's standards has some value. It can set= 
as a bad example. Here's the listing of a program which has, perhaps, a high enotE 
percentage of errors to qualify for a world record. 

99/4 ASSEPINLCA 
VERSION 1.2 PAGE 0001 

0001 IDT 	'NAME TOO LONG' 	SHOULD DE E DR LESS CHARACTERS 

OUT OF RANGE - 0001 
0002 0000 1000 	A COMMENT LINE SHOULD BEGIN WITH AN ASTERICS (I). 

CYMBAL TRUNCATION - 	0002 
- 0002 

0007. LWPI WS OPERANDS MUST MATCH DEFINED SYMBOLS 

• ......Lr.NLu SYMBOL - 0003 
0004 0006 C040 	STARTUP MOV R0.R1 LABELS MUST BE E CHARS OR LESS 

SYMBOL TRUNCATION - 	0004 
0005 0006 1000 	 MOVE RI.R2 OPCODES MUST BE SPELLED RIGHT 

INVALID MNEMONIC - 0005 
0006 0008 1000 	LABEL MOV 	R2.R3 LABELS MUST BEGIN IN FIRST COLUMN 

INVALID MNEMONIC - 0006 
0007 000C 1000 	MOV 	R4.R5 OPCODES CAN'T BEGIN IN FIRST COLUMN 

INVALID MNEMONIC - 0007 

0008 000E 	1095 	 JMP $+300 JUMP TARGETS MUST BE 	IN RANGE 
OUT OF RANGE - 0008 

0009 0010 0206 	 LI RE,DBUFF DON'T USE B WITH IMMEDIATE OPERANDS 
0012 0000 
SYNTAX ERROR - 0009 

0010 0014 2820 	 YOR 9MASR..R7 GOP 2ND OPERAND MUST GE REG DIRECT 
001E 	001E' 

4,44, GVUTAX ERROR - 00'0 

0011 ee 	CHICC FORTY OPERAND SYMBOLS MUST BE DEFINED 

SPACES MUST BE BETWEEN OPERANDS 
J012 

0013 00 , A 	 WSP 	BSA BSS DIRECTIVE REQUIRES AN OPERAND 
INED SYMBOL - 	' 

0014 Z3.- 1000 	THE LAST EMENT SHOULD CONTAIN AN END DIRECTIVE 
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..ww. INVALID MNEMONIC - 0014 
0015 	 END 
THE FOLLOWING SYMBOLS ARE UNDEFINED: 

COMMEN 
WS 
MOVE 
I 123,1 

LAST 

't 
e 

tl 

....* 	END ASSUMED 

99/4 ASSEMBLER 
VERSION 1.2 

- 0015 

PAGE 0002 
' 	A 	0000 U BSS 0000 ' BUFF 0018 U COMMEN 0000 
U FORTY 	V000 U LABEL 0000 U LAST 0000 ' MASK 0018 

MOV 	:.: U MOVE 0000 RO 0000 RI 0001 
R10 	::: R11 000B R12 000,  R13 000D 
R14 	.'.. R15 000F R2 ::: R3 0003 

it R4 	OZZ., R5 0005 RE ::: R7 0007 

e 

	

R8 	0002 

	

U WS 	0000 ' 
RE 
WSP 

0009 
00I9 

. STARTU ee: ' THE 001A 

1 0016 ERRORS 

t , 

e 

h 

At the bottom of the listing, notice the message ***** END ASSUMED - 0015. It means 
the source program does not contain an END directive. Statement number 15 was added 
by the assembler when it encountered the end of the source program disk file. 

18.5 Comparison of Utility Packages 

A variety of assemblers and associated utility programs available from Texas Instruments 
and, perhaps, from other sources that you might use to assemble a program. The specific 
assembler you choose depends upon what kind of equipment you have and how much 
money you want to spend.  

This book illustrates the use of the assembler in the Editor/Assembler package as an 
example of the features common to most assemblers. Other assemblers may have some 
more features, fewer features, or different features. 

Here's a brief comparison of some of the assemblers and associated utility programs that 
are available. 

18.5.1 Editor/Assembler Package 

The Editor/Assembler package includes four utility programs: 

• an editor for composing source programs 
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• a relocatable assembler (one which can produce relocatable object code) 

• a relocating linking loader (one which can load and link several individual object 
programs 

• an extensive debugger 

The package comes with a comprehensive manual that describes the detailed architecture 
of the TI Home Computer, including the programmable components that directly control 
graphics, sound, and speech. 

To run the Editor/Assembler package requires at least one disk drive and a Memory 
Expansion unit in addition to the computer console and a display. 

18.5.2 The Mini Memory Module 

The Mini Memory Module is a Command Module that contains 4K bytes of battery-
backed CPU RAM and ROM-resident programs. These programs allow you to tie TI 
BASIC programs and assembly language programs together. The Mini Memory Module 
comes with an assembler on a cassette tape and a debugger that's resident in the Mini 
Memory Module's ROM. 

You can load the assembler from a cassette into the RAM and use it to assemble programs. 
The assembler is a line-by-line assembler which means that each statement is assembled 
and the resulting object code stored in memory as each statement is typed. 

This is different from using the Editor/Assembler package where you use an editor to 
type in all the source statements before they are assembled. With the Mini Memory 
Module, there's no editor. You simply type in the statements on the keyboard and they're 
assembled as you type them. If you need to reassemble a program again, you type it all 
again. 

The object code created by the line-by-line assembler is stored into the CPU RAM in 
the Mini Memory Module. You can't assemble very large programs, though. The Mini 
Memory Module has only 4K bytes of CPU RAM and the assembler needs about half 
of that 4K for itself. (You can assemble large programs by adding a Memory Expansion 
unit.) 

The line-by-line assembler is a nonrelocatable assembler and accepts only a few 
directives. 
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There's no loader. The object code is stored directly in memory as the source statements 
are assembled. A debugger is included in the Mini Memory Module's ROM and has a 
minimal number of commands to help you debug a program. 

The big advantage of the Mini Memory Module is that it gives you assembly language 
capability without having to purchase a disk drive or a Memory Expansion unit. 

18.5.3 The p-System Assembler and Linker 

The UCSD p-System gives you the ability to develop and run programs written in other 
high-level languages besides BASIC. In addition, an assembler is available for use with 
the UCSD p-System that lets you develop assembly language programs that can be used 
with these other languages. 

The assembler is relocatable and includes a larger number of directives than the one 
with the Editor/Assembler package. The assembler is also a macro assembler, which 
means you can create your own macro statements. When the assembler encounters a 
macro statement, it generates a whole series of individual source statements and 
assembles the source statements as if they were included directly in the source program. 

A linker is also available which can link assembly language object programs with high-
level language programs. 

The UCSD p-System requires a Memory Expansion unit, a p-System peripheral, and at 
least one disk drive in addition to the computer console and a display. 

18.5.4 Other Assemblers 

Other assemblers exists that could conceivably be used to develop assembly language 
programs for the TI Home Computer. Texas Instruments provides other assemblers 
intended for those individuals and organizations that develop commercial programs. 
These assemblers are designed to run on minicomputers or bigger computers. 

There are also assemblers that run on lower-cost equipment. As one example, Texas 
Instruments manufactures a single-board microcomputer called the University Module. 
Included in the ROM on the board is a line-by-line assembler similar to the line-by-line 
assembler that comes with the Mini Memory Module. 

These assemblers all recognize the same instruction mnemonic operation codes, expect 
basically the same syntax, and accept all or many of the same assembler directives 
discussed in this book. 
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MACHINE CODE FORMATS 

This chapter explores the structure of the TI Home Computer's machine code. A 
knowledge of machine code can give you an edge when you need to debug a program. 

19.1 Relationship of Machine Code to Assembly Language 

Machine language is what the computer needs in order to understand what to do. 
Assembly language is a domesticated form of machine language. It gives you the 
advantage of directly controlling a computer without having to deal with the ones and 
zeros of machine code. 

Although you normally would not choose to write programs in machine language and 
you don't have to when there's an an assembler available, it's often helpful to understand 
the format of machine code. When debugging a program, for example, you might need 
to change an instruction. Rather than take the time to leave the debugger, use an editor 
to change the statement, re-assemble, and reload the object program, it's faster to use 
the debugger to directly change the machine code. Also, sometimes, you may be using 
the debugger to examine the machine code of a program and you want to know the kind 
of instruction you're looking at. In these situations, a knowledge of how machine code 
is structured is helpful. 

19.2 Determining the Number of Words of Machine Code 

All machine language instructions of the TI Home Computer require an even number 
of bytes of machine code. All instructions require either two, four, or six bytes of machine 
code or one, two, or three words. You can easily determine the number of words of 
machine code that an instruction requires by examining the assembly language form of 
the instruction. 

All instructions require at least one word of machine code. A few instructions always 
require two words of machine code. Some instructions may require two, or even three, 
words of machine code, depending upon the addressing modes used by the operands. 
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The only instructions that always require two words of machine code are those with an 
immediate operand. You can identify these instructions easily because the last letter of 
the mnemonic operation code is the letter, I; for example, LI, Al, ORI, etc. 

The instructions that have operands that can use the general addressing modes may 
require two or three words of machine code. With these instructions, an additional word 
of machine code is required for each operand that uses either symbolic addressing or 
indexed addressing. These are the operands that require an at sign (@) with them. An 
instruction that has only one operand that can use the general addressing modes may 
require either one or two words of machine code. It depends upon the specific addressing 
mode used by that operand. An instruction which has two operands where both of the 
operands can use the general addressing modes may require one, two, or three words 
of machine code. 

An additional word of machine code is required for each valid at sign (@) in the 
instruction. For example, the instruction 

MOV *R7+,@ARGIE 

requires one additional word of machine code for a total of two words. 

The instruction 

SZC @WILMA,@ARGIE 

requires a total of three words of machine code (one word plus two more for the two at 
signs). 

With this background, let's see how the machine code is structured. 

19.3 Machine Code Fields 

Just as assembly language statements contain different fields of information, machine 
code also has different fields. Within each instruction's machine code, there is a field 
of bits with a unique and fixed pattern that identifies the instruction's operation. For 
example, there's a unique pattern of bits that identifies a MOV instruction; there's a 
unique pattern that identifies a CLR instruction; and there's a unique pattern that 
identifies each of the other instructions. 

There are some fields within the machine code with contents that vary depending upon 
the operands used with the instruction. 
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You can determine which bits in the machine code of an instruction are fixed and which 
ones are variable by examining the instruction summary for the instruction. Appendix 
A contains the instruction summaries which are arranged in alphabetical order according 
to the instructions' mnemonic operation codes. For example, turn to the instruction 
summary for the MOV instruction and look at the last item in the instruction summary, 
titled "Machine Code." The line labeled "Binary" contains the state of the specific bits 
in the machine code that are fixed. With the MOV instruction, the first four bits in the 
first word are fixed. These four bits are a binary 1100. In machine code, a binary 1100 
in the first four bits of an instruction means "MOV." 

Look at the instruction summary for the A instruction. With the A instruction, the first 
four bits are also fixed. These four bits are a binary 1010. In machine code, a binary 1010 
in the first four bits of an instruction means "A." 

Often, more than four bits are fixed in the machine code. After all, if only four bits were 
used to determine operation codes, the computer could only have 16 instructions. 

Turn to the instruction summary for the COC instruction and look at the machine code 
format. The first six bits are fixed. They are a binary 001000. 

Turn to the instruction summary for the SRL instruction and look at the machine code 
format. The first eight bits are fixed. They are a binary 00001001. 

Turn to the STWP instruction summary and look at the machine code format. The first 
twelve bits are fixed. They are a binary 000000101010. 

There are a few instructions in which all the machine code bits are fixed. For example, 
turn to the RTWP instruction summary and look at the machine code format. All sixteen 
bits in the one word of machine code are fixed. In machine code, a binary 0000 0011 1000 
0000 for hex 0380) means "RTWP." 

There are no variable bits in the machine code of the RTWP instruction because the 
instruction has no operands. Variable bits appear in the machine code of those 
instructions that have operands. The contents of the variable fields depend upon the 
specific operands used with the instruction. 

In the machine code description of an instruction summary the line titled "Hex" contains 
the hexadecimal digits that correspond to the fixed bits of the machine code. Only those 
hex digits are shown for which the corresponding machine code nibble is completely 
defined. A hex digit is not shown for any nibble which contains bits that vary depending 
upon the operands. Hex digits are shown only for the bits in the first word of machine 
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code because the bits in any other word of machine code always vary depending ul 
the operands. 

Let's explore these variable fields more closely. 

19.4 The R Field 

Turn to the instruction summary for the STWP instruction and look at the machine cl 
description. The first twelve bits are fixed; the last four bits are variable. The last 
bits make up an R field which is indicated by the R in that field. The STWP instruct 
requires only one operand and that operand must be a register (the operand uses e 
register direct addressing). The R field in the machine code holds the register nurr0 
of the operand. For example, the instruction 

STWP R6 

results in a binary 0110 in the R field. 

The instruction 

STWP R9 

results in a binary 1001 in the R field. The entire word of machine code for the instruci 

STWP R9 

is a binary 0000 0010 1010 1001 (or hexadecimal 02A9). 

An R field in a machine code word is always four bits big and holds the number 0 
register. 

19.5 The C Field 

Turn to the instruction summary for the SRL instruction and look at the machine c! 
description. The first eight bits are fixed and the last eight bits are variable. The last ei 
bits include a four-bit R field and a four-bit C field. The SRL instruction requires 
operands: a register number (R) and a count (C). The R field holds the register nun( 
and the C field holds the count. 

For example, the instruction 
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an 	results in an R field of binary 1010 and a C field of binary 0010. The complete word of 
marline code is a binary 0000 1001 0010 1010 or hexadecimal 092A. 

The G field in a machine code word allows for four bits and holds a count in the range 
of 0 through 15. 

19.6 The IOP Field 
de 
ur 
	Turn to the LI instruction summary in Appendix A and look at the machine code 

on 
	

description. The Load Immediate instruction has an immediate operand and requires two 
ily 	words of machine code. The requirement for a second word of machine code is indicated 
)er 
	

in the machine code description by a second word with a solid bottom line. 

In the first word of the machine code, the first twelve bits are fixed and the last four bits 
constitute an R field. The second word of machine code contains the 16-bit immediate 
operand. 

The LI instruction requires two operands: a register number and an immediate operand. 
In the machine code, the R field holds the register number and the immediate operand 
holds the immediate operand. Immediate operands are always 16 bits; there are no 8-bit 
immediate operands. 

an 	As an example, the instruction 

LI Rto01234 

results in an R field of binary 1010 and an immediate operand field of binary 0001 0010 
0011 0100. 

a 
	

The first word of machine code is binary 0000 0010 0000 1010 (hexadecimal 020A); the 
second word of machine code is binary 0001 0010 0011 0100 (hexadecimal 1234), 

As another example, the instruction 

LI R12,1234 

ie 	(where 1234 is a decimal number) results in the following two words of machine code. 
it 

Binary 	 Hexadecimal 
C 	 First Word 	0000 0010 0000 1100 	020C 

Second Word 	0000 0100 1101 0010 	0402 
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An immediate operand can be a negative number. For example, the instruction 

LI R0,-1 

results in the following two words of machine code. 

Binary 	 Hexadecimal 

	

First Word 	0000 0010 0000 0000 	0200 

	

Second Word 	1111 1111 1111 1111 	FFFF 

The immediate operand field is always is 16 bits, is always the second word of the machine 
code, and contains the immediate operand. 

19.7 General Addresssing Mode Fields 

Those instructions that allow an operand to use the five general addressing modes result 
in a more complex machine code structure. 

Turn to the instruction summary for the MOV instruction and look at the machine code 
description. The first four bits are fixed, a binary 1100, and the next twelve bits vary 
according to the operands used with the instruction. These twelve bits include four fields: 
a two-bit Td field, a four-bit Rd field, a two-bit Ts field, and a four-bit Rs field. 

19.7.1 The Ts and Td Fields 

The two-bit Ts and Td fields specify the specific addressing modes that the operands use. 
The two-bit codes for the Ts and RI fields are as follows. 

	

Ts and 	Td Code 	 Addressing Mode 

	

00 
	

Register Direct 

	

01 
	

Register Indirect 

	

11 
	

Register Indirect Autoincrement 

	

10 
	

Either Symbolic (Direct Memory) or 
Indexed, depending upon the accom-
panying Rd or Rs field 
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1€1.7.2 The Rs and Rd Fields 

The Rs and Rd fields hold the register number specified by the source operand (Rs) and 
the register number specified by the destination operand (Rd), if a register is specified. 

For example, in the instruction 

MOV R9,R14 

both operands are using register direct addressing. Register 9 is the source operand; 
Register 14 is the destination operand. 

The Td field specifies the type of addressing mode for the destination operand. In this 
example, the destination operand is using register direct addressing and the Td field is 
a binary 00. 

The Rd field specifies the register number used in the destination operand if a register 
number is used. In this example, the destination operand uses Register 14 and the Rd 
field is a binary 1110. 

The Ts field specifies the type of addressing mode for the source operand. In this example, 
the source operand uses register direct addressing and the Ts field is a binary 00. 

The Rs field specifies the register number used in the source operand if a register number 
is used. In this example, the source operand uses Register 9 and the Ts field is a binary 
1001. 

The complete word of machine code is structured as follows. 

Fixed Bits 	Td 	Rd 	Ts 	Rs 

1100 	00 	1110 	00 	1001 

The 16-bit machine code word is a binary 1100 0011 1000 1001, or hexadecimal C389. 

Notice this. In the machine code, the codes for the destination operand appear to the left 
of the codes for the source operand. This format is just opposite of the order of the 
operands in the assembly language statement in which the source operand appears to 
the left of the destination operand. 

Consider a second example. The instruction 
MOV *R8,R5 

uses register indirect addressing for the source operand and register direct addressing 
for the destination operand. 

243 



Chapter 19 

In the machine code, the Ts field is a binary 01 and the Rs field is a binary 1000. ". 
Td field code is binary 00 and the Rd field is a binary 0101. 

The complete word of machine is structured as follows. 

Fixed Bits 	Td 	Rd 	Is 	Rs 

1100 	00 	0101 	01 	1000 

The 16-bit machine code word is a binary 1100 0001 0101 1000, or hexadecimal C` 

Look at a third example. The instruction 

MOV *R2+,•R15 

uses register indirect autoincrement addressing for the source operand and regi 
indirect addressing for the destination operand. 

In the machine code, the Ts field is a binary 11 and the Rs field is a binary 0010. 
Td field is binary 01 and the Rd field is a binary 1111. 

The complete word of machine is structured as follows. 

Fixed Bits 	Td 	Rd 	Ts 	Rs 

1100 	01 	1111 	11 	0010 

The 16-bit machine code word is a binary 1100 0111 1111 0010, or hexadecimal C: 

Take another example. The instruction 

MOV @>A062(R10),R7 

uses indexed addressing for the source operand and register direct addressing for 
destination operand. 

In the machine code, the Ts field is a binary 10 and the Rs field is a binary 1010. 
Td field is a binary 00 and the Rd field is a binary 0111. 

The complete word of machine is structured as follows. 

Fixed Bits 	Td 	Rd 	Ts 	Rs 

1100 	00 	0111 	10 	1010 

The 16-bit machine code word is a binary 1100 0001 1110 1010, or hexadecimal C1 

A Ts or Td field code of binary 10 is used to specify both indexed and symbolic (di 
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he 	memory) addressing. In the case of symbolic addressing, though, no register number is 
used and the accompanying Rs or Rd field is set to a binary 0000. 

As an example, the instruction 

MOV @>B83E,@>A062(R5) 

38. 	uses symbolic addressing for the source operand and indexed addressing for the 
destination operand. 

In the machine code, the Ts field is a binary 10 and the Rs field is a binary 0000. The 
Td field is also a binary 10 and the Rd field is a binary 0101. 

ter 	The complete word of machine is structured as follows. 

Fixed Bits 	Td 	Rd 	Ts 	Rs 

1100 	10 	0101 	10 	0000 
'he 

The 16-bit machine code word is a binary 1100 1001 0110 0000, or hexadecimal C960. 

A Ts or Td field code of binary 10 is used to indicate both symbolic and indexed 
addressing. When the computer interprets the machine code and sees a Ts or Td field 
with a binary 10, the computer doesn't know whether the operand is using symbolic 
addressing or indexed addressing until it looks at the accompanying Rs or Rd field. If 
the accompanying Rs or Rd field contains a non-zero value, the operand is using indexed 
addressing and the number in the Rs or Rd field is the number of the index register. If 
the accompanying Rs or Rd field contains zero, the operand is using symbolic addressing. 

Notice that an Rs or Rd field of zero when used with a To or Td field of binary 10 means 
Symbolic addressing. Therefore, Register 0 can't be used as an index register. If you 

he  specify Register 0 as an index register in an assembly language instruction, the assembler 
places the four-bit binary number of the index register (0000) in the Rs or Rd field and 
sets the accompanying Ts or Td field to a binary 10. When the computer performs the 
machine code, it responds as if the operand is using symbolic addressing. 

Whenever the machine code contains a Ts or Td field code of binary 10, an additional 
word of machine code is required. The additional word holds the 16-bit memory address 
specified in the operand. 

An additional word of machine code is required for each Ts or Td field code of binary 
:A. 	10. If both the Ts and Td field are a binary 10, two additional words are required, and 

the address value of the memory location specified in the source operand precedes the 
act 	address value of the memory location specified in the destination operand. 
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Notice in the machine code description of the MOV instruction that the machine code 
may require more than one word. The possibility of more than one word is indicated by 
the dashed lines at the bottom of the second and third lines. 

For example, the instruction 

MOV @>B83E,@>A062(R5) 

requires two additional words of machine code, one for the source operand memory 
address and one for the destination operand memory address. The three words of 
machine code are as follows. 

First 	Word >C960 

Second Word >883E 

Third 	Word >A062 

As a second example, the instruction 

MOV R4,@W1NKLE 

requires one additional word of machine code or a total of two words. 

The first word of machine code is hexadecimal C804; the second word of machine code 
contains the address value of WINKLE. 

There are some instructions that have only one operand that can use the general 
addressing modes. 

Turn to the instruction summary for the SWPB instruction and look at the machine code 
description. The first ten bits are fixed and the next six bits consist of a two-bit Ts field 
and a four-bit Rs field. The SWPB instruction has one operand, called a source operand, 
that can use the general addressing modes. 

For example, the instruction 

SWPB R11 

uses register direct addressing for the source operand. 

In the machine code, the Ts field code is a binary 00 and the Rs field is a binary 1011. 

The complete word of machine code is structured as follows. 

Fixed Bits 	Is 	Rs 

0000011011 	00 	1011 
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16-bit machine code word is a binary 0000 0110 1100 1011, or hexadecimal 06CB. 

As another example, the instruction 

SWPB @SABRE 

uses symbolic addressing for the source operand. 

The instruction requires two words of machine code. In the first word, the Ts field code 
is a binary 10 and the Rs field is a binary 0000. 

The first word of machine is structured as follows. 

Fixed Bits 	Is 	Rs 

0000011011 	10 	0000 

The first word machine code word is a binary 0000 0110 1110 0000, or hexadecimal 06E0. 
The second word contains the address value of SABRE. 

Each valid @ sign in an instruction results in a Ts or Td field of binary 10 and requires 
an additional word of machine code. 

19.8 The Displacement Field 

A Displacement field appears only in the machine code format of the single-bit CRU 
instructions (SBO, SBZ, and TB). The Displacement field holds an eight-bit value which 
the computer adds to the hardware base address in Register 12 when a single-bit CRU 
instruction is performed. 

Turn to the instruction summary for the SBO instruction and look at the machine code 
description. The instruction requires only one word of machine code. The first eight bits 
are fixed, a binary 0001 1101, and the last eight bits make up the variable Displacement 
field. The assembler puts into this field the value of the Displacement operand in the 
assembly language instruction. For example, the instruction 

SBO 3 

results in a Displacement field of binary 0000 0011. The 16-bit machine code word is a 
binary 0001 1101 0000 0011, or hexadecimal 1D03. 

The instruction 
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S00 -10 

where 10 is a decimal number results in a Displacement field of binary 1111 0110 
16-bit machine code word is a binary 0001 1101 1111 0110, or hexadecimal 1DF6 

The Displacement operand with the single-bit CRU instructions is limited to the 
of —128 to +127 because that's the range of the eight-bit signed number that goes i 
Displacement field of the machine code. If you use a Displacement operand outsid 
range, the assembler flags it as an error. 

The eight-bit Displacement field is used only with the single-bit CRU instruction. 

19.9 The PC Word Displacement Field 

A PC Word Displacement field appears only in the machine code of the jump instruc 
It's used to tell the computer how many words to add to the 
address in the Program Counter (PC) to cause a jump to the right location. 

Turn to the instruction summary for the (NE instruction and look at the machine 
description. The instruction requires only one word of machine code. The first eigF 
are fixed (a binary 0001 0110) and the last eight bits make up the variable PC 1 
Displacement field. The assembler places in this field a value equal to the numb 
words that must be added to the address in the Program Counter to cause a jump t 
correct target location. 

The PC Word Displacement field is an eight-bit field and, therefore, the number it 
field is limited to the range of an eight-bit signed number (-128 to +127). 

Recall that the Program Counter is the register in the computer's central processo 
is continually updated to hold the address of the next instruction to be performer 
the computer performs an instruction, the address in the Program Count. 
automatically increased to the address immediately following the address o 
instruction currently being performed. This is done automatically because instruc 
usually are performed in sequential order. So, when an instruction in a location is I 
performed, the address in the Program Counter points to the next location. 

This is true of all instructions, including the jump instructions. When a jump instru 
is performed, the Program Counter is pointing to the location immediately after the 
instruction. If a jump is made, the computer adds the PC Word Displacement it 
machine code to the word address in the Program Counter. The sum is the addrc 
the instruction to be performed next. 
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Notice that it's the number of words (the word displacement) that is added to the word 
address in the Program Counter. 

When writing a jump instruction in assembly language, you specify the distance to the 
target in terms of the location of the instruction, not where the Program Counter points 
when the machine code is performed. And the distance to the target is measured in bytes, 
not words. 

The assembler that translates an assembly language jump instruction into machine code 
has a way of resolving all this. It translates the distance to the target measured in bytes 
from the location of the instruction into a PC Word Displacement in the machine code 
which measures the distance to the target in words from the address in the Program 
Counter. 

Whenever the assembler encounters a jump instruction, it simply takes the byte 
displacement specified by the Target operand and divides it by two to convert the byte 
displacement to a displacement measured in words. Then it subtracts one from this 
amount to compensate for the fact that the Program Counter points to the location 
following the jump instruction when the machine code instruction is performed. 

The formula the assembler uses for translating a Target operand in assembly language 
to a PC Word Displacement in machine code is 

(N/2) - 1 

where N is the signed displacement, measured in bytes, to the target from the location 
of the instruction. 

Take an example. The instruction 

JNE $4-10 

specifies a target for the jump which is ten bytes ahead of the location of the INE 
instruction. The value of N is +10. The assembler applies the formula and derives plus 
4. 

(+10/2) - 1 = +4 

The assembler places a plus 4 in the eight-bit PC Word Displacement field (a binary 0000 
0100). The entire 16-bit machine code word is a binary 0001 0110 0000 0100, or 
hexadecimal 1604. 
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Notice in the formula that N is a signed number. For example, the instruction 

JNE $-10 

specifies a target that is ten bytes behind the location of the INE instruction and the value 
of N is —10. 

The assembler applies the formula and derives minus 6. 

(-10/2) - 1 	-6 

The assembler places a minus 6 (a binary 1111 1010) in the eight-bit PC Word 
Displacement field. The entire 16-bit machine code word is a binary 0001 0110 1111 1010, 
or hexadecimal 16FA. 

The assembler performs the same calculation even if the operand of the jump instruction 
is the label of the target instruction. The assembler simply calculates the distance in bytes 
to the target and then applies the same formula to determine the PC Word Displacement. 

For example, the instruction 

JNE ROSCOE 

specifies as a target the instruction labeled ROSCOE. Suppose the INE instruction 
occupies location hexadecimal A34E and the instruction labeled ROSCOE occupies 
location hexadecimal A32C. 

Location 	 Instruction 

>A32C ROSCOE 

 

 

>A34E 
	

JNE ROSCOE 

250 



Machine Code Formats 

The distance from the (NE instruction to its target can be calculated as follows. 

	

>A34E 	Location of JNE Instruction 

	

- >A32C 	Location of Target Instruction 

>0022 	Displacement in Bytes to the Target 

Since hexadecimal 22 is a decimal 34 and since the target is behind the jump instruction 
(a minus direction), the displacement to the target is —34. This is the number that the 
assembler uses to calculate the PC Word Displacement in the machine code. 

( -34/2) - 1 - -18 

The PC Word Displacement is —18 decimal, or —12 hexadecimal. 

The assembler places a minus hexadecimal 12 in the eight-bit PC Word Displacement 
field (a binary 1110 1110). 

The entire 16-bit machine code word is a binary 0001 0110 1110 1110, or hexadecimal 
16EE. 
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SUMMARY 

This book has covered a lot of ground. The structure of assembly language programs and 
the structure of data used by those programs has been introduced. The instructions and 
addressing modes of the TI Home Computer's instruction set have been presented with 
several examples of how to use the instructions. The function of assembly language 
development tools has been described and the example programs in the book can be used 
to experiment with assembly language utility programs such as assemblers and debuggers. 
The basic concepts of assembly language programming in general and, specifically, for 
the TI Home Computer has been covered. 

The purpose of this book is to lay a foundation to help you understand programs written 
in assembly language for the TI Home Computer and to help you get started in creating 
your own programs. Hopefully, it has achieved that purpose for you. Good programming! 
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Instruction Summaries 
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Op - Code 

INSTRUCTION OPERATION CODES IN ALPHABETICAL ORDER 

Syntax 	 Op-Code 	Syntax 

A S, 	D LDCR S, 	C 

AB S, 	D LI R, 	IOP 

ABS S LIMI lOP 

AI R, 	IOP LREX 

ANDI R, 	lOP LWPI lOP 

B S MOV S, 	D 
[IL S MOVE S, 	D 

BLWP S MPY S, 	R 

C S, 	D NEG S 

CD S, 	0 ORI R, 	lOP 

CI R, 	!OP RSET 

CKON RTWP 

CKOF S S, 	D 

CLR S SB S, 	D 

COC S, 	R SBO Displacement 

CZC S, 	R SBZ Displacement 

DEC 5 SETO S 

DELT S SLA R, C 

DIV S, 	R SOC S, D 

IDLE SOCB S, 	D 

INC S SRA R, 	C 

INCT S SRC R, 	C 

INV S SRL R, C 

JEQ Target STCR S, C 

JGT Target STST R 

JH Target STWP R 
JHE Target SWPB S 

JL Target SZC S, 	D 

JLE Target SZCB S, 	D 

JLT Target TB Displacement 

JMP Target X S 

JNC Target XOP S, 	C 

JNE Target DOR S, 	R 

JNO Target 

JOC Target 

JOP Target 
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L> A> EQ CY OV 

Instruclion Summaries 

Add Words 	 A 

Mnemonic and Addressing Modes: A S,0 

Result: 	(5) 	(0) --> (0) 

Operation: Adds the contents of the first operand to the contents of the 
second operand. Replaces the contents of the second operand with the 
sum. Both operands are word addresses. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The addit'on affects the Carry and Overflow status bits. 
The sum is compared to zero and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The Add Words instruction offers the widest choice of 
addressing modes for an add operation. 

Example: 	A R4,@ALPHA 

Before 	After 

(R4) 	= 	>5A74 
(ALPHA) 	>BC5A 

Machine Code: 

>5874 
>I6CE 

L> = 1, A> . 1, EQ = 0 
CY = 1, OV = 0 

C--- A ---> 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I --  -I--I--I-- _I 
1 
	

0 1 
	

0 

Hex 

Binary Td 	Rd 	Ts 	Rs 

I -- 	-- I --  
Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 
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Appendix A 

Add Bytes 	 AB 

Mnemonic and Addressing Modes: AB S,D 

Bytes 
Result: 	(S) + (0) 	> (B) 

Operation: Adds the contents of the first operand to the contents of the 
second operand. Replaces the contents of the second operand with the 
sum. Both operands are byte addresses. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- 

L> A> Ell CY OV OP 

The addit on affects the Carry and Overflow status bits. 
The sum is compared to zero and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. The OP status bit is set to one if 
there's an odd number of one bits in the sum; otherwise; 
it's cleared to zero. 

Notes: The Add Bytes instruction adds two 8-bit numbers together. 

Example: 	AB R4,@ALPHA 

Before 	After 

(R4) 	 >8074 	>8074 
(ALPHA) = 	>BCSA 	>3C5A 

L> = 1, A> = 1, EC, 	0 
CY = 1, OV = 1, OP 	0 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I -- 	- I -- I -- I -- -- I -- -- 1 -- 1 -- 1 --  
1 
	

0 
	

1 1 T d 	R d 	T s 	R s Binary 

-- I -- 	-- I -- -TM- I --  
Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 
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Instruction Summaries 

Absolute 	 ABS 

Mnemonic and Addressing Modes: ABS S 

Result: 	1(5)1 --> (S) 

Operation: Takes the absolute value of the contents of the operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
L> A> EQ OV 

	

-- -- 	-- 	- 	
_ 

 

The content of the operand before the abso ute value is 
taken is compared to zero and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. If the content of the operand is 
>8000, the Overflow status bit is set; otherwise, it's 
cleared to zero. 

Notes: The Absolute instruction forces a value to a positive number. If 
the value is already positive, it's unchanged. If the value is 
negative, its forced to its two's complement value. However, if the 
value is hex 8000 (the smallest negative number and which doesn't have 
a positive counterpart), the computer sets the Overflow status bit to 
indicate 	it 	can't 	form 	a positive 	number. 

Example: 	ABS 	@NUMBER 

Before 	After 

(NUMBER) 	>FFF9 	>0007 

L> 	= 1, A>= 0, 	EP = 0 
OV = 0 

Machine Code: 

Hex 
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 	12 13 14 15 

--I-- ------I-- 
Binary 0 0 0 0 0 1 I 1 0 I T s R s 

-- I --  -- I -- I -- I --  
Source Address 

Length: 1 or 2 words 
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Add Immediate 	 AI 

Mnemonic and Addressing Modes: AI 	R,IOP 

Result: 	(R) + IOP --> (R) 

Operation: Adds the 16-bit immediate operand to the contents of the register. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

               

L> A> EP CY OV 

           

               

The addit on affects the Carry and Overflow status bits. 
The sum is compared to zero and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: 	The AI instruction is useful for adding a specific constant to the 
contents of a register. 

Example: 	Al 	R3,4 

Before 	After 

(R3) 	 >BC5A 	>BC5E 

L> = 1, A> = 0, EQ = 0 
CY = 0, 00 = 0 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Binary 0 
	

0 0 
	

1 0 
	

R 

Immediate Operand 

--I--I--I--I-- 

0 0 0 0 

Length: 2 words 
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Instruction Summaries 

And Immediate 	 ANDI 

Mnemonic and Addressing Modes: ANDI R,IOP 

Result: 	(R) AND 10P --> (R) 

Operation: Performs a logical AND operation between the bits in the 
register and the bits in the immediate operand. The result replaces the 
contents of the register. 

Status Bits Affected: 

0 1 2 3 4 5 

-- -- -- 	-- -- 

L> A> EQ 

-- -- -- 

6 7 8 9 10 11 12 13 14 15 

          

          

           

The result is compared to zero and the Log ca Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The ANDI instruction is useful for forcing selected bits in a 
register to zero. 

Example: 	ANDI RO,>A6OF 

Before 	After 

(RO) 	= 	>BC5A 	>A40A 

L> = 1, A> = 0, EQ = 0 

(110) Before 	1011 1100 0101 1010 
10P 	 1010 0110 0000 1111 

(RO) After 	1010 0100 0000 1010 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Binary 0 0 0 0 

 

0 0 1 0 0 1 0 

mined ate Operand 

 

0 
-- 1 1- 1 --  
-- 1 - 1 - 1 --  

         

       

Length: 2 words 
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Branch 

Mnemonic and Addressing Modes: B S 

Result: 	S --> (PC) 

Operation: Transfers program control to the operand address. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No tatus bits are affected 

Notes: The B instruction performs a long-distance transfer of program 
control. The B instruciton performs an unconditional transfer of 
control as does the JMP instruction. But whereas the JMP instruction 
allows only a short-distance transfer of control, the B instruction 
permits a transfer of control to any location in the memory space. 

Example: 	B @TICKET 

Causes a transfer of program control to location TICKET. 

Machine Code: 

Flex 

0 	1 	2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I 	I 	I 
R s 

--1--1--1-- 
Source Address 

Length: 1 or 2 words 

Binary 0 0 0 0 0 1 0 0 0 T s 
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Instruction Summaries 

Branch and Link 	 BL 

Mnemonic and Addressing Modes: BL 

Result: 	(PC) --> (R11) 
S 	--> (PC) 

Operation: Transfers program control to the operand address and saves the 
address following the BL instruction in Register 11. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 

Notes: 	The BL instruction calls a subroutine. The return address is 
saved in Register 11. The subroutine can return to the calling 
program by performing a Branch instruction to the address in 
Register 11 (B *R11). 

Example: Calling Program 	 Subroutine 
+---> SUBR 	  

• 
• 
• 
• 

BL @SUBR 
B *R11 

Machine Code: 

Hex 

Binary 

0 1 2 3 4 5 6 7 

0 

8 9 10 11 12 13 14 15 

--I-- --I--I--I-- 
1 0 T s 	R s 

-- I --  
0 0 0 0 1 1 0 

Source Address 

Length: 1 or 2 words 
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Branch and Load Workspace Pointer 	 BLWP 

Mnemonic and Addressing Modes: BLWP S 

Result: 	(S) --> (WP) 
(S + 2) --> (PC) 
(old WP) --> (new 013) 
(old PC) --> (new R14) 
(old SR) --> (new R15) 

Operation: Performs a context switch using the two-word vector 
specified by the operand address. The operand is the address 
of the first word of the vector and it contains the address of 
a new workspace. The second word of the vector contains the 
address of the program to which a transfer of control is made. 
When the BLWP instruction is perfomed, the current contents of 
the WP, PC, and SR are stored in Registers 13, 14, and 15, 
respectively, of the new workspace. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 

No status bits are affected 

Notes: The BLWP instruction can be used to perform a context switch 
to any subroutine or program in the memory address space. 

Example: 	Calling Program 	 Called Program 

BLWP @SPVECT 	+ 	SUBWSP BSS 32 
	  <- + 

---> SUBENT 	 

SCIVECT DATA SUPWSP 
DATA SUBENT 

A context switch is performed us ng the contents of SQVECT as 
the address for a new workspace and the contents of SQVECT+2 as 
the address of a program to which a transfer of program control is made. 

Machine Code: 

Hex 

0 	1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 

-- -- I --  
0 T s 	R s 

Source Address 

Length: 1 or 2 words 

RTWP 

Binary 0 0 0 0 0 1 0 0 0 
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Instruction Summaries 

Compare Words 

Mnemonic and Addressing Modes: C S,D 

Result: L>, A>, and EQ status bits affected based upon 
(S):(D) 

Operation: Compares the contents of the first operand to the contents 
of the second operand. The operands are word addresses. The 
Logical Greater Than, Arithmetic Greater Than, and Equal status 
bits are affected based upon the results of the comparison. 

Status Bits Affected: 

0 1 2 3 4 5 6 

-- 

L> A> EQ 

7 	8 9 10 11 12 13 14 15 

         

          

The contents of the first operand is compared to the 
contents of the second operand and the Logical Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The Compare Word instruction compares two 16—bit 
values together. Neither the contents of the source 
operand or the contents of the destination operand are 
changed. 

Example: 

(ALPHA) = 
(04) 

Machine Code: 

Hex 

Binary 	1  

C @ALPHA,R4 

Before 	After 

>A374 	>A374 
>6E2F 	>6E2F 

L> = 1, A> = 0, EQ = 0 

- - I --  -I--I--I-- _I  
T d 	R d 	T s 	R s 

- - I -- 	-- I -- -- I -- I -- I --  
Source (or Destination) Address 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 

Destination Address 

Length: 1 or 2 or 3 words 
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Compare Bytes 	 CB 

Mnemonic and Addressing Modes: CB S,D 

Result: L>, A>, and EQ status bits affected based upon 
(S):(0). OP status bit affected based upon number 
of one bits in (S). 

Operation: Compares the contents of the first operand to the contents 
of the second operand. The operands are byte addresses. The Logical 
Greater Than, Arithmetic Greater Than, and Equal status bits are 
affected based upon the results of the comparison. The Odd Parity 
status bit is affected based upon the number of one bits in the source 
operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

L> A> EQ 

  

OP 

          

                

The contents of the f rst operand is compared to the 
contents of the second operand and the Logical Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. The Odd Parity status bit is 
affected based upon the number of one bits in the 
source operand. 

Notes: The Compare Word instruction compares two 8-bit values together. 
Neither the contents of the source operand or the contents of the 
destination operand are changed. 

Example: 	C @ALPHA(R7),R4 

Before 	After 

(ALPHA) = 
(14) 	. 
(R7) 	= 

Machine Code: 
Hex 

>74A3 
>F26E 
>0001 

>74A3 
>F26E 
>0001 

L> . 0, A> . 0, EQ = 0, OP = 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- 1 -1 -1 -- 
 R d 

-- 1 -- 1 -- 1 --  

-- 1 -1 -1 -- 
 R s 

--1--1--1-- 

-- I --  
1 0 0 1 T d 

-- 1 --  

T s Binary 

Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 
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L> A> EQ 

Instruction Summaries 

Compare Immediate 	 CI 

Mnemonic and Addressing Modes: CI R,IOP 

Result: L>, A>, and EQ status bits affected based upon 
(11):(I0P). 

Operation: Compares the contents of the register to the immediate 
operand. The Logical Greater Than, Arithmetic Greater Than, and 
Equal status bits are affected based upon the results of the comparison. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The contents of the register is compared to the contents 
of the immediate operand and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The Compare Immediate instruction can be used to check for a 
specific address value in a register when the register is being used 
with register indirect autoincrement or indexed addressing in a loop. 

Example: 	CI R10,TBLEND 

Before 	After 

(R10) 	= 
TBLEND = 

Machine Code: 

>049C 
>A49C 

>A49C 
>049C 

L> = 0, A> = 0, EQ = 1 

<--- 0 ---> 

0 1 2 3 

0 0 0 0 

4 5 6 7 8 9 10 11 12 13 14 15 

-- I -- I -- I --  
0 0 1 0 1 0 0 

-- I -- I -- I --  
Ironed ate Operand 

-- I -- I -- I -- I -- I --  
Length: 2 words 

Hex 

Binary 0 R 
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Appendix A 

Clock Off 	 CKOF 

Mnemonic and Addressing Modes: CKOF 

Result: Sends signals out on address lines and CRUOUT line. 

Operation: When the CKOF instruction is performed, the binary values 
1, 1, and 0 appear on address lines AO, Al, and A2, respectively, 
in conjunction with a synchronizing pulse on the CRUCLK line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No tatus bits are affected 

Notes: The CKOF instruction may be used to implement functions unique 
to hardware surrounding the central processor. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

                  

Binary 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 

 

0 

                  

Length: I word 

268 



Instruction Summaries 

Clock On 	 CKON 

Mnemonic and Addressing Modes: CKON 

Result: Sends signals out on address lines and CRUOUT line. 

Operation: When the CKON instruction Is performed, the binary values 
1, 0, and 1 appear on address lines AO, Al, and A2, respectively, 
in conjunction with a synchronizing pulse on the CRUCLK line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- 	 -- -- -- -1 -- -- 7_ -- 	 -- -- 

No status bits are affected 

Notes: The CKON instruction may be used to implement functions unique 
to hardware surrounding the central processor. 

0 0 

Machine Code: 

Hex 

Binary 	0  

-- -- -- -- 	 -- -- -- -- 	 -- -- -- 

0 0 0 1 1 1 0 1 0 0 0 0 0 
-- -- -- -- -- -- 	 -- -- -- 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Length: 1 word 
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Clear 	 CLR 

Mnemonic and Addressing Modes: CLR S 

Result: 	0 --> (5) 

Operation: Forces the content of the operand to zero. 

Status Bits Affected: 

0 	1 	2 3 4 5 6 	7 8 9 10 11 12 13 14 15 ___ -- __ __ __ -- -- __ -- __ -- __ -- -- -- 

No status bits are affected 

Notes: The CLR instruction is useful for initializing a word to zero. 

Example: 	CLR @ZFFLAG 

Before 	After 

(ZFFLAG) = 	>72E9 	>0000 

No status bits affected. 

Machine Code: 

lieu 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15 

-- I --  ------ 1 -- 
Binary 0 0 0 0 0 1 0 0 1 1 Ts R s 

--1-1-1-- 
Source Address 

Length: I or 2 words 

270 



Instruction Summaries 

Compare Ones Corresponding 	 COC 

Mnemonic and Addressing Modes: COC S,R 

Result: 	(S) AND complement (0); set Equal status bit if 
result zero. 

Operation: Sets the Equal status bit if there are all one bits in the 
contents of the second operand corresponding to the bit positions 
where there are one bits in the contents of the first operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- 

EQ 

The Equal status b't is set if there are a 1 one bits 
in the contents of the second operand corresponding to 
the bit positions where there are one bits in the 
contents of the first operand; otherwise, its cleared. 

Notes: The COC instruction can be used to test the state of specific bits 
in the contents of a register. 

Example: 

(ALPHA) = 
(14) 	= 

Machine Code: 

Hex 

Binary 	0  

COC @ALPHA,R4 

Before 	After 	 Binary 

>3074 
	

>3A74 
	

0011 1010 0111 0100 
>BC5A 
	

>BC5A 
	

1011 1100 0101 1010 
EQ = 0 

-- I --  I -- I 	--I--  -- I --  I --I-- 
R 	T s 	R s 

Source Address 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 0 0 0 

Length: 1 or 2 words 
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Appendix A 

Compare Zeros Corresponding 	 CZC 

Mnemonic and Addressing Modes: CZC S,R 

Result: 	(S) AND (R); set Equal status bit if result zero. 

Operation: Sets the Equal status bit if there are all zero bits in the 
contents of the second operand corresponding to the bit positions 
where there are one bits in the contents of the first operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

EQ 

The Equal status b t is set if there are a 1 zero bits 
in the contents of the second operand corresponding to 
the bit positions where there are one bits in the 
contents of the first operand; otherwise, its cleared. 

Notes: The CZC instruction can be used to test the state of specific bits 
in the contents of a register. 

Example: 	CZC @ALPHA,R4 

Before After 	 Binary 

(ALPHA) - 	>3A74 	>3A74 	0011 1010 0111 0100 
(R4) 	. 	>C482 	>C482 	1100 0100 1000 0010 

EQ - 1 

Machine Code: 

Hex 

4 5 6 7 8 9 10 11 12 13 14 15 

-- -- -- I -- I -1 --  --I-- --I--I--I-- 
0 1 	R 	T s 	R s 

-- -- -- 1 -1 -- I --  --I-- ------I-- 
Source Address 

0 1 2 3 

0 0 1 0 Binary 

Length: 1 or 2 words 
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Instruction Summaries 

Decrement 	 DEC 

Mnemonic and Addressing Modes: DEC S 

Result: 	(S) - 1 --> (5) 

Operation: Subtracts one from the contents of the operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- 
L> A> EQ CY 011 

The computer adds a negative I (hexadecima FFFF to the 
contents of the operand. The addition affects the Carry 
and Overflow status bits. The result is compared to zero 
and the Logical Greater Than, Arithmetic Greater Than, 
and Equal status bits are affected accordingly. 

Notes: The Decrement instruction is useful for decrementing a byte 
address in a register which is being used for indirect addressing or 
indexed addressing. It's also useful for adjusting a loop counter in a 
program loop. 

Example: 	DEC R2 

	

Before 	After 

(R2) 	 >0009 	>0008 

L> . 1, A> . 1, EP . 0 
CY = 1, OV - 0 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- 

0 0 0 0 0 1 1 0 0 0 

-- 

Source Address 
-- - I --  I --  

:- 

Length: 1 or 2 words 

Binary 
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Decrement by Two 	 DECT 

Mnemonic and Addressing Modes: DECT S 

Result: 	(S) - 2 	(S) 

Operation: Subtracts two from the contents of the operand. 

Status Bits Affected: 

0 1 	2 3 4 5 	6 7 8 9 10 11 12 13 14 15 

L> A> EQ CY OV 

The computer adds a negative 2 Ihexadec'ma FFFE to the 
contents of the operand. The addition affects the Carry 
and Overflow status bits. The result is compared to zero 
and the Logical Greater Than, Arithmetic Greater Than, 
and Equal status bits are affected accordingly. 

Notes: The Decrement by Two instruction is useful for decrementing 
a word address in a register which is being used for indirect 
addressing or indexed addressing. 

Example: 	DECT R2 

	

Before 	After 

(R2) 	 >0009 	>0007 

L> = 1, A> = 1, EQ = 0 
CY = 1, Op = 0 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 0 1 

Source Addres 

0 0 0 0 0 T s Binary 

Length: 1 or 2 words 
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Instruction Summaries 

Divide 	 DIV 

Mnemonic and Addressing Modes: DIV S,R 

Result: 	(R and R+1) / (S) 	(R) Quotient and 
(R+1) Remainder 

Operation: Divides the word value in the first operand (the divisor) into 
the 32-bit dividend in the destination register and the next register. 
The destination register contains the most significant 16 bits of the 
dividend and the next register contains the least significant 16 bits. 
After the division, the destination register contains the 16-bit 
quotient and the next register contains the 16 - bit remainder. Before 
the division, the 16-bit divisor in the first operand is compared to the 
16-bit value in the destination register. If the divisor is less than, 
or equal to, this most significant word of the dividend, the quotient 
would exceed 16 bits and, in such a case, the computer sets the Overflow 
status bit and does not perform the divide. The numbers are treated as 
unsigned values. 

Status Bits Affected: 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

OV 

The Overflow status bit is set 'f the 16 - bit divisor 
is less than, or equal to, the contents of the 
destination register; otherwise its cleared to zero. 

Notes: The Divide instruction divides a 16-bit number into a 32 -bit number. 
Its an unsigned division; the computer ignores the sign of the numbers. 

Example: 	DIV @DIVISR,R5 
Before 	After 

(DIVISR) = 	>0008 	>0008 
(R5) = 	>D000 	>000C 
(R6) = 	>0064 	>0004 

OV = 0 
Machine Code: 

Hex 

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I -- -- I -- I -- I -- 

0 1 1 1 I 	R 	T s 	R s 

-- I --  
Source Address 

Binary 0 
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Appendix A 

Idle 	 IDLE 

Mnemonic and Addressing Modes: IDLE 

Result: 	Idle the computer 
Sends signals out on address lines and CRUCLK line. 

Operation: Places the computer into the idle state. The computer performs 
the IDLE instruction continuously until an interrupt occurs. When an 
interrupt occurs that causes a context switch, the return address saved 
is the location following the IDLE instruction. When the IDLE 
instruction is performed, the binary values 0, 1, and 0 appear on 
address Tines AO, Al, and A2, in conjunction with a synchronizing pulse 
on the CRUCLK line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 

Notes: The IDLE instruction may be used to implement functions unique to 
hardware surrounding the central processor. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

          

Binary 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 

 

0 

          

          

Length: 1 word 
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Instruction Summaries 

Increment 	 INC 

Mnemonic and Addressing Modes: INC S 

Result: 	(S) + 1 --> (S) 

Operation: Adds one to the contents of the operand. 

Status Bits Affected: 

0 1 2 3 4 5 

-- -- -- 
L> A> EQ CY OV 

-- -- 

6 7 8 9 10 11 12 13 14 15 
-- -- -- -- 

      

          

           

The addition affects the Carry and Overflow status bits. 
The sum is compared to zero and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The Increment instruction is useful for incrementing a byte address 
in a register which is being used for indirect addressing or indexed 
addressing. Its also useful for adjusting a loop counter in a program 
loop. 

Example: 	INC R2 

Before 	After 

(12) 	= 	>0009 	>000A 

L> - 1, A> = 1, EQ = 0 
CY . 0, OV - 0 

Machine 	Code: 

Hex 	 ,___ _ ___> 

0 	1 	2 	3 	4 	5 	6 	7 	B 	9 10 11 	12 13 14 15 

-- 1 -1 -1 --  
Binary 0 0 0 0 0 1 0 1 1 0 Ts Rs 

-- 1 -1 -1 --  
Source Address 
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Increment by Two 	 INCT 

Mnemonic and Addressing Modes: INCT S 

Result: 	(S) + 2 --> (S) 

Operation: Adds two to the contents of the operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

L> A> EQ CY OV 

The addit'on affects the Carry and Overflow status bits. 
The sum is compared to zero and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The Increment by Two instruction is useful for incrementing a word 
address in a register which is being used for indirect addressing or 
indexed addressing. 

Example: 	INCT R2 

Before 	After 

(02) 	 >0009 	>000B 

L> = 1, A> = 1, EQ = 0 
CY = 0, OV = 0 

Machine Code: 

Hex 	<--- 0 ---> 

0 1 2 3 

Binary 	0 0 0 0 

4 5 6 7 

0 1 0 1 

8 9 10 11 12 13 14 15 

--I-- --I--I--I-- 
1 1 T s 	R s 

- - I --  --I--I--I-- 
Source Address 

Length: 1 or 2 words 
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L> A> E0 

Instruction Summaries 

Invert 	 INV 

Mnemonic and Addressing Modes: INV S 

Result: Complement (S) --> (S) 

Operation: 	Inverts the state of each bit in the operand. Leaves the one's 
complement of the original value in the operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The result is compared to zero and the Log•cal Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: 	The INV instruction is a logical NOT operation. It changes all the 
one bits in a word to zeros and all the zero bits to ones. 

Example: 

(PNFLAG) 

Machine Code: 

Hex 

Binary 	0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

	

1 	I - 1 -  1 - 

	

0 0 0 0 1 0 1 0 I T s 	Rs 
-- -- I -- -- 1 -- 1 -- 1 --  

INV @PNFLAG 

Before 	After 

>FFFF 	>0000 

L> = 0, A> = 0, El) = I 

Source Address 

Length: I or 2 words 
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Jump if Equal 	 JEQ 

Mnemonic and Addressing Modes: JEQ Target 

Result: If EQ . I, jump to target 

	

If EQ 	0, continue to following instruction 

Operation: Jumps to the target instruction if the Equal status bit is one. 
Otherwise, there is no jump and program control continues to the 
following instruction. The target must be within -254 to +256 bytes 
from the location of the JEQ instruction. 

Status Bits Affected: 

	

0 	1 2 	3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected. 
The EQ status bit is analyzed. 

Notes: The JEQ instruction can be used to check the state of the Equal 
status bit resulting from a previous instruction's operation. It's 
often used at the end of a loop to determine if the loop count is zero. 

	

Example: 	JEQ GALLOP 

The JEQ instruction jumps to the instruction labeled GALLOP if the Equal 
status bit is one. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Binary 0 0 0 1 0 0 1 1 

 

PC Word Displacement 

         

Length 1 word 
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Instruction Summaries 

Jump if Greater Than 	 JGT 

Mnemonic and Addressing Modes: JGT Target 

Result: If A> - 1, jump to target; 
otherwise, continue to following instruction 

Operation: Jumps to the target instruction if the Arithmetic Greater Than 
status bit is one. Otherwise, there is no jump and program control 
continues to the following instruction. The target must be within —254 
to +256 bytes from the location of the JGT instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 13 9 10 11 12 13 14 15 

No status bits are affected. 
The A> status bit is analyzed. 

Notes: The JGT instruction can be used to check the state of the Arithmetic 
Greater Than status bit resulting from a previous instruction's 
operation. The JGT can be used to evaluate the arithmetic (signed) 
result of an operation. 

Example: 	JGT GALLOP 

The JGT instruction jumps to the instruction labeled GALLOP if the 
Arithmetic Greater Than status bit is one. 

Machine Code: 

Hex 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PC Word Displacement 

-- -- -- 	-- I -- 	-- 

Length: 1 word 

Binary 
	

0 0 0 1 0 1 0 1 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Appendix A 

Jump if High 	 JH 

Mnemonic and Addressing Modes: JH Target 

Result: If L> = 1, jump to target; 
otherwise, continue to following instruction 

Operation: Jumps to the target instruction if the Logical Greater Than 
status bit is one. Otherwise, there is no jump and program control 
continues to the following instruction. The target must be within — 254 
to +256 bytes from the location of the JH instruction. 

Status Bits Affected: 

No status bits are affected. 
The L> status bit is analyzed. 

Notes: The JH instruction can be used to check the state of the Logical 
Greater Than status bit resulting from a previous instruction's 
operation. The JH can be used to evaluate the logical (unsigned) result 
of an operation. 

Example: 	JH GALLOP 

The JH instruction jumps to the instruction labeled GALLOP if the 
Logical Greater Than status bit is one. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 	9 	10 	11 	12 	13 	14 	15 

Binary 0 0 0 1 1 0 1 1 PC Word Displacement 

-- I --  I --  I --  I --  I --  I --  I-- 
Length: 1 word 
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Instruction Summaries 

Jump if High or Equal 	 JHE 

Mnemonic and Addressing Modes: JHE Target 

Result: If L> - 1 or EQ = 1, jump to target; 
otherwise, continue to following instruction 

Operation: Jumps to the target instruction if the Logical Greater Than or 
Equal status bit is one. Otherwise, there is no jump and program 
control continues to the following instruction. The target must be 
within —254 to +256 bytes from the location of the JHE instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- 	 7- -- 7_ 

No status bits are affected 
The L> and EQ status bits are analyzed. 

Notes: The JHE instruction can be used to check the state of the Logical 
Greater Than and Equal status bits resulting from a previous 
instruction's operation. The JHE can be used to evaluate the logical 
(unsigned) result of an operation. 

Example: 	JHE GALLOP 

The JHE instruction jumps to the instruction labeled GALLOP if the 
Logical Greater Than or Equal status bit is net to one. 

Machine Code: 

Hex 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 	11 	12 	13 	14 	15 
-- 7- 

-- I --  I --  I --  I --  I --  I --  I --  
Binary 0 0 0 1 0 1 0 0 PC Word Displacement 

-- I -- I -- I -- I -- I -- I -- I --  
Length: 1 word 
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Jump if Low 	 JL 

Mnemonic and Addressing Modes: JL Target 

Result: If L> = 0 and EQ 	0, jump to target; 
otherwise, continue to following instruction 

Operation: Jumps to the target instruction if the Logical Greater Than 
status bit is zero and the Equal status bit is zero. Otherwise, there 
is no jump and program control col' 	.2S to the following instruction. 
The target must be within -254 to -. • bytes from the location of the JL 
instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 
The L> and EQ status bits are analyzed. 

Notes: The JL instruction can be used to check the state of the Logical 
Greater Than and Equal status bits resulting from a previous 
instruction's operation. The JL can be used to evaluate the logical 
(unsigned) result of an operation. 

Example: 	JL GALLOP 

The JL instruction jumps to the instruction labeled GALLOP if the 
Logical Greater Than status bit is zero and the Equal status bit is zero. 

Machine Code: 

lieu 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

           

           

Binary 0 0 0 1 1 0 1 0 

 

PC Word Displacement 

           

           

Length 1 word 
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Instruction Summaries 

Jump if Low or Equal 	 JLE 

Mnemonic and Addressing Modes: JLE Target 

Result: If L> = 0 or EQ , 1, jump to target; 
otherwise, continue to following instruction 

Operation: Jumps to the target instruction if the Logical Greater Than 
status bit is zero or the Equal status bit is one. Otherwise, there is 
no jump and program control continues to the following instruction. The 
target must be within -254 to +256 bytes from the location of the JLE 
instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 
The L> and EQ status bits are analyzed. 

Notes: The JLE instruction can be used to check the state of the Logical 
Greater Than and Equal status bits resulting from a previous 
instruction's operation. The JLE can be used to evaluate the logical 
(unsigned) result of an operation. 

Example: 	JLE GALLOP 

The JLE instruction jumps to the instruction labeled GALLOP if the 
Logical Greater Than status bit is zero or if the Equal status bit is one. 

Machine Code: 

Hex 

Binary 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PC Word Displacement 0 0 0 
	

0 0 1 0 

Length: 1 word 
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PC Word Displacement Binary 
	

0 0 0 1 0 0 0 1 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-1-1-1-1-1-- 

Appendix A 

Jump if Less Than 	 JLT 

Mnemonic and Addressing Modes: JLT Target 

Result: If A> = 0 and ED = 0, jump to target; 
otherwise, continue to following instruction 

Operation: Jumps to the target instruction if the Arithmetic Greater Than 
status bit is zero and the Equal status bit is zero. Otherwise, there 
is no jump and program control continues to the following instruction. 
The target must be within -254 to +256 bytes from the location of the 
JLT instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 
The A> and EO status bits are analyzed. 

Notes: The JLT instruction can be used to check the state of the Arithmetic 
Greater Than and Equal status bits resulting from a previous 
instruction's operation. 	The JLT can be used to evaluate the arithmetic 
(signed) result of an operation. 

Example: 	JLT GALLOP 

The JLT instruction jumps to the instruction labeled GALLOP if the 
Arithmetic Greater Than status bit is zero and the Equal status bit is 
zero. 

Length 1 word 
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Instruction Summaries 

Jump Unconditional 	 JMP 

Mnemonic and Addressing Modes: JMP Target 

Result: Jump to target 

Operation: Jumps to the target instruction. The target must be within -254 
to +256 bytes from the location of the JMP instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 
No status bit are analyzed. 

Notes: The JMP instruction performs a short-range transfer of program 
control. The JMP instruction peforms an unconditional transfer of 
control as does the B instruction. The JMP instruction, however, 
requires only one word of machine code and the B instruction may require 
two words. 

Example: 	JMP GALLOP 

The JMP instruction jumps to the instruction labeled GALLOP. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-I -- I --  I --  I --  I --  I --  
0 0 Binary 0 0 0 1 0 0 	PC Word Displacement 

I --  1 -- I -- I --  I --  
Length: 1 word 
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Jump if No Carry 	 JNC 

Mnemonic and Addressing Modes: JNC Target 

Result: 	If CY = 0, jump to target 
If CY 	1, continue to following instruction 

Operation: 	Jumps to the target instruction if the Carry status bit is zero. 
Otherwise, there is no jump and program control continues to the 
following instruction. The target must be within —254 to +256 bytes 
from the location of the JNC instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 
The CY status bit is analyzed. 

Notes: The JNC instruction can be used to check the state of the Carry 
status bit resulting from a previous instruction's operation. 

Example: 	JNC GALLOP 

The JNC instruction jumps to the instruction labeled GALLOP if the Carry 
status bit is zero. 

Machine Code: 

Hex 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I --  I 
PC Word Displacement 

Length 1 word 

Binary 0 0 1 0 1 	1 	1 
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Instruction Summaries 

Jump if Not Equal 	 JNE 

Mnemonic and Addressing Modes: JNE Target 

Result: 	If EQ = 0, jump to target 
If EQ 	1, continue to following instruction 

Operation: Jumps to the target instruction if the Equal status bit is zero. 
Otherwise, there is no jump and program control continues to the 
following instruction. The target must be within -254 to +256 bytes 
from the location of the JNE instruction. 

Status Bits Affected: 

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected. 
The EQ status bit is analyzed. 

Notes: The JNE instruction can be used to check for the state of the Equal 
status bit resulting from a previous instruction's operation. 	It's 
often used at the end of a loop to determine if the loop count is zero. 

Example: 	JNE GALLOP 

The JNE instruction jumps to the instruction labeled GALLOP if the Equal 
status bit is zero. 

Machine Code: 

Flex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PC Word Displacement 

_I -I -- I --  I _I _I _I 
Length 1 word 

Binary 0 0 0 D 1 1 0 
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Jump if No Overflow 	 JNO 

Mnemonic and Addressing Modes: JNO Target 

Result: If OV = 0, jump to target 
If OV = 1, continue to following instruction 

Operation: Jumps to the target instruction if the Overflow status bit is 
zero. Otherwise, there is no jump and program control continues to the 
following instruction. The target must be within -254 to +256 bytes 
from the location of the JNO instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected. 
The OV status bit is analyzed. 

Notes: The JNO instruction can be used to check the state of the Overflow 
status bit resulting from a previous instruction's operation. 

Example: 	JNO GALLOP 

The JNO instruction jumps to the instruction labeled GALLOP if the 
Overflow status bit is zero. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Binary 0 0 0 0 0 1 1 1 

Length: 1 word 

PC Word Displacement 
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Instruction Summaries 

	

Jump On Carry 	 JOC 

Mnemonic and Addressing Modes: JOC Target 

Result: If CY = 1, jump to target 
If CY = 0, continue to following instruction 

Operation: Jumps to the target instruction if the Carry status bit is one. 
Otherwise, there is no jump and program control continues to the 
following instruction. The target must be within -254 to +256 bytes 
from the location of the JOC instruction. 

Status Bits Affected: 

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected. 
The CY status bit is analyzed. 

Notes: The JOC instruction can be used to check the state of the Carry 
status bit resulting from a previous instruction's operation. 

	

Example: 	JOC GALLOP 

The JOC instruction jumps to the instruction labeled GALLOP if the Carry 
status bit is one. 

Machine Code: 

Hex 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-

- 

- I 

 -_I 
	

I --  I -- 	I --  
PC Word Displacement 

-- - I --  I --  I --  I --  I --  I -- 

 Length 1 word 

Binary 0 0 0 1 1 0 0 0 
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Jump if Odd Parity 	 JOP 

Mnemonic and Addressing Modes: JOP Target 

Result: If OP = 1, jump to target 
If OP = 0, continue to following instruction 

Operation: Jumps to the target instruction if the Odd Parity status bit is 
one. Otherwise, there is no jump and program control continues to the 
following instruction. The target must be within -254 to +256 bytes 
from the location of the JOP instruction. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected. 
The OP status bit is analyzed. 

Notes: The JOP instruction can be used to check the state of the Odd Parity 
status bit resulting from a previous instruction's operation. 

Example: 	JOP GALLOP 

The JOP instruction jumps to the instruction labeled GALLOP if the Odd 
Parity status bit is one. 

Machine Code: 

lieu 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

- I -- I -- I -- I -- I -- I -- I --  
PC Word Displacement 

--I--I--I--I--I--I--I-- 
Length: 1 word 

Binary 0 0 0 1 0 0 
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Instruction Summaries 

Load Communicaton Register Unit 
	

LOCR 

Mnemonic and Addressing Modes: OCR S,C 

Result: (S) --> The number of CRU selected bit addresses 
determined by C. 

Operation: Sends out the r 	r of bits specified by C from the source 
operand to consecutive 	bit addresses. If C is zero, 16 bits are 
sent out. If the number or bits sent out is greater that 8, the source 
operand is a word address; otherwise, it's a byte address. The bits 
sent out from the contents of the word or byte addressed by the source 
operand are sent out from right to left (the rightmost bit in the word 
or byte is sent out first). The CRU hardware base address (the contents 
of R12, bits 3 through 14) selects the first CRU bit address and 
subsequent bits sent out go to the subsequent CRU bit addresses. The 
contents of R12 and the source 	Ind remain unchanged. The bits are 
sent out sequentially on the C 	line. 

Status Bits Affected: 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

L> A> EQ 
	

OP 

The entire content of the source operand (not just the 
transferred bits) is compared to zero and the Logical 
Greater Than, Arithmetic Greater Than, and Equal status 
bits are affected accordingly. If the source operand is 
a byte address, the Odd Parity status bit is affected 
based upon the number of one bits in the contents of the 
source operand. 

Notes: The LOCR instruction sends out a multiple number of bits (up to a 
maximum of 16) to a series of CRU bit addresses. 

Example: 	LI 	R3,>1E7F 
LI 	R12,>200 
LOCR R3,0 

Sends out 16 bits from the contents of Register 3 to CRU bit addresses 
hexadecimal 100 through 10F. 

L>= 1, A> 	1, El 	0 

Machine Code: 
Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

	

0 0 1 1 0 0 	C 	T s 	R s 

-- I -- -- I -- I -- I --  
Source Address 

Length: 1 or 2 words 

Binary 
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Load Immediate 	 LI 

Mnemonic and Addressing Modes: LI 	R,IOP 

Result: 	10P --> (R) 

Operation: Places the 16—bit immediate operand into the contents of the 
register. 

Status Bits Affected: 

0 1 2 3 4 5 

L> A> EQ 

6 7 8 9 10 11 12 13 14 15 

          

           

The immediate operand is compared to zero and the Logical 
Greater Than, Arithmetic Greater Than, and Equal status 
bits are affected accordingly. 

Notes: The LI instruction is used often to initialize a register with a 
constant; for example, a loop counter or an address to be used with 
indirect or indexed addressing. 

Example: 	LI 	R9,100 

Before 	After 

(R9) = 	 >BC5A 	>0064 

L> = 1, A> = 1, EQ = 0 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Binary 0 1 0 0 0 0 0 0 0 0 0 0 

 

  

   

Immediate Operand 

Length: 2 words 
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I0 I1 12 13 

Instruction Summaries 

Load Interrupt Mask Immediate 	 LIll 

Mnemonic and Addressing Modes: LIMI IOP 

Result: IOP Bits 12 through 15 --> (ST) Bits 12 through 15 

Operation: Replaces the contents of the Interrupt Mask (the rightmost four 
bits of the Status Register) with bits 12 through 15 (the rightmost 
nibble) of the immediate operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The interrupt mask is set to the value of the right 
most nibble of the immediate operand. 

Notes: The LIMI instruction is used to set the interrupt mask to a specific 
number. This number is used by the computer to determine which 
interrupt signals are allowed to cause an interrupt and which ones are 
not. When an interrupt signal occurs, the number of the interrupting 
device (called its interrupt "level") is compared to the number in the 
interrupt mask. The interrupt level must be less than or equal to the 
number in the interrupt mask before the device is allowed to interrupt 
the current program. (A level 0 device is always allowed to interrupt.) 

Example: 	LIMI 6 

The number 6 is placed in the interrupt mask. Only devices with 
interrupt levels of 0 through 6 are allowed to interrupt the current 
program. 

Machine Code: 

Hex 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 1 0 0 0 

Immed ate Operand 

Binary 
	

0 0 0 0 0 0 0 0 0 0 

Length: 2 words 
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Load or Restart Execution 	 LREX 

Mnemonic and Addressing Modes: LREX 

Result: Sends signals out on address lines and CRUOUT line. 

Operation: When the LREX instruction is performed, the binary values 1, 1, 
and 1 appear on address lines AO, Al, and A2, respectively, in 
conjunction with a synchronizing pulse on the CRUCLK line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 

Notes: The LREX instruction may be used to implement functions unique to 
hardware surrounding the central processor. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                 

                 

Binary 0 0 0 0 0 0 

 

1 

 

1 1 0 0 0 0 

 

                 

Length: 1 word 
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Instruction Summaries 

Load Workspace Pointer Immediate 	 LWPI 

Mnemonic and Addressing Modes: LWPI TOP 

Result: 	IOP --> (WP) 

Operation: Replaces the contents of the Workspace Pointer with the 
immediate operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 

Notes: The LWPI instruction is used to define the area of memory for a 
program to use as its workspace. The immediate operand is placed into 
the Workspace Pointer. This operand should be the address of the first 
word of the workspace (the address of Register 0). The computer uses 
the next 15 contiguous words in memory as Registers 1 through 15. 

Example: 	LWPI WSP 

The address value of WSP is placed in the Workspace Pointer. 

A BSS directive 	can 	be used 	to reserve 	the 	32-byte 

Example: 	WSP 	BSS 	32 

(16-word) 	workspace. 

Machine 	Code: 

Hex 

0 1 2 	3 4 5 	6 7 8 	9 10 11 12 13 14 15 
-- -- -- -- -- -- -- 

Binary 0 0 0 	0 0 0 	1 0 1 	1 1 0 0 0 0 0 

Immediate Operand 
-- -- -- - -- -- -- -- -- -- -- -- -- -- -- -- 

Length: 1 word 
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Move Word 	 MOV 

Mnemonic and Addressing Modes: MOV S,D 

Result: 	(S) --> (3) 

Operation: Replaces the contents of the second operand with a copy of the 
contents of the first operand. Both operands are word addresses. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 

L> A> EQ 

The moved word s compared to zero and the Logical 
Greater Than, Arithmetic Greater Than, and Equal 
status bits are affected accordingly. 

Notes: You can use the MOV instruction to copy a word from one location to 
another. It's often used to copy a word from one general memory 
location to another general memory location. It can be used to 
initialize the contents of an operand at the start of a program and to 
save the results of an operation. 

Example: 

(ALPHA) 
(R4) 	= 

Machine Code: 

Hex 

Binary 	1 

MOO @ALPIIA,R4 

Before 
	

After 

>3074 
	

>3074 
>BC5A 
	

, 3A74 

L> = 1, A> = 1, EQ = 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I -- -- I -- I -- I --  -- I -- -- I -- I -- I --  
T d 	R d 	T s 	R s 

I-- -_I-_I-_I_- -- I -- -- I -1 -- I --  
Source (or Destination) Address 

1 0 0 

Destination Address 

Length: 1 or 2 or 3 words 
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Instruction Summaries 

Move Byte 	 MOVB 

Mnemonic and Addressing Modes: MOVB 5,0 

Byte 
Result: 	(S) ----> (D) 

Operation: Replaces the contents of the second operand with a copy of the 
contents of the first operand. Both operands are byte addresses. The 
contents of the unaddressed byte in a word are unaffected. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 

L> A> EQ 	OP 

The moved byte s compared to zero and the Logical 
Greater Than, Arithmetic Greater Than, and Equal 
status bits are affected accordingly. The Odd Parity 
status bit is set to one if there's an odd number of one 
bits in the byte; otherwise, its cleared to zero. 

Notes: You can use the MOVB instruction to copy a byte from one location to 
another. It can be used to initialize the contents of an operand at the 
start of a program and to save the results of an operation. 

Example: 

(ALPHA) 
(Al) 	= 
(R4) 	= 

Machine Code: 

Hex 

Binary 	1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- 1 -- 1 -- 1 --  
R d 
	

I s 1 0 

MOVB @ALPHA(R1),R4 

Before 	After 

>3A74 
	

>3A74 
>0001 
	

>0001 
>BC5A 
	

>745A 

L>= 1, A>= 1, EQ = 0, OP = 0 

-- I -- -- I -- I -- I -- -- I -- -- I -- I -- I --  
Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 
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Multiply 	 MPY 

Mnemonic and Addressing Modes: MPY S,R 

Result: 	(0) • (R) 	(R and R.1) 

Operation: Multiplies the contents of the first operand by the contents of 
the second operand. The most significant 16-bits of the 32-bit product 
replaces the contents of the destination register and the least 
significant 16 bits of the product replaces the contents of the next 
register. If Register 15 is the destination register, the least 
significant 16 bits of the product replaces the contents of the word 
following Register 15, The numbers are treated as unsigned values. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits affected. 

Notes: The Multiply instruction multiplies two 16-bit numbers and produces 
a 32-bit product. Its an unsigned multiplication; the computer ignores 
the sign of the numbers. 

Example: 	MPY @FACTOR,R5 

Before 	After 

(FACTOR) = 	>0023 
	

>0023 
(05) 	= 	>0005 

	
>0000 

(R6) 	= 	>A657 
	

>00AF 

No status bits affected. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I -- 
Binary 0 0 1 1 1 0 

-- I -- 1, --  I -- 

-- I --  
T s s 

Source Address 

Length: 1 or 2 words 
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L> A> EQ CY 0 0 

Instruction Summaries 

Negate 	 NEG 

Mnemonic and Addressing Modes: NEG S 

Result: 	-(S) --> (S) 

Operation: Negates (forms the two's complement of) the contents of the 
operand. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The computer negates the contents of the operand by 
taking the one's complement of the contents and adding 
one. The addition affects the Carry and Overflow status 
bits. The result is compared to zero and the Logical 
Greater Than, Arithmetic Greater Than, and Equal status 
bits are affected accordingly. 

Notes: The Negate instruction negates a 16-bit number. 

Example: 	NEG @DTFLAG 

Before 	After 

(DTFLAG) 	>0005 	>FFFB 

L> . 1, A> 	0, EQ = 0 
CY = 0, OV 	0 

Machine Code: 

Hex 	<--- 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- -- I -- -- I -- I -- I --  
Binary 0 0 0 Ts 	R s 

Source Address 

Length: 1 or 2 words 

0 0 0 1 0 1 0 
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L> A> EQ 

Append ix A 

Or Immediate 	 ORI 

Mnemonic and Addressing Modes: ORI 11,10P 

Result: 	(R) DR 10P --> (R) 

Operation: Performs a logical OR operation between the bits in the register 
and the bits in the immediate operand. The result replaces the contents 
of the register. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The result is compared to zero and the Logica Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The ORI instruction is useful for forcing selected bits in a 
register to one. 

Example: 	ORI 	R0,>A6OF 

Before 	After 

(PO) 	>DC5A 	>BESF 

L> = 1, A> 	0, EQ - 0 

(RO) Before = 1011 1100 0101 1010 
10P 	= 	1010 0110 0000 1111 

(00) After 	= 	1011 1110 0101 1111 

Machine Code: 

liex 
0 1 2 3 4 5 6 7 8 9 10 11 

Ironed ate Operand 

0 1 0 0 1 1 0 Binary 
	

0 0 0 0 0 

--I--I--I--I--I-- 
Length: 2 words 
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10 11 12 13 

Instruction Summaries 

Reset 	 RSET 

Mnemonic and Addressing Modes: RSET 

Result: Force interrupt mask to zero. 
Sends signals out on address lines and CRUOUT line. 

Operation: Forces the interrupt mask (the rightmost nibble in the Status 
Register) to zero. When the RSET instructionn is performed, the binary 
values 0, 1, and 1 appear on address lines Al, Al, and A2, respectively, 
in conjunction with a synchronizing pulse on the CRUCLX line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- -- _v. 

The interrupt mask (status bits 12 through 15 are 
forced to zero. 

Notes: The RSET instruction may be used to implement functions unique to 
hardware surrounding the central processor. 

Machine Code: 

<--- 0 ---> <--- 3 ---> <--- 6 ---> <--- 0 ---> 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- -- -- -- -- -- -- -- -- -- -- 

0000001 1 0 1 1 0 0 0 0 0 

Length: 1 word 

Hex 

Binary 
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Appendix A 

Return with Workspace Pointer 	 RTWP 

Mnemonic and Addressing Modes: RTWP 

Result: 	(R13) --> (WP) 
(R14) --> (PC) 
(815) --> (SR) 

Operation: Reverses a context switch. The contents of the Workspace 
Pointer, Program Counter, and Status Register are replaced with the 
contents of Registers 13, 14, and 15, respectively, of the current 
workspace. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- 

	

L> A> EP CY OV OP 	X 	 IO 11 12 13 

The contents of the Status Register is rep aced with 
the contents of Register 15. 

Notes: The RTWP instruction is normally used as the last instruction 
performed by a subroutine which is called by a context switch (by an XOP 
or BLWP instruction or by an interrupt). 

Example: 	Calling Program Called Program 

BLWP 8SQVECT 

SQVECT DATA 
DATA  

+ 	SUBWSP BSS 32 

---> SUBENT 	 

RTWP 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                 

Binary 0 

 

0 0 0 

 

1 1 1 

 

0 0 0 

 

0 

 

                 

Length: 1 word 
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Instruction Summaries 

Subtract Words 	 S 

Mnemonic and Addressing Modes: S 5,0 

Result: 	(0) - (S) --> (D) 

Operation: Subtracts the contents of the first operand from the contents of 
the second operand. Replaces the contents of the second operand with 
the difference. Both operands are word addresses. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- -- -- -- -- -- -- -- 

L> A> Ell CY OV 

The computer adds the two's complement of the contents of 
the first operand to the contents of the second operand. 
The addition affects the Carry and Overflow status bits. 
The sum is compared to zero and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The Subtract Words instruction subtracts one 16 - bit number from 
another. 

Example: 

(R4) 	= 
(ALPHA) = 

Machine Code: 

Hex 

S R4,@ALPHA 

Before 

>07A4 
>BC5A 

After 

>07A4 
> B 4B6 

L> 	1, A> 	0, EC) = 0 
CY - 1, OV 	0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I -- -- I -- I -- I -- -- I -- -- I -- I -- I --  
0 T d 	R d 	T s 	R s 0 1 

	
1 

-- I -- -- I -- I -- I -- -- I -- -- 1 -1 -- 1 --  
Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 

Binary 
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L> A> EQ CY OV OP 

Appendix A 

Subtract Bytes 	 SB 

Mnemonic and Addressing Modes: SB S,D 

Bytes 
Result: 	(0) - (5) 	> (D) 

Operation: Subtracts the contents of the first operand from the contents of 
the second operand. Replaces the contents of the second operand with 

	

the difference. 	Both operands are byte addresses. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The computer adds the two's complement of the contents of 
the first operand to the contents of the second operand. 
The addition affects the Carry and Overflow status bits. 
The sum is compared to zero and the Logical Greater Than, 
Arithmetic Greater Than, and Equal status bits are 
affected accordingly. The OP status bit is set to one if 
there's an odd number of one bits in the sum; otherwise; 
its cleared to zero. 

Notes: The Subtract Bytes instruction subtracts one 8- bit 
number from another. 

Example: 	SB R4,@ALPFIA 

Before 	After 

(14) 	 >0704 	>07A4 
(ALPHA) = 	>BCSA 	>855A 

L> = 1, A> = 0, EQ = 0 
CY = 1, OV = 0 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

	

-- I -- 	-- I --  

	

0 1 1 1 T d 	R d 	T s 	R s 

	

__I__ 	__I__ 
Source (or Destination) Address 

Destination Address 

Length: I or 2 or 3 words 

Binary 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- -- 

1 0 1 1 0 0 1 

Machine Code: 

Hex 

Binary 	0 
-- I -- I - 1 - '1 --  I --  1 -- I --  

Displacement 

- - 11 - 1 - 1 -- 111 --  

Instruction Summaries 

Set Bit to One 	 SBO 

Mnemonic and Addressing Modes: SOO Displacement 

Result: One bit --> Selected CRU Bit Address 

Operation: Sends a one bit to a selected CRU bit address. The bit address 
is the 12-bit sum of the CRU hardware base address (the contents of R12, 
bits 3 through 14) and the displacement operand (a number in the range 
of - 128 through +127). The 12- bit sum appears on the computer's address 
lines A3 through A14. Address lines AO through A2 are forced to zero. 
The one bit goes out on the CRUOUT line in conjunction with a 
synchronizing pulse on the CRUCLK line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

No status bits are affected 

Notes: The SBO instruction sets a CRU device at the selected address to a 
logic one. 

Example: 	LI 	112,>400 
SBO 18 

Sets CRU bit address hexadecimal 212 to a logic one. No status bits are 
affected. 

Length: 1 word 
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Appendix A 

Set Bit to Zero 	 SBZ 

Mnemonic and Addressing Modes: SBZ Displacement 

Result: Zero bit --> Selected CRU Bit Address 

Operation: Sends a zero bit to a selected CRU bit address. The bit address 
is the 12-bit sum of the CRU hardware base address (the contents of R12, 
bits 3 through 14) and the displacement operand (a number in the range 
of - 128 through +127). The 12 -bit sum appears on the computer's address 
lines A3 through A14. Address lines AO through A2 are forced to zero. 
The zero bit goes out on the CRUOUT line in conjunction with a 
synchronizing pulse on the CRUM line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 

Notes: The SBZ instruction sets a CRU device at the selected address to a 
logic zero. 

Example: 	LI 1112,5300 
SBZ -18 

Sets CRU bit address hexadecimal 16E to a logic zero. No status bits 
are affected. 

Machine Code: 

Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

           

Binary 0 0 0 1 1 1 

 

0 

 

Displacement 

           

           

Length: 1 word 
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-- -- -- -- -- -- -- -- -- -- -1 -- -- -- -- 

Instruction Summaries 

Set to Ones 	 SETO 

Mnemonic and Addressing Modes: SETO S 

Result: >FFFF --> (5) 

Operation: Forces the content of the operand to hexadecimal FFFF. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 

Notes: The SETO instruction initializes all the bits in a word to ones. 
This value is sometimes used as a special marker to mark the end of a 
table or sometimes used for a flag condition. When considered as a 
signed number, hexadecimal FFFF is -1. 

Example: 	SETO @ZFFLAG 

Before 	After 

(ZFFLAG) 	>72E9 	>FFFF 

No status bits affected. 

Machine Code: 

Hex 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 	11 	12 13 	14 15 

— 1 -1 - 1 --  
Binary 0 0 0 0 0 1 1 1 0 0 T s R s 

— I — I - 1 —  
Source Address 

Length: 1 or 2 words 
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Appendix A 

Shift Left Arithmetic 
	

SLA 

Mnemonic and Addressing Modes: SLA R,C 

Result: 
	

<--- C places ---- 

0 	1 	 14 15 

(R) - 	I XI XI . . . I XI XI <--- 0 

Operation: Shifts the contents of the register to the left by the number of 
bit positions specified by the count, C. 	If C is 0, the shift count is 
specified by the number in the rightmost nibble of Register O. If C is 
0 and the rightmost nible of register 0 is zero, the bits in the 
register are shifted 16 posistins. 	Fills the vacated bit positions 
with zeros. The state of the last bit shifted out is recorded in the 
Carry status bit. 

Status Bits Affected: 

0 1 2 3 4 5 

L> A> EQ CY OV 

6 7 8 9 10 11 12 13 14 15 

          

           

The result is compared to zero and the Log ca Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. The Carry status bit is a copy of 
the last bit shifted out. The Overflow status bit is set 
to one if the sign bit (bit position 0) changes anytime 
during the shift; otherwise, its cleared to zero. 

Notes: The SLA instruction can be used to perform a multiplication by 2. 
In order for the result to be correct, the sign bit should not change 
during the shift. 

Example: 

(R8) = 

Machine Code: 

Hex 

Binary 

SLA R8,3 

Before 	After 

>9A74 	>0390 

L> = 1, A> = 0, EQ = 0, 
CY = 0, OV = 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

I --  I --  I --  
0 1 0 	C 

-- -- I — I — I --  
Length: 1 word 

0 0 0 0 1 
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Instruction Summaries 

Set Ones Corresponding 
	

SOC 

Mnemonic and Addressing Modes: SOC S,D 

Result: 	(S) OR (0) --> (0) 

Operation: Sets to one all those bits in the contents of the destination 
operand that correspond to the position of one bits in the source 
operand. Leaves unchanged those bits in the contents of the destination 
operand that correspond to the position of zero bits in the source 
operand. This is a logical OR operation between the bits in the 
contents of the source operand and the bits in the contents of the 
destinaion operand. Both operands are word addresses. 

Status Bits Affected: 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

L> A> EQ 

The result is compared to zero and the Log ca Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The SOC instruction can be used to force selected bits in a word to 
one. The computer ORs the contents of the source operand with the 
contents of the destination operand. 

Example: 	SOC @BITMSK,R1 

Before 	After 

(BITMSK) = 	>A6OF 
(01) 	- 	>BC5A 

I.> . 1, A> = 0, EQ = 0 

(BITMSK) 	 1010 0110 0000 1111 
(81) 	Before 	1011 1100 0101 1010 

(81) 	After 	1011 1110 0101 1111 

Machine Code: 
Hex 	<--- E 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I -- -- I -- I -- I -- -- I -- -- I - 1 - H 
1 
	

1 
	

1 0 T d 	R d 	T s 	R s 

-- -- I -- -- I -1 -1 --  --I-- --1-1--1-- 
Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 

Binary 
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Appendix A 

Set Ones Corresponding Byte 
	

SOCB 

Mnemonic and Addressing Modes: SOCB S,D 

Result: 	(S) OR (D) --> (D) 

Operation: Sets to one all those bits in the contents of the destination 
operand that correspond to the position of one bits in the source 
operand. Leaves unchanged those bits in the contents of the destination 
operand that correspond to the position of zero bits in the source 
operand. This is a logical OR operation between the bits in the 
contents of the source operand and the bits in the contents of the 
destination operand. Both operands are byte addresses. 

Status Bits Affected: 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

L> A> EQ 
	

OP 

The result is compared to zero and the Log ca Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. The Odd Parity status bit is set 
if the byte result contains an odd number of one bits; 
otherwise, it's cleared to zero. 

Notes: The SOCB instruction can be used to force selected bits in a byte to 
one. The computer ORs the contents of the source operand with the 
contents of the destination operand. 

Example: 	SOCB @BITMSK,R1 
Before 	After 

(BITMSK) 	>A6OF 
(RI) 	 >BC5A 	>otoA 

L> 	1, A> - 0, EQ 	0, OP -0 

(BITMSK) 	= 1010 0110 0000 1111 
(R1) 	Before = 1011 1100 0101 1010 

(R1) 	After 	. 1011 1110 0101 1010 
Not -> 

changed 

Machine Code: 
Hex 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- I -- - I -- I -- I -- -- I --  
Binary 1 	1 	1 	1 T d 	R d 	T s 	R s 

-- I -- 	-- I -- -MTh- I -- 
Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 
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12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 
-- -- 	 -- -- -- -- -- 	 -- 

L> A> EQ CY 

Instruction Summaries 

Shift Right Arithmetic 	 SRA 

Mnemonic and Addressing Modes: SRA R,C 

Result: 	---- C places ----> 

0 1 	 14 15 

(0) . +---> 1 XI XI . . . I XI Xi 

i + 	+ 

Operation: Shifts the contents of the register to the right by the number 
of bit positions specified by the count, C. If C is 0, the shift count 
is specified by the number in the rightmost nibble of Register O. If C 
is 0 and the rightmost nibble of register 0 is zero, the bits in the 
register are shifted 16 positions. The vacated bit positions are filled 
with a copy of the sign bit (bit 0). The state of the last bit shifted 
out is recorded in the Carry status bit. 

Status Bits Affected: 

The result is compared to zero and the Log to Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. The Carry status bit is a copy of 
the last bit shifted out. 

Notes: The SRA instruction can be used to perform a division by 2 when the 
number in the register is an signed value. 

	

Example: 	SRA 	R8,2 

Before 	After 

	

(08) 	. 	>9A74 	>E690 

L>= 1, A> = 0, EQ = 0, CY = 0 

Machine Code: 

Hex 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 	12 13 14 15 

-- 1 -- 1 -1 --  -- 1 -- 1 -- 1 --  
Binary 0 0 0 0 1 0 0 0 C R 

-- -- 1 -- 1 -- 1 --  -- 1 -- 1 -- 1 --  
Length: 1 word 
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Appendix A 

Shift Right Circular 
	

SRC 

Mnemonic and Addressing Modes: SRC R,C 

Result: 	 C places ----> 

0 	1 	 14 15 

(R) 	+ --- > I XI XI . . . 1 XI XI---+ 
1 	+--+--+-- / --+--+--+ 	I 

Operation: Shifts the contents of the register to the right by the number 
of bit positions specified by the count, C. If C is 0, the shift count 
is specified by the number in the rightmost nibble of Register O. If C 
is 0 and the rightmost nibble of register 0 is zero, the bits in the 
register are shifted 16 positios. Each bit shifted out of bit position 
15 (the right end of the register) goes to bit position 0 (the left end 
of the register). The state of the last bit shifted out is recorded in 
the Carry status bit. 

Status Bits Affected: 

0 

L> 

The 
Than, 

the 
affected 

1 

A> 

resul 

last 

2 

EQ 

Arithmetic 

3 

CY 

is 

bit 
accordingly. 

4 

compared 

shifted 

5 

Greater 

6 7 

to 

The 
out. 

8 

Than, 
zero 

Carry 

9 10 

and 
and 

11 

the 

status 
Equal 

12 13 

Log 

bit 
status 

14 

ca 

is 

15 

a 

Greater 
bits 	are 
copy of 

Notes: 	The SRC instruction can be used to rearrange the position of bits in 
a word without changing their order. Notice that after a SRC 
instruction is performed, the sign bit (bit position 0) is the same as 
the state of the Carry status bit. 

Example: 	SRC R8,2 

(08) 

Before 	After 

>9A74 	>2690 

L> 	= 	1, 	A> 	= 	1, EQ = 0, 	CY = 0 
Machine 	Code: 

Hex 

0 1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 	13 	14 	15 

-- I --  I --  -- I --  I --  I --  
Binary 0 0 0 0 1 0 1 1 

-- I -- I -- I --  
Length: 1 word 
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Instruction Summaries 

Shift Right Logical 	 SRL 

Mnemonic and Addressing Modes: SRL R,C 

Result: 	 C places ----> 
0 1 	14 15 

(8) = +--->1 X1 X1 . . . 1 X1 X1 

Operation: Shifts the contents of the register to the right by the number 
of bit positions specified by the count, C. If C is 0, the shift count 
is specified by the number in the rightmost nibble of Register O. If C 
is 0 and the rightmost nibble of register 0 is zero, the bits in the 
register are shifted 16 positions. The vacated bit positions are filled 
with zeros. The state of the last bit shifted out is recorded in the 
Carry status bit. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 

L> A> EP CY 

The result is compared to zero and the Log ca Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. The Carry status bit is a copy of 
the last bit shifted out. 

Notes: The SRL instruction can be used to perform a division by 2 when the 
number in the register is an unsigned value. 	It's also useful in 
situations where each bit is a data item; for example, the state of a 
specific switch. You might use the SRL instruction to check the 
condition of the swithch by shifting its bit image into the Carry 
status bit. 

	

Example: 	SRL R8,2 

Before 

	

(R8) 	>3A74 

Machine Code: 

After 

>0E90 

L> 1, A>= 0, E0 - 0, CY = 0 

Hex 	0 ---> 
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 	12 	13 14 15 

-- 1 -- 1 -- 1 --  -- 1 -- 1 -- 1 --  
Binary D 0 0 0 1 0 1 C 

-- 1 -- 1 -- 1 --  -- 1 -- 1 -- 1 --  
Length: 1 word 
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Appendix A 

	

Store Communicaton Register Unit 	 STCR 

Mnemonic and Addressing Modes: STCR S,C 

Result: The number of CRU selected bit addresses determined 
by C --> (S) 

Operation: Reads the number of bits specified by C into the source operand 
from consecutive CRU bit addresses. If C is zero, 16 bits are read in. 
If the number of bits specified is greater that 8, the source operand is 
a word address; otherwise, it's a byte address. The bits read into the 
contents of the word or byte addressed by the source operand fill the 
word or byte from right to left. Any unfilled bit positions in the 
source operand are forced to zero. The CRU hardware base address (the 
contents of R12, bits 3 through 14) selects the first CRU bit address 
and subsequent bits read in come from the subsequent CRU bit addresses. 
The content of R12 is unchanged. The bits are read in sequentially on 
the CRUIN line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- 

L> A> EQ 	OP 

The entire content of the source operand (not just the 
transferred bits) is compared to zero and the Logical 
Greater Than, Arithmetic Greater Than, and Equal status 
bits are affected accordingly. If the source operand is 
a byte address, the Odd Parity status bit is affected 
based upon the number of one bits in the contents of the 
source operand. 

Notes: The STCR instruction reads in a multiple number of bits (up to a 
maximum of 16) from a series of CRU bit addresses. 

Example: 	LI 	R12,>400 
STCR @STATUS,4 

Reads in 4 bits from CRU bit addresses hexadecimal 200 through 203 into 
the contents of byte address STATUS, bits 7 through 4 (from right to left). 

Machine Code: 
Hex 

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 	12 13 14 15 

-- I -- I -- I --  --I-- --I--I--I-- 
Binary 0 0 1 1 1 0 C Ts Rs 

-- I -- I -- I --  -- I --  -- I -- I -- I --  
Source Address 

Length: 1 or 2 words 
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-- -- -- -- 

0 0 0 1 0 D 0 0 Binary 

Instruction Summaries 

Store Status 	 STST 

Mnemonic and Addressing Modes: STST R 

Result: 	(ST) --> 021 

Operation: The contents of the register is replaced with a copy of the 
contents of the Status Register. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 
-- -- -- -- -- -- -- -- -- -- -- -- 7- -- -- -- 

No status bits are affected 

Notes: You can use the STST instruction to save the contents of the Status 
Register. This might be useful for determining the state of the X 
status bit (for which there is no conditional jump instruction) or for 
analyzing the number in the interrupt mask. 

Example: 	STST R15 

The contents of the Status Register is copied into Register 15. 

Machine Code: 

Hex 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

__ 	_. 	.. _ _ __I__I__I__ 

	

1 1 0  0 	

R 

-- ------ 

Length: 1 word 
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Appendix A 

Store Workspace Pointer 	 STWP 

Mnemonic and Addressing Modes: STWP R 

Result: 	(WP) --> (R) 

Operation: The contents of the register is replaced with a copy of the 
contents of the Workspace Pointer. 

Status Bits Affected: 

Binary 
	

0 0 0 0 0 0 1 0 1 0 1 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

No status are bits affected 

Notes: You can use the STWP instruction to save the address of the current 
workspace. This is sometimes useful in a subroutine so that the 
subroutine can remember the address of its current workspace, use a 
different workspace for a while, and then restore the address of its 
orignal workspace to the Workspace Pointer. 

Example: 	STWP R13 

The address value in the Workspace Pointer is copied into Register 13. 

Machine Code: 

Hex 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

- - 11- 1 --  

--1- 1 -1-- 
Length: 1 wort 
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Instruction Summaries 

Swap Bytes 	 SWPB 

Mnemonic and Addressing Modes: SWPB S 

Result: 	(5) Bits 0 through 7 --> (5) Bits 8 through 15 
(5) Bits 8 through 15 --> (S) Bits 0 through 7 

Operation: Swaps the two bytes in a word. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No status bits are affected 

Notes: Although you can use the SWPB instruction to swap the two bytes in a 
general memory word, its used more often to exchange the two bytes in a 
register. In order to perform a byte operation with the contents of a 
register, the byte must be in the left half of the register. The SWPB 
instruction can be used to place the right byte of a register in the 
left half. 

Example: 	SWPB 

Before 	After 

(04) 	 >BCSA 	>5ABC 

No status bits affected. 

Machine Code: 

Hex 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Rs 

-- 1 -- 1 -- 1 --  
Source Address 

Length: 1 or 2 words 

Binary 0 0 0 0 1 1 0 1 1 T o 
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L> A> EP 

Appendix A 

Set Zeros Corresponding 
	

SZC 

Mnemonic and Addressing Modes: SZC S,D 

Result: Complement (S) AND (D) --> (D) 

Operation: Sets to zero all those bits in the contents of the destination 
operand that correspond to the position of one bits in the source 
operand. Leaves unchanged those bits in the contents of the destination 
operand that correspond to the position of zero bits in the source 
operand. Both operands are word addresses. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The result is compared to zero and the Log ca Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The SZC instruction can be used to force selected bits in a word to 
zero. The computer ANDs the complement of the contents of the source 
operand with the contents of the destination operand. 

Example: 	SZC @BITMSK,R1 

Before 	After 

(BITMSK) 	>A60F 
(R1) 	= 	>005A 

>A6OF 
>1850 

L> = 1, A> = 1, E0 = 0 

(BITMSK) 	 1010 0110 0000 1111 
(01) 	Before 	1011 1100 0101 1010 

(01) After 	0001 1000 0101 0000 

Machine Code: 
Hex 	<--- 4 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- -- I -- -- I -- I -- I -- -- I --  
Binary 0 T d 	R d 	T s 	R s 

-- -- I -- -- I -- I -- I -- -- I -- -- I -- I -- I --  
Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 

1 
	

0 
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Binary 

Before 
	

After 
(BITMSK) = 	>A600 

	
>A6OF 

(01) 	 >BCSA 
	

>1851 

L> 	1, A>- 1, EQ 	0, OP 	0 

(BITMSK) 	= 1010 0110 0000 1111 
(R1) 	Before 	= 	1011 1100 0101 1010 

(121) 	After 	0001 1000 0101 1010 
<- Not -> 
changed 

Machine Code: 
Hex 

0 1 2 3 

0 1 0 1 

4 5 6 7 8 9 10 11 12 13 14 15 

T d 	R d 	T s 	R s 

-- I -- 	-- I -- -- I -- I -- I --  
Source (or Destination) Address 

Destination Address 

Length: 1 or 2 or 3 words 

Instruction Summaries 

Set Zeros Corresponding Byte 	 SZCB 

Mnemonic and Addressing Modes: SZCB S,D 

Result: 	 byte 
Complement (S) AND (0) ---> (0) 

Operation: Sets to zero all those bits in the contents of the destination 
operand that correspond to the position of one bits in the source 
operand. Leaves unchanged those bits in the contents of the destination 
operand that correspond to the position of zero bits in the source 
operand. Both operands are byte addresses. 

Status Bits Affected: 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1> A> EQ 
	

OP 

The result is compared to zero and the Log ca Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. The Odd Parity status bit is set 
if the byte result contains an odd number of one bits; 
otherwise, it's cleared to zero. 

Notes: The SZCB instruction can be used to force selected bits in a byte to 
zero. The computer ANDs the complement of the contents of the source 
operand with the contents of the destination operand. 

Example: 	SZCB OBITMSK,R1 
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Test Bit 	 TB 

Mnemonic and Addressing Modes: TB Displacement 

Result: State of bit at selected CRU Bit Address --> EQ 
status bit 

Operation: Reads the state of the bit at the selected CRU bit address. The 
state of the bit is recorded in the Equal status bit. The bit address 
is the 12-bit sum of the CRU hardware base address (the contents of R12, 
bits 3 through 14) and the displacement operand (a number in the range 
of -128 through +127). The 12-bit sum appears on the computer's address 
lines A3 through A14. Address lines AO through A2 are forced to zero. 
The selected bit is read in on the CRUIN line. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- 

EQ 

The Equal status bit is set to the state of the bit read in. 

Notes: The TB instruction reads the state of a CRU input bit so that its 
state can be tested. 

Example: 	LI 	R12,>400 
TB 	0 
JEQ ON 

The JEQ instruction causes a jump to the instruction labeled ON if the 
CRU bit at address hexadecimal 200 is a one. 

Machine Code: 

Nes 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 1 1 1 1 1 	Displacement  

Length: 1 word 

Binary 
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Instruction Summaries 

Execute 	 X 

Mnemonic and Addressing Modes: X S 

Result: Performs the instruction at the operand address. 

Operation: Performs (executes) the instruction specified by the operand 
address and program control returns immediately to the location 
following the X instruction, unless the executed instruction is one 
which performs a transfer of program control ie.g, a branch or jump 
instruction), If the executed instruction is a jump which causes a 
transfer of control, the jump is made relative to the location of the X 
instruction. If the executed instruction requires more than one word of 
machine code, the word or words following the X instruction are used for 
operand addresses. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

No status bits are affected by the X instruction itself, 
but the executed instruction affects the status bits. 

Notes: The X instruction is sometimes useful in situations where a program 
constructs the machine code for an instruction and then performs it. 
Proceed with caution when using the X instruction. 

Example: + 	 

I
X @GLOBAL 

---> GLOBAL A 18,13 

 

 

Executes the Add Words instruction at GLOBAL and returns to the location 
following the X instruction. 

Machine Code: 

Hex 	a--- 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

--I-- --I- 
1 0 0 1 0 T s 	R s 

-- I --  
Source Address 

Length: 1 or 2 words 

Binary 0 0 0 0 0 
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Extended Operation 	 COP 

Mnemonic and Addressing Modes: XOP S,C 

Result: 	(>40 + 4 x C) --> (WP) 
(>42 + 4 x C) --> (PC) 
(old WP) --> (new R13) 
(old PC) --> (new R14) 
(old SR) --> (new R15) 

S 	--> (new R11) 

Operation: Performs a context switch using the two-word vector specified by 
the second operand. The second operand is multiplied by four and added 
to hexadecimal 40. The result is the address of the first word of the 
two-word vector and it contains the address of a new workspace. The 
second word contains the address of a program to which a transfer of 
control is made. 	When the XOP instruction is perfomed, the current 
contents of the WP, PC, and SR are stored in Registers 13, 14, and 15, 
respectively, of the new workspace. Also, the address of the first 
operand is stored in Register 11 of the new workspace. 

Status Bits Affected: 

0 	1 	2 	3 	4 	5 6 	7 	Et 9 10 11 12 13 14 15 
-- -- -- -- -- 

X 

The Extended Operation status bit is set. 

Notes: The XOP instruction performs a context switch using a vector within 
a fixed area of memory. 

Example: 	XOP @PARAM,1 

A context switch is performed using the contents of memory locations 
hexadecimal 44 and 46 as a two- word vector. The address value of PARAM 
is placed in Register 11 of the new workspace. 

Machine Code: 

Hex 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

-- -- I -- I -- I -- -- I -- -- I -- I -- I --  
0 0 1 0 1 Binary 1 	C 	T s 	R s 

-- -- I -- I -- I -- -- I -- -- I --- 1 -- I --  
Source Address 

Length: 1 or 2 words 
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L> A> E() 

Instruction Summaries 

Exclusive Or 	 XOR 

Mnemonic and Addressing Modes: XOR S,R 

Result: 	(S) XOR (R) --> (R) 

Operation: Performs a logical exclusive OR operation between the bits in 
the source operand and the bits in the destination register. The result 
replaces the contents of the destination register. 

Status Bits Affected: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

The result is compared to zero and the Log ca Greater 
Than, Arithmetic Greater Than, and Equal status bits are 
affected accordingly. 

Notes: The XOR instruction is useful for selectively complementing bits in 
a register. Bits in the destination register are complemented for which 
there are one bits in the corresponding bit positions of the source 
operand. 

Example: 	XOR @BITMSK,R1 

Before 	After 

(OITMSK) 
	

>A6OF 
	

>A6OF 
0111 	. 	>BC5A 
	

>1A55 

L> . 1, A> . 1, EQ = 0 

(B1TMSK) 	1010 0110 0000 1111 
(R1) 	Before 	1011 	1100 0101 	1010 

(R1) After 	0001 	1010 0101 	0101 

Machine Code: 

Hex 
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15 

Binary 0 0 1 0 1 0 
-- I -1-- I -- 
-- I 

	_ I 	_I -- 
-- I -- 

 Ts _I  -- 
-- 1 -- 1 -1 -- 

 Rs 

-- 1 -- 1 -- 1 --  
Source Address 

Length: 1 or 2 words 
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Number Tables 

Hexadecimal Binary Decimal 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 
A 1010 10 
0 1011 11 
C 1100 12 
0 1101 13 
E 1110 14 
F 1111 15 

Odd 	Byte 

Hex Dec 
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Appendix C 

ASCII Character Table 
ASCII CHARACTER SET 

Character Binary Hex Decimal 

NUL-Null 000 0000 00 0 
SOH-Start of Heading 000 0001 01 1 
STX-Start of Text 000 0010 02 2 
ETX-End of Text 000 0011 03 3 
001-End of Transmission 000 0100 04 4 
FNO -Enquiry 000 0101 05 5 
' 	• 	Acknowledge 000 0110 06 6 
BEL-Bell 000 	0111 07 7 
BS-Backspace 000 1000 08 8 
NT-Norizonatal 	Tab 000 1001 09 9 
LF-Line 	Feed 000 	1010 OA 10 
VT-Vertical 	Tab 000 	1011 OB 11 
FF-Form Feed 000 	1100 OC 12 
CR-Carriage Return 000 1101 00 13 
SO-Shift Out 000 	1110 OE 14 
SI-Shift 	In 000 	1111 OF 15 
DLE-Data Link 	Escape 001 	0000 10 16 
DC1-Device 	Control 	1 001 0001 11 17 
002-Device Control 2 001 0010 12 18 
003-Device Control 	3 001 0011 13 19 
DC4-Device 	Control 	4 001 0100 14 20 

.•Negative Acknowledge 001 0101 15 21 
•-Synchronous 	Idle 001 	0110 16 22 

tie-End 	of Transmission 	Block 001 	0111 17 23 
CAN-Cancel 001 1000 18 24 
EM-End of Medium 001 	1001 19 25 
SUB-Substitute DOI 	1010 10 26 
ESC-Escape 001 	1011 1B 27 
FS-File 	Separator 001 	1100 IC 28 
GS-Group Separator 001 	1101 ID 29 
RS-Record 	Separator 001 	1110 1E 30 
US-Unit Separator 001 	1111 IF 31 
Space 010 0000 20 32 
! 010 0001 21 33 
" 010 0010 22 34 
i 010 	0011 23 35 
$ 010 0100 24 36 
% 010 	0101 25 37 
& 010 	0110 26 38 

010 	0111 27 39 
( 010 	1000 28 40 
! 010 	1001 29 41 
. 010 	1010 2A 42 
4  010 	1011 2B 43 

010 	1100 2C 44 
010 	1101 20 45 
010 	1110 2E 46 

./ 010 	1111 2F 47 
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Character 

ASCII CHARACTER SET (Continued) 

Binary Hex 

ASCII Character Table 

Decimal 

a 110 0001 61 97 
b 110 0010 62 98 
c 110 0011 63 99 
d 110 	0100 64 100 
e 110 0101 65 101 
f 110 0110 66 102 
9 110 	0111 67 103 
h 110 1000 68 104 
i 110 	1001 69 105 
j 110 	1010 6A 106 
k I10 	1011 60 107 
1 110 	1100 6C 108 
m 110 	1101 60 109 
n 110 	1110 6E 110 
o 110 	1111 6F 111 
p 111 	0000 70 112 

4 111 	0001 71 113 
r 111 	0010 72 114 
s 111 	0011 73 115 
t 111 	0100 74 116 
u 111 	0101 75 117 
v 111 	0110 76 118 
w 111 	0111 77 119 
x 111 	1000 78 120 

111 	1001 79 121 
3; 111 	1010 70 122 

111 	1011 7B 123 
111 	1100 /C 124 
111 	1101 7D 125 
111 	1110 7E 126 

DEL—Delete, Rubout III 	1111 7F 127 
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Index 

Addressing formats. 50 

AND operation. 170, 100 

ASCII, 29 

Assembler, 8, 10, 91, 94, 234, 235 

Assembler errors, 232 

BASIC, 6, 0. 11, 25, 30. 42, -15, 00 

hoary, 12, 02 

BM 12 

Brooches, 195 

Bug.0  

Buzzwords. 4, 0 

Byte. 12 

Byte operations, 72 

Carry status, 164 

Character codes, 29 

Comments. 42, 47, 48 

Computer languages. 5 

Conditional jump. 38, 82, 151 

Contest switching. 105. 190 

CI'l I 35 

CPU RAM. 34 

01241. 39, 59, 201) 

CR tl Addressing. 59, 209 

Debugger. 0, 103. 105 

Destination operand. 61 

Directives. 42, 40. 223 

Double word, 13 

Editor, 8. 91, 92 

Exclusive OR operation, 179, 186 
Expressions, 221 

General addressing modes, 50, 242 

GROM. 34 

Hexadecimal, 13, 62, 113 

1/0, 33 

Immediate addressing, 59, 77 

Indexed addressing, 59, 70 

Instruction summary, description. 60 

Interrupts, 202 

Jump, conditional, 38. 82. 151 

Labels, 41, 46 

Language, levels 5, 0 

Levels, language 5 

Listing. 8, 96, 99 

Loader, 0, 103 

Logical operations, 170 

Loop, 70, 117 

Machine language (code), 5. 62, 237 

Memory, 12  33 3-1 

Negative numbers, 25 

Nibble, 12 

Niblet, 12 

Number Conversion, 13, 15. 16, 19. 20, 22, 26 

Object program. 8, 95 

Operands, 42, 40, 61. 221 

Operation code, 42, 46 

OR operation, 179, 183 

Overflow status. 164 

Parity bit. 29 

PC-Relative addressing. 59, 81, 248 

Posiliional notation, 14 

Program, 5 

Program Counter (PC), 36, 107, 199 

Radix, 11 

RAM, 33 

Read-only memory, 33 

Read/write memory. 33 

Register Direct addressing, 59, 63 

Register Indirect Autoincrement addressing. 59. 66 

Register Indirect addressing, 59, 65 

Relocaiion, 222 

120M, 33 

Shift counts, 131 

Shifting, 125 

Sign hit, 2(1 

Signed values, 25 

Source operand, 61 

Source program, 8, 95 

Statement fields, 41 

Status Register (SR), 36, 38, 39, 107, 199 

Subroutines, 193 

Symbolic addressing, 59. 68 

Syntax. 45 
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Translation, 7 

Two's complement, In. 171 

VDP RAM, 34 
Vector, 198 

Word, 12, 34 
Workspace Pointer (WP), 36, 107, 199 

XOR operation, 179, 106 
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