
Texas Instruments Home Computer

Includes the Editor/Assembler Solid State SoftwareTM
Command Module and two program diskettes.
Designed for use with the TI Home Computer, the TI
Memory Expansion unit, and the TI Disk Memory
System (TI Disk Drive Controller and one to three TI
Disk Memory Drives)-all sold separately.

C ~ p y r ~ g l ~ l O 1981 Texas lnslrurnenls Irlcorporalea
Command MoaL e program an0 data base contents
Copyrfgnt C 1981 Texas Inslrurnenls ncorporaleo.
See Important warranty information at back of book.

The Editor/Assembler program was developed by the staf f of the Texas Instruments
Personal Computer Division:

Allen T. Acree, Jr.
Susan Jean Bailey
Sumiko Endo

The Editor/Assembler owner's manual was developed by the staff of the Texas
Instruments Learning Center:

Cheryl Watson
Robert E. Whitsitt, I1

With Contributions by:

I ra McComic
Henry C. Mishkoff
Jacquelyn Quiram
Jan E. Stevens

Copyright @ 1982 by Texas Instruments Incorporated

EDITORlASSEMBLER
Page 2

TABLE OF CONTENTS

. GENERAL INFORMATION 15 . 1.1 Using This Manual 17 . 1.2 Set-Up Instructions 18 . 1.2.1 I n Case of Di f f icul ty 19 . 1.3 Special Key Functions 20

. USING THE EDITORIASSEMBLER 21 . 2.1 Editor 22 . 2.1.1 Load 22 . 2.1.2 Edit 23 . 2.1.3 Save 30 . 2.1.4 Print 31 . 2.1.5 Purge 32 . 2.2 Assemble 33 2.2.1 File and Option Specification 33 . . 2.2.2 Assembly ; 35 . 2.3 Load and Run 36
2.4 Run . 37 . 2.5 Run Program File 38

. GENERAL PROGRAMMING INFORMATION 39 . 3.1 Registers 39 3.1.1 Program Counter Register (PC) 39 3.1.2 Workspace Pointer Register (WP) 39 . 3.1.3 Status Register (ST) 40 . 3.2 Transfer Vectors and Workspace 45 . 3.3 Source Statement Format 46 . 3.3.1 Character Set 47
3.3.2 Label Field . 47 . 3.3.3 Operation Field 48 . 3.3.4 Operand Field 48 3.3.5 Comment Field and Comment Line 48 . 3.4 Expressions 49
3.4.1 Well-Defined Expressions . 49 . 3.4.2 Arithmetic Operators 49

EDITORIASSEMBLER
Page 3

. 3.5 Constants 50 3.5.1 Decimal Integer Constants 50 3.5.2 Hexadecimal Integer Constants 50 . 3.5.3 Character Constants 51 . 3.5.4 Assembly-Time Constants 51 . 3.6 Symbols 52 . 3.7 Predefined Symbols 53 . 3.8 Terms 54 . 3.9 Character Strings 55

. ADDRESSING MODES 56 . 4.1 General Addressing Modes 56 4.1.1 Workspace Register Addressing 57
3.1.2 Workspace Register Indirect Addressing 57

. . . 4.1.3 Workspace Register Indirect Auto-Increment Addressing 58 4.1.4 Symbolic Memory Addressing 58
4.1.5 Indexed Memory Addressing 59 4.2 Program Counter Relative Addressing 60 . 4.3 CRU Bit Addressing 6 1 . 4.4 Immediate Addressing 62 . 4.5 Addressing Summary 63

. INSTRUCTION FORMATS 65
. 5.1 Format I .. Two General Address Instructions 66

5.2 Format I1 .. Jump Instructions . 67
. 5.2.1 Format I1 Bit I/O Instructions 68

5.3 Format 111 .. Logical Instructions . 69
. 5.4 Format IV .. CRU Multi-Bit Instructions 70

5.5 Format V .. Register Shift Instructions 7 1
5.6 Format VI .. Single Address Instructions 72
5.7 Format VII .. Control Instructions . 73
5.8 Format VIII .. Immediate Instructions 74
5.9 Format IX .. Extended Operation Instruction 76

5.9.1 Format IX .. Multiply and Divide Instructions 77

. ARITHMETIC INSTRUCTIONS 78
. 6.1 Add Words.. A 80

6.2 Add Bytes..AB . 82
. 6.3 Absolute Value.. ABS 84

6.4 Add Immediate.. A1 . 85
. 6.5 Decrement.. DEC 86

EDITOR~ASSEMBLER
Page 4

. Decrement by Two.. DECT 87 . Divide.. DIV 88 . Increment.. INC 90 . Increment by Two..INCT 91 . Multiply.. MPY 92
Negate.. NEG . 94 . Subtract Words.. S 95 . Subtract Bytes.. SB 96 . Instruction Examples 98
6.14.1 Incrementing And Decrementing Examples 98
6.14.2 General Example . 102

. JUMP AND BRANCH INSTRUCTIONS 104
7.1 Branch.. B . 107
7.2 Branch and Link.. BL . 108
7.3 Branch and Load Workspace Pointer..BLWP 109
7.4 Jump I f Equal..JEQ . 110
7.5 Jump I f Greater Than.. JGT . 111
7.6 Jump I f High or Equal.. JHE . 112
7.7 Jump I f Logical High.. J H . 113
7.8 Jump I f Logical Low.. JL . 114
7.9 Jump I f Low or Equal.. JLE . 115

7.10 Jump I f Less Than.. JLT . 116
7.11 Unconditional Jump.. JMP . 117
7.12 Jump I f No Carry.. JNC . 118
7.13 Jump I f Not Equal.. JNE . 119
7.14 Jump I f No Overflow..JNO . 120
7.15 Jump I f Odd Parity.. JOP . 121
7.16 Jump On Carry.. JOC . 122
7.17 Return with Workspace Pointer.. RTWP 123
7.18 Execute..X . 124
7.19 Extended Operation.. XOP . 125
7.20 Instruction Examples . 127

7.20.1 Common Workspace Subroutine Example 127
7.20.2 Context Switch Subroutine Example 129
7.20.3 Passing Data to Subroutines . 133
7.20.4 Extended Operations . 136
7.20.5 Execute Example . 136

EDITORIASSEMBLER
Page 5

. COMPARE INSTRUCTIONS . 8.1 Compare Words.. C . 8.2 Compare Bytes.. CB . 8.3 Compare Immediate.. C I 8.4 Compare Ones Corresponding.. COC 8.5 Compare Zeros Corresponding.. CZC

. CONTROL AND CRU INSTRUCTIONS
9.1 Load CRU.. LDCR .
9.2 Set CRU B i t to One.. SBO .
9.3 Set CRU B i t to Zero.. SBZ .
9.4 Store CRU.. STCR .
9.5 Test Bit.. TB . . 9.6 Other Instructions
9.7 CRU Input/Output .

. 9.7.1 CRU I /O Instructions
9.7.2 Accessing Specific Bits .
9.7.3 SBO Example .
9.7.4 SBZ Example . . 9.7.5 TB Example

LOAD AND MOVE INSTRUCTIONS .
10.1 Load Immediate-LI .
10.2 Load Interrupt Mask Immediate.. L I M I
10.3 Load Workspace Pointer Immediate-LWPI 10.4 Move Word.. MOV
10.5 MoveByte.. MOVB .
10.6 Store Status.. STST .
10.7 Store Workspace Pointer.. STWP .
10.8 Swap Bytes.. SWPB .
10.9 Instruction Example .

EDITORIASSEMBLER
Page 6

. LOGICAL INSTRUCTIONS . 11.1 AND Immediate.. AND1 . 11.2 OR Immediate.. OR1 . 11.3 Exclusive OR.. XOR . 11.4 Invert.. INV . 11.5 Clear.. CLR
11.6 Set to One.. SET0 .

. 11.7 Set Ones Corresponding.. SOC 11.8 Set Ones Corresponding, Byte.. SOCB

. 11.9 Set Zeros Corresponding.. SZC
11.10 Set Zeros Corresponding, Byte.. SZCB

WORKSPACE REGISTER SHIFT INSTRUCTIONS
12.1 Shift Right Arithmetic.. SRA .
12.2 Shift Right Logical.. SRL .
12.3 Shift Le f t Arithmetic.. SLA .

. 12.4 Shift Right Circular.. SRC
12.5 Instruction Example .

. PSEUDO-INSTRUCTIONS
13.1 No Operation.. NOP . . 13.2 Return.. RT

ASSEMBLER DIRECTIVES .
14.1 Directives that Af fect the Location Counter

14.1.1 Absolute Origin.. AORG .
. 14.1.2 Relocatable Origin.. RORG

14.1.3 Dummy Origin.. DORG .
. 14.1.4 Block Starting wi th Symbol.. BSS

14.1.5 Block Ending with Symbol.. BES
. 14.1.6 Word Boundary.. EVEN

14.1.7 Program Segment.. PSEG .
. 14.1.8 Program Segment End.. PEND

14.1.9 Common Segment.. CSEG
14.1.10 Common Segment End..CEND
14.1.11 Data Segment.. DSEG .
14.1.12 Data Segment End.. DEND

EDITOR/ASSEMBLER
Page 7

. 14.2 Directives that Af fect Assembler Output 220 . 14.2.1 No Source List.. UNL 220 . 14.2.2 L is t Source.. LIST 221 . 14.2.3 Page Eject.. PAGE 221 . 14.2.4 Page Title.. TITL 222 . 14.2.5 Program Identifier.. IDT 223 14.3 Directives that Init ialize Constants 224 14.3.1 Define Assembly-Time Constant.. EQU 224 . 14.3.2 Initialize Byte.. BYTE 225 . 14.33 Initialize Word.. DATA 225 . 14.3.4 Initialize Text.. TEXT 226 . 14.4 Directives that Link Programs 227 14.4.1 External Definition.. DEF 227 14.4.2 External Reference-REF 228 . 14.4.3 Copy File..COPY 229 . 14.4.4 Force Load.. LOAD 231 14.4.5 Secondary External Reference.. SREF 232 . 14.5 Miscellaneous Directives 233 14.5.1 Define Extended Operation.. DXOP 233 . 14.5.2 Program End.. END 234

. ASSEMBLER OUTPUT 235 . 15.1 Source Listing 235 . 15.1.1 Error Messages 236 . 15.2 Object Code 238 . 15.2.1 Object Code Format 238 15.2.2 Compressed Object Code Format 240 . 15.3 Changing Object Code 241 . 15.4 Machine Language Format 242 . 15.5 Output Example 243 . 15.5.1 Listing 243 . 15.5.2 Object Code 245

EDITORIASSEMBLER
Page 8

. UTILITIES AND PREDEFINED SYMBOLS 246 . 16.1 VDP RAM Access Uti l i t ies 248 . 16.2 Extended Util it ies 250 . 16.2.1 KSCAN 250 . 16.2.2 GPLLNK 251 . 16.2.3 XMLLNK 257 . 16.2.4 DSRLNK 262 . 16.2.5 LOADER 262 . 16.3 Predefined Symbols 264 . 16.3.1 SCAN 264 . 16.3.2 UTLTAB 264 . 16.3.3 PAD 265 . 16.4 VDP Access 266 . 16.4.1 VDPWA 266 . 16.4.2 VDPRD 267 . 16.4.3 VDPWD 268 . 16.4.4 VDPSTA 269 . 16.5 GROM Access 270 . 16.5.1 GRMWA 270 . 16.5.2 GRMRA 270
. 16.5.3 GRMRD 271 . 16.5.4 GRMWD 271

T I BASIC SUPPORT . 273
17.1 Interface with T I BASIC . 274

17.1.1 CALL INIT . 274
17.1.2 CALL LOAD . 274
17.1.3 CALL LINK . 277
17.1.4 CALL PEEK . 281
17.1.5 CALL PEEKV . 281
17.1.6 CALL POKEV . 282
17.1.7 CALL CHARPAT . 282
17.1.8 TI BASIC Examples . 283

EDITOR/ASSEMBLER
Page 9

. 17.2 T I BASIC Support Uti l i t ies 284 17.2.1 Numeric Assignment.. NUMASG 284
17.2.2 String Assignment.. STRASG 286
17.2.3 Get Numeric Parameter.. NUMREF 286
17.2.4 Get String Parameter-STRREF 287
17.2.5 Error Reporting.. ERR . 287
17.2.6 T I BASIC Uti l i t ies Example 289

. FILE MANAGEMENT 291
18.1 File Characteristics . 291

18.1.1 File Type.. DISPLAY or INTERNAL 292
18.1.2 Mode o f Operation..INPUT, OUTPUT, UPDATE. or APPEND 292

18.2 Peripheral Access Block (PAB) Definition 293
18.2.1 Input/Output Op-codes . 295
18.2.2 Error Codes . 298
18.2.3 Device Service Routine Operations 299
18.2.4 Memory Requirements . 300
18.2.5 Linkage to T I BASIC . 300

18.3 Example of File Access . 303

THE LINKING LOADER . 305
19.1 Memory Allocation . 305

. 19.2 The REF/DEF Table 307
19.3 Object Tags . 309

19.3.1 Loader Error Codes . 311

SOUND . 312
20.1 Sound Table . 313

20.1.1 Operation Specification . 314
20.1.2 Frequency Specification . 314
20.1.3 Attenuation Specification 315
20.1.4 Noise Specification . 315
20.1.5 Duration Control . 316

20.2 Direct Access to the Sound Generator 317
20.3 Sound Generator Frequencies . 318
20.4 Examples . 321

20.4.1 Accessing the Sound Controller 321
20.4.2 A Chime . 321
20.4.3 A Crash . 323

EDITORIASSEMBLER
Page 10

. COLOR, GRAPHICS. AND SPRITES . 21.1 VDP Write-Only Registers . 21.2 Graphics Mode 21.2.1 Pattern Descriptor Table . 21.2.2 Color Table
21.2.3 Screen Image Table .

21.3 Multicolor Mode .
. 21.4 Text Mode . 21.5 Bit-Map Mode . 21.5.1 Screen Image Table

21.5.2 Pattern Descriptor Table 21.5.3 Color Table 21.5.4 Bit-Map Mode Discussion
21.5.5 Bit-Map Mode Example . . 21.6 Sprites . 21.6.1 Sprite Attribute L is t
21.6.2 Sprite Descriptor Table .
21.6.3 Sprite Motion Table .

21.7 Graphics and Sprite Examples .
21.7.1 Graphics Example . . 21.7.2 Sprite Example
21.7.3 Automatic Sprite Motion Example

SPEECH . 349
22.1 Preliminary Information . 349

. 22.1.1 Timing Considerations 349
22.1.2 Addresses . 351 . 22.1.3 Commands 351
22.1.4 Loading Speech Addresses 351 . 22.1.5 Reading Data 353
22.1.6 Checking to see if the Speech Synthesizer is Attached . . 354 . 22.2 Speech Examples 355
22.2.1 Accessing Speech Using the Address f rom the Appendix . . 355
22.2.2 Accessing Speech Directly and by Finding the Speech Address 356

EDITORIASSEMBLER
Page 11

THEDEBUGGER .
23.1 Preliminary Information .
23.2 Load Memory with ASCII..A .
23.3 Breakpoint SetIClear.. B .
23.4 CRU InspectIChange.. C .
23.5 Execute.. E .
23.6 Find Word or Byte.. F .
23.7 GROM Base Change..G .
23.8 Inspect Screen Location.. I .
23.9 Find Data Not Equal..K .
23.10 Memory InspectIChange.. M .
23.11 Move Block.. N .
23.12 Compare Memory Blocks.. P .
23.13 Quit Debugger.. Q .
23.14 Inspect or Change WP, PC, and SR.. R
23.15 Execute in Step Mode.. S .
23.16 Trade Screen.. T .
23.17 Toggle Offset to and from T I BASIC.. U
23.18 VDP Base Change.. V .
23.19 Inspect or Change Registers.. W .
23.20 Change Bias..X, Y, or Z .
23.21 Hexadecimal to Decimal Conversion.. >
23.22 Decimal to Hexadecimal Conversion..
23.23 Hexadecimal Arithmetic.. H .

APPENDICES .
24.1 Numbering Systems and Organization

. 24.1.1 Binary Number System
. 24.1.2 Byte Organization

24.1.3 Word Organization . . 24.1.4 Two's Complement
24.2 Memory Organization 24.2.1 Directly Addressable Memory

. 24.2.2 Memory-Mapped Devices

EDITOR/ASSEMBLER
Page 12

. Memory. CRU. and Interrupt Structure 404
. 24.3.1 CPU R A M P A D Use 404 . 24.3.2 CRU Al locat ion 406

. 24.3.3 In terrupt Handling 407
. Comparisons w i t h T I Extended BASIC Loader 410

. 24.4.1 Memory Use 410 . 24.4.2 Loading Speed 412
. 24.4.3 External References 413 . 24.4.4 U t i l i t y References 414

. 24.4.5 Entry Point 414
. 24.4.6 Dupl icate Def in i t ion 414

. 24.4.7 Tags 414
. 24.4.8 T I Extended BASIC Equates 415

. 24.4.9 Subprogram Use 418 . Save U t i l i t y 420
. Speech Synthesizer Resident Vocabulary 422 . Character Set 428

. Assembler Di rect ive Table 432 . Hexadecimal Instruct ion Table 434
. Alphabetical Instruct ion Table 437 . Program Organization 440

. 24.11.1 Returning When Your Program I s Run Automatical ly 440
24.11.2 Returning When Your Program I s N o t Run Automatical ly . . . 441

. 24.11.3 Other Returns 442 . Error Messages 443
. 24.12.1 Input/Output Er ro r Codes 443

24.12.2 Error Messages Issued by GROM Code 443
. 24.12.3 Errors Issued by the Loader 444

. 24.12.4 Execution-Time Errors 444

. GLOSSARY 446

. INDEX 455

. LIMITED WARRANTY 467

EDITORIASSE MBLER
Page 1 3

EDITOR/ASSEMBLER
Page 1 4

SECTION 1: GENERAL INORMATION

The Texas Instruments Editor/Assembler Solid S t a t e Sof tware TM Command Module
and accompanying disket tes allow you t o wri te programs in t h e powerful assembly
language of t h e TMS9900 microprocessor built in to t h e TI-9914 and TI-9914A Home
Computers. This assembly language has al l of t h e fea tu res expected f r o m an
advanced microprocessor, including both byte- and word-oriented commands,
auto-incrementing capability, and a variety of addressing modes.

Your Editor/Assembler package contains a command module, two disket tes (labeled
Part A and P a r t B), this manual, overlays for your computer, and a manual for a
g a m e or application program. The command module controls t h e Editor/Assembler
and mus t be inserted in t h e console to use the f e a t u r e s described in this manual.
The disket te labeled P a r t A contains t h e Editor, t h e Assembler, TI BASIC support
routines, and both source and object code for t h e Debugger. The disket te labeled
P a r t B contains t h e SAVE utility, which allows you t o save programs in memory
image format, and the source and object code f o r a game o r application program t h a t
can be used as an example.

The use of assembly language instead of a higher-level language such as BASIC or
Pascal has several advantages. The execution of assembly language programs i s much
faster. In addition, assembly language gives you access t o a l l machine resources,
including functions not available from higher-level languages.

Compared t o writ ing programs in machine language, assembly language is much
easier. The instructions are mnemonic codes, which a r e eas ier t o use and remember
than the symbols of object code. In addition, you use expressions a s operands and
may use decimal numbers in expressions and as operands. Further, t h e use of
assembly language relieves you of t h e tedious task of writing machine language
instructions and keeping t rack of binary machine addresses within t h e program.

This manual provides deta i ls on creating, editing, assembling, and running assembly
language programs on t h e TI Home Computer and includes explanations of t h e
following.

The use of t h e Editor.

All TMS9900 assembly language instructions and pseudo-instructions.

Assembler output.

EDITORlASSEMBLER
Page 15

GENERAL INORMATION

The uti l i t ies provided for reading f rom and writing to VDP RAM.

The uti l i t ies provided for accessing assembly language programs.

The uti l i t ies provided for accessing the Graphics Programming Language
subroutines.

The seven additional T I BASIC subroutines included i n the Editor/Assembler
Command Module.

The uti l i t ies for communication between assembly language programs and T I
BASIC programs.

The use of the Debugger program.

The use o f sound, color, graphics, and speech from assembly language

programs.

The simplest configuration for running the Editor/Assembler requires the T I Home
Computer, the T I Memory Expansion unit, the T I Color Monitor (or the T I Video

Modulator and a television set), the Editor/Assembler Command Module, the
Editor/Assembler diskette, and a T I Disk Memory System with a t least one Disk
Memory Drive. With this equipment you can either develop programs of your own or
run existing assembly language programs. To enhance your system, you may want to
add the RS232 Interface, additional disk drives, or other peripherals available f rom
Texas Instruments.

The Editor in the module allows you to create, edit, print, and save files. Several

commands make f i le preparation as simple as poss'ible. After a program f i le has been

created, you can assemble it with the Assembler in the module.

The Assembler reads a source f i le prepared in the Editor and produces object code in
one of two formats and error messages. I t can l is t the assembled program.

Af ter a f i le has been assembled, you may load and run it. The Debugger program

can help you to find and correct any errors which may occur. When the program is

satisfactory, you can save it with the SAVE ut i l i ty so that you can easily run it as
needed.

EDITORfASSEMBLER
Page 16

GENERAL INORMATION

1.1 USING THIS MANUAL

This manual assumes that you already know a programming language, preferably an
assembly language. I f you do not, there are many fine books available which teach

the basics of assembly language use. Af ter you know these basics, this manual gives
the details of TMS9900 assembly language and i ts application to the T I Home
Computer.

When terms that may be new to you are f irst used, they are defined. (I f you want to
review a definition later, a Glossary is provided near the end of the manual.) Section

2 explains the basics of using the Editor/Assembler. Sections 3 through 15 are a
detailed description of the TMS9900 assembly language and assembler output. The
remainder of the manual describes applications specific to the T I Home Computer,
such as access t o utilities, BASIC support, f i le management, the linking loader, the
debugger uti l i ty, and the use of sound, color, graphics (including sprites), and speech.

Several appendices provide other useful information, including a description of the
number bases used, the character sets available, the instructions, and related
information.

EDITOR/ASSEMBLER
Page 17

GENERAL INFORMATION

1.2 SET-UP INSTRUCTIONS

Use your Disk Manager t o make backup copies of t h e disket tes supplied with your
Editor/Assembler. You may use those copies for your own use. The originals should
b e kep t in a sa fe place.

Before you use the Editor/Assembler, the Memory Expansion unit and t h e TI Disk
Memory System mus t be properly a t t ached t o t h e computer and turned on. See t h e
appropriate owner's manuals for complete set-up instructions.

An automat ic reset fea tu re is built in to t h e computer so t h a t when a module is
inserted into the console the computer re tu rns t o the mas te r t i t l e screen. All d a t a
o r program mater ia l you have en te red is erased.

CAUTION
T o avoid damaging t h e module, be sure i t is f r e e of s t a t i c
e l e c t r i c i t y b e f o r e inserting it into t h e computer. Touch
a n y m e t a l object, such as a door knob or desk lamp, before
handling the module. Keep t h e module c lean and dry, and
do n o t touch t h e recessed contacts.

1. Slide the command module into the s lo t on t h e console.

2. Turn on all peripherals. Turn on the computer.

3. Insert the disket te labeled P a r t A into Disk Drive 1.

4. Press any key t o make t h e master selection l ist appear. To s e l e c t the module,
press the key corresponding t o the number beside EDITORIASSEMBLER.

Note: If t h e disket te i s not inserted prior t o using a function requiring t h e diskette,
you may have t o turn the computer off , insert t h e diskette, and s t a r t over.

To remove t h e module, f i rs t re turn t h e computer t o t h e mas te r t i t l e screen by
pressing <quit>. Then remove t h e module f rom the slot. If t h e module i s
accidentally removed from t h e slot while t h e module con ten t s are being used, t h e
computer may behave eratically. To res to re the computer t o normal operation, turn
the computer console off and wai t a few seconds. Then re inser t t h e module and turn
the computer on again.

EDITOR/ASSEMBLER
P a g e 18

GENERAL INORMATION

I f you have two or three disk drives, i t is best to leave the Editor/Assembler diskette
in Disk Drive 1 at all times and put your program diskette in Disk Drive 2 or 3. I f

you have one drive, then you must either keep the files that you create and edit on
the Editor/Assembler diskette or alternate putting the Editor/Assembler diskette and
your program diskette in the drive. When you need to load, edit, save, print, or run
a f i le from another diskette, f i rst wait unt i l the necessary portion of the
Editor/Assembler has been put into memory from the diskette. Then replace the

Editor/Assembler diskette with the one that has your f i le on it. Af ter your f i le has
been loaded, edited, saved, printed, or run, remove your program diskette and replace
it with the Editor/Assembler diskette.

1.2.1 In Case of Difficulty

If the Editor/Assembler does not appear to be operating properly, remove the diskette
and return to the master t i t le screen by pressing <esc>. Withdraw the module and
remove the diskette from the disk drive. (Note: I n some instances it may be
necessary to turn the computer off, wait several seconds, and then turn it on again
before proceeding. Always remove diskettes before turning your computer on or off.)
Next align the module with the module opening and reinsert i t carefully. Then
reinsert the diskette. Now press any key to make the master selection l is t reappear.
Repeat the selection process.

I f you have any dif f iculty with your computer or the Editor/Assembler module, please
contact the dealer from whom you purchased the unit and/or module for service
directions. Additional information concerning service can be found i n the U e
Reference G*.

EDITOR/ASSEMBLER
Page 19

GENERAL INFORMATION

1 SPECIAL KEY FUNCTIONS

On the TI-9914 console, certain keys are used i n combination with the SHIFT keys.
On the TI-99/4A console, certain keys are used i n combination wi th the FCTN keys.
Pressing any key for more than a moment causes that key t o be repeated. Note:
The Editor/Assembler accepts lower-case letters from the TI-99/4A only i n comments
and text. For this reason, i t is usually best to keep the ALPHA LOCK key pressed

down. The {, }, [, and 1 keys are not available on the TI-9914.

The following table lists the special keys available when using the Editor/Assembler.

Name
<del character>
<ins character)
<delete line>
<roll-up>
<next-window>
<roll-down>
<tab>
<insert line>
<esc>

TI-9914
SHIFT F
SHIFT G
SHIFT T
SHIFT C
SHIFT W
SHIFT V
SHIFT A
SHIFT R
SHIFT Z

SHIFT S

SHIFT D
SHIFT X
SHIFT E
ENTER

SHIFT Q

TI-99I4A
FCTN 1
FCTN 2
FCTN 3
FCTN 4

FCTN 5
FCTN 6
FCTN 7
FCTN 8
FCTN 9

FCTN F
FCTN G

FCTN R
FCTN T
FCTN S

FCTN D
FCTN X
FCTN E
ENTER

FCTN =

Action
Deletes a character in the Editor.
Inserts a character i n the Editor.
Deletes a line f rom the screen.
Displays the next 24 lines of the file.
Moves the display t o the next window.
Displays the previous 24 lines of the file.
Moves the cursor t o the next tab position.
Inserts a line.
Returns t o the previously displayed screen.
I n the Editor, enters the command mode.
Types the l e f t brace {.
Types the r ight brace }.
Types the l e f t bracket [.
Types the r ight bracket 1.
Moves the cursor t o the l e f t one character.

Moves the cursor to the r ight one character.
Moves the cursor down one line.

Moves the cursor up one line.
Tells the computer t o accept the

information that you type.
Leaves the Editor/Assembler.

EDITOR/ASSEMBLER
Page 20

SECTION 2: USING THE EDITOR/ASSEMBLER

This section describes the selections available with the EditorlAssembler. You start
the creation of an assembly language program by entering it with the Editor. Then
you may save it, load it, and edit i t again i f necessary. When it is ready, you may
assemble it and then load and run it.

The cursor is a flashing marker that appears on the screen to indicate where your

next keystroke appears. I n editing, the cursor may be moved with the cursor
movement keys described in Section 1 or by some of the choices in the command
mode of the Editor.

Before using the Editor/Assembler, be certain that all hardware is properly attached
and turned on as described in Section 1, with the Editor/Assembler diskette in Disk
Drive 1 and the Editor/Assembler module inserted in the console. I f you have a
TI-99/4A, i t is advisable to depress the ALPHA LOCK key.

After you select the module, the EditorlAssembler t i t le appears a t the top of the

screen, followed by the f ive options as shown below.

EDITCR/ASSEIVBLER SELECTION L I S T
+ - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - +

PRESS :
1 TO EDIT
2 AS S M L E
3 LOAD AND RLN
4 RLN
5 RU\I PROCRAM F I L E

198 1 TEXAS I NSTRUvENTS

To select an option, press the corresponding number key. A t any time you may press
<esc> to return to the previous screen or <quit> to return to the master t i t le screen.
The five Editor/Assembler options are discussed in the following sections.

EDITORIASSEMBLER
Page 21

USING THE EDITORIASSEMBLER

2.1 EDITOR

The Editor allows you t o load a previously existing file, to create or edit a file, t o
save a file tha t you have created or edited, to print a file, or to purge a file from
the computer's memory. If you press 1 for EDIT, you enter the Editor mode and the
computer displays the following selection list.

EDITCR SELECTICN L I S T
+ - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - +
I I
I * EDITCR * I
I I
I PRESS: I
I 1 TO LOAD I
I 2 EDIT I
I 3 SAVE I
I 4 PRINT I
I 5 PLRGE I
I I
+ - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - + - - - - - +

Select LOAD to load an existing file into the computer's memory; EDIT t o edit the
file in memory; SAVE to save a file from memory; PRINT to print a file from the
diskette; or PURGE to delete the file in memory.

2.1.1 Load

A file on a diskette may be loaded for editing or printing. Any file stored in a fixed
80 display format or a variable 80 display format is accepted by the Loader. By
saving your files in one of these formats, you may edit a list file or an object file, as
well a s a source file. However, a compressed object file cannot be edited since i t
contains undisplayable characters.

EDITOR/ASSEMBLER
Page 22

USING THE EDITOR~ASSEMBLER

Press 1 from the Editor selection l is t to load an existing file. I f the Editor has not

already been loaded, the message

ONE MOMENT PLEASE...

is displayed on the screen briefly. Then the prompt

FILE NAME?

appears below the selection list.

I f you have a single disk drive, remove the Editor/Assembler diskette and replace i t
with the diskette that contains the file. With two or three disk drives, place the
program diskette in Disk Drive 2 or 3. Type the location and name of the f i le which
you wish to edit, save, or print (such as DSK1.OLDFILE) and press <return>. (You
may use the Disk Manager module to obtain a catalog of the files on your diskettes.)

The f i le is located and loaded into memory. The Editor selection l ist i s then
displayed and you may select another option. Note: Each time a f i le is loaded, the
previous f i le is removed from memory.

2.l.2 Edit

The Edit option loads the Editor from the EditorIAssembler diskette. The Editor
allows you to create a new f i le or to edit a f i le which has been loaded with the Load
option. When you enter the Editor by pressing 2 from the Editor selection list, the
message

ONE MOMENT PLEASE...

is briefly displayed on the screen while the Editor is loaded f rom the
Editor/Assembler diskette. (I f the Editor has already been loaded, this message does
not appear.) I f no f i le has been loaded, the Edit option clears the screen so that you
may begin a new file. The cursor is positioned in the upper l e f t corner of the screen
and is followed by the end-of-file marker (*Em). Press <return> to create a new
line. The Editor is now ready to accept your new input.

I f a fi le has been loaded into memory, the Editor displays that f i le on the screen wi th
the cursor a t the top left, ready for you to edit it. You may leave the Editor and
return to the Editor selection l is t by pressing <esc> twice.

EDITOR/ASSEMBLER
Page 23

USING THE EDITORIASSEMBLER

Note: The fi le in memory, whether i t is a new f i le o r a n existing file, may be lost
if you leave t h e Editor without saving it. Before returning t o the Editor/Assernbler

selection list, b e su re t o save your program.

The Editor has two modes: t h e command mode and t h e edi t mode. You are in t h e
ed i t mode when you f i rs t en te r t h e Editor. The command mode is entered f r o m t h e
ed i t mode by pressing the <esc> key. The e d i t mode is r een te red automatically a f t e r
you use a command in t h e command mode.

In t h e ed i t mode, t h e cursor shows where your next keystroke is placed. In t h e
command mode, t h e cursor is on t h e second line of t h e screen ready t o accep t
commands. The command t h a t you en te r is e f fec t ive s tar t ing from t h e position t h e
cursor had when you entered t h e command mode.

2.1.2.1 Edit Mode

In t h e ed i t mode, t h e screen is 80 columns wide with th ree overlapping 40 column
windows available for displaying the text. You start in t h e left-most window with
columns 1 through 40 displayed. Pressing <next-window> moves t h e display t o t h e
cen te r window, wi th columns 2 1 through 60 displayed. Pressing <next-window> again
moves t h e display t o the r ight window with columns 4 1 through 80 displayed.
Pressing <next-window> a t th is point re turns t h e display to t h e left-most window.

The ed i t mode allows you t o c rea te , modify, and add t e x t t o program, data , and t e x t
files. When you press a key, t h a t charac te r i s placed on t h e screen in t h e cursor
position and the cursor moves one position t o t h e right. (If the cursor is a t t h e r igh t
margin, i t moves t o t h e f i r s t position on t h e next line.) In addition, t h e edi t mode
has several special keys which perform helpful ed i t functions. The following t ab le
describes t h e special function keys t h a t are used in t h e Editor.

Key Function
<return> Enters t h e t e x t in to the e d i t buffer and places t h e cursor at

t h e start of t h e next line. I f <return> is pressed at t h e end
of the file, a blank line is automatically inserted.

<inser t line> Inser ts a blank line above t h e line where t h e cursor is
located.

EDITOR/ASSEMBLER
P a g e 2 4

USING THE EDITOR/ASSEMBLER

Key
<delete line>

<lef t-arrow> and
<right-arrow>

Function
Deletes the current line of text, starting a t the location of
the cursor.

Inserts al l characters typed unt i l another function or cursor
movement key is pressed. The following characters on the
line are moved to the right. The insertion is effective for

one line only with a l l characters after column 80 lost.

Deletes the character under the cursor. The following

characters on the line are moved to the left.

Moves the cursor r ight to the next tab location. The tab

locations are set a t defaults of 1, 8, 13, 26, 31, 46, 60, and
80. To change the tab locations, use the T(AB command in
the command mode. I f you press <tab> from column 80,
the cursor goes to position 1 on the same line.

Moves the cursor position r ight t o the next window so that

you may view different portions of the text. I f you press

<next-window> from the right-most window, the left-most
window is displayed.

Scrolls the screen up by 24-line segments in the edit mode.
I n the command mode, <roll-up> scrolls the screen by
22-line segments.

Scrolls the screen down by 24-line segments i n the edit
mode. I n the command mode, <roll-down> scrolls the
screen by 22-line segments.

Allow cursor movement to the l e f t or right without
changing the text. When the cursor is a t the l e f t margin,
pressing <left-arrow> alternately shows and removes the line
numbers.

Invokes the command mode when in the edit mode. From
the command mode, pressing < e x > returns you to the Editor
selection list.

EDITORIASSEMBLER
Page 25

USING THE EDITORIASSEMBLER

The current line number may be displayed and removed by pressing the <left-arrow>
key when the cursor is a t the l e f t margin. When the line numbers are displayed, the

last six characters of the 80-column display cannot be viewed.

2.1.2.2 Command Mode

The command mode, which provides additional editing features, is accessed from the
edit mode by pressing <esc>. The command mode uses the f irst two lines of the
screen for promptlines and your input, with the remainder of the screen displaying
your file. I f an error is detected, the message ERROR appears in the left-hand
corner of the second line. Because most of the commands use line numbers, the
command mode automatically shows the line numbers. The cursor is displayed on the
second line for command input.

The command mode promptline shows the following prompts on a single line a t the
top of the screen.

The commands are selected by pressing the f i rst letter of the desired command. A l l
of the edit mode function keys, except <insert-line>, <delete-line>, <up-arrow>, and
<down-arrow>, are also effective i n the command mode. The <esc> key returns you
to the Editor selection list.

The effects of a l l of the commands except M(OVE, I(NSERT, C(OPY, and D(ELETE
start from the position of the cursor when you entered the command mode. The
commands E(DIT, A(DJUST, and H(0ME occur when you press the letter to choose
those commands. The other commands require more information, and occur after
that information i s entered and <return> is pressed.

The following gives the command mode prompts, in the order in which they appear in
the promptline, and describes their functions.

E(DIT Returns you to the edit mode, with the display as it was before you
entered the command mode and the cursor a t its previous position.

EDITOR/ASSEMBLER
Page 26

USING THE EDITOR/ASSEMBLER

FUND Enables you to find a string. The promptline

FIND <cNT>(<COL,COL>)/STRING/

appears on the top line of the screen. You may specify an optional count

number, from 1 through 9999, and optional beginning and ending column
numbers from 1 through 80.

The count number specifies which occurrence of the string is to be found.
I f omitted, the default is 1. The two column numbers specify the
columns within which the search is to be made. The column numbers
must be preceded and followed by parentheses. I f the column numbers

are omitted, the entire line, columns 1 through 80, is searched. The
string must be delimited by slashes (1). The following examples
demonstrate the use of F(IND.

Example
/HELLO/

Result
Finds the first occurrence of HELLO.

1000/HELLO/ Finds the 1000th occurrence of HELLO.

(1,50)/ HELLO/ Finds the first occurrence of HELLO in
columns 1 through 50.

1000(1,50)/HELLO/ Finds the 1000th occurrence of HELLO in
columns 1 through 50.

1011 1 Finds the lO ls t space.

After the string is located, the Editor leaves the command mode and
returns to the edit mode. The string is displayed i n line 1 with the
cursor located on the f irst character of the string.

R(EPLACE Replaces the given string with a new string. The promptline

appears a t the top of the screen. The count number specifies which
occurrence of the string is to be found. I f omitted, the default is 1.
The two column numbers specify the columns within which the search is

to be made. The column numbers must be preceded and followed by

EDITORIASSEMBLER
Page 27

USING THE EDITORIASSEMBLER

parentheses. I f the column numbers are omitted, the entire line, columns

1 through 80, is searched. The old string and new string are entered with

slashes delimiting them. After you press <return>, the replacement
process begins.

I f V (for verify) is specified, the prompt

REPLACE STRING (Y/N/A)

is displayed followed by the string. To replace that occurrence of the

string, press Y . Press N i f you do not want to replace the string in that
location. The next occurrence of the string is then located (i f a count of
more than one was specified) and the prompt is again presented. To

replace al l subsequent occurrences of the specified string, press A. The
following demonstrate the use o f R(EPLACE.

Example Result
lOOO/HELLO/GOODBYE/ Changes the f i rst 1000 occurrences of HELLO

to GOODBYE.

V,PO/HELLO---/BYE/ Presents, one at a time, the f i r s t 20
occurrences of HELLO---. You may change
them to BYE by pressing Y , go on to the next
one without changing that one by pressing N,
or change a l l subsequent ones by pressing A.

M(OVE Displays the promptline

MOVE START LINE, STOP LINE, AFTER LINE?

at the top of the screen. The first value you enter specifies the line
number of the beginning of the section to be moved. The second value
specifies the line number of the end of the section to be moved. The
third value specifies the line after which you want to place the section
being moved. For example, if you specify 29 as the AFTER LINE, the
data is moved to line 30.

A maximum of a four-digit line number may be specified. However, i f
the line number is greater than the EOF marker, the line number defaults
to the E f f . The ECF line number may be specified by entering E as the
starting line, stopping line, or after line. Line number 0 indicates the

EDITORfASSEMBLER
Page 28

USING THE EDITORIASSEMBLER

line above line number 1. When the move is complete, the line numbers

are automatically renumbered. The following examples demonstrate the

use of M(0VE.

Example
1,51,57

Result
Moves line 1 through 51 to a position after line
57.

Moves lines 452 through the end of the f i le to
the beginning of the file.

S(H0W Shows the lines starting a t the line specified. The promptline

SHOW LINE?

appears. You may respond with a line number or E (to see the line a t
the end of the file). For example, i f you enter 30, the text on line
number 30 and a l l subsequent text is displayed beginning at the top of the
screen. The cursor is located on the f irst character in line number 30.

C(0PY Uses the same promptline and functions in the same manner as M(0VE.
However, C(0PY does not delete lines; it places a copy of the designated
data a t the desired location.

I(NSERT Allows insertion of a f i le from a diskette before a specified line number.
The promptline

INSERT BEFORE LINE, FILE NAME?

requires a line number (four-digit maximum) and the name of the file.
For example, 29,DSK2.OLDFILE inserts the f i le OLDFILE from the
diskette in Disk Drive 2 to the f i le you are editing before line 29.

D(ELETE Deletes the desired text. The text t o be deleted is specified as in the
M(OVE command. The prompt

DELETE START LINE, STOP LINE?

requires the entry of the beginning and ending line numbers for the
deletion.

EDITOR/ASSEMBLER
Page 29

USING THE EDITORJASSEMBLER

A(DJUST Returns you t o the edit mode. Changes whether numbers are shown.

This allows you to see the last six columns of text or data. If the cursor

is located i n columns 75 through 80, you must f irst move it to one of the
other columns before selecting A(DJUST to leave the line number mode.

T(AB Modifies and sets tabs. The Editor has default tabs a t columns 1, 8, 13,
26, 31, 46, 60, and 80. When you choose this command, the top line Of
the screen displays column numbers (123456789 123456789 ...). The

second line has a T located below each of the columns where tab
positions are located. Press <space> or <tab> to go to the location where
a tab is desired and type T. You may remove tabs by replacing a T with
a space. To adjust tabs in columns 75 through 80, tab t o column 80 and

backspace to the position desired. The tab settings return to the defaults

when the Editor is reloaded. Note: Do not delete the tab at column 80.

H(0ME Moves the cursor t o the upper left-hand corner of the screen.

2.1.3 Save

After you have edited a file, it must be saved on diskette for future use. Otherwise,
when you leave the Editor, the fi le may be lost. You save a f i le by pressing 3 f rom
the Editor selection list. The prompt

VARIABLE 80 FORMAT (Y/N)?

appears a t the bottom of the screen. I f Y is pressed, a f i le is opened with a variable
80 display format, which uses less space on the diskette than a fixed 80 display
format. I f you press N, a fixed 80 display format is used. After a f i le is saved on
diskette, i ts format cannot be changed unless the f i le is reloaded into memory and
saved again in the new format.

Af ter the format is chosen, the prompt

FILE NAME?

is displayed. I f you have a single disk drive, remove the Editor/Assembler diskette
and replace it with the diskette that contains the file. If you have two or three disk
drives, place the program diskette in ~ i s k Drive 2 or 3. To save your f i le on a

EDITOR/ASSEMBLER
Page 30

USING THE EDITORfASSEMBLER

diskette, enter the device and filename. For example, DSK1.SAVEFILE saves your

f i le on the diskette i n Disk Drive 1 under the name SAVEFILE. After you save your

file, be sure that the Editor/Assembler diskette is in Disk Drive 1.

You may also save your f i le to the RS232 by specifying RS232 as the filename. The

output is then directed to the device connected to the RS232, which is normally a
printer. When outputting to the RS232, you must specify a f i le that is in variable 80
format.

You may wish to use the print option to print a f i le instead of the save option.
However, outputting is faster with SAVE than with the PRINT option. The T I
Thermal Printer may not be used with the save option. I t is only accessible f rom the

print option.

2.1.4 Print

The print option allows you to print a f i le to the RS232 Interface,'the Thermal
Printer, or a diskette file. A source, list, object, or any other f i le in either a
variable 80 display format or a fixed 80 display format can be printed. A printed
compressed object f i le may appear somewhat confusing because it contains
unprintable characters. Select the print option by pressing 4 on the Editor selection
list. The prompt

FILE NAME?

appears on the screen. I f you have a single disk drive, remove the EditorfAssembler
diskette and replace it with the diskette that contains the file. With two or three
disk drives, place the program diskette in Disk Drive 2 or 3. Enter a filename, such
as DSK1.OLDFILE. The f i le must be on a diskette. Af ter you enter the filename,
the prompt

DEVICE NAME?

appears. A diskette file, RS232, or TP may be specified as a device name. I f the
diskette is specified (to duplicate a file) the entire diskette filename, such as
DSKl.PRNTFILE, must be entered. The output f i le is in variable 80 format, so an
object f i le duplicated with the print option cannot be loaded by the Loader.

After you specify the device, the f i le is printed on that device. The print option
does not require that the Editor be in memory. I f the Editor is in memory, the print

EDITORIASSEMBLER
Page 31

USING THE EDITOR/ASSEMBLER

option does not alter the text being edited, so you may continue to edit after you use

the print option.

After you have printed your file, be sure that the Editor/Assembler diskette is i n Disk
Drive 1.

2.1.5 Purge

The purge option allows you t o remove the f i le currently in memory. After you
select the purge option by pressing 5 from the Editor selection list, the prompt

ARE YOU SURE (Y/N)?

appears a t the bottom of the screen. I f you press Y, the f i le is cleared from

memory and is no longer accessible. I f you press N, the f i le remains in memory and
you are returned t o the Editor selection list. Y w should normally save your f i le
prior to purging it from memory. You normally only purge a f i le when you wish to
create a new file.

EDITORIASSEMBLER
Page 32

USING THE EDITOR/ASSEMBLER

2.2 ASSEMBLE

The Assembler allows you to assemble files that you have created, edited, and saved
with the Editor. I f you press 2 for ASSEMBLE from the Editor/Assembler selection
list, you enter the Assembler.

2.2.1 File and Option Specification

I f the Assembler has not been previously loaded, the prompt

appears on the screen. I f you press N you are returned to the Editor/Assembler

selection list. I f you press Y , and the Editor/Assembler diskette is i n Disk Drive 1,
the message ONE MOMENT PLEASE... is displayed and the Assembler is loaded. I f

the Assembler has already been loaded, the prompt LOAD ASSEMBLER? is omitted.

After the Assembler is loaded, the prompt

SOURCE FILE NAME?

appears. Type the f i le name, such as DSK1.SOURCE. The source f i le must be on a
diskette in either a fixed or variable 80 display format. Then the prompt

OBJECT FILE NAME?

appears. Type the object f i le name, such as DSK1.OBJECT. The object f i le (which
is created i f it does not already exist) must be on a diskette. I t is created by the
Assembler in a fixed 80 format. Then the prompt

LIST FILE NAME?

appears. Type the l is t f i le name, such as DSK1.LIST. Just press <return> i f you do
not want a listing. The l is t f i le can be output to a diskette f i le or the RS232
Interface and is always in a variable 80 display format. Then the prompt

OPTIONS?

appears. The options available and their functions are listed on the next page.

EDITORIASSEMBLER
Page 33

USING THE EDITORIASSEMBLER

Option Function

R Defines the Workspace Register symbols RO through R15 equal t o 0

through 15.
L Specifies l ist f i le generation.
S Specifies that a symbol table dump is t o be included i n the l ist file.

C Specifies that the object f i le is to be i n compressed format to save

space on the diskette.

I f no option i: desired, simply press <return>. I f you want more than one option,
enter each letter with no commas or spaces between the letters. I f L (list f i le

generation) is not specified i n the option input, the Assembler does not create a

listing even though a l is t f i le name was specified. I f a l is t f i le is not specified, the
Assembler assembles the program f i le more quickly. The R option i s almost always
required to generate proper object code. I f a letter other than L, 5, C, or R is
specified, it is ignored.

For example, the following shows the prompts and your responses i f you wish to
assemble a f i le named SOURCE, l is t it to the RS232 a t 9600 baud, name the object
f i le OBJECT, and use the options L, S, and R.

Prompt Your input

SOURCE FILE NAME? DSK1.SOURCE

OBJECT FILE NAME? DSK1.OBJECT
LIST FILE NAME? RS232.BA=9600
OPTIONS? RLS

EDITORlASSEMBLER
Page 34

USING THE EDITOR/ASSEMBLER

2.2.2 Aaaembly

Af te r you enter the options, the program transfers control t o the Assembler. While

the Assembler is running, the message

ASSEMBLER EXECUTING

appears a t the bottom of the screen. If a fatal error is encountered, the Assembler
returns the error code and stops assembling. I f a non-fatal error is detected, the
line number and appropriate error message are displayed at the bottom of the screen
and assembly continues. See Section 15 for a complete description of the Assembler
output.

When assembly is complete, the total number of errors is shown on the screen, as
well as the message

PRESS ENTER TO CONTINUE.

When <return> is pressed, the program returns t o the Editor/Assembler selection list.

EDITOR/ASSEMBLER
Page 35

USING THE EDITORIASSEMBLER

2.3 LOAD AND RUN

You may load and run the object code produced by the Assembler by pressing 3 for
LOAD AND RUN from the Editor/Assembler selection list. When you select LOAD

AND RUN, the prompt

FILE NAME?

appears. I f you have a single disk drive, remove the Editor/Assernbler diskette and
replace it with the diskette that contains the file. With two or three disk drives,
place the program diskette in Disk Drive 2 or 3. The f i le must be an object f i le on a
diskette in either regular or compressed object format. Type your filename (such as
DSK1.OLDOBJ) and press <return>.

Af ter the f i le is loaded, the filename is erased from the screen and you may enter

another filename. You may load as many files as you like unt i l the memory is full.
Note: I f an error occurs in loading any file, then al l files must be loaded again.
Af ter you have loaded al l your files, you may proceed by pressing <return> without
entering a f i le name.

The prompt

PROGRAM NAME?

appears next. The program name is any entry point in your program marked by a
label which has been defined i n the DEF l is t of the program. I f you press <return>
without entering a program name, the program most recently executed is located and
executed.

I f the program has an entry label with an END statement, the Loader starts
executing from that label without prompting for the program name. I f you attempt
to run a program in which there are unresolved references, an error occurs.

Note: Once your program has started to run, it is in total control of the computer.
Unless the program allows you to return control to the Editor/Assembler, to T I
BASIC, or to the master selection list, the only way to stop the program is to turn
of f the computer.

EDITOR/ASSEMBLER
Page 36

USING THE EDITOR/ASSEMBLER

2.4 RUN

You may run a program t h a t h a s already been loaded in to memory by pressing 4 for
RUN from t h e Editor/Assembler selection list. When you se lec t RUN, t h e prompt

PROGRAM NAME?

appears. The program name i s any en t ry point in your program marked by a label
which has been defined in t h e DEF l is t of t h e program. If you press <return> without
enter ing a program name, t h e program most recently executed is located and
executed.

If t h e program h a s an en t ry label with an END s ta tement , the Loader s t a r t s
executing from t h a t label wi thout prompting for the program name. If you a t t e m p t
t o run a program in which the re a r e unresolved references, an e r r o r occurs.

Note: Once your program h a s s t a r t ed t o run, i t is in t o t a l control of t h e computer.
Unless t h e program allows you t o re turn control t o t h e Editor/Assembler, t o TI
BASIC, o r t o t h e master selection list, t h e only way to stop t h e program is t o tu rn
off t h e computer.

EDITOR/ASSEMBLER
P a g e 37

USING THE EDITOR/ASSEMBLER

2.5 RUN PROGRAM FILE

You may load and run a f i le that is on a diskette or cassette as a memory image fi le
by pressing 5 for RUN PROGRAM FILE from the Editor/Assembler selection list.
You may create and save a f i le as a memory image by using the SAVE ut i l i ty
provided on the second Editor/Assembler diskette. See Section 24.5 for a description
of this utility.

Some arcade games are provided by Texas Instruments in this format and may be run
using this option. The game on the second Editor/Assembler diskette must be put in
this format with the SAVE ut i l i ty before you can use it.

When you choose this option, the prompt

PROGRAM FILE NAME?

is displeyed. Enter the name of the program preceded by the device name. For
example, DSK1.GAME is a proper program filename. The program is then loaded and
run.

Note: Once your program has started to run, it i s in total control of the computer.
Unless the program allows you to return control to the Editor/Assernbler, to T I
BASIC, or to the master selection list, the only way to stop the program is to turn

o f f the computer.

EDITOR/ASSEMBLER
Page 38

SECTION 3: GENERAL PROGRAMMING IWORMATION

This section discusses how the TI Home Computer and the TMS9900 microprocessor
allow you to use Registers, transfer vectors, Workspaces, source statement formats,
expressions, constants, symbols, terms, and character strings.

3.1 REGISTERS

A register is a memory word that serves a secific purpose. Registers in Random
Access Memory (RAM) are called "software" registers. A set of 16 consecutive
registers is called a "workspace."

Three "hardware" registers are located in the CPU itself. They are the Program
Counter Register, the Workspace Pointer Register, and the Status Register.

3.1.1 Program Counter Register (PC)

The Program Counter Register (PC) keeps track of the location of the next
instruction in memory. The P C manages the program and maintains a sequential and
orderly flow of instructions.

3.1.2 Workspace Pointer Register (WP)

The Workspace Pointer Register (WP) contains the address of the current software
workspace.

EDITOR/ASSEMBLER
Page 39

GENERAL PROGRAMMING INFORMATION

3.1.3 S t a t u s Register (ST)

The S ta tus Regis ter (ST) contains indications of t h e present s t a t u s of t h e computer.
Each b i t of the s t a tus register is initialized t o z e r o when t h e computer is turned on.
Then, as each instruction i s performed, the computer indicates the s t a t u s by changing
t h e appropriate "switches" as a resul t of t h a t instruction. By this method the bi ts

a r e set (changed t o 1) and reset (changed t o 0) by machine instructions. Sta tus b i t s

have t h e following meanings.

N a m e
L>
A>
EQ
c
ov
OP
X

INT.
MASK

Bit
Number
0
1
2
3
4
5
6

7-11
12-15

Meaning
Logical g rea te r than
Ari thmet ic g r e a t e r than
Equal
Car ry
Overflow
Odd par i ty
Extended operation
Reserved
In te r rup t mask

In t h e diagrams in th is manual, b i ts t h a t a r e checked o r set have a caret (-1 printed
under them. The following is a representa t ion of t h e S t a t u s Regis ter wi th t h e L> and
EQ b i t s set.

S t a t u s R e g i s t e r

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. M S K I ..

The following t ab le indicates t h e bi ts in t h e S t a t u s Regis ter t h a t may b e a f fec ted by
the various assembly language instructions.

EDITORIASSEMBLER
P a g e 40

GENERAL PROGRAMMING INFORMATION

Mnemonic
A
AB
ABS
A I
AND1
B
B L
BLWP
C
CB
C I
CLR
coc
czc
DEC
DECT
DIV
INC
INCT
INV -~ ~

JEQ
JGT
JH
JHE
J L
JLE
JLT
JMP
JNC
JNE
JNO
JOC

Status Bi ts Affected by instructionsi
EQ C OV OP X --
X X X - -
X X X X -
X X X - -
X X X - -
x - - - -
- - - - -
- - - - -
- - - - -
x - - - -
X - - X -
x - - - -
- - - - -
x - - - -
x - - - -
X X X - -
X X X - -
- - X - -
X X X - -
X X X - -
x - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - m u

- - - - -
- - - - -

Mnemonic
JOP

L I M I
LWPI
M OV
MOVB
MPY
NEG
OR I
RTWP
s
SB
SBO
SBZ
SET0
SLA
soc
SOCB
SRA ~ ~

SRC - -

SRL
STCR
STST
STWP
SWPB
SZC
SZCB
TB
X
XOP
XOR

L> A> EQ C OV OP X - - -- - - - - - - -
X X X X - 2 -
X X X - - - - - - - - - - -
- - - - - - -
X X X - - - -
X X X - - X - - - - - - - -
X X X X X - -
X X X - - - -
X X X X X X X
X X X X X - -
X X X X X X - - - - - - - -
- - - - - - -
- - - - - - -
X X X X X - -
X X X - - - -
X X X - - X -
X X X X - - -
X X X X - - -
X X X X - - -
X X X - - 2 - - - - - - - -
- - - - - - -
- - - - - - -
X X X - - - -
X X X - - X -
- x - - - -
3 3 3 3 3 3 3
3 3 3 3 3 3 3
X X X - - - -

Notes:

'ln addition to these instructions, the instructions CKOF, CKON, IDLE, LREX,
and RSET are included i n this manual for completeness. None affect any status
bits or have any other useful ef fect on the Home Computer.

'when an LDCR or STCR instruction transfers eight or fewer bits, the OP b i t is

set or reset as in byte instructions. Otherwise, the OP b i t is not affected.

3 ~ h e X instruction does not affect any status bit. The instruction executed by
the X instruction sets status bits normally. When an XOP instruction is
implemented, the XOP b i t is set, and the subroutine sets status bi ts normally.

EDITORIASSEMBLER
Page 41

GENERAL PROGRAMMING IMORMATION

3.1.3.1 Log ica l Greater Than--(L>)

The logical greater than b i t is set when an unsigned number is compared with a
smaller unsigned number. I n this comparison, the most significant bits of the words

being compared represent 215. The least significant bits of the bytes being compared
7 represent 2 .

3.1.3.2 Ar i t hme t i c Greater Than--(A>)

The arithmetic greater than b i t is set when a signed number is compared with a

smaller signed number. The most significant bits of the words or bytes being
compared represent the sign of the number, zero for positive or one for negative.
For positive numbers, the remaining bits represent the binary value. For negative
numbers, the remaining bits represent the two's complement of the binary value.

The equal b i t is set when the two words or bytes being compared are equal. The
significance of equality is the same whether the comparison is between unsigned
binary numbers or two's complement numbers.

The carry b i t is set by a carry of 1 from the most significant b i t (sign bit) of a word
or byte during arithmetic and shift operations. Thus the carry b i t is used by shift
operations to store the last b i t shifted out of the Workspace Register being shifted.

The overflow b i t is set when the result of an arithmetic operation is too large or too
small to be represented correctly in two's complement representation.

I n addition operations, the overflow b i t i s set when the most significant bits of the
operands are equal and the most significant b i t of the result is not equal to the most
significant b i t of the destination operand.

EDITOR/ ASSEMBLER
Page 42

GENERAL PROGRAMMING INORMATION

In subtraction operations, the overflow bit is s e t when the most significant bits of the
operands a re not equal and the most significant bit of the result is not equal to the
most significant bit of the destination operand.

For a divide operation, the overflow bit is s e t when the most significant 16 bits of
the dividend a re greater than or equal t o the divisor.

For an arithmetic lef t shift, the overflow bit is s e t if the most significant bit of the
workspace register being shifted changes value.

For the absolute value and negate instructions, the overflow bit is set when the
source operand i s the maximum negative value (>8000).

3.1.3.6 Odd Parity-(OP)

In byte operations the odd parity bit is set when the parity of the result is odd and is
reset when the parity is even. The parity of a byte i s odd when the number of bits
having values of one is odd. When the number of bits having values of one is even,
the parity of the byte is even. The odd parity bit is equal to the least significant bit
of the sum of the bits in the byte.

3.1-3.7 Extended Operation--(XI

The extended operation instruction (XOP) is available in some TI-99/4A computers.
The only way t o determine if your computer supports this instruction is to try it.
Extended operation instructions permit a limited extension of the existing instruction
set t o include additional instructions. In the computer, these additional instructions
are implemented by software routines.

When the program contains an XOP instruction (see Section 14.5) tha t is software
implemented, the computer locates the XOP Workspace Pointer (WP) and Program
Counter (PC) words in the XOP reserved memory locations and loads the WP and PC.
Then the computer transfers control to the XOP instruction se t through a context
switch (See Section 3.2). When the context switch is complete, the XOP workspace
contains the calling routine's return data in Workspace Registers 13, 14, and 15.

The extended operation bit is set when the software implemented extended operation
is initiated.

EDITOR/ASSEMBLER
Page 43

GENERAL PROGRAMMING INFORMATION

3.1.3.8 Interrupt Mask

The interrupt mask is status bits 12 through 15. Any device with a level number less
than or equal to the value in the interrupt mask is permitted by the TMS9900
microprocessor to interrupt a running program. Thus if the interrupt mask has a
value of 2 (binary 0010), any device with a level of 0, 1, or 2 may interrupt a running
program. On the T I Home Computer, a l l interrupts are on level 2. Thus only values
of 0 and 2 are useful.

EDITORIASSEMBLER
Page 44

GENERAL PROGRAMMING INORMATION

3.2 TRANSFER VECTORS AND WORKSPACE

A t ransfer vector i s two consecutive words of memory which contain a pair of
memory addresses. The f i rs t word conta ins t h e address of a 16-word a r e a of memory
called a workspace, and the second word conta ins t h e address of a subroutine en t ry
point. The computer uses a t ransfer vec to r t o perform a t ransfer of control called a
con tex t switch.

A con tex t switch places t h e con ten t s of t h e f i r s t word of a t ransfer vector in t h e
Workspace Pointer Register. The ac t ive workspace becomes t h e workspace addressed
by t h a t word, with the 16 words of t h e ac t ive workspace called regis ters 0 through
15. These a r e available for use as general purpose registers, address registers, or
index registers. The context swi tch places t h e contents of the second word of a
t ransfer vector in t h e Program Counter, causing the instruction a t t h a t address t o be
executed next.

EDITOR/ASSEMBLER
P a g e 45

GENERAL PROGRAMMING IhFORMATION

3.3 SOURCE STATEMENT FORMAT

An assembly language source program consists of source statements which may
contain assembler directives, machine instructions, pseudo-instructions, or comments.

Each line (or record) of a source statement consists of a maximum of 80 characters
of information (including spaces). A record may be subdivided into several variably
sized sections known as fields.

The label f ield is positioned a t the beginning of the source statement and serves as a
reference point. The op-code f ield is the operation code (a number, name, or
abbreviation) of the task to be performed by that source statement. The operand
field stipulates the value that is to be operated upon or manipulated. I t may be a
number, string, address, etc. The comment field is an area reserved for you to make
comments that increase the readability of the program but that do not affect the
operations of the computer. The syntax definition describes the required form for
the use of commands as related to the fields. Section 4 describes formatting
procedures and definitions in detail.

The following conventions apply i n the syntax definitions for machine instructions and
assembler directives.

a Items i n capital letters, including special characters, must be entered exactly
as shown.

a Items within angle brackets (0) are defined by you.
a Items i n lower-case letters represent classes (generic names) of items.
a Items within brackets a]) are optional.
a Items within braces ({ }) are alternative items, one of which must be entered.
r An ellipsis (...I indicates that the preceding i tem may be repeated.
a The symbol b represents one or more blanks or spaces.

The syntax (required form) for source statements other than comment statements is
defined as follows.

[<label>] b op-code b [<operand>] [,<operand>] ... b [<comment>]

As this syntax definition indicates, a source statement may have a label, which you
define. One or more blanks separate the label from the op-code. Mnemonic
operation codes, assembler directive codes, and pseudo-operation codes are al l

included in the generic term op-code, and you may enter any of these. One or more

blanks separate the op-code from the operand, when an operand is required.

EDITOR/ASSEMBLER
Page 46

GENERAL PROGRAMMING I N O R M A T I O N

Additional operands, when required, are separated by commas. One or more blanks

separate the operand or operands from the comment field.

Note: Although the maximum length of a source record is 80 characters, the l is t
f i le displays only the f i rs t 60 characters of each line.

3.3.1 Character Set

The Assembler recognizes the following ASCII characters.

The alphabet (upper-case letters only except in comment and text fields) and
space character

The numerals 0 through 9
Several special characters and control characters

The character set is listed in the Appendix.

3.3.2 Label Field

The label f ield begins in the f i rst character position of the source record and extends
to the f irst blank. The label f ield consists of a symbol containing up to six
characters, the f i rst of which must be alphabetic. Additional characters may be any
alphanumeric characters. A label is optional for machine instructions and for many
assembler directives. When the label is omitted, however, the f i rst character
position must contain a blank.

A source statement consisting of only a label f ield is a valid statement. I t has the
ef fect of assigning the current location to the label. This is usually equivalent to
placing the label in the label f ield of the following machine instruction or assembler
directive. However, when a statement consisting of only a label is preceded by a
TEXT or BYTE directive and is followed by a DATA directive or a machine
instruction, the label does not have the same value as a label i n the following
statement unless the TEXT or BYTE directive l e f t the location counter on an even
(word) location. An EVEN directive following the TEXT or BYTE directive prevents
this problem.

EDITOR~ASSEMBLER
Page 47

GENERAL PROGRAMMING IWORMATION

3.3.3 Operation Field

The operation (op-code) field begins after the blank that terminates the label f ield or
in the f i rst non-blank character position after the f irst character position when the
label i s omitted. The operation field is terminated by one or more blanks and may
not extend past character position 60 of the source record. The operation field
contains an op-code, which is one of the following.

a Mnemonic operation code of a machine instruction
a Assembler directive operation code
a Symbol assigned to an extended operation by a DXOP directive

Pseudo-instruction operation code

3.3.4 Operand Field

The operand field begins after the blank that terminates the operation field. I t may
not extend past character position 60 of the source record. The operand field may

contain one or more expressions, terms, or constants, according to the requirements
of the particular op-code. The operand f ield is terminated by one or more blanks.

3.3.5 Comment Field and Comment Line

The comment field begins after the blank that terminates the operand field, and may
extend to the end o f the source record i f required. The comment f ield may contain
any ASCII character, including blank. The contents of the comment field are listed
i n the source portion of the assembly listing but have no other ef fect on the
assembly.

Comment statements consist of a single f ield starting wi th an asterisk (*) in the f i rst
character position and followed by any ASCII character, including a blank, i n each

succeeding character position. Comment statements are listed i n the source portion
of the assembly listing, but have no other ef fect on the assembly. A totally blank
line is also treated as a comment line.

EDITOR/ASSEMBLER
Page 48

GENERAL PROGRAMMING I N O R M A T I O N

3.4 EXPRESSIONS

Expressions are used i n the operand fields of assembler directives and machine

instructions. A n expression is a constant or symbol, a series of constants or symbols,
or a series of constants and symbols separated by arithmetic operators. Each

constant or symbol may be preceded by a minus sign (unary minus) t o indicate a
negative value. An expression may contain no embedded blanks or symbols that are

defined as extended operations. Symbols that are defined as external references may
not be operands of arithmetic operations. An expression may contain more than one

symbol that is not previously defined. When these symbols are absolute, they may
also be operands of multiplication or division operations within an expression. The

Assembler only supports program-relocatable symbols.

3.4.1 Well-Defined Expressions

Some assembler directives (noted i n their descriptions) require well-defined
expressions in the operand fields. For an expression t o be well-defined, any symbols
or assembly-time constants i n the expression must have been previously defined.
Also, the evaluation of a well-defined expression must be absolute, and a well-defined
expression may not contain a character constant.

3.4.2 Arithmetic Operators

The arithmetic operators i n expressions are as follows.

+ for addition
- for subtraction
* for multiplication
/ for signed division

I n evaluating an expression, the Assembler f i rst negates any constant or symbol
preceded by a minus sign (unary minus) and then performs the arithmetic operations
from le f t t o right. The Assembler does not assign precedence t o any operation other
than unary minus. A l l operations are integer operations. The Assembler truncates
the fraction i n division.

For example, the expression 4+5*2 is evaluated as 18, not 14, and the expression

7+1/2 is evaluated as 4, not 7. Note: Parentheses may not be used t o alter the
order of the evaluation of expressions.

EDITOR/ASSEMBLER
Page 49

GENERAL PROGRAMMING INFORMATION

3.5 CONSTANTS

Constants are used in expressions. The Assembler recognizes four types of constants:
decimal integer constants, hexadecimal integer constants, character constants, and
assembly-time constants.

3.5.1 Decimal Integer Constants

A decimal integer constant is writ ten as a string of numerals. The range of values
of decimal integers is -32,768 to +65,535. Positive decimal integer constants greater
than 32,767 are considered negative when interpreted as two's-complement values.
Operands of arithmetic instructions other than multiply and divide are interpreted as
two's complement numbers, and al l comparisons compare numbers both as signed and
unsigned values.

The following are valid decimal constants.

1000 Constant, equal to 1,000 or >3E8.
-32768 Constant, equal to -32,768 or >8000.

3.5.2 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal
numerals preceded by a greater than (>) sign. Hexadecimal numerals include the
decimal values 0 through 9 and letters A through F.

The following are valid hexadecimal constants.

>F Constant, equal to 15, or >F.

>37AC Constant, equal to 14252 or >37AC.

EDITOR~ASSEMBLER
Page 50

GENERAL PROGRAMMING INORMATION

3.5.3 C h a r a c t e r C o n s t a n t s

A character constant is written a s a string of one or two characters enclosed in
single quotes. To represent a single quote within a character constant, two
consecutive single quotes a re necessary. The characters a re represented internally as
eight-bit ASCII characters, with the leading bit s e t to zero. A character constant

consisting only of two single quotes (no character) is valid. This is the null string
and i s assigned the value >0000.

The following a re valid character constants.

'AB' Represented internally a s >4142.
'C' Represented internally a s >43.
IIIDI Represented internally as >2744.

3.5.4 Assembly-Time C o n s t a n t s

An assembly-time constant is written a s an expression in the operand field of an EQU
directive. (See Section 14.3.) Any symbol in the expression must have been
previously defined. The value of the label is determined a t assembly time and is
considered to be absolute or relocatable according t o the relocatability of the
expression, not according to the relocatability of the Location Counter value.

EDITORIASSEMBLER
Page 51

GENERAL PROGRAMMING I N O R M A T I O N

3.6 SYMBOLS

Symbols may be used i n the label field, the operator field, and the operand field. A

symbol is a string of alphanumeric characters, (A through Z and 0 through 91, the

f i rst of which must be an alphabetic character, and none of which may be a blank.
When more than six characters are used i n a symbol, the Assembler prints al l the
characters but accepts only the f i rst six characters for processing. User-defined
symbols are valid only during the assembly in which they are defined.

Symbols used in the label f ield become symbolic addresses. They are associated with

locations in the program and must not be used in the label f ield of other statements.
Mnemonic operation codes and assembler directive names are valid user-defined
symbols when placed in the label field.

The DXOP directive defines a symbol to be used in the operator field. Any symbol

that is used in the operand f ield must be placed in the label f ield of a statement or
in the operand field of a REF directive, except for a symbol in the operand field of a

DXOP directive or a predefined symbol.

EDITOR~ASSEMBLER
Page 52

GENERAL PROGRAMMING I N O R M A T I O N

3.7 PREDEFINED SYMBOLS

The predefined symbols are the dollar-sign character ($) and the Workspace Register
symbols. The dollar-sign character is used to represent the current location within

the program. The 16 Workspace Register symbols are RO through R15. They are

undefined unless you choose the R option when you run the Assembler.

The following are examples of valid symbols.

A1 Assigned the value of the location a t which it appears in the label
field.

OPERATION Truncated to the f irst six letters and assigned the value of the
location a t which it appears in the label field.

Represents the current location.

EDITORIASSEMBLER
Page 53

GENERAL PROGRAMMING IWORMATION

3.8 TERMS

Terms may be used in the operand fields of machine instructions and assembler
directives. A term is a decimal or hexadecimal constant, an absolute assembly-time

constant, or a label having an absolute value.

The following are examples of valid terms.

12 Has a value of 12 or >C.

>C Has a value of 12 or >C.

WR2 Is valid i f Workspace Register 2 is defined as having an absolute value.

I f START is a relocatable symbol, the following statement is not valid as a term.

WR2 EQU START+4 WR2 is a relocatable value 4 greater than the
value o f START. Not valid as a term but valid

as a symbol.

EDITOR/ASSEMBLER
Page 54

GENERAL PROGRAMMING INORMATION

3.9 CHARACTER STRINGS

Several assembler directives require character strings in the operand field. A
charac te r string is writ ten as a string of charac te rs enclosed in single quotes. TO
represent a quote within a character string, two consecutive single quotes a r e
necessary. The maximum length of t h e string is defined by each directive t h a t
requires a character string. The characters a r e represented internally a s eight-bit
ASCII characters, with the leading bi ts set t o zeros.

The following a r e valid charac te r strings.

'SAMPLE PROGRAM'

'PLAN "C"'

Defines a 14-character string
consisting of SAMPLE
PROGRAM.

Defines an 8-character &ring
consisting of PLAN 'C'.

'OPERATOR MESSAGE * PRESS START SWITCH' Defines a 37-character string
consisting of the expression
enclosed in single quotes.

EDXTORIASSEMBLER
Page 55

SECTION 4: ADDRESSING MODES

This section describes the addressing modes used in assembly language. Examples of

programming in each addressing mode are included.

4.1 GENERAL ADDRESSING MODES

A source operand is the number, address, string, etc., which is t o be manipulated or
operated upon. A destination operand is the address where the result of the

performed manipulation is stored. Instructions that specify a general address for a

source or destination operand may be in one o f five addressing modes. These

addressing modes and their uses are discussed in this section.

The following lists the T-field value, which indicates the type of addressing mode (see
Section 5), and gives an example for each of the addressing modes

Addressing Modes

Addressinq Mode T-field value Example
Workspace Register 00 5
Workspace Register Indirect 01 *7
Symbolic Memor rf;' la

@LABEL

Indexed Memory 10 BLABEL(5)
Workspace Register Indirect Auto-increment 11 *7+

Notes:
 he instruction requires an additional word for each T-field value o f 10. The

additional word contains a memory address.

 he four-bit f ie ld immediately following the T-field value of lo2, called the S
(for a source operand) or D (for a destination operand) field, is set t o zero by the

Assembler.
3 ~ h e T-field value of 10 indicates both symbolic and indexed memory addressing
modes. I f the four-bit 3 ~ e l d which follows it contains a zero value, it is a

symbolic addressing mode. If it is non-zero, it is an indexed addressing mode,
and the non-zero value is the number of the index register. Therefore,
Workspace Register 0 cannot be used for indexing.

EDITORIASSEMBLER
Page 56

ADDRESSING MODES

4.1.1 Wmkspace Register Addressing

Workspace Register addressing specifies the Workspace Register that contains the
operand. A Workspace Register address is specified by a value of 0 through 15

preceded with an "R'!. For example, Workspace Register 8 is referred t o as "RB".

Examples:

MOV R4,RB

COC R15,RlO

Copies the contents of Workspace Register 4 into
Workspace Register 8.

Compares the bits of Workspace Register 10 that
correspond to the one bits in Workspace Register
15 to one.

4.1.2 Workspace Register Indirect Addressing

Workspace Register indirect addressing specifies a Workspace Register that contains
the address of the operand. An indirect Workspace Register address is preceded by
an asterisk (*).

Examples:

MOV *R7,RO

Adds the contents of the word a t the address in
Workspace Register 7 to the contents of the word
at the address i n Workspace Register 2 and places
the sum in the word a t the address i n Workspace
Register 2.

Copies the contents o f the word a t the address

given in Workspace Register 7 into Workspace
Register 0.

EDITORIASSEMBLER
Page 57

ADDRESSING MODES

4 1 3 Workspace Register Indirect Auto-Increment Addressing

Workspace Register indirect auto-increment addressing specifies a Workspace Register
that contains the address of the operand. Af ter the address is obtained f rom the

Workspace Register, the Workspace Register i s incremented by 1 for a byte
instruction or by 2 for a word instruction. A Workspace Register auto-increment

address is preceded by an asterisk and followed by a plus sign (+I.

Examples:

Subtracts the contents o f the word at the address
in Workspace Register 3 from the contents of
Workspace Register 2, places the result in
Workspace Register 2, and increments the address
in Workspace Register 3 by two.

Compares the contents of Workspace Register 5
with the contents of the word a t the address in
Workspace Register 6 and increments the address
i n Workspace Register 6 by two.

4.1.4 Symbolic Memory Addressing

Symbolic memory addressing specifies the memory address that contains the operand.
A symbolic memory address is preceded by an "at" sign (@).

Examples:

@FIXl,@LIST4 Subtracts the contents of the word a t location
FIX1 from the contents of the word at location
LIST4 and places the difference i n the word at
location LIST4.

C RO,@STORE Compares the contents of Workspace Register 0
with the contents of the word at location STORE.

MOV @12,@!>7C Copies the word at address >OOOC into location
>007C.

EDITORlASSEMBLER
Page 58

ADDRESSING MODES

4.1.5 Indexed Memory Addressing

Indexed memory addressing specifies the memory address that contains the operand.
The address is the sum of the contents of a Workspace Register and a symbolic

address. An indexed memory address is preceded by an "at" sign (@) and followed by
a term enclosed in parentheses. The Workspace Register specified by the term
within the parentheses is the index register. Workspace Register 0 may not be
specified as an index register.

Examples:

@2(R7),R6 Adds the contents of the word found a t the address
computed by adding 2 t o the contents of Workspace
Register 7 to the contents of Workspace Register 6

and places the sum i n Workspace Register 6.

MOV R7,@LIST4-6(R5) Copies the contents of Workspace Register 7 into a
word of memory. The address of the word of
memory is the sum of the contents of Workspace
Register 5 and the value of symbol LIST4 minus 6.

EDITORIASSEMBLER
Page 59

ADDRESSING MODES

4.2 PROGRAM COUNTER RELATIVE ADDRESSING

Program Counter re la t ive addressing is used only by jump instructions. A Program
Counter re la t ive address is wri t ten a s an expression t h a t corresponds to a n address at
a word boundary. The Assembler evaluates t h e expression and sub t rac t s t h e sum of
the cur ren t location plus two. One-half of t h e di f ference is t h e value placed in t h e
object code. This value must be in t h e range of -128 through +127. When the
instruction is in re locatable code (t h a t is, when t h e Location Counter i s relocatable),
t h e relocation type of the evaluated expression must m a t c h t h e relocation type of t h e
current Location Counter. When t h e instruction is in absolute code, t h e expression
must b e absolute.

Example:

J M P THERE Jumps unconditionally t o location THERE.

EDITORIASSEMBLER
Page 60

ADDRESSING MODES

4.3 CRU BIT ADDRESSING

The CRU, or Communications Register Unit, is a command-driven bit-addressable I/O
interface. An instruction can set, reset , o r test any bi t in the CRU array or move
data between the memory and CRU da ta fields. The CRU software base address is
contained in the 16 bits of Workspace Register 12. From the CRU software base
address, the processor is able t o determine the CRU hardware base address and t h e
resulting CRU bit address.

The CRU bit instructions use a well-defined expression t h a t represents a displacement
from t h e CRU base address (bits 3 through 14). The displacement, in the range of
-128 through +127, is added t o the base address in Workspace Register 12. See
Sections 9 and 24.3 for more information.

Example:

SBO a Sets CRU bi t t o one at the CRU address 8 greater
than the CRU base address.

EDITOR~ASSEMBLER
Page 61

ADDRESSING MODES

4.3 CRU BIT ADDRESSING

The CRU, or Communications Register Unit, is a command-driven bit-addressable 110
interface. An instruction can set, reset, or test any b i t in the CRU array or move
data between the memory and CRU data fields. The CRU software base address is

contained in the 16 bits of Workspace Register 12. From the CRU software base

address, the processor is able to determine the CRU hardware base address and the
resulting CRU b i t address.

The CRU b i t instructions use a well-defined expression that represents a displacement
f rom the CRU base address (bits 3 through 14). The displacement, in the range of
-128 through +127, is added to the base address in Workspace Register 12. See
Sections 9 and 24.3 for more information.

Example:

SBO 8 Sets CRU b i t to one a t the CRU address 8 greater
than the CRU base address.

EDITOR/ASSEMBLER
Page 61

ADDRESSING MODES

4.4 IMMEDIATE ADDRESSING

Immediate instructions use the contents of the word following the instruction word as
the operand o f the instruction. The immediate value is an expression, and the
Assembler places i ts value i n the word following the instruction. Immediate
instructions that require two operands have a Workspace Register address preceding
the immediate value.

Example:

LI R5,>1000 Places >lo00 into Workspace Register 5.

EDITOR/ASSEMBLER
Page 62

ADDRESSING MODES

4.5 ADDRESSING SUM M A R Y

The following table shows the addressing mode required for each instruction of the
Assembler instruction set. The f irst column lists the instruction mnemonic. The

second and third columns specify the required address, listed below.

G - General address:
Workspace Register address
Indirect Workspace Register address
Symbolic memory address
Indexed memory address
Indirect Workspace Register auto-increment address

WR - Workspace Register address
PC - Program counter relative address
CRU - CRU b i t address
I - Immediate value
* - The address into which the result is placed when two operands are

required

Instruction Addressing

Mnemonic
A
AB
ABS
A1
AND1
B
B L
BLWP
C
CB
C I
CKCF
CKON
CLR
coc
czc
DEC
DECT
DIV
IDLE
INC
INCT
INV

First
Operand
G
G
G
WR*
WR*
G
G
G
G
G
W R
-
-
G
G
G
G
G
G
-
G
G
G

Second
Operand
G*
G*

-
WR*

Mnemonic
LDCR
L I
L I M I
LREX
LWPI
MOV
MOVE
MPY
NEG
OR1
RSET
RTWP
S
SB
SBO
SBZ
SET0
S L A
SOC
SOCB
SRA
SRC
SRL

First
Operand
G
W R*
I
-
I
G
G
G
G
WR* -
-
G
G
CRU
CRU
G
WR*
G
G
WR*
W R*
WR*

Second
Operand
Note 1
I -

Note 2
G*
G*
Note 2
Note 2
Note 2

EDITORlASSEMBLER
Page 63

ADDRESSING MODES

First Second
Mnemonic Operand Operand

JE GI PC -
JGT PC -
JH PC -
JHE
JL
JLE
JLT
JMP
JNC
JNE
JNO
JOC
JOP

First
Mnemonic Operand
STCR G*
STST WR
STWP WR
SWPB G
SZC G
SZCB G
TB CRU
X G
XOP G
XOR G

Second
Operand
Note 1

-
Note 3
WR*

Notes:
 he second operand is the number of b i ts to be transferred, from 0 through 15,
wi th 0 meaning 16 bits.
 h he second operand is the shift count, from 0 through 15. 0 indicates that the

count is i n bits 12 through 15 of Workspace Register 0. When the count is 0 and

bits 12 through 15 of Workspace Register 0 equal 0, the count is 16.
3 ~ h e second operand specifies the extended operation, from 0 through 15. The

disposition of the result may or may not be i n the f i rs t operand address, as
determined by you.

EDITOR/ASSEMBLER
Page 64

SECTION 5: INSTRUCTION FORMATS

An assembler instruction occupies one word (16 bits) of memory. Each word is

divided into appropriately sized b i t f ields which a r e arranged in one of nine formats.
These fo rmats a r e discussed below and a r e re fe r red t o in t h e discussions of the
instructions in the following sections. You m u s t clearly understand addressing modes,
as described in Section 4, before reading th is section.

Each fo rmat contains one o r more of the following bit fields.

Op-Code - Machine operation code.

B - Byte indicator: 1 f o r byte instructions, 0 for word instructions.

Td - Type of addressing mode of t h e destination operand.

D - Destination operand.

Ts - Type of addressing mode of t h e source operand.

S - Source operand.

DISP - Displacement value (signed).

C - Count (bit count).

W - Workspace register.

EDITOR/ASSEMBLER
Page 65

INSTRUCTION FORMATS

5.1 FORMAT I -- TWO GENERAL ADDRESS INSTRUCTIONS

The operand field of Format I instructions conta ins t w o general addresses separated
by a comma. The f i rs t address is the source address and the second i s the
destination address. The Format I mnemonic operation codes a r e listed below and
discussed in subsequent sections.

A
AB
C
C B
M OV
MOVB
s
SB
SOC
SOCB
szc
SZCB

Add words
Add Bytes
Compare words
Compare Bytes
MOVe word
MOVe Byte
Sub t rac t words
Subtract Bytes
S e t Ones Corresponding
Se t Ones Corresponding, Byte
S e t Zeros Corresponding
S e t Zeros Corresponding, Byte

Example:

SUM A @LABELl,*R7 Adds t h e contents of the word a t
location LABEL1 t o the con ten t s of
the word a t t h e address in
Workspace Regis ter 7 and places t h e
sum in t h e word a t t h e address in
Workspace Regis ter 7. SUM is t h e
location of the instruction.

F o r m a t I instructions a r e assembled as follows.

When e i ther Ts or Td (but not both) equal binary 10, t h e instruction occupies t w o
words of memory. The second word contains a memory address used with S or D t o
develop the e f fec t ive address. When both Ts and Td equal binary 10, the instruction
occupies th ree words of memory. The second word conta ins t h e memory address of
t h e source operand, and t h e third word conta ins t h e memory address of the

destination operand.

EDITORIASSEMBLER
P a g e 66

INSTRUCTION FORMATS

5.2 FORMAT I1 -- JUMP INSTRUCTIONS

Format I 1 instructions use Program Counter (PC) relative addresses coded as
expressions corresponding to instruction locations on word boundaries. The Format I 1

jump mnemonic operation codes are listed below and discussed in subsequent sections.
See Section 5.2.1 for a discussion of the Format I 1 CRU b i t I /O instructions.

JE Q
JGT
JH
JHE
JL
JLE
JLT
JMP
JNC
JNE
JNO
JOC
JOP

Jump i f EQual
Jump if Greater Than
Jump i f logical High
Jump if High or Equal
Jump i f logical Low
Jump i f Low or Equal
Jump i f Less Than

unconditional JUMP
Jump i f No Carry
Jump if Not Equal
Jump i f No Overflow
Jump On Carry
Jump i f Odd Parity

Example:

NOW JMP BEGIN Jumps unconditionally to the instruction a t

location BEGIN. The address of location BEGIN
must not be greater than the address of location
NOW by more than 128 words, nor less than the
address of location NOW by more than 127
words.

Format I1 instructions are assembled as follows.

The signed displacement value is shifted one b i t position to the l e f t and added to the
contents of the Program Counter after the Program Counter has been incremented to

the address of the following instruction. I n other words, it is a displacement in
words from the instruction address plus two.

EDITOR/ASSEMBLER
Page 67

INSTRUCTION FORMATS

5.2.1 Format II -- Bit I/O Instructions

I n addition t o jump instructions, the CRU b i t 110 instructions also follow Format 11.
The operand f ield of Format I1 CRU b i t 110 instructions contains a well-defined
expression which evaluates to a CRU b i t address, relative t o the contents of
Workspace Register 12. The Format I1 CRU b i t 110 instructions are listed below and
discussed in subsequent sections. See Section 5.2 for a discussion o f the Format I1
jump instructions.

SBO Set B i t t o logic One
SBZ Set B i t to logic Zero
TB Test B i t

Example:

SBO 5 Sets a CRU b i t t o one.

EDITOR/ASSEMBLER
Page 68

INSTRUCTION FORMATS

5.3 FORMAT 111 -- LOGICAL INSTRUCTIONS

The operand field of Format I11 instructions contains a general address followed by a
comma and a Workspace Register address. The general address is the source address.

The Workspace Register address is the destination address. The Format I11 mnemonic

operation codes are listed below and discussed i n subsequent sections.

COC Compare Ones Corresponding
CZC Compare Zeros Corresponding
XOR exclusive OR

Example:

COMP XOR @LABELB(R3),R5 Performs an exclusive OR operation
on the contents of a memory word
and the contents of Workspace
Register 5 and places the result i n
Workspace Register 5. The address
of the memory word is the sum of

the contents of Workspace Register
3 and the value of the symbol
LABELB.

Format 111 instructions are assembled as follows.

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address of the source operand.

EDITORIASSEMBLER
Page 69

INSTRUCTION FORMATS

5.4 FORMAT I V -- CRU MULTI-BIT INSTRUCTIONS

The operand field of Format I V instructions contains a general address followed by a
comma and a well-defined expression. The general address is the memory address
from which or into which bits are transferred. The CRU address for the transfer is

the contents of bits 3 through 14 of Workspace Register 12. The well-defined
expression is the number of bits to be transferred and must have a value of 0 through
15. A 0 value specifies a 16 b i t transfer. For eight or fewer bits the general
address is a byte address. For nine or more bits the general address is a word
address. The Format I V mnemonic operation codes are listed below and discussed i n
subsequent sections.

LDCR LoaD CRU
STCR STore CRU

Example:

LDCR *R6+,8 Places eight bits from the byte of memory at the address i n

Workspace Register 6 into eight consecutive CRU lines and
increments Workspace Register 6 by 1.

Format I V instructions are assembled as follows.

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address for the source operand.

EDITORIASSEMBLER
Page 70

INSTRUCTION FORMATS

5.5 FORMAT V -- REGISTER SHIFT INSTRUCTIONS

The operand f ie ld of Format V instructions contains a Workspace Register address
followed by e comma and a well-defined expression. The contents of the Workspace

Register are shifted a number of b i t positions specified by the well-defined
expression. When the term equals zero, the shif t count must be placed i n bits 12-15
of Workspace Register 0. The Format V mnemonic operation codes are listed below
and discussed i n subsequent sections.

SLA Shift L e f t Arithmetic
SRA Shift Right Arithmetic
SRC Shift Right Circular
SRL Shift Right Logical

Example:

SLA R6,4 Shifts the contents of Workspace Register 6 t o the l e f t 4 b i t
positions and replaces the vacated bits wi th zeros.

Format V instructions are assembled as follows.

EDITORIASSE MBLER
Page 71

INSTRUCTION FORMATS

5.6 FORMAT V I -- SINGLE ADDRESS INSTRUCTIONS

The operand f ield of Format V I instructions contains a general address. The Format

V I mnemonic operation codes are listed below and discussed i n subsequent sections.

ABS
B
EL
BLWP

CLR
DEC
DECT
I N C
INCT
INV

NEG
SET0
SWPB
X

ABSolute value
Branch
Branch and Link
Branch and Load Workspace Pointer

CLeaR
DECrement
DECrement by Two
INCrement
INCrement by Two
INVert
NEGate

SEt To One
SWaP Bytes
execute

Example:

CNT INC R7 Adds one t o the contents of Workspace Register
7 and places the sum i n Workspace Register 7.
CNT is the location into which the instruction is
placed.

Format V I instructions are assembled as follows.

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address of the source operand.

EDITOR~ASSEMBLER
Page 72

INSTRUCTION FORMATS

5.7 FORMAT VII -- CONTROL INSTRUCTIONS

Format V I I instructions require no operand field. The Format V I I mnemonic

operation codes are listed below and discussed in subsequent sections. A l l but the

last instruction have no ef fect on the T I Home Computer.

CKOF ClocK OFf

CKON ClocK ON
IDLE IDLE
LREX Load or REstart execution
RSET ReSET
RTWP ReTurn with Workspace Pointer

Example:

RTWP Returns control to the calling program and restores the context o f the
calling program by placing the contents of Workspace Registers 13, 14,

and 15 into the Workspace Pointer Register, the Program Counter, and
the Status Register.

Format V I I instructions are assembled as follows.

The op-code f ield contains 11 bits that define the machine operation. The f ive least
significant bits are zeros.

EDITOR/ ASSEMBLER
Page 73

INSTRUCTION FORMATS

5.8 FORMAT VI I I -- IMMEDIATE INSTRUCTIONS

The operand f ie ld of Format V I I I instructions contains a Workspace Register address
followed by a comma and an expression. The Workspace Register is the destination

address, and the expression is the immediate operand. The Format V I I I mnemonic
operation codes are listed below and discussed i n subsequent sections.

A I Add Immediate
AN01 AND Immediate
C I Compare Immediate
LI Load Immediate

OR1 OR Immediate

There are two additional Format V I I I instructions that require only an expression i n
the operand field. The expression is the immediate operand. The destination is
implied i n the name of the instruction. These instructions are listed here.

L I M I Load Interupt Mask Immediate
LWPI Load Workspace Pointer Immediate

Another modification of Format V I I I requires only a Workspace Register address i n
the operand field. The Workspace Register address is the destination. The source is
implied in the name of the instruction. The following mnemonic operation codes use
this modified Format VIII.

STST STore STatus
STWP STore Workspace Pointer

Examples:

AND1 4,>000F Performs an AND operation on the contents of Workspace
Register 4 and immediate operand >000F.

LWPI WRKl Places the address defined for the symbol WRKl into the
Workspace Pointer Register.

STWP R4 Places the contents of the Workspace Pointer Register into
Workspace Register 4.

EDITOR/ASSEMBLER
Page 74

INSTRUCTION FORMATS

F o r m a t VII I instructions a r e assembled a s follows.

A z e r o b i t separa tes t h e two fields. The instructions t h a t have no Workspace
Regis ter operand place zeros in t h e W field. T h e instructions t h a t have immediate
operands place t h e operands in the word following t h e word t h a t contains t h e op-code,
i.e., these instructions occupy t w o words each.

EDITORIASSEMBLER
P a g e 75

INSTRUCTION FORMATS

5.9 FORMAT I X -- EXTENDED OPERATION INSTRUCTION

The extended operation instruction can be used on some T I Home Computers. See

Section 7.19 for more information.

The operand field of the Format I X extended operation instruction contains a general
address and a well-defined expression. The general address is the address of the

operand for the extended operation. The term specifies the extended operation to be
performed and must be in the range o f 0 through 15. The Format I X mnemonic

operation code is listed below and discussed in subsequent sections. See Section 5.9.1

for a discussion of the Format I X multiply and divide instructions.

XOP extended Operation

Example:

XOP @LABEL(R4),12 Performs extended operation 12 using the
address computed by adding the value of symbol
LABEL to the contents of Workspace Register 4.

Format I X instructions are assembled as follows.

When Ts equals binary 10, the instruction occupies two words of memory. The
second word contains the memory address for the source operand.

EDITOR1 ASSEMBLER
Page 76

INSTRUCTION FORMATS

5.9.1 Format I X -- MuItiply and Divide Instructions

The operand field of Format IX multiply and divide instructions contains a general
address followed by a comma and a Workspace Register address. The general address
is the address of the multiplier or divisor, and the Workspace Register address is the
address of the Workspace Register tha t contains the multiplicand or dividend. The
Workspace Register address is also the address of the f i rs t of two Workspace
Registers to contain the result. The Format IX multiply and divide instructions a re
listed below and discussed in subsequent sections. See Section 5.9 for a discussion of
the Format I X extended operation instruction.

MPY Multiply
DIV DIVide

Example:

MPY @ACC,R9 Multiplies the contents of Workspace Register 9
by the contents of the word a t location ACC
and places the product in Workspace Registers 9
and 10, with the 16 least significant bits of the
product in Workspace Register 10.

Multiply and divide instructions a re assembled in the same format as shown in Section
5.9, except tha t the D field contains the Workspace Register operand.

EDITORIASSEMBLER
Page 77

SECTION 6: A R I T H M E T I C INSTRUCTIONS

The following arithmetic instructions are described i n this section.

Instruction
Add words

Add Bytes
ABSolute value
Add Immediate
DECrernent
DECrement by Two
DIVide
INCrement
INCrement by Two
Mu l t ip l y
NEGate

Subtract words
Subtract Bytes

Mnemonic
A
AB
ABS
A1
DEC
DECT
DIV
INC
INCT
MPY
NEG
S
SB

Section

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Examples are given in Section 6.14.

Each instruction consists of the following information.

a A heading, consisting of the instruction name and mnemonic name
a The op-code
a The syntax definition

An example of the instruction
a The definition of the instruction

a The status bits affected
a The execution results
a Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

EDITORIASSEMBLER
Page 78

ARITHMETIC INSTRUCTIONS

The syntax definition follows t h e conventions described in Section 5. The gener ic

names used in t h e syntax definit ions are:

g a s
gad
w a
i op
wad
disp

exp
c n t
s c n t

XOP

General Address of t h e Source operand
General Address of t h e Destination operand
Workspace regis ter Address
Immediate Operand
Workspace register Address Destination
DISPlacement of CRU lines f r o m t h e C R U base regis ter
Express ion t h a t represents an instruction location
CouNT of bi ts for CRU transfer
Shift CouNT
number of e x t e n d e d Operat ion

Source s t a t e m e n t s t h a t contain machine instructions c a n use t h e label field, t h e
operation field, t h e operand field, and the comment field.

Use of t h e label field i s optional. When i t i s used, t h e label is assigned t h e address
of t h e instruction. The Assembler advances t o t h e location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains t h e mnemonic operation code of the
instruction. T h e con ten t s of the operand field a r e defined for e a c h instruction.

Inclusion of t h e comment field is optional. If used, i t may contain any ASCII
characters , including blanks. The comment has no e f f e c t on t h e assembly process
o ther than being printed in t h e listing.

In t h e execution results, t h e following conventions a r e used.

() Indicates "the con ten t s of."
=> Indicates "replaces."
* * Indicates "the absolute value of."

The generic names used in t h e syntax definitions a r e also used in t h e execution
results.

EDITOR/ASSEMBLER
P a g e 79

ARITHMETIC INSTRUCTIONS

6.1 ADD WORDS--A

Op-code: A000 (Format I)

Syntax definition:

Example:

LABEL A @!ADRl(RZ),@!ADRZ(R3) Adds the word at the address found

by adding A D R l t o the contents of
Workspace Register 2 to the word at
the address found by adding ADR2
to the contents of Workspace

Register 3 and puts the result i n the
word a t the second address.

Definition:
Adds a copy of the source operand (word) to the destination operand (word) and
replaces the destination operand with the sum. The computer compares the sum
to zero and sets/resets the status bits to indicate the result of the comparison.
When there i s a carry of b i t zero, the carry status b i t is set. When there is an
overflow, the overflow status b i t is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - - * . . I INT. W S K I

Execution results:
(gas) + (gad) => (gad)

EDITOR/ASSEMBLER
Page 80

ARITHMETIC INSTRUCTIONS

Application notes:
The A instruction adds both signed and unsigned integer words. For example, i f

the address labeled TABLE contains >3124 and Workspace Register 5 contains >8,
the instruction

results in the contents of TABLE changing to >312C and the contents of
Workspace Register 5 not changing. The logical and arithmetic greater than

status bits are set and the equal, carry, and overflow status bits are reset.

EDITOR~ASSEMBLER
Page 8 1

ARITHMETIC INSTRUCTIONS

6.2 ADD BYTES--AB

Op-code: BOO0 (Format I)

Syntax definition:

Example:

LABEL A 6 392 Adds the l e f t byte of Workspace Register 3 to
the l e f t byte i n Workspace Register 2 and places

the result in the l e f t byte of Workspace Register
2.

Definition:
Adds a copy of the source operand (byte) to the destination operand (byte) and
replaces the destination operand wi th the sum. When the source or destination
operand is addressed i n the Workspace Register mode, only the leftmost byte (bits
0 through 7) of the addressed Workspace Register is used. The computer
compares the sum to zero and sets/resets the status bits t o indicate the results of
the comparison. When there is a carry of the most significant b i t of the byte,
the carry status b i t is set. When there is an overflow, the overflow status b i t is
set. The odd parity b i t is set when the bits i n the sum (destination operand)
establish odd parity and is reset when the bits i n the sum establish even parity.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - - . . * . . I IM. M4SK I

Execution results:

(gas) + (gad) => (gad)

EDITOR/ASSEMBLER
Page 82

ARITHMETIC INSTRUCTIONS

Application notes:
The A 6 instruction is used t o add signed or unsigned integer bytes. For example,
if Workspace Register 3 contains >7400, memory word >2122 contains >F318 and
Workspace Register 2 contains >2123, the instruction

changes the contents of memory word - >2122 to >F38C because >74 (the value in
Workspace Register 3) plus >23 (the value in memory byte >2123) is >8C. The
l e f t byte of memory word >2122 is unchanged. The contents of Workspace
Register 2 a r e changed t o >2124, while the contents of Workspace Register 3
remain unchanged. The logical greater than, overflow, and odd parity s ta tus bits
a r e set, while t h e ar i thmetic greater than, equal, and carry s ta tus bits a r e reset.

EDITOR/ASSEMBLER
Page 8 3

ARITHMETIC INSTRUCTIONS

6.3 ABSOLUTE VALUE--ABS

Op-code: 0740 (Format IV)

Syntax definition:

[<label>] b ABS b <gas> b [<comment>]

Example:

LABEL ABS *2 Replaces the contents of the word starting a t
the address in Workspace Register 2 with i ts

absolute value.

Definition:
Computes the absolute value of the source operand and replaces the source

operand with the result. The absolute value is the two's complement of the

source operand when the sign b i t (bit zero) is equal to one. When the sign b i t is

equal to zero, the source operand is unchanged. The computer compares the

original source operand to zero and setsfresets the status bits to indicate the
results of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - - . . . I INT. M4SK I ..

Execution results:

(gas) => (gas)

Application notes:
The ABS instruction is useful for taking the absolute value of an operand. For
example, if the third word in array LIST contains the value >FF3C and Workspace
Register 7 contains the value >4, the instruction

changes the contents o f the third word in array LIST t o >00C4. The logical
greater than status b i t i s set, while the arithmetic greater than and equal status

bits are reset.

EDITOR/ASSEMBLER
Page 84

ARITHMETIC INSTRUCTIONS

6.4 ADD IMMEDIATE--A1

Op-code: 0220 (Format 111)

Syntax definition:

Example:

LABEL A1 2.7 Adds 7 t o t h e con ten t s of Workspace Regis ter 2.

Definition:
Adds a copy of the immediate operand (the contents of the word following t h e
instruction word in memory) t o the con ten t s of t h e Workspace Regis ter specified
in the wa field and replaces t h e con ten t s of t h e Workspace Regis ter with the
results. The computer compares the sum t o ze ro and sets/resets t h e s t a t u s bi ts
t o indicate the resul t of t h e comparison. When t h e r e is a carry of bit zero, the
ca r ry s t a tus b i t is set. When the re is a n overflow, t h e overflow s t a t u s bit is set.

S t a t u s bits affected:
Logical g rea te r than, a r i thmet ic g rea te r than, equal, carry, and overflow.

Execution results:
(wa) + iop => (wa)

Application notes:
The A1 instruction adds an immediate value t o t h e con ten t s of a Workspace
Register. For example, if Workspace Regis ter 6 contains a zero, t h e instruction

changes t h e con ten t s of Workspace Regis ter 6 t o >000C. The logical g rea te r

than and a r i thmet ic g r e a t e r than s ta tus bi ts a r e set, while t h e equal, carry, and
overflow s t a t u s bits are reset.

EDITOR/ASSEMBLER
P a g e 85

ARITHMETIC INSTRUCTIONS

Op-code: 0600 (Format IV)

Syntax definition:

[<label>] b DEC b <gas> b [<comments>]

Example:

LABEL DEC 2 Decrements the contents of Workspace Register
2 by 1.

Definition:
Subtracts a value of one f rom the source operand and replaces the source operand
with the result. The computer compares the result to zero and sets/resets the
status bits to indicate the result of the comparison. When there is a carry of b i t

zero, the carry status b i t is set. When there is an overflow, the overflow status
b i t is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. WSK I

Execution results:
(gas) - 1 => (gas)

Application notes:
The DEC instruction subtracts a value of one from any addressable operand. The
DEC instruction is also useful in counting and indexing byte arrays. For example,
i f COUNT contains a value of >1, the instruction

DEC @COUNT

results in a value of zero in location COUNT and sets the equal and carry status

bits while resetting the logical greater than, arithmetic greater than, and
overflow status bits. The carry b i t is always set except on transition from zero
to minus one.

EDITORIASSEMBLER
Page 86

ARITHMETIC INSTRUCTIONS

6.6 DECREMENT BY TWO--DECT

Op-code: 0640 (Format IV)

Syntax definitions:

[<label>] b DECT b <gas> b [<comment>]

Example:

LABEL DECT BADDR Decrements the contents of ADDR by 2.

Definition:
Subtracts two f rom the source operand and replaces the source operand with the

result. The computer compares the result to zero and setslresets the status bits
t o indicate the result of the comparison. When there is a carry of b i t zero, the

carry status b i t is set. When there is an overflow, the overflow status b i t is set.

Status bits affected:

Logical greater than, arithmetic greater than, equal, carry, and overflow.

Execution results:
(gas) - 2 => (gas)

Application notes:
The DECT instruction is useful i n counting and indexing word arrays. Also, the
DECT instruction enables you to subtract a value of two from any addressable
operand. For example, i f Workspace Register PRT, which has been equated t o 3,
contains a value of >2C10, the instruction

DECT PRT

changes the contents of Workspace Register 3 to >2COE. The logical greater

than, arithmetic greater than and carry status bits are set, while the equal and
overflow status bits are reset.

EDITOR/ASSEMBLER
Page 87

ARITHMETIC INSTRUCTIONS

Op-code: 3C00 (Format IX)

Syntax definition:

[<label>] b DIV b <gas>,<wad> b [<comment>]

Example:

LABEL DIV @ADR(2),3 Divides the contents of the words in Workspace
Register 3 and Workspace Register 4 by the

value of ADR plus Workspace Register 2 and
stores the integer result in Workspace Register 3
with the remainder in Workspace Register 4.

Definition:

Divides the destination operand (a consecutive two-word area of workspace) by a
copy of the source operand (one word), using unsigned integer rules. Places the

integer quotient in the f i rst of the two-word destination operand area and places
the remainder in the second word of that same area. This division is graphically
represented as follows.

Destination Operand Workspace Registers:

Workspace R e g i s t e r (n) l W o r k s p a c e R e g i s t e r (n + l)
0 15 10 15
< - > I < - >

R e s u l t i n g Q u o t i e n t R e s u l t i n g Remainder
< - >

D i v i d e n d

Source operand:

A d d r e s s a b l e Memory
0 15
< - - - - - - - - - - - - - - - - >

D i v i s o r

The f i rs t of the destination operand Workspace Registers, shown above, is

addressed by the contents of the D field. The dividend is r ight justified in this

EDITOR/ASSEMBLER
Page 88

ARITHMETIC INSTRUCTIONS

2-word area. When the division is complete, the fquotient (result) i s placed in the
f i rs t Workspace Register of the destination operand (represented by n) and the
remainder is placed in the second word of the destination operand (represented by
n+l).

When the source operand is greater than the first word of the destination
operand, normal division occurs. If t h e source operand is less than or equal t o
the first word of the destination operand, normal division results in a quotient
t h a t cannot b e represented in a 16-bit word. In this case, the computer s e t s the
overflow s ta tus bit, leaves the destination operand unchanged, and cancels t h e
division operation.

If the destination operand is specified a s Workspace Register 15, the first word of
t h e destination operand is Workspace Register 15 and the second word of t h e
destination operand is the word in memory immediately following the workspace
area.

S ta tus bits affected:
Overflow

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. M4SK I

A

Execution results:
(wad and wad cl) divided by (gas) => (wad) and (wad) + 1
The quotient is placed in wad and the remainder is placed in wad + 1.

Application notes:
The DIV instruction performs a division. For example, if Workspace Register 2
contains a zero and Workspace Register 3 contains >000C, and the contents of
LOC is >0005, the instruction

DIV @LOC,2

results in >DO02 in Workspace Register 2 and >0002 in Workspace Register 3.
The overflow s ta tus bit is reset. If Workspace Register 2 contained the value
>0005, the value contained in the destination operand equals 327,692 and division
by the value 5 results in a quotient of 65,538, which cannot be represented in a
16-bit word. This a t tempted division sets the overflow sta tus bi t and the
computer cancels the operation.

EDITORlASSEMBLER
Page 8 9

ARITHMETIC INSTRUCTIONS

Op-code: 0580 (Format VI)

Syntax definition:

[<label>] b I N C b <gas> b [<comment>]

Example:

LABEL INC >1AO3 Increments t h e con ten t s of address >1AO3 by 1.

Definition:
Adds one t o t h e source operand and replaces t h e source operand with the result.
The computer compares t h e sum t o ze ro and sets/resets t h e s t a t u s bi ts t o
indicate the resul t of the comparison. When the re is a carry of bit zero, the
ca r ry s t a t u s b i t is set. When the re is an overflow, the overflow s ta tus bit i s set.

S t a t u s bits affected:
Logical g r e a t e r than, a r i thmet ic g r e a t e r than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOpIX I - - - - - - - - - - - - - - I INT. M4SK I

Execution results:
(gas) + 1 => (gas)

Application notes:
T h e INC instruction may be used t o count and index byte arrays, add a value of
one t o an addressable memory location, o r set flags. For example, if COUNT
contains a zero, t h e instruction

INC @COUNT

places a >0001 in COUNT and sets the logical g r e a t e r than and a r i thmet ic g rea te r
than s ta tus bits, while t h e equal, carry, and overflow s t a t u s bits a r e reset.

EDITORlASSEMBLER
P a g e 9 0

ARITHMETIC INSTRUCTIONS

6.9 INCREMENT BY TWO--1NCT

Op-code: 05CO (Format VI)

Syntax definition:

[<label>] b INCT b <gas> b [<comment>]

Example:

LABEL INCT 3 Increments the contents of Workspace Register
3 by 2.

Definition:
Adds a value of two t o the source operand and replaces the source operand wi th
the sum. The computer compares the sum to zero and sets/resets the status b i t
to indicate the result of the comparison. When there is a carry o f b i t zero, the
carry status b i t is set. When there is an overflow, the overflow status b i t is set.

Status bits affected:
iog ica l greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL> IA>IEQIc lOV lOPlX I - - - - - - - - - - - - - -] INT. M4SK I

. . . . A , . . .

Execution results:

(gas) + 2 => (gas)

Application notes:
The INCT instruction may be used to count and index word arrays and add the
value of two t o an addressable memory location. For example, i f Workspace
Register 5 contains the address (>2100) of the fifteenth word of an array, the
instruction

INCT 5

changes Workspace Register 5 to >2102, which points t o the sixteenth word o f the
array. The logical greater than and arithmetic greater than status bits are set,
while the equal, carry, and overflow status bits are reset.

EDITORjASSEMBLER
Page 9 1

ARITHMETIC INSTRUCTIONS

Op-code: 3800 (Format IX)

Syntax definition:

[<label>] b MPY b <gas>,<wad> b [<comment>]

Example:

LABEL MPY @ADDR,3 Multiplies the contents of Workspace Register 3
by t h e value of ADDR. The result is right
justified in the 32 bits of Workspace Register 3
and Workspace Register 4.

Definition:
Multiplies the first word in the destination operand (a consecutive 2-word a r ea in
workspace) by a copy of t h e source operand and replaces the 2-word destination
operand with the result. The multiplication operation may be graphically
represented a s follows.

Destination operand Workspace Registers:

W o r k s p a c e R e g i s t e r (n) l W o r k s p a c e R e g i s t e r (n + l)
0 1 5 1 0 1 5
< - >

M u l t i p l i c a n d
< - ; - >

P r o d u c t

Source operand:

A d d r e s s a b l e Memory
0 15
< - - - - - - - - - - - - - - - - >

M u l t i p l i e r

EDITORIASSEMBLER
Page 9 2

ARITHMETIC INSTRUCTIONS

The f i rs t word of t h e destination operand, shown on t h e previous page, is
addressed by t h e contents of t h e D field. This word conta ins the multiplicand

(unsigned value of 16 bits) right-justified in t h e Workspace Regis ter (represented
by workspace n above). The 16-bit, unsigned multiplier i s located in the source
operand. When t h e multiply operation i s complete, t h e product appears
right-justified in the en t i re 2-word a r e a addressed by t h e destination field a s a
32-bit unsigned value. The maximum value of e i t h e r input operand is Xm and
t h e maximum value of t h e unsigned product is > m E 0 0 0 1 .

If the destination operand i s specified a s Workspace Regis ter 15, t h e f i rs t word of
t h e destination operand is Workspace Regis ter 1 5 and the second word of the
destination operand is t h e memory word immediately following t h e workspace
memory area.

S ta tus bi ts affected:
None

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C I O V I C P I X . I - - - - - - - - - - - - - - I IM. M4SK I

Execution results:
(gas) * (wad) = (wad) and (wad)+l
The product (32-bit magnitude) is placed in wad and wad + 1, with the most
significant half in wad.

Application notes:
The M P Y instruction performs a multiplication. For example, if Workspace
Regis ter 5 contains >0012, Workspace Regis ter 6 contains >1B31, and memory
location NEW contains >0005, t h e instruction

MPY @NEW,5

changes t h e con ten t s of Workspace Regis ter 5 t o >0000 and Workspace Regis ter 6
t o >005A. T h e source operand is unchanged. The S t a t u s Regis ter i s not a f fec ted
by this instruction.

EDITORlASSEMBLER
P a g e 93

ARITHMETIC INSTRUCTIONS

Op-code: 0500 (Format VI)

Syntax definition:

[<label>] b NEG b <gas> b [<comment>]

Example:

LABEL NEG 2 Replaces the contents of Workspace Register 2
wi th i ts additive inverse.

Definition:
Replaces the source operand with the two's-complement of the source operand.
The computer determines the two's-complement value by inverting al l bits of the
source operand and adding one to the resulting word. The computer then

compares the result to zero and sets/resets the status bits to indicate the result
of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL> IA>IEQIc IOVIOPIX \ - - - - - - - - - - - - - - I INT. MSK I

* - A A

Execution results:
-(gas) => (gas)

Application notes:
The NEG instruction changes the contents of an addressable memory location i ts
additive inverse. For example, if Workspace Register 5 contains the value >A342,
the instruction

NEG 5

changes the contents of Workspace Register 5 to >5CBE. The logical greater
than and arithmetic greater than status bits are set, while the equal status b i t is
reset.

EDITORIASSEMBLER
Page 94

ARITHMETIC INSTRUCTIONS

6.12 SUBTRACT WORDS--S

Op-code: 6000 (Format I)

Syntax definition:

Example:

LABEL S 293 Subtracts the contents of Workspace Register 2
from the contents of Workspace Register 3.

Definition:
Subtracts a copy of the source operand from the destination operand and places
the difference in the destination operand. The computer compares the difference
t o zero and sets/resets the status bits to indicate the result of the comparison.
When there is a carry of bit zero, the carry s tatus bit is set. When there is an
overflow, the overflow status bit is set. The source operand remains unchanged.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC IOVIOPIX I - - - - - - - - - - - - - - I - .. INT. W S K I

Execution results:
(gad) - (gas) => (gad)

Application notes:
The S instruction subtracts signed integer values. For example, if memory
iocation OLDVAL contains a value of >1225 and memory location NEWVAL
contains a value of >8223, the instruction

changes the contents of NEWVAL to >ME. The logical greater than, arithmetic
greater than, carry, and overflow status bits a r e set, while the equal s tatus bit is
reset.

EDITOR/ASSEMBLER
Page 95

ARITHMETIC INSTRUCTIONS

6.13 SUBTRACT BYTES--SB

Op-code: 7000 (Format I)

Syntax definition:

Example:

LABEL SB 293 Subtracts the leftmost byte of Workspace
Register 2 from the leftmost byte of Workspace
Register 3.

Definition:
Subtracts a copy of the source operand (byte) from the destination operand (byte)
and replaces the destination operand byte with the difference. When the

destination operand byte is addressed i n the Workspace Register mode, only the
leftmost byte (bits 0-7) in the Workspace Register is used. The computer

compares the resulting byte to zero and setslresets the status bits accordingly.
When there is a carry of the most significant b i t of the byte, the carry status b i t
is set. When there is an overflow, the overflow status b i t is set. I f the result

byte establishes odd parity (an odd number of logic one bits in the byte), the odd
parity status b i t is set.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC IOVIOPIX I - - - - - - - - - - - - - - I

. . A A

INT. M4SK I

Execution results:
<gad> - <gas> => <gad>

EDITOR/ASSEMBLER
Page 96

ARITHMETIC INSTRUCTIONS

Application notes:
The SB instruction subtracts signed integer bytes. For example, if Workspace
Register 6 contains the value >121C, memory location >121C contains the value
>2331, and Workspace Register 1 contains the value >1344, the instruction

changes the contents of Workspace Register 6 t o >121D and the contents of
Workspace Register 1 to >F044. The logical greater than s tatus bit is set, while
the other s tatus bits affected by this instruction a re reset.

EDITOR~ASSEMBLER
Page 97

ARITHMETIC INSTRUCTIONS

6.14 INSTRUCTION EXAMPLES

This section includes several arithmetic instruction examples for further clarification.
The application of these instructions i s not necessarily l imited to that given.

6.14.1 Increment ing and Decrement ing Examples

There are two decrement and two increment instructions that may be used for various
types of control when passing through a loop, indexing through an array, or operating
within a group of instructions.

The incrementing and decrementing instructions available for use with the Assembler
are:

INCrement (INC)
INCrement by Two (INCT)
DECrement (DEC)
DECrement by Two (DECT)

The single increment and decrement instructions are useful for indexing byte arrays

and for counting byte operations. The increment by two and decrement by two
instructions are useful for indexing word arrays and for counting word operations.
The following sections provide some examples of these operations.

6.14.1.1 Increment Ins t ruc t ion Example

The example program shows how the INC instruction is useful in byte operations.
The program searches a character array for a character with odd parity. To
terminate the search, the last character contains zero. The search begins a t the

lowest address of the array and maintains an index in a Workspace Register. The
character array for this example is called A 1 and is also the relocatable address of
the array. The code is shown on the next page.

EDITOR/ASSEMBLER
Page 98

ARITHMETIC INSTRUCTIONS

SET0 1 Set counter index to -1
SEARCH INC 1 Increment 'ndex t MOVE @A1(1),2 Get character

JOP ODDP Jump i f found
JNE SEARCH Continue search i f not zero

ODDP ...

6.14.1.2 Decrement Instruction Example

To illustrate the use of a DEC instruction in a byte array, this example inverts a
26-character byte array and places the results in another array of the same size
called A2. The contents of A 1 are defined with a data TEXT statement as follows.

A 1 TEXT 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Array A2 is defined with the ESS statement as follows.

The sample code for the solution is:

LI 5,26 Counter and index for Al.
LI 4,A2 Address of A2.

INVRT MOVB @Al-1(5),*4+ Invert array (Note 1).
DEC 5 Reduce counter.
JGT INVRT Continue if not complete.

Note:
'@~1(5) addresses the elements of array A 1 in descending order as Workspace
Register 5 is decremented. *4+ addresses array A2 i n ascending order as
Workspace Register four is incremented.

EDITOR/ASSEMBL ER
Page 99

ARITHMETIC INSTRUCTIONS

Array A2 contains the following as a result of executing this sequence of code:

A2 ZYXWVUTSRQPONMLKJIHGFEDCBA

Even though the result of this code sequence is trivial, the use of the MOVB
instruction, with indexing by Workspace Register 5 and the result incrementally
placed into A2 wi th the auto-increment function, can be useful in other applications.

The JGT instruction used to terminate the loop allows Workspace Register 5 to serve
both as a counter and as an index register.

A special quality of the DEC instruction allows you to simulate a jump greater than
or equal to zero instruction. Since OEC always sets the carry status b i t except when
changing from zero to minus one, it can be used i n conjunction with a JOC
instruction to form a JGE loop. The example below performs the same function as
the preceding example.

A 1 TEXT 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
A2 BSS 26

LI 5,25 Counter and index for Al.
LI 4,A2 Address of A2.

INVRT MOVB @A1(5),*4+ Invert array.
DEC 5 Reduce counter.
JOC INVRT Continue i f not complete.

Note: Since the use of JOC makes the loop execute when the counter is zero, the
counter is initialized to 25 rather than 26 as in the preceding example.

EDITOR/ASSEMBLER
Page 100

ARITHMETIC INSTRUCTIONS

6.14.1.3 Decrement by Two Instruction Example

T o i l lus t ra te the use of a DECT instruction in processing word arrays, th i s example
adds t h e e lements of a word a r ray t o t h e e lements of another word array and places
t h e resul ts in the second array. The con ten t s of t h e t w o a r rays a r e initialized as
follows.

A 1 DATA 500,300,800,1000,1200,498,650,3,27,0
A2 DATA 36,192,517,29,315,807,290,40,130,1320

The sample code t h a t adds the two arrays i s a s follows.

L I 4,20 Init ial ize counter (Note 1).
SUMS A @A1-2(4),@A2-2(4) Add a r rays (Note 2).

DECT 4 Decrement counter by two.
JGT SUMS Repea t addition.

Notes:
l ~ h e counter is preset t o 20 which is t h e number of bytes in t h e array.
 he addressing of the two arrays through the use of the a t sign (@I) is indexed by
t h e counter, which is decremented a f t e r each addition.

The con ten t s of t h e A2 array a f t e r the addition process a r e a s follows.

EDITOR/ASSEMBLER
P a g e 1 0 1

ARITHMETIC INSTRUCTIONS

There is another method by which this addition process may be accomplished. This

method is shown in the following code.

L I 4,lO Initialize counter (Note 1).
LI 5,Al Load address of A1 (Note 2).
LI 6,A2 Load address of A2 (Note 2).

SUMS A *5+,*6+ Add arrays (Note 3).
DEC 4 Decrement counter.
JGT SUMS Repeat addition (Note 4).

Notes:
l ~ h e counter is preset to 10 (the number of elements in the array).
 his address is incremented each time an addition takes place. The increment
is via the auto-increment function (+).

3 ~ h e * indicates that the contents of the register are to be used as an address,
and the + indicates that it is to be automatically incrernented by two each t ime
the instruction is executed.
'workspace Register 4 is only greater than zero for ten executions of the DEC
instruction, so control is transferred to SUMS nine times after the init ial
execution.

Af ter execution, the contents of array A2 are the same for this method as for the
first.

6.14.2 General Example

The following program illustrates several of the arithmetic instructions. The program
consists of a calling program and a subroutine. The subroutine produces the result of
the function X-(I3*Y1+5) where X and Y are variable data, treated as signed integers,
and passed to the subroutine from the calling program.

EDITOR~ASSEMBLER
Page 102

ARITHMETIC INSTRUCTIONS

To simplify the example, no error checking is included in the subroutine, and it is
assumed that the product of 3*Y is i n the range of a signed 16-bit word (-32,768
through 32,767).

*CALLING PROGRAM

EL
VAR DATA

DATA
MOV

RESULT BSS

CALC M OV
M OV
ABS
MPY
A1
S
RT

THREE DATA

@CALC Call subroutine.
37 X value.
1804 Y value.
0,RESULT Save result.

*11+,0 Put X value in Register 0.

*11,1 Put Y value in Register 1.
1 Take absolute value of Y.
@THREE,l Take 3 times absolute value of Y.

295 Add 5 to previous result.

2 4 Subtract previous result from X.
Return.

3 Constant.

EDTTOR/ASSEMBLER
Page 103

SECTION 7: JUMP AND BRANCH INSTRUCTIONS

The following jump and branch instructions are described in this section.

Instruction
Branch

Branch and Link
Branch and Load Workspace Pointer
Jump i f EQual

Jump i f Greater Than
Jump i f High or Equal
Jump i f logical High
Jump i f logical Low
Jump i f Low or Equal
Jump i f Less Than
Unconditional JUMP
Jump i f No Carry
Jump if Not Equal
Jump i f No Overflow
Jump if Odd Parity

Jump On Carry
ReTurn Workspace Pointer
Execute
Extended Operation

Mnemonic
B
BL
BLWP
JEQ

JGT
JHE
JH
JL
JLE
JLT
JMP
JN C

JNE
JNO
JOP

JOC
RTWP
X
XOP

Section
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

7.16
7.17
7.18
7.19

Examples are given in Section 7.20.

Branch instructions transfer control either unconditionally or conditionally according
to the state of one or more bits of the Status Register. The conditional branch
(jump) instructions and the status b i t or bits tested are shown on the next page.

EDITORIASSEMBLER
Page 104

-
JUMP AND BRANCH INSTRUCTIONS

Mnemonic
JH
JL
JHE
JLE
JGT+
JLT+
JEQ
JNE
JOC
JN C

JNO

JOP

Status B i t s Tested by Jump Instructions

Jump if:
L > = l and EQ=O

L>=O and EQ=O
L > = l or EQ=l
L>=O or EQ=1
A>= l
A>=O and EQ=O
EQ=1
EQ=O
C = l
c=o
ov=o

OP=l

+ Only JGT and JLT use signed arithmetic comparisons. The others are unsigned

(logical) comparisons.

For al l jump instructions, a displacement of zero results in execution of the next
instruction in sequence. A displacement o f -1 results i n execution of the same
instruction (a single-instruction loop).

Each instruction consists of the following information.

A heading, consisting of the instruction name and mnemonic name
The op-code

8 The syntax definition
An example of the instruction

s The definition of the instruction

The status bits affected
The execution results
Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds t o an instruction
word whose address fields contain zeros.

EDITOR~ASSEMBLER
Page 105

JUMP AND BRANCH INSTRUCTIONS

The syntax definition follows the conventions described i n Section 5. The generic

names used in the syntax definitions are:

gas
gad
w a
iop
wad
disp

exp
cnt
Scnt

XOP

General Address of the Source operand
General Address of the Destination operand
Workspace register Address
Immediate Operand
Workspace register Address Destination
DISPlacement of CRU lines from the CRU base register
Expression that represents an instruction location

CouNT of bits for CRU transfer
Shift CouNT
number of extended Operation

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label f ield is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even

address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. I f used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

I n the execution results, the following conventions are used.

() Indicates "the contents of."
=> Indicates "replaces."
* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITORIASSEMBLER
Page 106

JUMP AND BRANCH INSTRUCTIONS

Op-code: 0440 (Format VI)

Syntax definition:

Example:

LABEL B @THERE Transfers control to location THERE.

Definition:
Replaces the Program Counter contents with the source address and transfers
control to the instruction a t that location.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 3 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. W S K I

Execution results:
(gas) => (PC)

Application notes:
The B instruction transfers control to another section of code to change the
linear flow of the program. For example, if the contents of Workspace Register

3 is >21CC, the instruction

causes the word a t location >21CC to be used as the next instruction, because
this value replaces the contents of the Program Counter when this instruction is
executed.

See Section 24.11.3 for using the B instruction to return to the calling program.

EDITORIASSEMBLER
Page 107

J U M P AND BRANCH INSTRUCTIONS

7.2 BRANCH AND LINK--BL

Op-code: 0680 (Format V I)

Syntax definition:

Example:

LABEL BL gSUBR Calls SUBR as a common Workspace subroutine.

Definition:
P laces t h e source address in the Program Counter, places t h e address of t h e
instruction following t h e BL instruction (in memory) in Workspace Register 11,
and transfers control t o t h e new Program Counter contents.

S t a t u s bi ts affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q J C IOVJOPIX I - - - - - - - - - - - - - - I INT. M4SK I

Execution results:
(old P C) => (Workspace Register 11)
(gas) => (PC)

Application notes:
The BL instruction re tu rns linkage. For example, if t h e instruction

occurs at memory location >04BC, th is instruction has t h e e f f e c t of placing
memory location TRAN in t h e Program Counter. Since t h e instruction BL
@TRAN requires two words of machine code (which a r e placed a t addresses
>04BC and 04BE), the word address immediately following t h e second word is
>04CO so t h a t value is t h e address placed in Workspace Regis ter 11.

EDIT OR/ASSEMBLER
P a g e 1 0 8

JUMP AND BRANCH INSTRUCTIONS

7.3 BRANCH AND LOAD WORKSPACE POINTER--BLWP

Op-code: 0400 (Format VI)

Syntax definition:

[<label>] b BLWP b <gas> b [<comment>]

Example:

LABEL BLWP BVECT Branches to subroutine a t address (@VECT+Z)
and executes context switch.

Definition:
Places the source operand in the Workspace Pointer and the word immediately
following the source operand in the Program Counter. Places the previous
contents of the Workspace Pointer in the new Workspace Register 13, places the
previous contents of the Program Counter (address of the instruction following
BLWP) in the new Workspace Register 14, and places the contents of the Status

Register in the new Workspace Register 15. When al l store operations are
complete, the computer transfers control to the new Program Counter.

Status bits affected:
None.

Execution results:
(gas) => (WP)
(gas + 2) => (PC)
(old WP) => (Workspace Register 13)
(old PC) => (Workspace Register 14)
(ST) => (Workspace Register 15)

Application notes:

The BLWP instruction links to subroutines, program modules, or other programs
that do not necessarily share the calling program's workspace. See Section 7.20.3
for an example of using the BLWP instruction.

EDITOR/ASSEMBLER
Page 109

JUMP AND BRANCH INSTRUCTIONS

7.4 JUMP IF EQUAL--JEQ

Op-code: 1300 (Format 11)

Syntax definition:

[<label>] b JEQ b <exp> b [<comment>]

Example:

LABEL JEQ LOC Jumps to LOC i f EQ = 1.

Definition:
When the equal status b i t is set, transfers control by adding the signed
displacement i n the instruction word to the Program Counter and then placing the
sum in the Program Counter to transfer control.

Status bits tested:
Equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. W S K I

A

Jump if: EQ = 1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. WSK I

Execution results:

I f the equal b i t is equal to 1: (PC) + Displacement => (PC).
If the equal b i t is equal to 0: (PC) => (PC).

Application notes:
The JEQ instruction transfers control when the equal status b i t is set.

EDITOR/ASSEMBLER
Page 110

JUMP AND BRANCH INSTRUCTIONS

7.5 JUMP IF GREATER THAN--JGT

Op-code: 1500 (Format 11)

Syntax definition:

[<label>] b JGT b <exp> b [<comment>]

Example:

LABEL JGT THERE Jumps t o THERE if A> = 1.

Definition:
When the ar i thmetic greater than s ta tus bi t is set, adds the signed displacement
in the instruction word t o the Program Counter and places the sum in the
Program Counter. Transfers control t o the new Program Counter location.

S ta tus bits tested:
Arithmetic greater than.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > (E Q I C IOVIOPIX I - - - - - - - - - - - - - - (I M . MASK I

*

Jump if: A> = 1

Sta tus bi t affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C I O V I W I X I - - - - - - - - - - - - - - I INT. MASK I

Execution results:
If the ar i thmetic greater than b i t is equal t o 1: (PC) + Displacement => (PC).
If the ar i thmetic g r ea t e r than b i t i s equal t o 0: (PC) => (PC).

Application notes:
The JGT instruction t ransfers control if t h e ar i thmetic greater than s ta tus bi t is
set.

EDITOR/ASSEMBLER
Page 111

JUMP AND BRANCH INSTRUCTIONS

7.6 JUMP IF HIGH OR EQUAL--JHE

Op-code: 1400 (Format 11)

Syntax definition:

[<label>] b JHE b <exp> b [<comment>]

Example:

LABEL JHE BLBD Jumps t o location BLBD if either EQ or L> is
set.

Definition:
When the equal s tatus bit or the logical greater than status bit is set, adds the
signed displacement in the instruction word t o the Program Counter and replaces
the contents of the Program Counter with the sum.

Status bits tested:
Logical greater than, equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC IOVICPlX I - - - - - - - - - - - - - - I INT. W S K I

A ..
Jump if: L> = 1 or EQ = 1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
(L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - (INT. W S K I

Execution results:
If the logical greater than bit is equal t o 1 or the equal bit is equal to 1:
(PC) + Displacement => (PC).
If the logical greater than bit and the equal bit a re equal to 0: (PC) => (PC).

Application notes:
The JHE instruction transfers control when either the logical greater than or
equal s tatus bit is set.

EDITOR/ASSEMBLER
Page 112

JUMP AND BRANCH INSTRUCTIONS

7.7 JUMP IF LOGICAL HIGH--JH

Op-code: 1800 (Format 11)

Syntax definition:

Example:

LABEL J H CONT If L> equals 1 and EQ equals 0, skips t o CONT.

Definition:
When the equal s ta tus bi t i s reset and the logical g rea te r than s ta tus bi t is set,
adds the signed displacement in the instruction word t o the conten ts of the
Program Counter and replaces the Program Counter with the sum.

S ta tus bits tested:
Logical g rea te r than, equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > (A > I E Q I C IOV(CPIX / - - - - - - - - - - - - - - I IM. M4SK I . +

Jump if: L> = 1 and EQ = 0

S ta tus bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
(L > (A > I E Q I C (O V I W J X I - - - - - - - - - - - - - - I INT. M4SK I

Execution results:
If the logical greater than bit is equal to 1 and t h e equal bit i s equal to 0:
(PC) + Displacement => (PC).
If the loqical greater than bit i s equal t o 0 or the equal bit i s equal t o 1:
(PC) => (PC).

Application notes:
The JH instruction transfers control when the equal s ta tus bi t is rese t and the
logical g rea te r than s ta tus bi t is set.

EDITOR/ASSEMBLER
Page 113

JUMP AND BRANCH INSTRUCTIONS

7 -8 JUMP IF LOGICAL LOW-3L

Op-code: lAOO (Format 11)

Syntax definition:

Example:

LABEL JL PREVLB I f L> and EQ are reset, jumps to PREVLB.

Definition:
When the equal and logical greater than status bits are reset, adds the signed
displacement in the instruction word t o the Program Counter contents and
replaces the Program Counter with the sum.

Status bits tested:
Logical greater than, equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC IOVIOPIX I - - - - - - - - - - - - - - I INT. M4SK 1 - ..
Jump if: L> = 0 and EQ = 0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL> IA> IEQJC I O V I O P ~ X I - - - - - - - - - - - - - - I INT. M4SK i

Execution results:
I f the logical greater than b i t and the equal b i t are equal to 0:

(PC) + Displacement => (PC).
I f the logical greater than b i t is equal to 1 or the equal b i t is equal to 1:

(PC) => (PC).

Application notes:
The JL instruction transfers control when the equal and logical greater than
status bits are reset.

EDITOR/ASSEMBLER
Page 114

JUMP AND BRANCH INSTRUCTIONS

7.9 JUMP IF LOW OR EQUAL--JLE

Op-code: 1200 (Format 11)

Syntax definition:

[<label>] b JLE b <exp> b [<comment>]

Example:

LABEL JLE THERE Jumps to THERE when EQ = 1 or L> = 0.

Definition:
When the equal status b i t is set or the logical greater than status b i t is reset,
adds the signed displacement in the instruction word to the contents of the
Program Counter and replaces the Program Counter with the sum.

Note: JLE is not "jump if less than or equal."

Status bits tested:

Logical greater than, equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. M45K I

A .
Jump if: L> = 0 or EQ = 1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL> IA> IEQIC IOVIOPIX) - - - - - - - - - - - - - - I INT. M4SK I

Execution results:
I f the logical greater than b i t is equal to 0 or the equal b i t is equal to 1:
(PC) + Displacement => (PC).
I f the logical greater than b i t is equal to 1 and the equal b i t is equal to 0:
(PC) => (PC).

Application notes:

The JLE instruction transfers control when the equal status b i t is set or the
logical greater than status b i t is reset.

EDITOR/ASSEMBLER
Page 115

JUMP AND BRANCH INSTRUCTIONS

7 -10 JUMP IF LESS THAN-JLT

Op-code: 1100 (Format 11)

Syntax definition:

[<label>] b JLT b <exp> b [<comment>]

Example:

LABEL JLT THERE Jumps to THERE if A> = 0 and EQ = 0.

Definition:
When the equal and arithmetic greater than status bits are reset, adds the signed
displacement in the instruction word to the Program Counter and replaces the
Program Counter contents wi th the sum.

Status bits tested:
Arithmetic greater than, equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC lov lw lx I - - - - - - - - - - - - - - - - I IM. M S K I

Jump if: A> = 0 and EQ = 0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
(L> IA> IEQ(C IOVIOPIX I - - - - - - - - - - - - - - I INT. M4SK I

Execution results:
I f the arithmetic greater than b i t and the equal b i t are equal to 0:
(PC) + Displacement => (PC)
I f the arithmetic greater than b i t is equal to 1 or the equal b i t is equal to 1:
(PC) => (PC).

Application notes:
The JLT instruction transfers control when the equal and arithmetic greater than
status bits are reset.

EDITOR/ASSEMBLER
Page 116

JUMP AND BRANCH INSTRUCTIONS

7.11 UNCONDITIONAL JUMP--JMP

Op-code: 1000 (Format 11)

Syntax definition:

[<label>] b JMP b <exp> b [<comment>]

Example:

LEAVE JMP > l l A 3 Jumps to address > l l A 3 i f i t is within >lo0
bytes of the current address.

Definition:
Adds the signed displacement in the instruction word to the Program Counter and
replaces the Program Counter with the sum i f the sum is within >lo0 bytes of the
current Program Counter.

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOF'IX I - - - - - - - - - - - - - - I INT. W S K I

Execution results:
(PC) + Displacement => (PC)
The Program Counter i s always incrernented to the address of the next instruction
prior to execution of an instruction. The execution results of jump instructions

refer to the Program Counter contents after the contents have been incrernented

t o address the next instruction in sequence. The displacement (in words) is
shifted to the le f t one b i t position to orient the word displacement to the word
address, and added to the Program Counter contents. The sum must be within
>I00 bytes of the current Program Counter.

Application notes:
The JMP instruction transfers control t o another section of the program.

EDITOR/ASSEMBLER
Page 117

JUMP AND BRANCH INSTRUCTIONS

7.12 JUMP IF NO CARRY-JNC

Op-code: 1700 (Format 11)

Syntax definition:

[<label>] b JNC b <exp> b [<comment>]

Example:

LABEL JNC NONE Jumps to NONE i f C = 0.

Definition:
When the carry status b i t is reset, adds the signed displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Carry.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C .. IOVICPIX I - - - - - - - - - - - - - - I IM. WSK I

Jump if: C = 0

Status bits affected:

None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVICPlX I - - - - - - - - - - - - - - I INT. WSK I

Execution results:
I f the carry b i t is equal to 0: (PC) + Displacement => (PC).
I f the carry b i t is equal to 1: (PC) => (PC).

Application notes:
The JNC instruction transfers control when the carry status b i t is reset.

EDITOR/ASSEMBLER
Page 118

JUMP AND BRANCH INSTRUCTIONS

7.13 JUMP IF NOT EQUAL-JNE

Op-code: 1600 (Format 11)

Syntax definition:

[<label>] b JNE b <exp> b [<comment>]

Example:

LABEL JNE LOC2 Jumps t o LOC2 i f EQ = 0.

Definition:
When the equal status b i t is reset, adds the signed displacement in the instruction
word t o the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Equal.

Jump if: EQ = 0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - \ IM. WSK I

Execution results:
I f the equal b i t is equal t o 0: (PC) + Displacement => (PC).

I f the equal b i t is equal t o 1: (PC) => (PC).

Application notes:
The JNE instruction transfers control when the equal status b i t is reset. For

instance, JNE is often useful when testing CRU bits.

EDITOR/ASSEMBLER
Page 119

JUMP AND BRANCH INSTRUCTIONS

7.14 JUMP IF NO OVERFLOW-JNO

Op-code: 1900 (Format 11)

Syntax definition:

[<label>] b JNO b <exp> b [<comment>]

Example:

LABEL JNO NORML Jumps to NORML i f OV = 0.

Definition:
When the overflow status b i t is reset, adds the displacement in the instruction
word t o the Program Counter and replaces the Program Counter with the sum.

Status bits tested:
Overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I IM. M S K I

A

Jump if: OV = 0

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL> IA> IEQIC IOVIOPIX I - - - - - - - - - - - - - - I IM. M4SK I

Execution results:
I f the overflow b i t is equal to 0: (PC) + Displacement => (PC).
I f the overflow b i t i s equal to 1: (PC) => (PC).

Application notes:
The JNO instruction transfers control when the overflow status b i t is reset. JNO
normally transfers control during arithmetic sequences where addition,
subtraction, incrementing, and decrementing may cause an overflow condition.

JNO may also be used following an SLA (Shift L e f t Arithmetic) operation. If,
during SLA execution, the sign of the Workspace Register being shifted chenges,

the overflow status b i t is set. This feature permits transfer, after a sign change,
t o error correction routines or to another functional code sequence.

EDITOR/ASSEMBLER
Page 120

JUMP AND BRANCH INSTRUCTIONS

7.15 JUMP lF ODD PARITY-JOP

Op-code: lCOO (Format 11)

Syntax definition:

[<label>] b JOP b <exp> b [<comment>]

Example:

LABEL JNP THERE Jumps t o THERE i f OP = 1.

Definition:
When the odd parity status b i t is set, adds the signed displacement in the
instruction word to the Program Counter and replaces the Program Counter with
the sum.

Status bits tested:
Odd parity.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
l L > l A > I E Q I C I O V ~ O P I X ! - - - - - - - - - - - - - - I IM. M4SK I ..
Jump if: OP = 1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. M4SK I

Execution results:
If the odd parity b i t is equal to 1: (PC) + Displacement => (PC).
I f the odd parity b i t is equal to 0: (PC) => (PC).

Application notes:
The JOP instruction transfers control when there is odd parity. Odd parity
indicates that there is an odd number of logic one bits in the byte tested. JOP
transfers control if the byte tested contains an odd number of logic one bits.

This instruction may be used i n data transmissions where the parity of the
transmitted byte is used to ensure the validity of the received character a t the
point of reception.

EDITOR/ASSEMBLER
Page 121

JUMP AND BRANCH INSTRUCTIONS

7.16 JUMP ON CARRY-JOC

Op-code: 1800 Format 11)

Syntax definition:

[<label>] b JOC b <exp> b [<comment>]

Example:

LABEL JOC PROCED I f C = 1, jumps to PROCED.

Definition:
When the carry status b i t is set, adds the signed displacement in the instruction
word to the Program Counter and replaces the Program Counter with the sum.

Status bits tested:

Carry.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC IOVICPIX [- - - - - - - - - - - - - - I INT. M4SK [.
Jump if: C = 1

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC I W I C P I X [- - - - - - - - - - - - - - I INT. WSK I

Execution results:
I f the carry bi t is equal to 1: (PC) + Displacement => (PC).
I f the carry bit is equal to 0: (PC) => (PC).

Application notes:
The JOC instruction transfers control when the carry status b i t is set.

EDITOR/ASSEMBLER
Page 122

JUMP AND BRANCH INSTRUCTIONS

7.17 RETURN W I T H WORKSPACE POINTER--RTWP

Op-code: 0380 (Format VII)

Syntax definition:

[<label>] b RTWP b [<comment>]

Example:

LABEL RTWP Returns from subroutine called by BLWP.

Definition:
Replaces the contents of the Workspace Pointer Register with the contents of the
current Workspace Register 13. Replaces the contents of the Program Counter
with the contents of the current Workspace Register 14. Replaces the contents
of the Status Register with the contents of the current Workspace Register 15.
The ef fec t of this instruction is t o restore the execution environment tha t existed
prior t o an interrupt, a BLWP instruction, or an XOP instruction.

Status bits affected:
Restores all status bits t o the value contained in Workspace Register 15.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I 1
A . - - A . . -

IM. M9SK
a ,

Execution results:
(Workspace Register 13) => (WP)
(Workspace Register 14) => (PC)
(Workspace Register 15) => (ST)

Application notes:
The RTWP instruction restores the execution environment af te r the completion of
an interrupt, a BLWP instruction, or an XOP instruction.

EDITOR/ASSEMBLER
Page 123

JUMP AND BRANCH INSTRUCTIONS

Op-code: 0480 (Format VI)

Syntax definition:

Example:

LABEL X 2 Executes the contents of Workspace Register 2.

Definition:
Executes the source operand a s an instruction. When the source operand is not a
single word instruction, the word or words following the execute instruction a re
used with the source operand as a 2-word or 3-word instruction. The source
operand, when executed a s an instruction, may af fec t the contents of the Status
Register. The Program Counter increments by either one, two, or three words
depending upon the source operand. If the executed instruction is a branch, the
branch is taken. If the executed instruction is a jump and if the conditions for a
jump (i.e. the status test indicates a jump) are satisfied, then the jump is taken
relative to the location of the X instruction.

Status bits affected:
None, but substituted instruction affects s tatus bits normally.

Execution results:
An instruction a t gas is executed instead of the X instruction.

Application notes:
The X instruction executes the source operand a s an instruction. This is
primarily useful when the instruction t o be executed is dependent upon a variable
factor. Refer t o Section 7.20 for additional application notes.

EDITORIASSEMBLER
Page 124

JUMP A N 0 BRANCH INSTRUCTIONS

7 -19 EXTENDED OPERATION--XOP

Op-code: 2C00 (Format 1x1

Syntax definition:

[<label>] b XOP b <gas>,<xop> b [<comment>]

Example:

LABEL XOP @BUFF(4),1 Performs XOP 1 on the word o f the address
BUFF plus the displacement specified by
Workspace Register 4.

Definition:
This instruction is on a l l TI-99/4A Home Computers.. However, some only

support XOP 2 while others support both XOP 1 and XOP 2. To find out if your

TI-99/4A computer supports the XOP 1 instruction, run CALL PEEK in T I BASIC

and read one word at address >44. I f the word i f >FFD8, then XOP 1 is
available. I f it contains other data (most l ikely >WEB), then XOP 1 is not
available.

The op field specifies the extended operation transfer vector in memory. The

two memory words a t that location contain the Workspace Pointer and Program
Counter contents for the software implemented XOP instruction subroutine.
Note that the two memory words a t this location must contain the necessary
Workspace Pointer and Program Counter values prior to the XOP instruction
execution for software implemented instructions.

XOP 1 is a t address >44, with vectors >FFD8 and > W 8 . XOP 2 is a t address >48
with vectors >83AO and >8300. The f i rst entry in the vector is the new
workspace address. The second entry is the new Program Counter address.

When the computer is turned on, XOP 1 i s set up to be used with development
software used by Texas Instruments. However, i f you have XOP 1 you may
modify the data for your own use.

The effective address of the source operand is placed in Workspace Register 11 of
the XOP workspace. The Workspace Pointer contents are placed in Workspace
Register 13 of the XOP workspace. The Program Counter contents are placed i n

Workspace Register 14 of the XOP workspace. The Status contents are placed in

EDITORIASSEMBLER
Page 125

JUMP AND BRANCH INSTRUCTIONS

Workspace Register 15 of the XOP workspace. Control i s transferred to the new

Program Counter address and the software implemented XOP is executed. (XOP
execution of software implemented XOP instruction is similar to an interrupt trap
execution.)

Status bits affected:
Extended operation.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL> IA>IEQIc IOVIOPIX I - - - - - - - - - - - - - - I I N . MSK I

Execution results:
gas => (Workspace Register 11)

(>OD40 + (op)*4) => (WP)
(>0042 + (op)*4) => (PC)
(WP) => (Workspace Register 13)
(PC) => (Workspace Register 14)
(ST) => (Workspace Register 15)
1 => X (XOP status bit)

EDITORIASSEMBLER
Page 126

JUMP AND BRANCH INSTRUCTIONS

7.20 INSTRUCTION EXAMPLES

There are two types of subroutine linkage available with the Assembler. One type,

called a common workspace subroutine, uses the same set of Workspace Registers
that the calling routine uses The BL instruction stores the contents of the Program
Counter i n Workspace Register 11 and transfers control t o the subroutine.

The other type is a context switch subroutine. The BLWP instruction stores the

contents of the Workspace Pointer Register, the Program Counter, and the Status
Register in Workspace Registers 13, 14, and 15. The instruction makes the
subroutine workspace active and transfers control to the subroutine.

7.20.1 Common Workspace Subroutine Example

The following is an example of memory contents prior to a BL call to a subroutine.

The contents of Workspace Register 11 are not important to the main routine. When
the B L instruction is executed, the CPU stores the contents of the Program Counter
i n Workspace Register 11 o f the main routine and transfers control to the instruction
located a t the address indicated by the operand of the B L instruction. This type o f
subroutine uses the main program workspace. The second example shows the memory
contents after the cal l to the subroutine with the B L instruction.

When the instruction a t location >I130 is executed (BL BRAD), the present contents
of the Program Counter, which point to the next instruction, are saved in Workspace
Register 11. Workspace Register 11 would then contain an address of >1134. The
Program Counter is then loaded with the address of label RAD, which is address
>2220. This subroutine returns t o the main program with a branch to the address i n
Workspace Register 11 using the B *11 instruction.

EDITORIASSEMBLER
Page 127

JUMP AND BRANCH INSTRUCTIONS

I-WDWARE lv€lvmY
REG1 STERS AWRESS tv€tvKRY V A L E
+ - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - +

WP I >A100 I= = = = => >A100 I M 4 I N W S P A C E I (W O)
+ - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - +

+ - - - - - - - - - - - - - - - - - +

>BOZO 1 M4IN PROGRAM I

+ - - - - - - - - - - - +
I I

>I3130 I BL @AD
PC 1 > e l 3 4 I= = = = = > >B134 1 J b E F I X

I
+ - - - - - - - - - - - + I

I I

+ - - - - - - - - - - - +
ST 1 EXEUJTICN I

I STATUS I
+ - - - - - - - - - - - +

I I
I Sl5RUJTINE AREA I
I I

Common Workspace Subroutine Example

EDITOR/ASSEMBLER
Page 128

JUMP AND BRANCH INSTRUCTIONS

H4mwARE MMCRY
REG1 STERS AmRES S MM3RY V A L E
+ - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - +

W I >A100 I = = = = => >A100 I M I N VOWSPACE I (W O)
+ - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - +

I I
> e l 3 0 I BL @3AD I
>a134 1 J N F I X I

I I
+ - - - - - - - - - - - - - - - - - +

+ - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - +
PC I >C220 I = = = = => >C220 I RAD ...

+ - - - - - - - - - - - +
I

I I
I SUeRCUTINE AREA I

+ - - - - - - . . - - - -+ I I
ST I E X E C l J T I C N I

I STATUS I
I I
I B *11

+ - - - - - - - - - - - +
I

+ - - - - - - - - - - - - - - - - - +

PC Contents after BL Instruction Execution

7.20.2 Context Switch Subroutine Example

This example shows the memory contents prior to the call to the subroutine. The
contents of the subroutine's Workspace Registers 13, 14, and 15 are not significant.
When the BLWP instruction is executed at location >0300, there i s a context switch
from the main program to the subroutine. The context switch then places the main
program Program Counter, Workspace Pointer, and Status Register contents in

Workspace Registers 13, 14, and 15 of the subroutine. This saves the environment of
the main program for use on return. The operand of the BLWP instruction specifies
that the address vector for the context switch is in Workspace Registers 5 and 6.
The address in Workspace Register 5 is placed in the Workspace Pointer Register, and
the address in Workspace Register 6 is placed in the Program Counter.

EDITORIASSEMBLER
Page 129

JUMP AND BRANCH INSTRUCTIONS

I-WJX'ARE MM3RY
REG1 STERS ACCRESS IVEM3RY V A L E
+ - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - +

W 1 >A100 I= = = = => >A100 I I (W O)
+ - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - +

+ - - - - - - - - - - - +
I I

>A300 I B L W 5
I= = = = => >A302 I

I
PC I >A302

+ - - - - - - - - - - - +
I

I I

ST I EXEaJTICN I
I STATUS I

+ - - - - - - - - - - - - - - - - - +

>A700 I START I
I I
I SUBFKXJTINE AREA 1
I I
I I
I R W I
+ - - - - - - - - - - - - - - - - - +

(WNr) = Workspace Register of Main Program
(WNr)S = Workspace Register of Subroutine

Context Switch Subroutine Example

Af ter the instruction a t location >0300 is executed, the Workspace Pointer points to

the subroutine workspace and the Program Counter points to the f i rst instruction of

the subroutine. The contents of the Status Register are not reset prior to the

EDITOR/ASSEMBLER
Page 130

JUMP AND BRANCH INSTRUCTIONS

execution of the first instruction of the subroutine, so the status indicated will
actually be the status of the main program execution. A subroutine may then
execute depending on the status of the main program.

HWXARE
REG I S TERS

+ - - - - - - - - - - - - - - - - - +
I >A100 I (W13)S
I I
I >A302 I (W14)S
I I
I STATUS
+ - - - - - - - - - - - - - - - - -

I (W15)S
+

+ - - - - - - - - - - - - - - - - - +
>A260 I WIN PRCaVM I

I I
>A300 I B L W 5 I

I I
I I
+ - - - - - - - - - - - - - - - - - +

+ - - - - - - - - - - - + + - - - - - - - - - - - - - - - - - +
PC I >A700 I = = = = => >A700 I START

+ - - - - - - - - - - - +
I

I I
I SlsRCUTINE AREA I

+ - - - - - - - - - - - +
ST I EXEaJTICN I

I I

I STATUS I
I I

+ - - - - - - - - - - - +
I R W I
+ - - - - - - - - - - - - - - - - - +

(WNr) = Workspace Register of Main Program
(WM)S = Workspace Register of Subroutine

After Execution of BLWP Instruction

EDITOR/ASSEMBLER
Page 131

JUMP AND BRANCH INSTRUCTIONS

This example subroutine contains a RTWP return from the subroutine. Control is
transferred to the main program a t the instruction following the BLWP to the
subroutine. The Status Register is restored f rom Workspace Register 15 and the
Workspace Pointer points to the workspace of the main program.

HWDWARE
REG1 STERS
+ - - - - - - - - - - - +

W I >A100 I= = =
+ - - - - - - - - - - - + < = =

I
I
I
I
I
I
I
I
I
I
I

MM3RY
AWRESS lvEMRY VALUE

- - - - - - - - - - - - - - - -
I I I (W 1 4) S

I = = = = = =
I

1 STATUS
+ - - - - - - - - - - - - - - - - -

I (W 1 5) S
I I +
I I

+ - - - - - - - - - - - + < = = I
PC I >A302 I= = = = I = >

+ - - - - - - - - - - - + I
I
I
I
I
I

+ - - - - - - - - - - - +
I
I

ST I EXEaJTIUl I<= = = =
I STATUS I
+ - - - - - - - - - - - +

+ - - - - - - - - - - - - - - - - - +
>A260 I M I N P- I

I I
>A300 I BLW 5 I
>A302 I I

I I
+ - - - - - - - - - - - - - - - - - +

+ - - - - - - - - - - - - - - - - - +
>A700 I START I

I I
I SUBRCUTIN AREA I
I I
I I
I R W I
+ - - - - - - - - - - - - - - - - - +

(WNr) = Workspace Register o f Main Program
(WNr)S = Workspace Register o f Subroutine

After Return using the RTWP Instruction

EDITOR~ASSEMBLER
Page 132

JUMP AND BRANCH INSTRUCTIONS

7.20.3 P a u i n g D a t a to Subroutines

When a subroutine is entered with a context switch (BLWP), data may be passed using
either the contents of Workspace Register 13 or 14 of the subroutine workspace.
Workspace Register 13 contains the memory address of the calling program's
workspace, which may contain data to be passed t o the subroutine. Workspace
Register 14 contains the memory address of the next memory location following the
BLWP instruction. This location and following locations may also contain data to be
passed to the subroutine.

When the calling program's workspace contains data for the subroutine, this data may
be obtained by using the indexed memory address mode indexed by Workspace
Register 13. The address used is equal to twice the number of the Workspace
Register that contains the desired data. The following instruction is an example.

MOV @10(13),R10

The contents of Workspace Register 5 of the calling program's workspace (bytes 10
and 11 relative to the workspace address) are placed i n Workspace Register 10 of the
subroutine workspace.

EDITOR/ASSEMBLER
Page 133

JUMP AND BRANCH INSTRUCTIONS

The following examples show the passinq of data to a subroutine by placing the data
following the BLWP instruction.

BLWP @SUB
DATA V1
DATA V2
DATA V3
JEQ ERROR

SUB DATA SUBWS,SUBPRG

SUBWS BSS 32
SUBPRG MOV *14+,1

MOV *14+,2

MOV *14+,3

RTWP

Subroutine call.
Data.
Data.
Data.
Return from subroutine, test for
error. (The subroutine sets the
equal status b i t to one for error.)

Entry point for SUB & SUB
Workspace.

Fetch V 1 placed i n Workspace
Register 1.
Fetch V2 placed i n Workspace
Register 2.
Fetch V3 placed i n Workspace
Register 3.

Return f rom subroutine.

The three MOV instructions retrieve the variables from the main program module and
place them in Workspace Registers one, two, and three of the subroutine.

When the BLWP instruction is executed, the main program module status i s stored in
Workspace Register 15 of the subroutine. I f the subroutine returns with a RTWP
instruction, this status is placed in the Status Register after the RTWP instruction is
executed. The subroutine may alter the Status Register contents prior to executing
the RTWP instruction. The calling program can then test the appropriate b i t of the
status word (the equal b i t in this example) with jump instructions.

EDITOR/ASSEMBLER
Page 134

JUMP AND BRANCH INSTRUCTIONS

A BL instruction can also be used to pass parameters t o a subroutine. When using

this instruction, the originating Program Counter value i s placed i n Workspace
Register 11. Therefore, the subroutine must fetch the parameters relative t o the

contents of Workspace Register 11 rather than the contents of Workspace Register 14

as i n the BLWP example. The following example demonstrates parameter passing
with a BL instruction.

BL @SUER Branch to subroutine.
DATA PARM1,PARMZ Passed parameters stored i n next

two memory words.
JEQ ERROR Test for error. (Subroutine sets the

equal status b i t to one for error.)

SUER EQU $
MOV *Rll+,RD

MOV *Rl l+,Rl

Get value of f i rs t parameter and put
i n Workspace Register 0.
Get value of second parameter and
put i n Workspace Register 1. (R11
is incremented past the locations of
the two data words and now
indicates the address of the next
instruction in the main program.)

EDITOR/ASSEMBLER
Page 135

JUMP AND BRANCH INSTRUCTIONS

7.20.4 Extended Operations

Extended operation instructions permit a l imited extension of the existing instruction
set t o include additional instructions. I n the computer, these additional instructions

are implemented by software routines.

When the program module contains an XOP instruction that is software implemented,
the computer locates the XOP Workspace Pointer and Program Counter words in the
XOP reserved memory locations and loads the Workspace Pointer and Program
Counter. When the Workspace Pointer and Program Counter are loaded, the

computer transfers control to the XOP instruction set through a context switch.
When the context switch is complete, the XOP workspace contains the calling routine
return data i n Workspace Registers 13, 14, and 15.

The XOP instruction passes one operand t o the XOP (input to the XOP routine in
Workspace Register 11 of the XOP workspace). A t the completion of the software
XOP, the XOP routine should return t o the calling routine with an RTWP instruction
that restores the execution environment o f the calling routine to that in existence a t
the cal l to the XOP.

7.20.5 Execute Example

The execute instruction may be used to execute an instruction that is not in sequence
without transferring control t o the desired instruction. One useful application is to
execute one of a table of instructions, selecting the desired instruction by using an
index into the table. The computed value of the index determines which instruction
is executed.

A table of shift instructions illustrates the use of the X instruction. Place the
following instructions a t location TBLE.

TBLE SL A R6,3

SLA R7,3
SLA R8,3

TABEND EQU $

Shift Workspace Register 6.
Shift Workspace Register 7.
Shift Workspace Register 8.

EDITORIASSEMBLER
Page 136

JUMP AND BRANCH INSTRUCTIONS

A character is placed in the most significant byte of Workspace Register 5 t o select
the Workspace Register t o be shifted t o the lef t 3 bit positions. ASCII characters A,

6, and C specify shifting Workspace Registers 6, 7, and 8, respectively. Other

characters a re ignored. The following code performs the selection of the shift
desired.

SRL
A1
JLT
SLA
CI
JGT
X

NOSI-FT EQU

R5,B Move t o lower byte.
R5,-'A' Subtract table bias.
NOSHIFT Illegal.
R5,l Make i t a word index.
R5,TABEND-TBLE-2
NOS- Illegal.
@TBLE(R5)
$

When using the X instruction, if the substituted instruction contains a Ts field or a Td
field tha t results in a two word instruction, the computer accesses the word following
the X instruction a s the second word, not t he word following the substituted
instruction. When the substituted instruction is a jump instruction with a
displacement, the displacement must be computed from the X instruction, not from
the substituted instruction.

EDIToR/ASSEMBLER
Page 137

SECTION 8: COMPARE INSTRUCTIONS

The following compare instructions are described in this section.

Instruction Mnemonic Section
Compare words C 8.1

Compare Bytes CB 8.2

Compare Immediate C I 8.3
Compare Ones Corresponding COC 8.4
Compare Zeros Corresponding CZC 8.5

Compare instructions have no effect other than the setting or resetting of appropriate

status bits in the Status Register. The compare instructions perform both arithmetic

and logical comparisons. An arithmetic comparison is of the two operands as two's
complement values, while a logical comparison is of the two operands as unsigned
magnitude values.

Each instruction consists of the following information.

A heading, consisting o f the instruction name and mnemonic name
The op-code
The syntax definition

a An example of the instruction
a The definition of the instruction
a The status bits affected

The execution results
a Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

EDITOR/ASSEMBLER
Page 138

COMPARE INSTRUCTIONS

The syntax definition follows the conventions described i n Section 5. The generic
names used i n the syntax definitions are:

gas General Address o f the Source operand

gad General Address of the Destination operand
wa Workspace register Address
iop Immediate Operand
wad Workspace register Address Destination
disp DISPlacement of CRU lines from the CRU base register

exp Expression that represents an instruction location
cnt CouNT of bits for CRU transfer
scnt Shift CouNT
xop number of extended Operation

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label f ield is optional. When i t is used, the label is assigned the address
of the instruction. The Assembler advances t o the location o f a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) f ield contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment f ield i s optional. I f used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

I n the execution results, the following conventions are used.

(Indicates "the contents of."
=> Indicates "replaces."
.* Indicates "the absolute value of."

The generic names used i n the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER
Page 139

COMPARE INSTRUCTIONS

8.1 COMPARE WORDS--C

Op-code: 8000 (Format I)

Syntax definition:

Example:

LABEL C 293 Compares the contents of Workspace Register 2
and Workspace Register 3.

Definition:
Compares the source operand (word) with the destination operand (word) and
sets/resets the status bits to indicate the results of the comparison. The

arithmetic and equal comparisons compare the operand as signed, two's
complement values. The logical comparison compares the two operands as
unsigned, 16-bit magnitude values.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q J C IOVJOPJX I - - - - - - - - - - - - - -

. . A -

I INT. M S K I

Execution results:
(gas) compared t o (gad)

Application notes:
The C instruction compares the two operands as signed, two's complement values
and as unsigned integers. Some examples are:

Status Bits Set

Source Destination Loqical> Arithmetic> Equal
>FFFF >oooo 1 0 0
> 7 m >OOOO 1 1 0

>8000 >OD00 1 0 0
>8000 >7FFF 1 0 0
>7FFF > 7 m 0 0 1
> 7 m >BOO0 0 1 0

EDITORlASSEMBLER
Page 140

COMPARE INSTRUCTIONS

An alternate way to compare a word or byte to zero is to move the word or byte to
itself. For example:

M OV RO,RO
JEQ OUT

jumps to OUT if RO is equal to zero.

EDITOR/ASSEMBLER
Page 141

COMPARE INSTRUCTIONS

8.2 COMPARE BYTES-CB

Op-code: 9000 (Format I)

Syntax definition:

Example:

LABEL CB 293 Compares the leftmost bytes of Workspace
Register 2 and Workspace Register 3.

Definition:
Compares the source operand (byte) with the destination operand (byte) and
setslresets the status bits according t o the result of the comparison. The CB
instruction uses the same comparison basis as does the C instruction. I f the
source operand contains an odd number of logic one bits, the odd parity status b i t
is set. The operands remain unchanged. I f either operand is addressed in the
Workspace Register mode, the byte addressed is the most significant byte.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C lOVlOPlX 1 - - - - - - - - - - - - - - I

A * . .

INT. W S K I ..
Execution results:

(gas) compared to (gad)

Application notes:
The CB instruction compares the two operands as signed, two's complement values
or as unsigned integers. Some examples are:

Status Bits Set
Source Destination Logical> Arithmetic) Equal Odd Par i ty
>OO >FF 1 0 0 0

EDITORIASSEMBLER
Page 142

COMPARE INSTRUCTIONS

8.3 COMPARE I MMEDIATE--CI

Op-code: 0280 (Format VIII)

Syntax definition:

Example:

LABEL C I 397 Compares the contents of Workspace Register 3
to >0007.

Definition:
Compares the contents of the specified Workspace Register with the word in
memory immediately following the instruction and sets/resets the status bits
according to the comparison. The C I instruction makes the same type of
comparison as does the C instruction.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

Execution results:
(wa) compared to iop

Application notec

The C I instruction compares the Workspace Register to an immediate operand.
For example, i f the contents of Workspace Register 9 is >2183, the instruction

results i n the arithmetic greater than status b i t being set and the logical greater
than and equal status bits being reset.

EDITORIASSEMBLER
Page 143

COMPARE INSTRUCTIONS

8.4 COMPARE ONES CORRESPONDING--COC

Op-code: 2000 (Format 111)

Syntax definition:

[<label>] b COC b <gas>,<wad> b [<comment>]

Example:

LABEL COC @MASK,2 Compares the contents of Workspace Register 2
with the contents of MASK.

Definition:
When the bits in the destination operand Workspace Register that correspond to
the logic one bits in the source operand are equal to logic one, sets the equal
status bit. The source and destination operands are unchanged.

Status bits affected:
Equal.

Execution results:
The equal b i t is set i f a l l bits of <wad> that correspond to the bits of <gas> that
are equal to 1 are also equal to 1.

EDITOR~ASSEMBLER
Page 144

COMPARE INSTRUCTIONS

Application notes:
The COC instruction tes ts single o r multiple bits within a word in a Workspace
Register. For example, if TESTBI contains the word >C102 and Workspace
Register 8 contains the value >E306, t h e instruction

COC @TESTBI,B

se t s the equal s ta tus bi t because for each 1 bit in the first operand there is a 1
bi t in the corresponding bi t position of the second operand a s shown below.

>C102 = 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 a n d
> E 3 0 6 = 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0

If Workspace Register 8 contains >E301, the equal s t a tu s bit is reset. Use this
instruction t o determine if a Workspace Register has 1 s in the b i t positions
indicated by the I s in a mask.

EDITORIASSEMBLER
Page 145

COMPARE INSTRUCTIONS

8.5 COMPARE ZEROS CORRESPONDING-CZC

Op-code: 2400 (Format 111)

Syntax definition:

[<label>] b CZC b <gas>,<wad> b [<comment>]

Example:

LABEL CZC @MASK,Z Compares the contents of Workspace Register 2

with the contents of MASK.

Definition:
When the bits in the destination operand Workspace Register that correspond to
the one bits in the source operand are a l l equal to logic zero, sets the equal
status bit. The source and destination operands are unchanged.

Status bits affected:
Equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I IM. M4SK I ..

Execution results:
The equal b i t is set if a l l bits of <wad> that correspond to the bits of <gas> that
are equal to 1 are equal to 0.

Application notes:
The CZC instruction tests single or multiple bits within a word i n a Workspace
Register. For example, i f the memory location labeled TESTBI contains the
value >C102, and Workspace Register 8 contains >2301, the instruction

CZC @TESTBI,8

resets the equal status b i t because for each 1 b i t in the f irst operand there is not

a corresponding zero b i t i n the corresponding b i t position of the second operand
as shown below.

>C102 = 1100 0001 0000 0010 and

>2301 = 0010 0011 0000 0001

EDITOR/ASSEMBLER
Page 146

COMPARE INSTRUCTIONS

I f Workspace Register 8 contains the value >2201, then the equal status bit is set.
Use the CZC instruction to determine i f a Workspace Register has zeros in the
positions indicated by ones in a mask.

EDITORIASSEMBLER
Page 147

SECTION 9: CONTROL AND CRU INSTRUCTIONS

The following control and CRU instructions a r e described in this section.

Instruction Mnemonic Section
LoaD CRU LDCR 9.1
Set CRU Bit t o One SBO 9.2
S e t CRU Bit to Zero SBZ 9.3

STore CRU STCR 9.4
Test Bit TB 9.5

The following instructions are described in Section 9.6. All of them a r e properly
assembled and a r e recognized by the TMS9900 microprocessor, but they should not b e
used on the Home Computer.

Instruction Mnemonic
ClocK f f f CKCF
ClocK ON CKON
IDLE IDLE
ReSET RSET
Load or REstar t execut ion LREX

Examples a r e given in Section 9.7.

Control instructions a f f e c t the operation of the Arithmetic Unit (AU) and the
associated portions of the computer o r microprocessor. C R U instructions a f f ec t t h e
modules connected t o the Communications Register Unit.

For CRU bi t instructions, the signed displacement is shifted one bi t position t o t h e
l e f t and added t o the contents of Workspace Register 12. In other words, i t is a
displacement in bits from the conten ts of bits 3 through 14 of Workspace Register 12.

See Section 24.3.2 for more information.

EDITOR/ASSEMBLER
Page 148

CONTROL AND C R U INSTRUCTIONS

Each instruction consists of t h e following information.

A heading, consisting of the instruction n a m e and mnemonic n a m e
a The op-code

The syntax definition
a An example of t h e instruction
8 The definition of t h e instruction
8 The s t a t u s b i t s a f fec ted
r The execution resul ts

Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds t o an instruction
word whose address f ields contain zeros.

The syntax definition follows t h e conventions described in Section 5. The gener ic

names used in t h e syntax definitions are:

g a s General Address of t h e Source operand

gad General Address of t h e Destination operand
wa Workspace register Address
iop Immediate Operand
wad Workspace register Address Destination
disp DISPlacement of C R U lines f rom t h e CRU base register

exp Express ion t h a t represents an instruction location
c n t CouNT of bi ts for C R U transfer
s c n t Shi f t CouNT
xop number of ex tended Operat ion

Source s t a tements t h a t contain machine instructions can use t h e label field, the
operation field, t h e operand field, and the comment field.

Use of t h e label field is optional. When i t is used, t h e label is assigned the address
of t h e instruction. The Assembler advances t o t h e location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field conta ins the mnemonic operation code of t h e
instruction. The con ten t s of t h e operand field a r e defined for each instruction.

Inclusion of t h e comment field is optional. If used, i t may contain any ASCII
characters , including blanks. The comment has no e f f e c t on t h e assembly process
other than being printed in the listing.

€DITOR/ASSEMBLER
P a g e 149

CONTROL AND C R U INSTRUCTIONS

I n the execution results, the following conventions are used.

() Indicates "the contents of."
=> Indicates "replaces."
* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER
Page 150

CONTROL AND CRU INSTRUCTIONS

9.1 LOAD CRU--LDCR

Op-code: 3000 (Format IV)

Syntax definition:

[<label>] b LDCR b <gas>,<cnt> b [<comment>]

Example:

WRITE LDCR @BUFF,15 Sends 15 bits from BUFF to the CRU.

Definition:
Transfers the number of bits specified in the cn t field from the source operand to
the CRU. The transfer begins with the least significant bit of the source
operand. The CRU address i s contained in bits 3 through 1 4 of Workspace
Register 12. When the cn t field contains zero, the number of bits transferred is
16. If the number of bits t o be transferred is from one to eight, the source
operand address is a byte address, If the number of bits to be transferred is
from 9 t o 16, the source operand address is a word address. If the source
operand address is odd, the address is truncated to an even address prior to data
transfer. When the number of bits transferred is a byte or less, the source
operand is compared t o zero and the s tatus bits a r e se these t , according to the
results of the comparison. The odd parity s tatus bit is s e t when the bits in a
byte (or less) t o be transferred establish odd parity.

Status bits affected:
Logical greater than, arithmetic greater than, and equal. When cn t is less than
nine, odd parity is also se t or reset. The odd parity s tatus bit is set according to
the full word or byte, not just the transferred bits.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I 1
* A *

INT. WSK I ..
Execution results:

The number of bits specified by c n t a re transferred from memory a t address gas
t o consecutive CRU lines beginning a t the address in Workspace Register 12 (bits
3 through 14).

EDTTORIASSEMBLER
Page 1 5 1

CONTROL AND CRU INSTRUCTIONS

9.2 SET CRU BIT TO ONE--SBO

Op-code: lDOO (Format 11)

Syntax definition:

[<label>] b SBO b <disp> b [<comment>]

Example:

LABEL SBO 7 Sets CRU b i t 7, relative to the CRU base in
Workspace Register 12, to one.

Definition:
Sets the digital output b i t to one on the CRU at the address derived from this
instruction. The derived address is the sum of the signed displacement and the
contents of Workspace Register 12, bits 3 through 14. The execution of this
instruction does not affect the Status Register or the contents of Workspace
Register 12.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I I M . MSK I

Execution results:
A CRU b i t is set to one. The CRU b i t equals the sum of the contents of
Workspace Register 12 (bits 3 through 14) and the displacement.

EDITOR/ASSEMBLER
Page 152

CONTROL AND CRU INSTRUCTIONS

9.3 SET CRU BIT TO ZERO--SBZ

Op-code: lEOO (Format 11)

Syntax definition:

[<label>] b SBZ b <disp> b [<comment>]

Example:

LABEL SBZ 7 Sets CRU b i t 7, relative to the CRU base i n
Workspace Register 12, to zero.

Definition:
Sets the digital output b i t t o zero on the CRU at the address derived f rom this
instruction. The derived address is the sum of the signed displacement and the
contents of Workspace Register 12, bits 3 through 14. The execution of this
instruction does not af fect the Status Register or the contents of Workspace
Register 12.

Status bits affected:
None.

Execution results:
A CRU b i t is set t o zero. The CRU b i t equals the sum of the contents of
Workspace Register 12 (bits 3 through 14) and the displacement.

EDITOR/ASSEMBLER
Page 153

CONTROL AND C R U INSTRUCTIONS

9.4 STORE CRU--STCR

Op-code: 3400 (Format IV)

Syntax definition:

[<label>] b STCR b <gas>,<cnt> b [<comment>]

Example:

READ STCR @BUF,9 Reads 9 bi ts f rom the C R U and s to res t h e m at
location BUF.

Definition:
Transfers the number of b i t s specified in the c n t field f rom the CRU t o t h e
source operand. The t ransfer begins f rom t h e C R U address specified in bi ts 3
through 1 4 of Workspace Regis ter 1 2 t o the leas t significant bit of the source
operand and fi l ls the source operand toward the mos t significant bit. When t h e
c n t field contains a zero, t h e number of b i ts t o t ransfer is 16. If the number of
b i t s t o t ransfer is f rom one t o eight, t h e source operand address is a byte
address. Any bit in the memory byte n o t filled by t h e t ransfer is set t o zero.
When the number of b i t s t o t ransfer is f rom 9 t o 16, t h e source operand address
is a word address. If the source operand address i s odd, the address is t runcated
t o an even address prior t o d a t a transfer. If t h e t ransfer does not fill t h e en t i re
memory word, unfilled b i t s are set t o zero. When the number of b i ts to t ransfer
is a byte or less, the bi ts transferred a r e compared t o ze ro and t h e s t a tus b i t s
a r e set or r e s e t t o indicate the resul ts of the comparison. Also, when the b i t s t o
be transferred a r e a byte o r less, the odd parity b i t is s e t when the bi ts establish
odd parity.

S t a t u s b i t s affected:
Logical g r e a t e r than, a r i thmet ic g r e a t e r than, and equal. When c n t is less than
9, odd parity i s also s e t or reset. S ta tus i s set according t o t h e full word o r
byte, not just the transferred bits.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
(L > (A > I E Q (C (O V (0 P I X I - - - - - - - - - - - - - - (

, . . . A

INT. M4SK I -

EDITOR/ASSEMBLER
P a g e 1 5 4

CONTROL AND CRU INSTRUCTIONS

Execution results:
The number of bits specified by cnt are transferred f rom consecutive CRU lines
beginning a t the address in Workspace Register 12 (bits 3 through 14) to memory
a t address gas.

Application notes:
The STCR instruction transfers a specified number of CRU bits f rom the CRU to
the memory location specified as the source operand. Note that the CRU base
address must be in Workspace Register 12 (bits 3 through 14) prior to the
execution of this instruction.

EDITOR/ASSEMBLER
Page 155

CONTROL AND C R U INSTRUCTIONS

9.5 TEST BIT--TB

Op-code: lFOO (Format 11)

Syntax definition:

Example:

CHECK TI3 7 Reads CRU bit 7 re la t ive t o t h e C R U base
address in Workspace Regis ter 12, and sets t h e
equal s t a tus bit t o the value read.

Definition:
Reads t h e digital input b i t on t h e C R U at t h e address specified by t h e sum of the
signed displacement and t h e contents of Workspace Register 12, b i ts 3 through 14,
and set the equal s t a tus b i t t o t h e value read. The digital input bit and the
con ten t s of Workspace Regis ter 12 a r e unchanged.

S t a t u s bi ts affected:
Equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. W S K I

A

Execution results:
Equal bit is set t o t h e value of the C R U bit addressed by t h e sum of t h e con ten t s
of Workspace Regis ter 1 2 (bits 3 through 14) and t h e displacement.

Application notes:
The TB instruction t ransfers t h e level f r o m the indicated CRU line t o the equal
s t a t u s bit without modification. If t h e CRU line t e s ted is set to one, t h e equal
s t a t u s bit is set t o one; if t h e line is zero, i t is set t o zero. The JEQ instruction
c a n then be used t o t ransfer control when t h e C R U line is one and no t t ransfer
control when t h e line is zero. In addition, the JNE instruction t ransfers control
under t h e opposite conditions.

EDITORIASSEMBLER
P a g e 1 5 6

CONTROL AND CRU INSTRUCTIONS

9.6 OTHER INSTRUCTIONS

The following instructions are properly assembled and are recognized by the TMS9900

microprocessor, but they should not be used on the Home Computer. Their op-code

and syntax definition are given below.

Instruction Mnemonic Op-code Format Syntax definition
ClocK CFf CKCF 03CO V I I [<label>] b CKOF b [<comment>
ClocK ON CKON 03A0 V I I [<label>] b CKON b [<comment>]
IDLE IDLE 0340 V I I [<label>] b IDLE b [<comment>]
ReSET RSET 0360 V I I [<label>] b RSET b [<comment>]
Load or REstart LREX 03E0 V I I [<label>] b LREX b [<comment>]

execution

EDITOR/ASSEMBLER
Page 157

CONTROL AND C R U INSTRUCTIONS

9.7 CRU INPUT/OUTPUT

The Communications Register Unit (CRU) performs single and multiple b i t
programmed input/output. All input consists of reading C R U line logic levels in to
memory and output consists of sett ing CRU output l ines t o bit values f rom a word or
byte of memory. The CRU provides a maximum of 4096 input and output lines t h a t
may b e individually se lected by a 12-bit address. The 12-bit address is located in
bi ts 3 through 1 4 of Workspace Regis ter 1 2 and is t h e base address for all CRU
communications. See Section 24.3.2 for more information.

9.7.1 CRU 110 Instructions

There a r e five instructions f o r communications with CRU lines.

SBO S e t CRU Bit t o One. This instruction sets a C R U output l ine t o one.

SBZ S e t C R U Bit t o Zero. This instruction sets a C R U output line t o zero.

TB Tes t C R U Bit. This instruction reads t h e digital input b i t and sets t h e equal
s t a tus b i t (bit 2) t o t h e value of t h e digital input bit.

LDCR Load Communications Register. This instruction t ransfers t h e number o f bits
(1-16) specified by t h e c n t field of the instruction t o the C R U f rom t h e
source operand. When less than nine bi ts a r e specified, t h e source operand
address i s a byte address. When nine o r more bi ts a r e specified, the source
operand i s a word address. The C R U address is t h e address of t h e f i r s t CRU
digital output affected. The C R U address is determined by t h e con ten t s of
Workspace Register 12, b i t s 3 through 14.

STCR Store Communications Register. This instruction t ransfers t h e number of b i ts
specified by the c n t f ield of t h e instruction f rom the C R U t o t h e source
operand. When less than nine b i t s a r e specified, the source operand address
is a byte address. When nine or more bits a r e specified, t h e source operand
address i s a word address. The C R U address is determined by Workspace
Regis ter 12, b i ts 3 through 14.

EDITOR~ASSEMBLER
P a g e 158

CONTROL A X C R U INSTRUCTIONS

9.7.2 Accessing Specific Bits

There are many different ways t o access the same CRU bit. For instance, i f

Workspace Register 12 contains >0100, making the base address in bits 3 through 14
equal t o >80, the following instruction sets CRU line >85 to one.

SBO 5

Alternatively, if Workspace Register 12 contains >010A, making the base address in
bits 3 through 14 equal to >85, the following instruction also sets CRU line >85 to

one.

SBO 0

9.7.3 SBO Example

Assume that a control device turns on a motor when the computer sets a one on CRU
line >10F and that Workspace Register 12 contains >0200, making the base address in
bits 3 through 14 equal to >loo. The following instruction sets CRU line >10F to
one.

SBO 15

9.7.4 SBZ Example

Assume that a control device shuts o f f a valve when the computer sets a zero on a
CRU line is connected to CRU line 2 and that Workspace Register 12 contains zero.
The following instruction sets CRU line 2 to zero.

SBZ 2

EDITORIASSEMBLER
Page 159

CONTROL AND CRU INSTRUCTIONS

9.7.5 TB Example

Assume that Workspace Register 12 contains >0140, making the base address in bits 3
through 14 equal to >AO. The following instructions test the input on CRU line >A4

and execute the instructions beginning a t location RUN when the CRU line is set t o
one. When the CRU line is set to zero, the instructions beginning a t location WAIT
are executed.

TB 4 Test CRU line 4.
JEQ RUN I f on, go to RUN.

WAIT I f off, continue.

RUN

The TB instruction sets the equal b i t of the Status Register t o the level on line 4 of
the CRU device.

EDITORIASSEMBLER
Page 160

S E C T I O N 10: L O A D A N D MOVE INSTRUCTIONS

The following load and move instructions a r e described in this section.

Instruction
Load Immediate
Load Interrupt Mask Immediate
Load Workspace Pointer Immediate
MOVe words
MOVe Bytes
STore STatus
STore Workspace Pointer
SWaP Bytes

Mnemonic
LI
LIMI
LWPI
MOV
MOVE3
STST
STWP
SWPB

Section
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

An example is given in Section 10.9.

Load and move instructions permit you t o establish the execution environment and the
execution results. These instructions manipulate da t a between memory locations and
between hardware regis ters and memory locations.

Each instruction consists of t he following information.

A heading, consisting of t he instruction name and mnemonic name
a The op-code

The syntax definition
An example of t he instruction
The definition of the instruction
The s ta tus bi ts affected

a The execution results
Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds t o an instruction
word whose address fields contain zeros.

EDITORIASSE MBLER
Page 161

LOAD AND MOVE INSTRUCTIONS

The syntax definition follows the conventions described in Section 5. The generic

names used in the syntax definitions are:

gas
gad
wa
iop
wad
disp

exp
cnt
scnt

XOP

General Address of the Source operand
General Address of the Destination operand
Workspace register Address
Immediate Operand
Workspace register Address Destination
DISPlacement of CRU lines from the CRU base register
Expression that represents an instruction location
CouNT of bits for CRU transfer
Shift CouNT
number of extended Operation

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label f ield is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. I f used, it may contain any ASCII
characters, including blanks. The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.

(Indicates "the contents of."

=> Indicates "replaces."
* * Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR~ASSEMBLER
Page 162

LOAD AND MOVE INSTRUCTIONS

10.1 LOAD I M MEDIATE--LI

Op-code: 0200 (Format VIII)

Syntax definition:

Example:

GETIT LI 3,>17 Loads Workspace Register 3 with >0017.

Definition:
Places the immediate operand (the word of memory immediately following t h e
instruction) in the Workspace Register (W field). The immediate operand is not
affected by the execution of this instruction. The immediate operand is
compared t o 0 and the logical greater than, ar i thmetic greater than, and equal
s ta tus bits a r e set or reset according t o t h e result of the comparison.

S ta tus bits affected:
Logical greater than, ar i thmetic g rea te r than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - - - . I I M . tvt4SK I

Execution results:
(iop) => (wa)

Application notes:
The LI instruction places an immediate operand in a specified Workspace
Register. This may be used t o initialize a Workspace Register a s a loop counter.
For example, the instruction

initializes Workspace Register 7 with the value >0005. In this example, the
logical g rea te r than and ar i thmetic g rea te r than s ta tus bits a r e set, while t h e
equal s ta tus bit is reset.

EDITOR/ASSEMBLER
Page 163

LOAD AND MOVE INSTRUCTIONS

10.2 LOAD INTERRUPT MASK IMMEDIATE-LIMI

Op-code: 0300 (Format VI I I)

Syntax definition:

[<label>] b L I M I b <iop> b [<comment>]

Example:

LABEL L I M I 2 Masks level 2 and below.

Definition:

Places the least significant four bits (bits 12-15) o f the contents of the immediate
operand (the next word after the instruction) in the interrupt mask of the Status
Register. The remaining bits of the Status Register (0 through 11) are not
affected.

Status bits affected:

Interrupt mask.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIc IOVICPIX I - - - - - - - - - - - - - - I IM. MSK I

. . . . A *

Execution results:
Places the four least significant bits of iop into the interrupt mask.

Application notes:
The L I M I instruction initializes the interrupt mask so that a particular level of
interrupt is accepted. For example, the instruction

L I M I 2

sets the interrupt mask to level two and enables interrupts a t levels 0, 1, and 2.

The instruction

L I M I 0

Disables al l interrupts and is the normal state of the computer.

EDITORIASSEMBLER
Page 164

LOAD AND MOVE INSTRUCTIONS

0 LOAD WORKSPACE POINTER IMMEDIATE--LWPI

Op-code: 02EO (Format VI I I)

Syntax definition:

[<label>] b LWPI b <iop> b [<comment>]

Example:

NEWWP LWPI >02F2 Sets NEWWP equal to >02FZ.

Definition:
Replaces the contents of the Workspace Pointer with the immediate operand.

Status bits affected:
None.

Execution results:
(iop) => (WP)

Application notes:
The LWPI instruction initializes or changes the Workspace Pointer Register t o

alter the Workspace environment of the program. You may use a BLWP or a
LWPI instruction to load your own Workspace Registers.

EDITOR/ASSEMBLER
Page 165

LOAD AND MOVE INSTRUCTIONS

10.4 MOVE WORD--MOV

Op-code: COO0 (Format I)

Syntax definition:

[<label>] b MOV b <gas>,<gad> b [<comment>]

Example:

GET MOV @WD,2 Moves a copy of WD into Workspace Register 2.

Definition:
Replaces the destination operand with a copy of the source operand. The
computer compares the resulting destination operand to zero and sets/resets the
status bits according to the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - I INT. M4SK I . A

Execution results:
(gas) => (gad)

Application notes:
The MOV instruction moves 16-bit words as follows:

Memory-to-memory (non-register)
Load register (memory-to-register)
Register-to-register
Register-to-memory

EDITORlASSEMELER
Page 166

LOAD A N 0 MOVE INSTRUCTIONS

The MOV instruction may also be used to compare a memory location to zero.
For example,

MOV 7,7
JNE TEST

moves Workspace Register 7 to itself and compares the contents of Workspace
Register 7 to zero. I f the contents are not equal to zero, the equal status b i t is
reset and control transfers to TEST.

As another example of the use of MOV, assume that Workspace Register 9
contains >3416 and location ONES contains >F!TF. Then

MOV @ONES,9

changes the contents of Workspace Register 9 to M, while the contents of
location ONES is not changed. For this example, the logical greater than status
b i t is set and the arithmetic greater than and equal status bits are reset.

EDITORIASSEMBLER
Page 167

LOAD AND MOVE INSTRUCTIONS

10.5 MOVE BYTE--MOVB

Op-code: DO00 (Format I)

Syntax definition:

[<label>] b MOVB b (gas),(gad) b [<comment>]

Example:

NEXT MOVB 2,>2A41 Stores the most significant byte of
Workspace Register 3 in address >2A41.

Definition:
Replaces the destination operand (byte) wi th a copy of the source operand (byte).
I f either operand is addressed i n the Workspace Register mode, the byte
addressed is the most significant byte. The least significant byte is not affected.
The computer compares the destination operand to zero and setslresets the status
bits t o indicate the result of the comparison. The odd parity b i t is set when the
bits i n the destination operand establish odd parity.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>(A>(EQ/C IOV~M>JX (- - - - - - - - - - - - - - I

* A , .

INT. M S K I -
Execution results:

(gas) => (gad)

Application notes:
The MOVB instruction moves bytes i n the same combinations as the MOV
instruction moves words. For example, if memory location >1C14 contains a

value of >2016 and TEMP is located a t >1C15, and if Workspace Register 3
contains >542B, the instruction

MOVB @TEMP,3

changes the contents of Workspace Register 3 to >162B. The logical greater
than, arithmetic greater than, and odd parity status bits are set, while the equal
status b i t is reset.

EDITORIASSEMBLER
Page 168

LOAD AND MOVE INSTRUCTIONS

10.6 STORE STATUS--STST

Op-code: 02CO (Format VIII)

Syntax definition:

[<label>] b STST b (wa) b [<comment>]

Example:

LABEL STST 7 Stores status in Workspace Register 7.

Definition:
Stores the Status Register contents i n the specified Workspace Register.

Status bits affected:
None.

Execution results:
(ST) => (wa)

Application notes:
The STST instruction stores the Status Register in the specified Workspace
Register.

EDITOR/ASSEMBLER
Page 169

LOAD AND MOVE INSTRUCTIONS

10.7 STORE WORKSPACE POINTER--STWP

Op-code: OZAO (Format VI I I)

Syntax definition:

[<label>] b STWP b (wa) b [<comment>]

Example:

LABEL STWP 6 Stores the Workspace Pointer in Workspace
Register 6.

Definition:

Places a copy of the Workspace Pointer contents in the specified Workspace
Register.

Status bits affected:
None.

Execution results:
(WP) => (wa)

Application notes:
The STWP instruction stores the contents of the Workspace Pointer in the
specified Workspace Register.

EDITOR/ASSEMBLER
Page 170

LOAD AND MOVE INSTRUCTIONS

10.8 SWAP BYTES--SWPB

Op-code: 06CO (Format VI)

Syntax definition:

[<label>] b SWPB b (gas) b [<comment>]

Example:

SWITCH SWPB 3 Switchs the most significant and least significant
bytes in Workspace Register 3.

Definition:
Replaces the most significant byte (bits 0-7) of the source operand with a copy of

the least significant byte (bits 8-15) of the source operand and replaces the least
significant byte with a copy of the most significant byte.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL> IA> IEQIC IOVIOPIX I - - - - - - - - - - - - - - / INT. W S K I

Execution results:
Exchanges l e f t and r ight bytes of word (gas).

Application notes:
Use the SWPB instruction to interchange bytes of an operand prior to executing
various byte instructions. For example, i f Workspace Register 0 contains >2144
and memory location >2144 contains the value >F312, the instruction

SWPB *0+

changes the contents of memory location >2144 to >1ZF3 and increments
Workspace Register 0 to >2146. The Status Register is unchanged.

EDITOR/ASSEMBLER
Page 171

LOAD AND MOVE INSTRUCTIONS

10.9 INSTRUCTION EXAMPLE

The following program segment illustrates the use of many of the instructions
discussed in this section. The f i rs t six instructions are a portion o f a program that

calls a subroutine labeled SUBR. The calling program performs some init ialization

and then calls the subroutine t o check the contents of a 20-byte buffer. I f the

subroutine finds that the buffer contains byte values that are i n numerically
sequential order, then it returns >00 to the calling program i n Workspace Register 4.
I f the bytes are not i n numerically sequential order, the subroutine returns >01 in

Workspace Register 4. The program and subroutine are described i n greater detail
after the program is listed.

LWPI >AC20 Load Workspacer Pointer.
BL @SUBR Call subroutine.
DATA BUFFER Address of BUFFER.
MOV 4,4 See i f numbers are in sequence.
JNE NOSEQ Jump i f subroutine found non-sequential

numbers.

SUBR S 494 Clear Workspace Register 4.
LI 10,20 Put loop count i n Workspace Register 10.
MOV *11+,7 Put address of BUFFER i n Workspace Register 7.
MOVB *7,6 Put f i rs t number i n the l e f t byte of Workspace

Register 6.
CHECK MOV *7+,8 Put two bytes i n Workspace Register 8.

SB
JNE
A1
SWPB
SB

JNE
A1
DECT
JGT
JMP

698
OUT
6,>100
8

698
OUT
6,>100

10
CHECK
RETURN

Check for sequence.
Jump i f out of sequence.
Add one to sequence checker.
Put other byte i n l e f t half of register.
Check for sequence.
Jump i f out of sequence.
Add one to sequence checker.
Decrement loop counter.
Jump to check next two bytes.
Through checking, a l l i n order.

OUT I N C 4 Set Workspace Register 4 to a non-zero value.
RETURN B *11 Return t o calling program.

EDITOR/ASSEMBLER
Page 172

LOAD AND MOVE INSTRUCTIONS

In t h e calling program, t h e LIMI instruction places a z e r o in the in terrupt mask of

t h e S t a t u s Regis ter t o turn off al l maskable in terrupts before loading t h e Workspace
Pointer with t h e LWPI instruction and calling the subroutine.

The BL instruction t ransfers program control t o the subroutine with the address
following t h e BL instruction placed in Workspace Regis ter 11 t o allow for re turn t o
the program. The location following t h e BL instruction contains the address of t h e
20-byte buffer to be checked by t h e subroutine. The subroutine re tu rns control t o
t h e MOV instruction in t h e calling program, which then checks t o see if the
subroutine found t h e bytes in numerically sequential order and jumps t o location
NOSEQ (not shown) if they were not.

The subroutine c lea r s Workspace Register 4 with t h e S instruction and puts a loop
counter value of 20 in Workspace Register 1 0 with t h e LI instruction.

Since Workspace Regis ter 11 contains t h e address of t h e location following t h e BL
instruction in t h e calling program, t h e MOV *11+,7 instruction copies t h e address of
BUFFER into Workspace Regis ter 7 and increments t h e address in Workspace Regis ter
11 t o t h e location following t h e DATA directive, se t t ing t h e address t o the MOV
instruction for t h e re turn when the subroutine is finished. The MOVE3 *7,6 instruction
copies t h e f i rs t byte value in to t h e l e f t b y t e of Workspace Register 6.

A t label CHECK, t h e MOV instruction begins a loop t h a t copies a word (two bytes)
in to Workspace Regis ter 8 and auto-increments t h e address in Workspace Regis ter 7
t o t h e next word in the buffer. The l e f t by te of Workspace Regis ter 8 is subtracted
f rom i t s r ight byte. A non-zero result indicates an ou t of sequence number and t h e
JNE instruction t ransfers control t o t h e instruction labeled OUT which places a >01 in
Workspace Regis ter 4.

If t h e subtraction produces a z e r o result, t h e INC 6 instruction increments the
con ten t s of Workspace Regis ter 6 t o the next byte t o b e checked. The following
SWPB instructon swaps t h e by tes in Workspace Regis ter 8 so the following SB and
JNE instructions c a n check t h e sequence. If t h e sequence is cor rec t , t h e next INC
instruction updates Workspace Register 6 t o the address of the next byte.

The DECT instruction decrements t h e loop counter in Workspace Regis ter 1 0 by two
since two bytes have been checked. If the resul t is non-zero, t h e r e are more by tes
t o b e checked and the JGT instruction causes a re i tera t ion of the loop. If the resul t
is zero, al l 20 by tes have been checked and the JMP instruction causes a jump t o the
subroutine's e x i t at RETURN. There t h e B *11 instruction causes a re turn t o t h e
calling program.

EDITORIASSEMBLER
Page 1 7 3

LOAD AND MOVE INSTRUCTIONS

SECTION 11: LOGICAL INSTRUCTIONS

The following logical instructions are described in this section.

Instruction
AND Immediate
OR Immediate
EXclusive OR
INVert
CLeaR
SET to One
Set Ones Corresponding
Set Ones Corresponding, Byte
Set Zeros Corresponding
Set Zeros Corresponding, Byte

Mnemonic
AND1
OR1
XOR

INV
CLR
SET0
SOC
SOCB
SZC
SZCB

Section
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

Logical instructions permit you to perform various logical operations on memory
locations and/or Workspace Registers.

Each instruction consists of the following information.

A heading, consisting of the instruction name and mnemonic name
a The op-code
a The syntax definition
a An example of the instruction
a The definition of the instruction
a The status bits affected
a The execution results
a Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds to an instruction
word whose address fields contain zeros.

EDITORIASSEMBLER
Page 174

LOGICAL INSTRUCTIONS

The syntax definition follows t h e conventions described in Section 5. The gener ic

names used in t h e syntax definitions are:

g a s General Address of t h e Source operand

gad General Address of t h e Destination operand
w a Workspace register Address
iop Immediate Operand
wad Workspace register Address Destination
disp DISPlacement of CRU lines f rom the CRU base register

exp EXPression t h a t represents an instruction location
c n t CouNT of bi ts for C R U transfer
s c n t Shift CouNT
xop number of ex tended Operat ion

Source s t a tements t h a t contain machine instructions c a n use the label field, the
operation field, t h e operand field, and the comment field.

Use of the label field is optional. When i t is used, the label is assigned the address
of t h e instruction. The Assembler advances t o t h e location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains t h e mnemonic operation code of the
instruction. The contents of t h e operand field a r e defined for each instruction.

Inclusion of t h e comment f ield i s optional. If used, i t may contain any ASCII
characters , including blanks. The comment has no e f f e c t on t h e assembly process
o ther than being printed in t h e listing.

In t h e execution results, t h e following conventions a r e used.

(Indicates "the con ten t s of."
=> Indicates "replaces."
* * Indicates "the absolute value of."

The generic names used in t h e syntax definitions are also used in t h e execution
results.

EDITOR/ASSEMBLER
P a g e 175

LOGICAL INSTRUCTIONS

11.1 AND IMMEDIATE--AND1

Op-code: 0240 (Format VIII)

Syntax definition:

[<label>] b ANDI b (wa),(iop) b [<comment>]

Example:

LABEL AND1 3,>FFF0 S e t s least significant 4 bi t s of Workspace
Regis ter 3 t o zeros.

Definition:
Performs a bit-by-bit AND operation on the 16 bi t s in t h e immediate operand and
t h e corresponding bi ts of t h e Workspace Register. The immediate operand is t h e
word in memory immediately following the instruction word. P l a c e . t h e resul t in
t h e Workspace Register. T h e computer compares t h e resul t t o z e r o and
se ts / resets t h e s t a tus bits according t o the resul ts of the comparison.

S t a t u s bits affected:
Logical g r e a t e r than, a r i thmet ic g r e a t e r than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q [C IOVIOPIX I - - - - - - - - - - - - - - I INT. M4SK I

, . . . A

Execution results:
(wa) AND iop => (wa)

EDITOR/ASSEMBLER
P a g e 176

LOGICAL INSTRUCTIONS

Application notes:
The ANDI instruction performs a logical AND with an immediate operand and a
Workspace Register. Each b i t of the 16-bit word o f both operands follows the
following table.

Immediate W orkspace AND
Operand B i t Reqister B i t Result
0 0 0

For example, i f Workspace Register 0 contains >D2AB, the instruction

ANDI 0,>6D03

results in Workspace Register 0 changing to >4003. This AND operation on a
bit-by-bit basis is

0110 1101 0000 0011 (Immediate operand--6D03)
1101 0010 1010 1011 (Workspace Register 0--DZAB)
.......................
0100 0000 0000 0011 (Workspace Register 0 result--4003)

In this example, the logical greater than and arithmetic greater than status bits
are set, while the equal status b i t i s reset.

EDITOR/ASSEMBLER
Page 177

LOGICAL INSTRUCTIONS

Op-code: 0260 (Format V I I I)

Syntax definition:

Example:

LABEL OR1 3,>F000 Sets the most significant 4 bits of Workspace
Register 3 to ones.

Definition:

Performs a logical OR operation on the 16-bit immediate operand and the
corresponding bits of the Workspace Register. The immediate operand is the

memory word immediately following the OR1 instruction. Place the result i n the

Workspace Register. The computer compares the result to zero and setslresets

the status bits t o indicate the result of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVICPIX I - - - - - - - - - - - - - - I INT. M4SK I

Execution results:

(wa) OR (iop) => (wa)

EDITORIASSEMBLER
Page 178

LOGICAL INSTRUCTIONS

Application notes:
The OR1 instruction performs a logical OR with the immediate operand and a
specified Workspace Register. Each bi t of the 16-bit word of both operands
follows the following table.

Immediate Workspace OR1
Operand Bit Reqister Bit Result
0 0 0
1 0 1
0 1 1
1 1 1

For example, if Workspace Register 5 contains >D2AB, the instruction

resul ts in Workspace Register 5 changing t o >FFAB. This OR operation on a
bit-by-bit basis is

0110 1101 0000 0011 (Immediate operand-->6D03)
1101 0010 1010 1011 (Workspace Register 5-->D2AB)
.......................
1111 1111 1010 1011 (Workspace Register 5 result-->FFAB)

In this example, t h e logical g rea te r than s ta tus bi t i s set, and t h e ar i thmetic
g rea te r than and equal s ta tus bi t a re reset.

EDITORIASSEMBLER
Page 1 7 9

LOGICAL INSTRUCTIONS

11.3 EXCLUSIVE OR--XOR

Op-code: 2800 (Format 111)

Syntax definition:

[<label>] b XOR b (gas),(wad) b [<comment>]

Example:

LABEL XOR @WORD,3 Exclusive ORs the contents of WORD and

Workspace Register 3.

Definition:
Performs a bit-by-bit exclusive OR of the source and destination operands, and
replaces the destination operand with the result. The exclusive OR is
accomplished by setting the bits in the resultant destination operand to one when
the corresponding bits of the two operands are not equal. The bits in the
resultant destination operand are reset to zero when the corresponding bits of the

two operands are equal. The computer compares the resultant destination
operand to zero and sets/resets the status bits to indicate the result of the
comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC IOVIOPIX I - - - - - - - - - - - - - - I

. . A A

INT. tvt4SK I

Execution results:

(gas) XOR (wad) => (wad)

EDITOR/ASSEMBLER
Page 180

LOGICAL INSTRUCTIONS

Application notes:
The XOR instruction performs an exclusive OR on two word operands. Each bit
of the 16-bit word of both operands follows t h e following table.

Immediate Workspace XOR
Operand Bit Reqister Bit Result
0 0 0
0 1 1
1 0 1
1 1 0

For example, if Workspace Register 2 contains >D2AA and location CHANGE
contains the value >6D03, the instruction

XOR @CHANGE,:!

resul ts in the contents of Workspace Register 2 changing t o >BFA9. Location
CHANGE remains >6D03. This is shown as follows.

0110 1101 0000 0011 (Source operand-->6D03)
1101 0010 1010 1010 (Destination operand-->D2AA)
.......................
1011 1111 1010 1001 (Destination operand result-->BFA9)

In this example, the logical g rea te r than s ta tus bi t i s set, while the ar i thmetic
g rea te r than and equal s ta tus bits a r e reset .

EDITOR/ASSEMBLER
Page 181

LOGICAL INSTRUCTIONS

Op-code: 0540 (Format VI)

Syntax definition:

[<label>] b INV b (gas) b [<comment>]

Example:

COMPL INV BBUFF(2) Replaces the value at the address found by
adding the value o f Workspace Register 2 to the
contents of BUFF with the one's complement of
the data.

Definition:
Replaces the source operand with the one's complement of the source operand.
The one's complement is equivalent to changing each zero i n the source operand
t o one and each one i n the source operand to zero. The computer compares the
result to zero and sets/resets the status bits to indicate the result of the
comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IWloplx I - - - - - - - - - - - - - - I
- . . a

INT. M4SK I

Execution results:
The one's complement of (gas) is placed i n (gas).

EDITOR/ASSEMBLER
Page 182

LOGICAL INSTRUCTIONS

Application notes:
The INV instruction changes each zero in the source operand t o one and each one
to zero. For example, if Workspace Register 11 contains >157A, the instruction

INV 11

changes the contents of Workspace Register 11 t o >EA85. This INV operation on
a bit-by-bit basis is

0001 0101 0111 1010 (Workspace Register 11-->157A)
1110 1010 1000 0101 (Workspace Register 11 result-->EAB5)

The logical greater than s tatus bit i s set and the arithmetic greater than and
equal s tatus bits are reset.

EDITORiASSEMBLER
Page 183

LOGICAL INSTRUCTIONS

Op-code: 04C0 (Format VI)

Syntax definition:

[<label>] b CLR b (gas) b [<comment>]

Example:

PRELM CLR BBUFF(2) Clears the value a t the address found by adding
the value of Workspace Register 2 to the
contents of BUFF.

Definition:
Replaces the source operand with a fu l l 16-bit word of zeros.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX 1 - - - - - - - - - - - - - - I INT. W S K 1

Execution results:
0 => (gas)

Application notes:
The CLR instruction sets a full, 16-bit, memory-addressable word to zero. For
example, if Workspace Register 11 contains the value >2001, the instruction

CLR *>B

results i n the contents of memory locations >ZOO0 and >ZOO1 being set t o 0.
Workspace Register 11 and the Status Register are unchanged. Word operations,
such as CLR, operate on the next lower address when an odd address is given as
the operand.

EDITORIASSEMBLER
Page 184

LOGICAL INSTRUCTIONS

11.6 SET TO ONE--SET0

Op-code: 0700 (Format VI)

Syntax definition:

[<label>] b SETO b (gas) b [<comment>]

Example:

LABEL SET0 3 Sets Workspace Register 3 to >Fm or negative
1.

Definition:
Replaces the source operand with a fu l l 16-bit word of ones.

Status bits affected:
None.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX) - - - - - - - - - - - - - - I INT. M S K 1

Execution results:
>FFF => <gas>

Application notes:
The SETO instruction initializes an addressable memory to a value of negative 1.
For example, the instruction

SETO 3

initializes Workspace Register 3 to a value of >mF. The contents of the Status
Register are unchanged. This i s a useful means of setting flag words.

EDITOR~ASSEMBLER
Page 185

LOGICAL INSTRUCTIONS

11.7 SET ONES CORRESPONDING--SOC

Op-code: EOOO (Format I)

Syntax definition:

[<label>] b SOC b (gas),(gad) b [<comment>]

Example:

LABEL SOC 392 ORs Workspace Register 3 into Workspace
Register 2.

Definition:
Sets to one the bits in the destination operand that correspond to the one bits i n
the source operand. Leaves unchanged the bits in the destination operand that
are in the same b i t positions as the zero bits in the source operand. This
operation is an OR of the two operands. The changed destination operand

replaces the original destination operand. The computer compares the result to

zero and setsfresets the status bits to indicate the result of the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX [- - - - - - - - - - - - - - I INT. W S K I

Execution results:
The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set
to 1.

EDITORIASSEMBLER
Page 186

LOGICAL INSTRUCTIONS

Application notes:
The SOC instruction ORs the 16-bit contents of two operands. For example, if
Workspace Register 3 contains > F O O and location NEW contains >AAAA, the
instruction

SOC 3,@NEW

changes the contents of location NEW t o >FFAA, while the contents of Workspace
Register 3 are unchanged. This SOC operation on a bit-by-bit basis is

1111 1111 0000 0000 (Source operand-->WOO)
1010 1010 1010 1010 (Destination operand-->AAAA)
.......................
1111 1111 1010 1010 (Destination operand result--XFAA)

I n this example, the logical greater than status b i t i s set end the arithmetic
greater than and equal status bits are reset.

EDITOR/ASSEMBLER
Page 187

LOGICAL INSTRUCTIONS

11.8 SET ONES CORRESPONDING, BYTE--SOCB

Op-code: FOOO (Format I)

Syntax definition:

[<label>] b SOCB b (gas),(gad) b [<comment>]

Example:

LABEL SOCB 3,@DET O R s Workspace Regis ter 3 in to t h e byte at
location DET.

Definition:
S e t s t o one t h e bits in t h e destination operand t h a t correspond t o the one b i t s in
t h e source operand byte. Leaves unchanged t h e b i t s in t h e destination operand
t h a t a r e in t h e same b i t positions a s t h e z e r o bi ts in the source operand byte.
This operation is an OR of t h e two operand bytes. The changed destination
operand byte replaces t h e original destination operand byte. The computer
compares t h e resulting destination operand byte t o z e r o and se t s / rese t s t h e s t a tus
bi ts t o indicate the resul ts of the comparison. T h e odd parity s t a t u s b i t is set
when the bi ts in t h e resulting by te establish odd parity.

S t a t u s bi ts affected:
Logical g r e a t e r than, a r i thmet ic g r e a t e r than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOPIX I - - - - - - - - - - - - - - [. . - . . INT. W S K I .

Execution results:
The bits of (gad) t h a t correspond t o t h e bi ts of (gas) t h a t a r e equal t o 1 a r e se t
t o 1.

EDITOR/ASSEMBLER
P a g e 188

LOGICAL INSTRUCTIONS

Application notes:
The SOCB instruction ORs two byte operands. Fo r example, if Workspace
Register 5 contains >F013 and Workspace Register 8 contains the value >AA24,
the instruction

SOCB 3,8

changes the contents of Workspace Register 8 to >FA24, whiIe the contents of
Workspace Register 5 are unchanged. This SOCB operation on a bit-by-bit basis
is

1111 0000 0001 0011 (Source operand-->F013)
1010 1010 0010 0100 (Destination operand-->AAZ4)
.......................
1111 1010 0010 0100 (Destination operand result-->FA24)

(Unchanged)

In this example, the logical greater than status bit is set, while the arithmetic
greater than, equal, and odd parity s tatus bits are reset.

EDITOR/ASSEMBLER
Page 189

LOGICAL INSTRUCTIONS

11.9 SET ZEROS CORRESPONDING-SZC

Op-code: 4000 (Format I)

Syntax definition:

[<label>] b SZC b (gas),(gad) b [<comment>]

Example:

LABEL SZC @MASK,2 Resets the bits of Workspace Register 2 as
indicated by MASK.

Definition:
Sets to zero the bits in the destination operand that correspond to the b i t
positions equal to one in the source operand. This operation is effectively an
AND operation of the destination operand and the one's complement of the source
operand. The computer compares the resulting destination operand to zero and

setsfresets the status bits to indicate the results o f the comparison.

Status bits affected:
Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL> IA> IEQIC IOVIOPIX I - - - - - - - - - - - - - -
* . . *

I INT. M S K I

Execution results:
The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set
to 0.

EDITOR/ASSEMBLER
Page 190

LOGICAL INSTRUCTIONS

Application notes:
The SZC instruction turns off flag bi ts or ANDS the destination operand. For
example, if Workspace Register 5 contains >6DO3 and Workspace Register 3
contains >DPAA, the instruction

szc 593

changes the contents of Workspace Register 3 t o >9ZA8, while t h e contents of
Workspace Register 5 remain unchanged. This SCZ operation on a bit-by-bit
basis is

0110 1101 0000 0011 (Source operand-->6D03)
1101 0010 1010 1010 (Destination operand-->D2AA)
.......................
1001 0010 1010 1000 (Destination operand result-->92A8)

In this example, the logical greater than s ta tus bit i s set , while the ar i thmetic
g rea te r than and equal s ta tus bits a r e reset .

EDITOR/ASSEMBLER
Page 1 9 1

LOGICAL INSTRUCTIONS

11.10 SET ZEROS CORRESPONDING, BYTE-SZCB

Op-code: 5000 (Format I)

Syntax definition:

[<label>] b SZCB b (gas),(gad) b [<comment>]

Example:

LABEL SZCB @MASK,@CHAR Resets the bits of CHAR as
indicated by MASK.

Definition:
Sets to zero the bits in the destination operand byte that correspond to the b i t
positions equal to one in the source operand byte. This operation is effectively
an AND operation o f the destination operand byte and the one's complement of
the source operand byte. The computer compares the resulting destination
operation to zero and sets/resets the status bits to indicate the results of the
comparison. The odd parity status b i t is set when the bits in the resulting
destination operand byte establish odd parity. When the destination operand is
given as a Workspace Register, the most significant byte is the one affected.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and odd parity.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC I O V I ~ I X I - - - - - - - - - - - - - - [
* INT. M S K I ..

Execution results:
The bits of (gad) that correspond to the bits of (gas) that are equal to 1 are set
t o 0.

EDITORIASSE MBLER
Page 192

LOGICAL INSTRUCTIONS

Application notes:
The SZCB instruction is used for the same applications as SZC except that bytes
are used instead of words. For example, if location BITS contains the value

>F018 and location TESTVA contains the value >AA24, the instruction

SZCB @BITS.@TESTVA

changes the contents o f TESTVA to >OA24, while BITS remains unchanged. This

is shown as

1111 0000 0001 1000 (Source operand-->FOl8)
1010 1010 0010 0100 (Destination operand-->AA24)
.......................
0000 1010 0010 0100 (Destination operand result-->0A24)

(Unchanged)

I n this example, the logical greater than and arithmetic greater than status bits
are set, while the equal and odd parity status bits are reset.

EDITOR/ASSEMBLER
Page 193

SECTION 12: WORKSPACE REGISTER SHIFT INSTRUCTIONS

The following Workspace Register shi f t instructions a r e described in th i s section.

Instruction Mnemonic Section
Shift Right Ari thmet ic SRA 12.1
Shift Right Logical SRL 12.2
Shift L e f t Ari thmet ic SL A 12.3

Shift Right Circular SRC 12.4

An example i s given in Section 12.5.

Workspace Regis ter shi f t instructions permit you t o shi f t t h e contents of a specified
Workspace Regis ter f rom one t o 1 6 bits. For e a c h of these instructions, if t h e sh i f t
count in t h e instruction i s zero, the shi f t count is taken f r o m Workspace Regis ter 0,
bi t s 1 2 through 15. If t h e four b i ts of Workspace Regis ter 0 a r e equal t o zero, t h e
shi f t count is 1 6 bit positions. The value of t h e l a s t bit shifted out of t h e Workspace
Regis ter is placed in t h e carry bit of t h e S t a t u s Register. The result is compared t o
zero, and t h e results of t h e comparison a r e shown in the logical g rea te r than,
a r i thmet ic g r e a t e r than, and equal b i t s in t h e S t a t u s Register. If a shi f t count
g r e a t e r than 15 is supplied, the Assembler fills in t h e four-bit field with the l eas t
significant four b i t s of t h e shi f t count.

Each instruction consists of t h e following information.

o A heading, consisting of t h e instruction name and mnemonic name
o The op-code
o The syntax definition
o An example of t h e instruction
o The definition of t h e instruction
o The status b i t s a f fec ted
o The execution resul ts
o Application notes when appropriate

The op-code is a four-digit hexadecimal number which corresponds t o an instruction
word whose address f ields contain zeros.

EDITORfASSEMBLER
P a g e 194

WORKSPACE REGISTER SHIFT INSTRUCTIONS

The syntax definition follows the conventions described i n Section 5. The generic

names used i n the syntax definitions are:

iop
wad
disp

exp
cnt
scnt

General Address of the Source operand
General Address of the Destination operand
Workspace register Address
Immediate Operand
Workspace register Address Destination
DISPlacement of CRU lines from the CRU base register
Expression that represents an instruction location
CouM of bits for CRU transfer
Shift COUNT
number of extended Operation

Source statements that contain machine instructions can use the label field, the
operation field, the operand field, and the comment field.

Use of the label field is optional. When it is used, the label is assigned the address
of the instruction. The Assembler advances to the location of a word boundary (even
address) before assembling a machine instruction.

The operation (op-code) field contains the mnemonic operation code of the
instruction. The contents of the operand field are defined for each instruction.

Inclusion of the comment field is optional. I f used, it may contain any ASCII
characters, including blanks The comment has no effect on the assembly process
other than being printed in the listing.

In the execution results, the following conventions are used.

() Indicates "the contents of."
=> Indicates "replaces"
* Indicates "the absolute value of."

The generic names used in the syntax definitions are also used in the execution
results.

EDITOR/ASSEMBLER
Page 195

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.1 SHIFT RIGHT ARITHMETIC--SRA

Op-code: 0800 (Format V)

Syntax definition:

[<label>] b SRA b (wa),(scnt) b [<comment>]

Example:

LABEL SRA 293 Shifts Workspace Register 2 r ight 3 b i t
locations.

Definition:
Shifts the contents of the specified Workspace Register to the r ight for the
specified number of b i t positions. Fi l ls vacated b i t positions wi th the sign bit.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and carry.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C l O V l W l X [- - - - - - - - - - - - - - I INT. W S K I

. A

Execution results:

Shifts the bits of (wa) to the right, extending the sign b i t t o f i l l vacated b i t
positions. When scnt is greater than 0, shifts the number of b i t positions
specified by scnt. I f scnt is equal to 0 , shifts the number of b i t positions
contained in the four least significant bits of Workspace Register 0. I f scnt and
the four least significant bits of Workspace Register 0 both contain Os, shifts 16
positions.

EDITOR/ASSEMBLER
Page 196

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SRA instruction shifts the given Workspace Register to the right the given
number of bit positions and fills vacated positions with the sign bit. If
Workspace Register 5 contains the value >8224, and Workspace Register 0
contains the value >F326, the instruction

SRA 590

changes the contents of Workspace Register 5 to >FEOB. This SRA operation on
a bit-by-bit basis is

1111 D O 1 1 0010 0110 (Workspace Register 0-->F326 Four least
significant bits a re 0110, so shift 6 positions)

1000 OD10 0010 0100 (Workspace Register 5-->8224)
.......................
1111 1110 0000 1000 (Workspace Register 5 result-->FEOB)

The logical greater than and carry status bits are set, while the arithmetic greater
than and equal status bits are reset.

EDITOR~ASSEMBLER
Page 197

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.2 SHIFT RIGHT LOGICAL--SRL

Op-code: 0900 (Format V)

Syntax definition:

[<label>] b SRL b (wa),(scnt) b [<comment>]

Example:

LABEL SRL 237 Shifts Workspace Register 2 r ight 7 b i t
locations.

Definition:
Shifts the contents of the specified Workspace Register t o the r ight the specified
number of bits. Fil ls the vacated b i t positions wi th zeros.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and carry.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIGPIX I - - - - - - - - - - - - - - !

A *

INT. M4SK I

Execution results:
Shifts the bits of (wa) t o the right, f i l l ing the vacated b i t positions with zeros.
I f scnt is greater than 0, shifts the number of b i t positions specified by scnt. I f
scnt is equal to 0, shifts the number of b i t positions contained i n the four least
significant bits of Workspace Register 0. I f scnt and the four least significant
bits of Workspace Register 0 both contain Os, shifts 16 b i t positions.

EDITOR/ASSEMBLER
Page 198

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SRL instruction shifts the given Workspace Register t o the r ight the given
number of b i t positions and f i l ls vacated positions wi th zeros. I f Workspace

Register zero contains the value >FFEF, the instruction

SRL 0,3

changes the contents of Workspace Register 0 t o >lFFD. This SRL operation on
a bit-by-bit basis is

1111 1111 1110 1111 (Workspace Register 0-->FFW)
.......................
0001 1111 1111 1101 (Workspace Register 0 result-->lFFD)

The logical greater than, arithmetic greater than and carry status bits are set,
while the equal status b i t is reset.

EDITOR/ASSEMBLER
Page 199

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.3 SHIFT LEFT ARITHMETIC--SLA

Op-code: OAOO (Format V)

Syntax definition:

[<label>] b SLA b (wa),(scnt) b [<comment>]

Example:

LABEL SLA 291 Shifts Workspace Register 2 l e f t 1 b i t location.

Definition:
Shifts the contents of the specified Workspace Register t o the l e f t the specified
number of b i t positions. Fi l ls the vacated b i t positions with zeros. Note that
the overflow status b i t is set when the sign of the word changes during the shif t

operation. The carry status b i t contains the value shifted out of b i t position
zero.

Status bits affected:
Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
I L > I A > I E Q I C IOVIOpIX ! - - - - - - - - - - - - - - I

A * -

INT. M S K I

Execution results:
Shifts the bits of (wa) to the left, f i l l ing the vacated b i t positions with zeros.
When scnt is greater than 0, shifts the number of b i t positions specified by scnt.
I f scnt is equal to 0, shifts the number of b i t positions contained i n the four least

significant bits of Workspace Register 0. I f scnt and the four least significant
bits of Workspace Register 0 both contain Os, shifts 16 b i t positions.

EDITOR/ASSEMBLER
Page 200

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:
The SLA instruction shifts the given Workspace Register to the lef t the given
number of bit positions and fills vacated positions with zeros. If Workspace
Register 10 contains the value >1357, the instruction

SLA 10,5

changes the contents of Workspace Register 10 to >6AEO. This SLA operation on
a bit-by-bit basis is

0001 0011 0101 0111 (Workspace Register 10-->I3571
.......................
0110 1010 1110 0000 (Workspace Register 10 result-->6AEO)

The logical greater than, arithmetic greater than, and overflow status bits a re
set, while the equal and carry s tatus bits a re reset, Refer t o Section 12.5 for
another example.

EDITOR/ASSEMBLER
Page 201

WORKSPACE REGISTER SHIFT INSTRUCT IONS

12.4 SHIFT RIGHT CIRCULAR-SRC

Op-code: OBOO (Format V)

Syntax definition:

[<label>] b SRC b (wa),(scnt) b [<comment>]

Example:

LABEL SRC 7,16-3 Shifts Workspace Register 7 circularly 3 b i t
locations right.

Definition:
Shifts the specified Workspace Register t o the r ight the specified number of b i t

positions. Fi l ls vacated b i t positions wi th the b i t shifted out of position 15. The

carry status b i t contains the value shifted out of b i t position zero.

Status bits affected:
Logical greater than, arithmetic greater than, equal, and carry.

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
IL>IA>IEQIC IOVIOPIX I - - - - - - - - - - - - - - - I INT. W S K I

Execution results:
Shifts the bits of (wa) to the right, f i l l ing the vacated b i t positions with the bits
shifted out a t the right. I f sent is greater than 0 , shifts the number of b i t
positions specified by sent. I f sent is equal to 0, shifts the number of b i t
positions contained in the four least significant bits of Workspace Register 0. I f

sent and the four least significant bits of Workspace Register 0 both contain Os,
shifts 16 b i t positions.

EDITORIASSEMBLER
Page 202

WORKSPACE REGISTER SHIFT INSTRUCTIONS

Application notes:

The SRC instruction shifts the given Workspace Register to the r ight the given
number of b i t positions and f i l ls vacated positons wi th the bits shifted. I f
Workspace Register 2 contains the value >FFEF, the instruction

SRC 297

changes the contents of Workspace Register 2 to >DFFF. This SRC operation on

a bit-by-bit basis is

1111 1111 1110 1111 (Workspace Register 2-->FFEF)
----me-----------------

1101 1111 1111 1111 (Workspace Register 2 result-->-)

The logical greater than and carry status bits are set, while the arithmetic
greater than and equal status bits are reset.

There is no "shift l e f t circular" instruction because the same ef fect can be
obtained with SRC. To shif t l e f t a number of bits, instead shif t r ight by a
number equal t o 16 minus the number. For example, to shift l e f t 7 bits, shif t
r ight by 16 minus 7 or 9 bits.

EDITOR~ASSEMBLER
Page 203

WORKSPACE REGISTER SHIFT INSTRUCTIONS

12.5 INSTRUCTION EXAMPLE

This shi f t instruction shifts t h e indicated Workspace Regis ter a specified number of
b i t s t o the left. For example, t h e instruction

SLA 591

shif ts t h e contents of Workspace Register f ive one bit t o t h e left. The carry s t a t u s
b i t contains the value shifted ou t of bit position zero. The jump instructions J O C
and J N C permit you t o test t h e shifted bit. The overflow s t a t u s b i t is set when t h e
sign of the con ten t s of t h e Workspace Regis ter being shif ted changes during t h e shi f t
operation. If Workspace Regis ter 5 conta ins

before the shift, t h e instruction changes Workspace Regis ter 5 t o

The ca r ry s t a t u s b i t contains a z e r o and t h e overflow s t a t u s b i t i s set because t h e
con ten t s changed f rom positive t o negative (bit ze ro changed f rom 0 t o 1). If th i s
shi f t sign change i s significant, you could inser t a JNO instruction t o test t h e
overflow condition. If the re i s no overflow, control t ransfers t o t h e normal program
sequence. Otherwise, the nex t instruction is executed.

EDITOR/ASSEMBLER
P a g e 204

WORKSPACE REGISTER SHIFT INSTRUCTIONS

I t is possible t o construct double-length shif ts with t h e SLA instruction, t o sh i f t two
or more words in a Workspace. The following code shifts two consecutive Workspace
Registers assuming that:

o The contents of Workspace Registers 1 and 2 are shifted one bi t position.

o Additional code could b e included t o execute the code once for each bi t shift
required, when shifts of more than one bit position a r e required. The
additional code must include a means of testing t ha t the desired number of
shifts a re performed.

o Additional code tes ts fo r overflow from Workspace Register 1, t o branch to an
error routine a t location ERR when overflow occurs.

SLA 1 7 1 Shift R 1 one bit.
JOC ERR
SLA 291 Shift R2 one bit.
JNC EXIT Transfer if no carry.
INC 1 Transfer bi t f rom R2 to R1.

EXIT INC 1

ERR NOP

Continue with program.

ED~TOR/ASSEMBLER
Page 205

SECTION 13: PSEUDO-INSTRUCTIONS

A pseudo-instruction has the form of a machine instruction but i ts unusual
characteristics do not allow i t to be a machine instruction by proper definition. Each

pseudo-instruction serves a unique purpose. The Assembler includes two

pseudo-instructions which are discussed below.

Instruction

No Operation
ReTurn

Mnemonic Section

NOP 13.1
RT 13.2

Syntax definiton:

[<label>] b NOP b [<comment>]

NOP places a machine instruction in the object code which only effects the execution
time of the program. Use of the label f ield is optional. When the label f ield is
used, the label is assigned the location of the instruction. The operation field
contains NOP. The operand field is not used. Use of the comment f ield is optional.

Enter the NOP pseudo-instructions as shown i n the following example.

MOD NOP

Location MOD contains a NOP pseudo-instruction when the program is loaded.
Another instruction may be placed i n location MOD during execution t o implement a
program option. The Assembler supplies the same object code as though the source
statement contained the following code.

MOD JMP $+2

EDlTORlASSEMBLER
Page 206

PSEUDO-INSTRUCTIONS

Syntax definition:

RT places a machine instruction in the object code t o re turn control f rom a
subroutine t o a calling routine. Use of t h e label field i s optional. When t h e label
field is used, t h e label i s assigned the location of the instruction. The operation field
conta ins RT. The operand field is not used. Use of t h e comment field is optional.

En te r t h e RT pseudo-instruction as shown in the following example.

The Assembler supplies t h e same object code as though t h e source s t a t e m e n t
contained t h e following code.

When control is transferred t o a subroutine by execution of a BL instruction, t h e link
t o t h e calling routine is s tored in Workspace Regis ter 11. An RT pseudo-instruction
re tu rns program control t o t h e instruction following t h e BL instruction in t h e calling
routine.

See Section 24.11 for more information.

EDITORIASSEMBLER
Page 207

SECTION 14: ASSEMBLER DIRECTIVES

You c a n do much t o a f f e c t the assembly process by placing assembler directives in
your source code. With these directives, you c a n

a Alte r t h e Location Counter.

a Change Assembler output.

a Init ial ize constants.

Provide linkage between programs.

Define extended operations and end programs.

These classes of directives a r e discussed in th is section in t h e order listed.

Each directive consists of t h e following information.

a The direct ive name and mnemonic name.
a The syntax definition, following t h e conventions described in Section 5.
a An example of t h e directive.
a T h e definition of t h e directive.
a Application notes when appropriate.

In Assembler directives, use of the label field is optional. When a label is used, i t is
assigned t h e address of t h e directive. Inclusion of t h e comment field is also
optional. If used, i t may contain any ASCII characters , including blanks. The
comment has n o e f f e c t o n the assembly process other than being printed in the
listing.

EDITORlASSEMBLER
P a g e 208

ASSEMBLER DIRECTIVES

14.1 DIRECTIVES THAT AFFECT THE LOCATION COUNTER

As the Assembler reads the source statements of a program, a component of the
Assembler, called the Location Counter, advances to correspond t o the memory

locations assigned to the resulting object code. The f i rs t five assembler directives

discussed in this section (AORG, RORG, DORG, BSS, and BES) init ialize the Location

Counter and set up blocks of code, allowing you to place code a t the location in
memory where it wi l l operate most efficiently when there are special memory
requirements. RORG also forces object code t o be relocatable so that the computer
can place it where it is most efficient. EVEN places the Location Counter at an
even word boundary.

PSEG and PEND are standard conditions, so they are not ordinarily used. With

another loader, which allowed the use of CSEG, CEND, DSEG and DEND, they would
be useful. The directives that affect the Location Counter and are useable with the
Loader provided are shown below.

Directive Mnemonic
Absolute ORiGin AORG
Relocatable ORiGin RORG
Dummy ORiGin DORG
Block Starting with Symbol BSS
Block Ending with Symbol BES

Word boundary EVEN
Program SEGment PSEG
Program segment END PEND

Section
14.1.1
14.1.2
14.1.3

14.1.4
14.1.5

14.1.6
14.1.7
14.1.8

Other directives, for setting up various kinds of segments, are also available for use
with a loader which you provide. They are discussed i n detail so that you may write
a loader which uses them. They are not acceptable t o the Loader provided. The
directives that af fect the Location Counter but are not useable wi th the Loader
provided are shown below.

Directive Mnemonic Section
Common SEGment CSEG 14.1.9
Common segment END CEND 14.1.10
Data SEGment DSEG 14.1.11
Data segment END DEND 14.1.12

EDITOR/ASSEMBLER
Page 209

ASSEMBLER DIRECTIVES

14.1-1 Absolute Origin--AORG

Syntax definition:

[<label>] b AORG b <wd-exp> b [<comment>]

Example:

LABEL AORG >COOO+X If X has a value of 6 , the Location Counter is
s e t to >C006. LABEL is assigned the value
>C006.

Definition:
Places a value in the Location Counter and defines the following locations as
absolute, enabling you t o specify the exact Iocations in which object code is
loaded. If a label is used, i t is assigned the value tha t the directive places in
the Location Counter. If you do not include an AORG directive in your program,
the object code contains no absolute addresses.

14.1.2 Relocatable Origin--RORG

Syntax definition:

[<label>] b RORG b [<exp>] b [<comment>]

Example:

LABEL RORG $-20 Overlays 10 words. The $ symbol refers t o the
location following the preceding relocatable
location of the program. This example backs up
the Location Counter 10 words. LABEL is
assigned the value placed in the Location
Counter.

Definition:
Places a value in the Location Counter which, if encountered in absolute code,
also defines succeeding locations as program-relocatable. If a label is used, i t is
assigned the value tha t the directive places into the Location Counter. The
operation field contains RORG, and the operand field is optional. The comment
field can be used only when the operand field is used.

EDITOR/ASSEMBLER
Page 210

ASSEMBLER DIRECTIVES

If t h e operand field is not used, t h e length of t h e program segment, da ta
segment, or specific common segment of a program replaces t h e value of t h e
Location Counter. For a given relocation type X, the length of t h e X-relocatable
segment is zero if no program-relocatable code has been previously assembled.
Otherwise, i t i s t h e maximum value of t h e Location Counter due t o the assembly
of any preceding block of X-relocatable code.

Since the Location Counter begins at zero, the length of a segment and t h e "next
available" address within t h a t segment a r e identical.

If t h e RORG directive appears in absolute o r relocatable code and the operand
field is not used, the Location Counter value is replaced by the current length of
t h e program segment of t h a t program. If t h e di rect ive appears in
data-relocatable code without an operand, the Location Counter value is replaced
by t h e length of t h e d a t a segment. Similarly, in common-relocatable code a
RORG directive without an operand causes the length of the appropriate common
segment t o b e loaded into t h e Location Counter.

If t h e operand field is used, t h e operand mus t be an absolute or re locatable
expression (exp) containing only previously defined symbols. If t h e directive is in
absolute code, a re locatable operand must match t h e cur ren t Location Counter.
I f t h e RORG directive appears in absolute code, i t changes t h e Location Counter
t o program-relocatable and replaces i t s value with the operand value. In
re locatable code, t h e operand value replaces the current Location Counter value,
and t h e relocation type of t h e Location Counter remains unchanged.

4pplication notes:
You may use the RORG direct ive t o replace previous instructions and directives.
This is t h e purpose of t h e example. Alternatively, t h e RORG direct ive can be
used without an operand field.

For example, suppose your program s t a r t s with s t a t e m e n t s defining d a t a which
occupies >44 bytes, follobved by an AORG directive, a BSS directive, s t a tements
in a block, and a BES directive t o end the block. Then the di rect ive

SEGZ RORG

places >0044 in t h e Location Counter and def ines t h e Location Counter a s
relocatable. The symbol SEGZ is given a re locatable value of >0044. The RORG
directive, as used here, has no e f f e c t excep t a t t h e end of an absolute block or a

dummy block.

EDITOR/ASSE MBLER
P a g e 211

ASSEMBLER DIRECTIVES

14.1.3 Dummy Origin--DORG

Syntax definition:

[<label>] b DORG b <exp> b [<comment>]

Example:
LABEL DORG 0 Causes the Assembler t o assign values to the

labels within the dummy section relative to the
start of the dummy section.

Definition:
Places a value i n the Location Counter and defines the following address locations
as a dummy block or section. When assembling a dummy section, the Assembler

does not generate object code but operates normally in a l l other respects. The

result is that the symbols that describe the layout of the dummy section are
available t o the Assembler during assembly o f the remainder of the program.
The label i s assigned the value that the directive places in the Location Counter.

The operand field contains an expression which may be either absolute or
relocatable. Any symbol i n the expression must have been previously defined. If

the operand is absolute, the Location Counter contents are absolute. I f the

operand is relocatable, the Location Counter contents are relocatable.

14.1.4 Block Starting with Symbol--BSS

Syntax definition:

[<label>] b BSS b <wd-exp> b [<comment>]

Example:

B U T 1 BSS 80 Reserves a 80-byte buffer a t location BUFF1.
BUFF1 is set equal to the previous value of the
Location Counter.

Definition:
Advances the Location Counter by the value of the well-defined expression in the
operand field. I f a label is used, it is assigned the value of the location of the

f i rst byte in the block.

EDITOR/ASSEMBLER
Page 212

ASSEMBLER DIRECTIVES

Application notes:

The BSS directive is used to start a block. Blocks are used to set up areas of

code that you wish to have loaded into specific memory locations; for example, to
set up a reference table. The AORG directive must precede the BSS directive.

14.1.5 Block Ending w i t h Symbol--0ES

Syntax definition:

[<label>] b BES b <wd-eip> b [<comment>]

Example:

BUFF2 BES >10 Reserves a 16-byte buffer. I f the Location
Counter contains >lo0 when the Assembler
processes this directive, BUFF2 is assigned the
value > l l O .

Definition
Advances the Location Counter according to the value of the well-defined
expression in the operand field. I f a label i s included, the directive assigns the
new Location Counter value to the symbol in the label field. The BES directive
marks the end of a block started with the BSS directive.

14.1.6 Word Boundary--EVEN

Syntax definition:

[<label>] b EVEN b [<comment>]

Example:

WRFl EVEN Assigns the Location Counter address to label WRFl and
ensures that the Location Counter contains a word boundary
address.

Definition:

Places the Location Counter on the next word boundary (even) byte address. I f

the Location Counter is already on a word boundary, the Location Counter is not

EDITORlASSEMBLER
Page 213

ASSEMBLER DIRECTIVES

altered. If a label is used, the value in the Location Counter is assigned t o the
label before processing the directive. The operand field is not used.

Application notes:
The EVEN directive ensures tha t the program is a t an even word boundary when a
statement tha t consists of only a label is preceded by a TEXT or BYTE directive
and is followed by a DATA directive or a machine instruction. In this case, the
label does not have the same value a s a label in the following instruction unless
the TEXT or BYTE directive lef t the Location Counter on an even (word)
location.

Using an EVEN directive before or af ter a machine instruction or a DATA
directive is redundant since the Assembler automatically advances the Location
Counter t o an even address when i t processes a machine instruction or a DATA
directive.

14.1.7 Program Segment--PSEG

Syntax definition:

[<label>] b PSEG b [<comment>]

Example:
LABEL PSEG

Definition:
Places a value in the Location Counter and defines successive locations as
program-relocatable. If a label is used, i t is assigned the value that the
directive places in the Location Counter. The value placed in the Location
Counter as a result of this directive is zero if no program-relocatable code has
been previously assembled. Otherwise, i t is the maximum value the Location
Counter has attained as a result of the assembly of any preceding block of
program-relocatable code.

Application notes:
The PSEG directive only repeats the default mode. If you a re using another
loader tha t also accepts the CSEG, CEND, DSEG, and DEND directives, when the
PSEG directive is useful.

EDITOR~ASSEMBLER
Page 214

ASSEMBLER DIRECTIVES

14.1.8 Program Segment End--PEND

Syntax definition:

[<label>] b PEND b [<comment>]

Example:
LABEL PEND

Definition:
Places a value in the Location Counter and defines the following locations as
program-relocatable. I f a label is used, it is assigned the value of the Location
Counter prior to modification. The value placed in the Location Counter by this
directive i s the maximum value ever attained by the Location Counter as a result
o f the assembly of a l l preceding program-relocatable code. I f the PEND
directive is encountered in data-relocatable or common-relocatable code, it

functions as a DEND or CEND and a warning message is issued. Like DEND and
CEND, PEND is invalid i f used in absolute code.

Application notes:
The PEND directive only repeats the default mode. I f you are using another
loader that also accepts the CSEG, CEND, DSEG, and DEND directives, then the
PEND directive is useful. The PEND directive is provided as the
program-segment counterpart to the DEND and CEND directives. However, since
PEND properly appears only in program-relocatable code, the relocation type of
successive locations remains unchanged.

14.1.9 Common Segment-CSEG

The CSEG directive is not accepted by the Loader provided with the
EditorfAssembler.

Syntax definition:

[<label>] b CSEG b [<comment>]

Example:

COMl CSEG

EDITOR~ASSEMBLER
Page 215

ASSEMBLER DIRECTIVES

Definition:
I f you provide an appropriate loader, CSEG places a value i n the Location
Counter and defines successive locations as common-relocatable (i.e., relocatable
with respect t o a common segment). I f a label is used, it is assigned the value

that the directive places in the Location Counter.

The CSEG directive defines the beginning (or continuation) of the "blank common"
segment of the program.

Application notes:
The CSEG directive is not accepted by the Loader provided with the

Editor/Assembler. The CEND, PSEG, DSEG, AORG, and END directives al l
terminate the definition of a block of common-relocatable code. The block is

normally terminated with a CEND directive. Like CEND, the PSEG directive

indicates that successive locations are program-relocatable. The DSEG and
AORG directives effectively terminate the common segment by beginning a data
segment or absolute segment. The END directive terminates the common
segment as well as the program.

14.1.10 Common Segment End--CEND

The CEND directive is not accepted by the Loader provided with the
Editor/Assembler.

Syntax definition:

[<label>] b CEND b [<comment>]

Example:

LABEL CEND

Definition:
I f you provide an appropriate loader, CEND terminates the definition of a block

of common-relocatable code by placing a value i n the Location Counter and
defining successive locations as program-relocatable. I f a label i s used, it is
assigned the value of the Location Counter prior to modification. The value
placed in the Location Counter as a result of this directive is zero i f no

program-relocatable code has been previously assembled. Otherwise, it is the

EDITOR/ASSEMBLER
Page 216

ASSEMBLER DIRECTIVE5

maximum value the Location Counter has attained a s a result of the assembly of
any preceding block of program-relocatable code.

Application notes:
The CEND directive is not accepted by the Loader provided with the
Editor/Assembler. If the directive is encountered in common-relocatable or
program-relocatable code, i t functions a s a DEND or PEND directive and a
warning message is issued. Like DEND and PEND, CEND is invalid if i t is used
in absolute code.

14.1.11 Data Segment-DSEG

The DSEG directive is not accepted by the Loader provided with the
Editor/Assembler.

Syntax definition:

[<label>] b DSEG b [<comment>]

Example:
LABEL DSEG

Definition:
If you provide an appropriate loader, DSEG places a value in the Location
Counter and defines successive locations a s data-relocatable. If a label is used,
i t is assigned the data-relocatable value tha t the directive places in the Location
Counter. The value placed in the Location Counter a s a result of this directive
is zero if no program-relocatable code has been previously assembled. Otherwise,
i t is the maximum value the Location Counter has attained a s a result of the
assembly of any preceding block of program-relocatable code.

The DSEG directive defines the beginning of a block of data-relocatable code.
The block is normally terminated with a DEND directive. If several such blocks
appear throughout the program, they comprise the data segment of the program.
The entire da ta segment can be relocated independently of the program segment
when the programs a r e linked and therefore provides a convenient means of
separating modifiable da ta from executable code.

EDITOR/ASSEMBLER
Page 217

ASSEMBLER DIRECTIVES

Application notes:
The DSEG directive is not accepted by the Loader provided with the
Editor/Assembler. I n addition to the DEND directive, the PSEG, CSEG, AORG,
and END directives properly terminate the definition of a block of

data-relocatable code. L ike DEND, the PSEG directive indicates that successive
locations are program-relocatable. The CSEG and AORG directives effectively
terminate the data segment by beginning a common segment or absolute segment,
respectively. The END directive terminates the data segment as well as the
program.

The following example illustrates the use of both the DSEG and the DEND
directives.

R A M DSEG Start of data area.

* Data-relocatable code.

ERAM DEND
*
LRAM EQU ERAM-RAM

The block of code between the DSEG and DEND directives i s data-relocatable.
R A M is the symbolic address of the f i rst word of this block. ERAM is the
data-relocatable byte address of the location following the code block. The value
of the symbol LRAM is the length of the block in bytes.

EDITORIASSEMBLER
Page 218

ASSEMBLER DIRECTIVES

1A1.12 Data Segment End--0END

The DEND directive is not accepted by the Loader provided with the
Edi tor/Assembler.

Syntax definition:

[<label>] b DEND b [<comment>]

Example:
LABEL DEN0

Definition:
If ycu provide an appropriate loader, DEND terminates the definition of a block
of data-relocatable code by placing a value in the Location Counter and defining
successive locations as program-relocatable. I f a label is used, it is assigned the
value of the Location Counter prior to modification. The value placed in the

Location Counter as a result of this directive is zero i f no program-relocatable
code has been previously assembled. Otherwise, it is the maximum value the
Location Counter has ever attained as a result of the assembly of any preceding
block of program-relocatable code.

Application notes:
The DEND directive is not accepted by the Loader provided with the
Editor/Assembler. I f the directive is encountered in common-relocatable or
program-relocatable code, it functions as a CEND or PEND and a warning
message is issued. Like E N D and PEND, DEN0 is invalid i f used in absolute
code.

EDITOR/ASSEMBLER
Page 219

ASSEMBLER DIRECTIVES

14.2 DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT

In order t o make Assembler output as easy t o read a s possible, you may specify a
variety of output fo rms f o r t h e Assembler. These options include whether t o l i s t t h e
source code, where t o p u t pages, t h e page t i t l e t o be used, and t h e program identif ier
t o b e used. In addition, several options are available when you se lec t t h e Assembler.
R e f e r t o Section 2 for more details on t h e o ther output options. The di rect ives t h a t
a f f e c t Assembler output are shown below.

Directive
No source Lis t
LIST source
PAGE e j e c t
Page TITLe
Program IDenTifier

Mnemonic Section
UNL 14.2.1
LIST 14.2.2
PAGE 14.2.3
TITL 14.2.4
IDT 14.2.5

14.2.1 No Source List--UNL

Syntax definition:

[<label>] b UNL b [<comment>]

Example:

LABEL UNL

Definition:
Stops printing of the source listing. The UNL direct ive is not printed in the
source listing, bu t t h e line counter i s incremented. If a label is used, t h e current
value of t h e Location Counter i s assigned to the label. The comment field i s
optional, b u t t h e Assembler does not print t h e comment. The UNL and LIST
directives have no e f f e c t unless you have se lected a n output device and the L
option h a s been selected. See Section 2 f o r more information.

Application notes:
The UNL direct ive s tops t h e printing and thus reduces assembly t ime, as well as
t h e s ize of t h e source listing.

EDITOR/ASSEMBLER
P a g e 220

ASSEMBLER DIRECTIVES

14.2.2 List Source--LIST

Syntax definition:

[<label>] b LIST b [<comment>]

Example:

LABEL LIST

Definition:
Res ta r t s printing of the source listing. This directive is required only if you
previously gave a No Source Lis t (UNL) directive ta cancel listing. The directive
is not printed in the source listing, bu t t h e line counter is incremented. If a
label i s used, t h e current value of t h e Location Counter is assigned t o t h e label.
The comment field is optional, bu t t h e Assembler does not pr in t the comment.
The UNL and LIST directives have no e f f e c t unless you have se lec ted an output
device and t h e L option has been selected. See Section 2 for more information.

14.2.3 Page Eject--PAGE

Syntax definition:

[<label>] b PAGE b [<comment>]

Example:

LABEL PAGE

Definition:
Causes the Assembler t o continue the source program listing on a new page. The
PAGE directive i s not printed in t h e source listing, but t h e line counter is
incremented. I f a label i s used, t h e cur ren t value of the Location Counter is
assigned t o t h e label. Use of the comment field i s optional, bu t t h e Assembler
does not print t h e comment.

EDITORIASSEMBLER
P a g e 221

ASSEMBLER DIRECTIVES

Application notes:
The PAGE direct ive causes the Assembler t o begin a new page o f the source
listing. The next source statement i s the f i rs t statement l isted an the new page.
Use of the page direct ive t o begin new pages of the source l ist ing a t the logical

divisions of the program improves documentation of the program.

14.2.4 Page Title--TITL

Syntax definition:

[<label>] b T I T L b '<string>' b [<comment>]

Example:

LABEL T I T L '*REPORT GENERATOR*' Causes the t i t l e *REPORT

GENERATOR* t o be printed i n
the subsequent page headings o f
the source listing.

Definit ion:
Supplies a t i t l e t o be pr inted i n the heading o f the source listing. The direct ive
is no t printed i n the source listing. I f a label is used, the current value o f the
Locat ion Counter is assigned t o the label. The operand f ie ld contains the t i t l e as
a string o f up t o 50 characters enclosed i n single quotes. I f you enter more than
50 characters, the Assembler retains the f i r s t 50 characters as the t i t l e and
pr in ts the message OUT OF RANGE. The Assembler does not p r in t a comment
included w i th the directive, but does increment the l ine counter.

To include a t i t l e i n the heading o f the f i r s t page of the source listing, a T I T L
direct ive must be the f i rs t source statement i n your program. Then the t i t l e is
pr inted on a l l pages un t i l another T ITL direct ive is processed. I f the TITLE
direct ive is not the f i rs t source statement, the t i t l e is pr inted on the next page
a f te r the direct ive is processed and on subsequent pages un t i l another T ITL
direct ive is processed.

EDITOR~ASSEMBLER
Page 222

ASSEMBLER DIRECTIVES

14.2.5 Program Identifier--101

Syntax definition:

[<label>] b IDT b '<string>' b [<comment>]

Example:

LABEL IDT 'CONVERT' Assigns the name CONVERT to the program to
be assembled.

Definition:
Assigns a name to the program. I f you use the IDT directive, it should precede
any machine instruction or assembler directive that results in object code. I f a
label is used, the current value of the Location Counter is assigned to the label.
The operand f ield contains the program name as a string of up to eight characters
enclosed i n single quotes. I f more than eight characters are entered, the
Assembler prints a truncation error message and retains the f i rst eight characters
as the program name.

The program name is printed i n the source listing as the operand o f the IDT
directive but does not appear in the page heading of the source listing. The
program name is placed in the object code but serves no purpose during the
Assembly.

EDITORIASSEMBLER
Page 223

ASSEMBLER DIRECTIVES

14.3 DIRECTIVES THAT INITIALIZE CONSTANTS

You may define the values o f constants and place values in bytes and words w i th
directives. The directives tha t in i t ia l ize constants are shown below.

Di rect ive Mnemonic Section
Def ine assembly-time constant E QU 14.3.1
In i t ia l ize BYTE BYTE 14.3.2
In i t ia l ize word DATA 14.3.3
In i t ia l ize TEXT TEXT 14.3.4

14.3.1 Define Assembly-Time Constant--EQU

Syntax definition:

<label> b EQU b <exp> b [<comment>]

Example:

BUFFER EQU >lo00 Assigns the value >lo00 to BUFFER.

Definit ion:
Assigns a value t o a symbol. The label f ie ld contains the symbol. The operand
f ie ld contains an expression in which a l l symbols have been previously defined. I f
a symbol i s used i n the operand field, and tha t symbol appears i n the label f ie ld
o f a machine instruction in a relocatable block o f the program, the value is
relocatable. A f te r the execution o f this directive, the symbol i n the label f ie ld

and the value or symbol in the operand f ie ld may be used interchangeably.

EDITORIASSEMBLER
Page 224

ASSEMBLER DIRECTIVES

14.3.2 Initialize Byte--BYTE

Syntax definition:

[<label>] b BYTE b <exp>[,<exp>l ... b [<comment>]

Example:

KONS BYTE >F+l,-1,O;AB'-'AA' Initializes four bytes, starting with
the byte a t location KONS. The

contents of the resulting bytes are
>lo, >FF, >00, and >01.

Definition:
Places one or more values in one or more successive bytes of memory. I f a label

is used, the location a t which the Assembler places the f irst byte is assigned to
the label. The operand field contains one or more expressions separated by
commas. The expressions must contain no external references. The Assembler
evaluates each expression and places the value in a byte as an eight-bit two's
complement number. I f truncation is required, the Assembler prints a truncation
error message and places the rightmost portion of the value in the byte. The

EVEN directive is commonly used after the TEXT directive to insure that the
next instruction starts on an even word boundary.

14.3.3 Initialize Word--DATA

Syntax definition:

[<label>] b DATA b <exp>[,<exp>l ... b [<comment>]

Example:

KONSl DATA 3200,1+'AB',-'AFt,'A' Initializes four words, starting on a
word boundary a t location KONS1.
The contents of the resulting words
are >OCBO, >4143, >BEBA, and
>0041.

EDITOR/ASSEMBLER
Page 225

ASSEMBLER DIRECTIVES

Definition:
Places one or more values i n one or more successive words of memory. The

Assembler automatically advances the Locat ion Counter t o a word boundary
(even) address if necessary and places >00 i n the byte skipped. I f a label is used,

the location a t which the Assembler places the f i rs t word i s assigned to the label.
The operand f ie ld contains one or more expressions separated by commas. The

Assembler evaluates each expression and places the value in a word as a 16-bit
two's complement number.

14.3.4 Initialize Text--TEXT

Syntax definition:

[<label>] b TEXT b [-]'<string>' b [<comment>]

Example:

MSG1 TEXT 'EXAMPLE' Places the seven ASCII hexadecimal
representations o f the characters i n EXAMPLE
i n successive bytes. I f the Locat ion Counter i s

on an even address, the result is >4558, >414D,
>504C, and >45XX where X X is determined by
the next source statement. The label MSGl i s

assigned the value o f the f i r s t byte address.

Definit ion:
Places one or more characters i n successive bytes of memory. The Assembler
negates the last character o f the string i f the string is preceded by a unary minus
(-) sign. I f a label is used, the locat ion a t which the Assembler places the f i r s t
character i s assigned t o the label. The operand f ie ld contains a character string
o f up t o 52 characters, which can be preceded by a unary minus sign. The EVEN
direct ive is commonly used af ter the TEXT direct ive t o insure that the next
instruction starts on an even word boundary.

EDITORIASSEMBLER
Page 226

ASSEMBLER DIRECTIVES

14.4 DIRECTIVES THAT LINK PROGRAMS

I t is often convenient to write programs as separate modules which can be linked
together. Several directives allow you to do so. The DEF and REF directives allow

you to place one or more symbols defined i n a module into the object code, making
them available for linking. The COPY directive allows you to have the Assembler
copy a fi le from a diskette and include it i n the assembly process.

The LOAD and S R 5 directives assemble properly but are not used by the Loader
provided. They are discussed in detail so that you may write a loader which uses
them. With an appropriate loader, different from the one provided, the LOAD and
SREF directives allow you to place in the object code symbols used in the module but
defined in another module, so that they can be linked. The directives that link
programs are shown below.

Directive Mnemonic Section
External DEFinition DEF 14.4.1
External REFerence REF 14.4.2
COPY COPY 14.4.3
Force LOAD LOAD 14.4.4
Secondasy REFerence SREF 14.4.5

14.4.1 External Definition-DEF

Syntax definition:

[<label>] b DEF b <symbol>[,<syrnbol>] ... b [<comment>]

Example:

LABEL DEF ENTR,ANS Causes the Assembler to include symbols ENTR

and ANS in the object code so that these
symbols are available to other programs.

EDITORIASSEMBLER
Page 227

ASSEMBLER DIRECTIVES

Definition:
Makes one o r more symbols available t o other programs for reference. If a label
is used, the current value of t h e Location Counter i s assigned t o the label. The
operand field contains one or more symbols, separated by commas, t o be defined
in the program being assembled. The DEF direct ive for a symbol must precede
t h e source s t a tements t h a t contain the symbols, or the Assembler identifies t h e
symbols a s having been defined more than once and issues a duplicate definition
warning message.

Application notes:
Labels t h a t have been defined with the DEF directive a r e entered into the
REFIDEF table and maintained in the REFIDEF tab le like o ther symbols defined
by the DEF s ta tement . Labels defined with the REF s t a t e m e n t a re resolved a t
loading t i m e and removed fom t h e REFIDEF table.

Duplicate definitions a r e accep ted by t h e Loader, with the mos t r e c e n t definition
being used. A warning message is issued when duplicate definitions a r e given.

14.4.2 External Reference--REF

Syntax definition:

[<label>] b REF b <symbol>[,<syrnbol>] ... b [<comment>]

Example:

LABEL REF ARG1,ARGZ Causes t h e Assembler t o include symbols A R G l
and ARGZ in t h e object code so t h a t t h e
corresponding addresses may b e obtained f r o m
o ther programs.

Definition:
Provides access t o one or more symbols defined in other programs. If a label is
used, the cur ren t value of t h e Location Counter is assigned t o the label. The
operand field contains one or more symbols, separated by commas, t o be used in
t h e operand field of a subsequent source s ta tement .

EDITOR/ASSEMBLER
P a g e 228

ASSEMBLER DIRECTIVES

Application notes:
If a symbol is listed in t h e REF s ta tement , a corresponding symbol must b e
present in a DEF s t a t e m e n t in another source module. If a one-to-one matching
of symbols does not occur, t h e e r ro r code >OD is given when t h e program is
executed.

If a symbol in t h e operand field of a REF direct ive i s t h e f i rs t operand of a
DATA directive, t h e Assembler places t h e value of the symbol at location 0 of
t h e routine. If t h a t routine i s loaded at absolute location 0, t h e symbol is not
linked correctly. Use of t h e symbol a t o ther locations is cor rec t ly linked.

14.4.3 Copy File--COPY

Syntax definition:

[<label>] b COPY b "<file name>" b

Example:

LABEL COPY "DSK1.MAIN" Copies t h e f i le MAIN f rom the disket te in
Disk Drive 1 for inclusion in the assembly
process.

Definition:
Includes a f i le f rom a disket te in the assembly process. When t h e Assembler
encounters th i s directive, i t copies t h e f i le from t h e disket te and continues with
t h e assembly process as if t h e f i le were in the program actually being assembled.
You can include as many COPY directives a s you wish in a program. Note,
however, t h a t when an END directive is encountered in any file, including those
being copied, t h e Assembler stops t h e assembly process.

Application notes:
The COPY directive allows you t o wr i t e programs a s separa te modules which c a n
b e linked together. This may b e done for writing convenience or because t h e
program is t o o large t o f i t in one file.

EDITORiASSEMBLER
P a g e 229

ASSE MBLER DIRECTIVES

The following is a sample program which uses the COPY directive. When it is
assembled, the Assembler f i rs t assembles the f i le named MAIN on Disk Drive 1,
followed by the files PROG and DATA, also on Disk Drive 1. Then the rest of

the program is assembled. The object f i le created includes a l l of the assembled

files. The END statement tells the Assembler t o stop assembling.

COPY "DSK1. MAIN"
COPY "DSK1.PROG"
COPY "DSK1.DATA"

END

14.4.3.1 Using the COPY Di rec t i ve in the Game

I n addition t o the SAVE ut i l i ty (See Section 24.5), the Editor/Assembler diskette
labeled Part B contains a game or application program which uses the COPY
directive.

The owner's manual for the the game or application program you received is included
with your Editor/Assembler. You can also use your Disk Manager Command Module
to catalog the diskette to find which game you received. The instructions below

relate specifically to the game Tombstone City, but they apply generally t o whichever
game or application program you received.

TOMBS is the main module, consisting mostly of COPY directives. When it is

assembled, the COPY directives copy the rest of the program files, which are
TOMBA, TOMBB, TOMBC, TOMBD, TOMBE, and TOMBF. The program is broken
into these portions because of i t s length.

Because the source listing, TOMB, is already on the diskette, the game may be played
without further assembly. However, if you wish t o assemble the f i le in order t o see
the process, f i rst insert the diskette which contains the Assembler (lableled Part A) i n
Disk Drive 1 and choose the ASSEMBLE option on the EditorlAssembler. Then insert
the diskette (labeled Part 6) that contains the game i n Disk Drive 1 and give the

source f i le name as DSK1.TOMBS and the object f i le as DSK1.TOMB. I f you have an
R5232 Interface unit and an RS232-compatible printer, give the l ist f i le as RS232 and

EDITORfASSEMBLER
Page 230

ASSEMBLER DIRECTIVES

options as LRSC. You cannot l ist to diskette because the fi le is too large. I f you

do not have an RS232 Interface unit, do not give a l is t f i le and assemble with options
RC.

To run the program, select the LOAD AND RUN option on the Editor/Assembler.
The f i le name i s DSK1.TOMB. The program ends with the END START directive, so

it begins running as soon as it is loaded. Alternatively, you may run the game from

T I BASIC by running the following program:

100 CALL LOAD("DSK1. TO43")

You may also alter the game so that i t may be used with the RUN PROGRAM FILE
option on the Editor/Assembler selection list. See Section 24.5 for instructions.

14.4.4 Force Load--LOAD

The LOAD directive is not accepted by the Loader provided with the
Editor/Assembler.

Syntax definition:

[<label>] b LOAD b <symbol>[,<syrnbol>] ... b [<comment>]

Example:
LABEL LOAD SYMBOL

Definition:
I f you provide an appropriate loader, the LOAD directive loads a symbol into the
REF/DEF table for later resolution. The LOAD directive is similar to REF,
except that the symbol does not need to be used i n the module containing the
LOAD directive. The symbol included in the LOAD directive must be defined
with the DEF directive in some other module. The LOAD directive is used
together with the SREF directive. I f a one-to-one matching of LOAD-SREF pairs
and DEF symbols does not occur, unresolved references occur during linking.

EDITOR/ASSEMBLER
Page 231

ASSEMBLER DIRECTIVES

14.4.5 Secondary External Reference--SRff

The SREF directive is not accep ted by t h e Loader provided with the
Editor/Assembler.

Syntax definition:

[<label>] b SREF b <symbol>,[<symbol>] ... b [<comment>]

Example:

LABEL SREF ARG1,ARGZ Includes symbols A R G l and ARGZ in the object
code s o t h a t t h e corresponding addresses may be
obtained f rom o ther programs.

Definition:
If you provide a n appropr ia te loader, SREF provides access t o one o r more
symbols defined in other programs. If a label is used, t h e cur ren t value of t h e
Location Counter is assigned t o t h e label. The operand field conta ins one or
more symbols, separated by commas, t o be used in the operand field of a
subsequent source s ta tement .

Application notes:
The SREF directive is not accepted by t h e Loader provided with the
Editor/Assembler. SREF, unlike REF, does no t require t h a t a symbol have a
corresponding symbol listed in a DEF s t a t e m e n t of another source module.
However, without a corresponding symbol, the symbol in t h e SREF directive is an
unresolved reference.

EDITOR/ASSEMBLER
P a g e 232

ASSEMBLER DIRECTIVES

14.5 MISCELLANEOUS DIRECTIVES

You may use the DXOP directive t o define extended operations for use with t h e XOP
instruction, which is only available on the TI-99/4A Home Computer. The END

direct ive signals t h e end of a program and, when used with a label, s t a r t s execution
of a program a s soon as i t is loaded. The miscellaneous directives a r e shown below.

Directive Mnemonic Section
Define e x t e n d e d Operat ion DXOP 14.5.1
Program END END 14.5.2

14.5.1 Define Extended Operation--DXOP

Syntax definition:

[<label>] b DXOP b <symbol>,<term> b [<comment>]

Example:

LABEL DXOP DADD,l Defines DADD as extended operation 1. When
you include the symbol DADD in t h e operand
field of an XOP instruction, t h e Assembler
assembles an XOP instruction t h a t specifies
extended operation 1.

Definition:
The DXOP directive is only useful on t h e TI-99/4A Home Computer. To find
which extended operations your computer supports, see Section 7.19. If
available, the DXOP directive assigns a symbol t o b e used in t h e operator field t o
specify an extended operation. If a label is used, t h e current value in the
Location Counter i s assigned t o the label. The operand field contains a symbol
followed by a comma and a term. The symbol assigned t o an extended operation
must not be used in the label or operand field of any other s ta tement . The
Assembler assigns t h e symbol t o an extended operation specified by the term,
which has a value of 1 or 2.

EDITOR/ASSEMBLER
P a g e 2 3 3

ASSEMBLER DIRECTIVES

14.5.2 Program End--END

Syntax definition:

[<label>] b END b [<symbol>] b [<comment>]

Example:

N A M E END START Terminates the assembly o f the program. The
Assembler also places the value o f START in the
object code as an entry point.

Definit ion:
Terminates the assembly process. The last source statement o f a program i s the
E N D directive. Any source statements which fo l low the END direct ive are
ignored. I f a label is used, the current value in the Locat ion Counter i s assigned
t o the symbol. I f the operand f ie ld is used, it contains a program-relocatable or
absolute symbol tha t specifies the entry point o f the program. The comment

f ie ld may be used only when the operand f ie ld is used. I f the END statement has

an operand, the program runs as soon as i t is loaded, start ing a t the address of
the operand.

Application notes:
I f the END statement is omitted, the Assembler issues an END ASSUMED
warning message, and I / O error >07 is displayed. However, this should not cause

a problem i n loading and running the program.

I f the operand f ie ld is no t used, run the program by entering a program name
when using the L O A D A N D R U N option on the Editor/Assembler selection l i s t or

the C A L L LINK statement i n T I BASIC. The program name must be an entry
point defined i n the DEF instruction.

EDITORIASSEMBLER
Page 234

SECTION 15: ASSEMBLER OUTPUT

T h e major purpose of t h e assembly process is t h e production of object code so t h a t
your program can b e run by t h e computer. This section includes a description of t h e
object code produced s o t h a t you can edi t i t t o make minor changes in your program.

In addition t o object code, t h e Assembler prints a source listing and a sor ted symbol
table. You c a n a f f e c t t h e form of t h e listing by use of various directives discussed
in Section 14.2. In addition, the Assembler produces a list of f a t a l and nonfatal
errors. The purpose of a l l of this output i s t o enable you t o discover e r ro rs in your
program so t h a t you can, by changing the source code, make the program run
correctly.

15.1 SOURCE LISTING

The source listing shows t h e source s t a tements and where thei r result ing object code
is placed in memory. However, for t h e string following a TEXT directive, only t h e
ASCII code f o r t h e f i rs t charac te r is listed. A comple te example i s given in Section
15.5.

9914 ASSEMBLER appears on the f i r s t line of each page. The second line conta ins
VERSION 1.1 (or the version you are using), t h e t i t l e you supplied in a TITL
directive, and t h e page number.

Below this heading material , t h e printer l ists a line f o r e a c h source s t a t e m e n t
containing t h e source s t a t e m e n t number, t h e Location Counter value, t h e object code
assembled (in hexadecimal notation), and the source s t a t e m e n t as you en te red i t in
your program. When a source s t a t e m e n t genera tes more than one word of object
code, the Assembler prints t h e Location Counter value and object code f o r each
additional word of object code on a s e p a r a t e l ine following t h e source s ta tement . An
example of t h e mater ia l printed is

0018 0156 C820 MOV @INIT+3,@3
0158 0128'
015A 0003

The source s t a t e m e n t number, 0018 in the example, is a four-digit decimal number.
Source records a r e numbered in t h e order in which they a r e entered, whether o r not
they are listed. The TITL, LIST, UNL, and PAGE direct ives a r e not listed, and

EDITORIASSEMBLER
Page 2 3 5

ASSEMBLER OUTPUT

source records between a UNL directive and a LIST directive are no t listed. The

difference between two printed source record numbers indicates how many source
records a r e not listed.

The nex t field conta ins t h e Location Counter value as a hexadecimal value. In t h e
example, >0156 i s t h e Location Counter value. Not a l l directives a f f e c t t h e Location

Counter. If the di rect ive does not a f f e c t t h e Location Counter, t h e field is l e f t
blank. Of t h e di rect ives t h a t t h e Assembler lists, the IDT, REF, DEF, DXOP, EQU,
SREF, LOAD, COPY, and END directives leave the Location Counter field blank.

The third field, >CBZO in t h e example, conta ins t h e hexadecimal representa t ion of t h e
object code placed in the location by the Assembler. T h e apostrophe (') following t h e
third field of the second line in t h e example indicates t h a t t h e contents, >0128, a r e
program-relocatable. A quote ('I) in th is location indicates t h a t t h e location is
data-relocatable, while a plus sign (+) indicates t h a t t h e label is re locatable with
respec t t o a common segment. All machine instructions and the BYTE, DATA, and
TEXT directives use this field for object code. The EQU directive places t h e value
corresponding t o t h e label in t h e object code field.

The four th field conta ins t h e f i r s t 60 charac te r s of source s t a t e m e n t as you wro te it.
Spacing in this field is determined by t h e spacing in t h e source s ta tement . Thus,
source s t a t e m e n t f ields a r e aligned in t h e listing only when they a r e aligned in t h e
s a m e charac te r positions in t h e source statements.

The machine instruction used in t h e example specifies t h e symbolic memory
addressing mode f o r both operands. This causes the instruction t o occupy t h r e e
words of memory and th ree l ines of t h e listing. The object code corresponds to t h e
operands in the order in which they appear in the source statement.

15.1.1 Error Messages

The Assembler processes f a t a l and nonfata l e r ro r messages. Fa ta l er rors s top t h e
assembly process with t h e appropriate error message displayed on t h e screen as
shown.

EDITORIASSEMBLER
P a g e 236

ASSEMBLER OUTPUT

Fatal Errors

SYMBOL TABLE OVERFLOW
CANT GET COMMON
CANT GET MEMORY
DSR ERROR XXXX

The XXXX field following DSR ERROR contains the f i rst two bytes of the Peripheral
Access Block which contain the error code. See Section 18.2 for more information.

Nonfatal errors do not stop the assembly process. Instead, an error message i s

printed following the statement containing the error and is also displayed on the
screen. Each error gives the type of error and the number of the statement in which

it occurred.

Nonfatal Errors

***** SYNTAX ERROR - nnnn
"*** INVALID REF - nnnn
***** OUT (X RANGE - nnnn
***** MULTIPLE SYMBOLS - nnnn

***** INVALID MNEMONIC - nnnn
***** BAD FWD REFERENCE - nnnn
*****, INVALID TERM - nnnn
***** INVALID REGISTER - nnnn
***** SYMBOL TRUNCATION - nnnn
***** UNDEFINED SYMBOL - nnnn
***** COM TABLE OVERFLOW - nnnn
***** PEND ASSUMED - nnnn
***** DEND ASSUMED - nnnn
***** CEND ASSUMED - nnnn

***** END ASSUMED - nnnn
"*** COPY ERROR - nnnn

I f there are any undefined symbols in the assembly, the undefined symbols are listed
at the end of the listing under the heading THE FOLLOWING SYMBOLS ARE
UNDEFINED.

EDITOR/ASSEMBLER
Page 237

ASSEMBLER OUTPUT

15.2 OBJECT CODE

The Assembler produces object code t h a t may be loaded directly in to t h e computer.
If i t i s not compressed, object code consists of records containing up t o 7 1 ASCII
charac te r s each. This fo rmat permits correction of minor e r ro rs by using the Editor
t o ed i t the object code. The fi le fo rmat is DISPLAY, FIXED 80.

15.2.1 Object Code Format

The object code consists of variable-sized records. Each record consists of a number
of charac te r tags, each followed by up t o t w o fields. Most fields are numeric and
consist of four hexadecimal digits. The length of the charac te r f ields i s described in
t h e following sect ions on each of t h e t ag characters.

When the Assembler has no more d a t a or t h e record i s full, i t wr i t es t h e t a g
charac te r 7, followed by t h e checksum field and the t a g charac te r F, which requires
no fields. The Assembler then fills the r e s t of the record with blanks and a sequence
number and then begins a new record with t h e appropriate t a g character . The last

record of an object module h a s a colon (:) in t h e f i rs t charac te r position of the
record, followed by t h e identification code 9914 AS.

The t a g charac te r s used by t h e Assembler a r e 0, 1, 2, 3, 4, 5, 6, 7, 9, A, B, C, and F.
You may subst i tu te a t a g charac te r 8 for a t ag charac te r 7 in order t o have t h e
Loader ignore the checksum. Tag charac te r I is ignored. Any o ther t a g produces an
error.

Tag charac te r 0 is used for program identification. Field 1 contains the number of
by tes of program-relocatable code, and field 2 contains a n eight-character program
identif ier assigned t o t h e program by an IDT directive. When you do not include an
IDT directive, t h e second field contains blanks. The Loader uses t h e program
identif ier t o identify the program and the number of by tes of program-relocatable
code t o determine t h e load bias for t h e next module o r program. The Assembler
p laces a single t a g charac te r 0 at the beginning of each program.

Tag charac te r s 1 and 2 a r e employed with entry addresses. Tag charac te r 1 is used
when the en t ry address i s absolute. Tag charac te r 2 i s applicable when t h e en t ry
address is relocatable. The field contains t h e entry address. One of these t a g s may
appear a t t h e end of the object code file. The Loader uses t h e field value t o
determine t h e entry point a t which execution s t a r t s when t h e loading is complete.

EDITORlASSEMBLER
P a g e 238

ASSEMBLER OUTPUT

Tag characters 3 and 4 a r e used for ex te rna l references. Tag charac te r 3 is used
when the last appearance of the symbol in Field 2 of the t ag is in
program-relocatable code. Tag charac te r 4 is employed when the l a s t appearance of

the symbol is not in re locatable code. Field 1 contains t h e location of t h e las t
appearance of t h e symbol. The six-character symbol in Field 2 i s the external
reference. For each external r e fe rence in a program, t h e object code contains a t a g
charac te r with a location or an absolute zero and the symbol t h a t is referenced.
When Field 1 of the t a g charac te r contains absolute zero, no location in t h e program
requires t h e address t h a t corresponds t o the reference. When Field 1 of the t ag
charac te r contains a location, the address corresponding t o t h e re fe rence is placed in
the location specified and t h e location's previous value is used t o point t o the next
location unless t h e value is an absolute zero.

Tag charac te r s 5 and 6 a r e used for external definitions. Tag charac te r 5 is
applicable when the location is program-relocatable. Tag charac te r 6 is used when
t h e location is absolute. Field 1 provides t h e link t o t h e external definition, and field
2 contains the six-character symbol of the external definition.

Tag charac te r 7 precedes t h e checksum, which i s a n error-detection word. The
checksum is the two's complement of the sum of t h e 8-bit ASCII values of the
charac te r s in t h e record from the f i rs t t a g of t h e record through t h e checksum tag.

Tag charac te r 8 may be inserted in place of t ag charac te r 7 so t h a t the Loader

ignores t h e checksum. The field contains t h e previous checksum.

Tag charac te r s 9 and A a r e used with load addresses for following data. Tag
charac te r 9 is used when t h e load address is absolute, while t a g charac te r A indicates
t h a t the load address is program-relocatable. The field contains the address at which
t h e following d a t a word is t o b e loaded. A load address is required for a d a t a word
t h a t i s t o be placed in memory a t some address other than t h e next address.

Tag charac te r s 6 and C are used with d a t a words. Tag charac te r B i s used when t h e
d a t a i s absolute, such a s an instruction word or a word t h a t contains t e x t charac te r s
or absolute constants. Tag charac te r C is used f o r a word t h a t contains a
program-relocatable address. The field contains t h e d a t a word. The Loader places
t h e d a t a word in the memory location specified in the preceding load address field o r
in t h e memory location t h a t follows t h e preceding d a t a word.

Tag charac te r F indicates t h e end of t h e record.

The following table summarizes t h e charac te r tags.

EDITOR/ASSEMBLER
Page 239

ASSEMBLER OUTPUT

Tag
0

1
2
3
4
5
6
7
8

9
A

B
C

F

Character Tag Summary

Use -
Program Identification
Entry Point Definition
Entry Point Definition
External References
External References
External Definitions
External Definitions
Checksum Indicator
Checksum Ignore
Load Address

Load Address
Data
Data
End o f Record

Field 1 Field 2
Program Length Program ID
Absolute Address
Relocatable Address
Relocatable Address of Chain Symbol
Absolute Address of Chain Symbol
Relocatable Address Symbol
Absolute Address Symbol
Checksum
Any Value
Absolute Value

Relocatable Address
Absolute Value
Relocatable Address

15.2.2 Compressed Object Code Format

This format is a condensed version o f normal object code. Compressed object code
results in a considerable savings of diskette space compared to the normal object
format. You cannot change or edit compressed object code. Instead, change the
source code and reassemble it.

EDITORIASSEMBLER
Page 240

ASSEMBLER OUTPUT

15.3 CHANGING OBJECT CODE

Correct ion of the object code t h a t the Assembler produces may only require changing
a charac te r or a word. You c a n ed i t t h e object code using t h e Editor. Because t h e
changes may cause a checksum error when t h e checksum is verified as t h e record is
loaded, you must change the 7 t ag charac te r t o an 8.

You can only change uncompressed object code. Af te r you have finished editing,
save t h e file in fixed 80 format.

For bes t results, when more extensive changes a r e required, change t h e source code
and reassemble r a t h e r than writing additional object code records.

EDITORlASSEMBLER
Page 241

ASSEMBLER OUTPUT

15.4 MACHINE LANGUAGE FORMAT

Some of the data words preceded by tag character B represent machine instructions.
Comparing the source listing wi th the object code fields identifies the data words
that represent machine instructions. The following table shows the manner in which
the bits of the machine instructions relate to the operands in the source statements
for each format of machine instruction.

Machine Instruction Formats

Forrna t
I
I
I
I I
111, I X
I v
v
v I
V I I
V I I I
X

10 11 12 13 I 4 I 5 16 I 7 18 I 9 1101111121131141151
I 1 I1 I X I W B l Td I D I Ts I s 1
11 10 I X IWl Td I D 1 Ts I S I
10 11 I X l W B l Td I D I Ts I S I
10 10 10 11 I X I X I X I X I D I SP 1
10 10 11 Ix I X I X I D I T S I S I
10 10 I1 11 10 I X I NUvl I Ts I S 1
10 10 10 10 I X 10 I X I X I C O N I REG I
10 10 10 10 10 11 I X I X I X I X I Ts I S I
10 I 0 10 10 10 10 11 I1 I X I X I X 10 10 10 10 10 1
10 10 10 10 10 10 (1 10 I X I X I X 10 1 REG I
10 10 10 10 10 10 11 I1 10 10 11 I REG I

Key:
X A b i t of the operation code that is either 0 or 1, according to the specific

S
NUM
DISP
REG

COUNT

instruction in the format.
A b i t of the operation code that is 0 i n instructions that operate on words
and 1 in instructions that operate on bytes.
A pair of bits that specify the addressing mode of the destination operand.
00 specifies Workspace Register addressing. 01 specifies Workspace
Register indirect addressing. 10 specifies symbolic memory addressing when
D equals 0 and indexed memory addressing when D is not equal to 0. 11
specifies Workspace Register indirect auto-increment addressing.
The Workspace Register for the destination operand.
A pair o f bits that specify the addressing mode of the source operand as
shown far Td.
The Workspace Register for the source operand.
The number of bits t o be transferred.
A two's complement number that represents a displacement.
A Workspace Register address.

A shift count.

EDITORJASSEMBLER
Page 242

ASSEMBLER OUTPUT

15.5 OUTPUT EXAMPLE

The example o f a crash sound, given i n Section 20.4.3, produces the l ist ing and object
code shown below.

15.5.1 Listing

The fol lowing is the l ist ing produced when the crash program is assembled.

9914 A S s 3 a E R
MRSIQ\I 1.1
0001 *
0002 * Exarp le P r o g r m t o m k e a c rash sound.
0003 *
0004 F E F W
0005 m~
0006 x

0007 1000 BLFFEREQJ >lo00 M3P RFM b u f f e r used by sound generator.
0008 *
0009 0000 01 HI1 B Y E >01
0010 R/EN
0011 *
0012 CFCxH

0013 0002 0200 LI RO,BCFFER Load KP RPM b u f f e r address.
0004 1000

0014 0006 0201 LI R1,CKATA Po in te r t o the sound data.
0008 0038'

0015 OOOA 0202 LI R2,32 32 bytes t o rmve t o the KP RFM b u f f e r .
OOK 0020

0016 OOOE 0420 BL\IP@h€Wd lvbve t o K P F W Y l b u f f e r .
0010 0000

0017 *
0018 LOCP

0019 0012 0300 LIMI 0 D i s a b l e KP i n t e r r u p t .
0014 0000

0020 0016 OZOA LI FUO,&FFER Load sound t a b l e address.
0018 1000

0021 OOlA C80A K N IUO,@BXC Load p o i n t e r t o t he tab le.
001'2 83cc

0022 OOlE F820 SOCB@Ul,@03FD Set W R P M f l ag .

EDlTOR/ASSEMBLER
Page 243

ASSEMBLER OUTPUT

0020 0000'
0022 83FD

0023 0024 D820 MM3 @Dl,@8XE Start sound processing.
0026 0000'
0028 8XE

0024 002A 0300 LIMI 2 Enable 0 interrupt.
002c 0002

0025 *
0026 LOCPZ
0027 OOZE D820 Mh/B @8XE,@D83CE Check if tirre is up.

0030 8XE
0032 8XE

0028, 0034 13EE JEQ LOP Repeat the sound.
0029 0036 lOFB W LQP2 hit until finished.

0030 *
0031 0038 03 Cl3TA BYE >03,>9F,>E4,>F2,5

0039 9F
003A €4
0038 F2
0032 05

0032 003D 02 BYE >02,>E4,>F0,12
003E E4
003F FO
0040 CC

0033 0041 02 EWE >02,>E4,>F2,10
0042 E4
0043 F2
0044 OA

0034 0045 02 BYTE >02,>E4,>F4,8
0046 E4

9914 ASsOveLER
MRSICN 1.1

0047 F4
0048 08

0035 0049 02 BYTE >02,>E4,>F6,6
0044 E4
0048 F6
004C 06

0036 004D 02 BYE >02,>E4,>F8,4

EDITOR/ASSEMBLER
Page 244

ASSEMBLER OUTPUT

B Y E >02,>€4,>FA,2

B Y E >Ol,>FF,O

9914 ASSDVBLER
MRSICN 1.1 PPCE 0003

&FFER 1000 ' (734TA 0038 D CFm3-l 0002 ' t i l l 0000
LaP 0012 ' L a P 2 OOZE RO 0000 FU 0001
Fa0 OOOA Fa 1 OOOB Fa2 O O K Fa3 oom
R14 OOOE R15 OOOF R2 0002 R3 0003
R4 0004 R5 0005 R6 0006 R7 0007
RE 0008 R9 0009 E W 0010

0000 ER=m!i

15.5.2 Object Code

The following is t h e object code produced when the crash program i s assembled.

EDITOR/ASSEMBLER
Page 245

SECTION 16: UTILITIES AND PREDEFINED SYMBOLS

Several uti l i t ies are provided to give you simple access to many of the resources o f
the T I Home Computer. With these utilities, you can change the display, access the
Device Service Routine for peripheral devices such as disk drives and printers, scan
the keyboard, link your program to GPL routines that perform a variety of useful
tasks, and link to the Editor/Assembler Loader. This section discusses these uti l i t ies

and many of the predefined symbols. Other predefined symbols, used for sound and

speech, are discussed in Sections 20 and 22.

Normally, it is dif f icult to write to and read from VDP R A M and VDP Registers
because they, l ike GROM and speech devices, are memory mapped. To read from

most memory-mapped devices, you must f irst write a value to a specific address, wait
while the data is obtained, and then read the data from another address. To write to

most memory-mapped devices, a similar process occurs: put the data in an address,
write a value to an address to signify that the data is to be -written, and then wait
while the data is written. This requires detailed knowledge of the addresses to use
and how to use them.

The uti l i t ies and predefined symbols are loaded a t the same time as the Loader. You
can make them available by mentioning them in a REF statement a t the beginning of
your assembly language program, accessing them with a BLWP instruction, and using

Registers to pass arguments. They are also loaded into the Memory Expansion unit
for use when the T I BASIC subroutines INIT or LOAD are called.

The uti l i t ies are predefined in the REFIDEF table a t memory locations >3F38 through
> 3 m . They use UTILWS, starting a t address >2094, as ut i l i ty Workspace Registers.
A l l parameters are passed through your program's Workspace Registers. The USRWSP
area at >20BA may be used for your Workspace Registers.

The following l is t gives each of the uti l i t ies predefined in the REFIDEF table and

describes briefly what each does. Sections 16.1 and 16.2 provide a more detailed
discussion.

EDITOR/ASSEMBLER
Page 246

UTILITIES AND PREDEFINED SYMBOLS

Name
VSBW
VMBW
VSBR
VMBR
VWTR
KSCAN
GPLLNK
XMLLNK

DSRLNK
LOADER

Use -
Writes a single byte to VDP RAM.
Writes multiple bytes to VDP RAM.
Reads a single byte from VDP RAM.
Reads multiple bytes from VDP RAM.
Writes a single byte to a VDP Register.

Scans the keyboard.
Links your program to Graphics Programming Language routines.
Links your program to the assembly language routines in the console
ROM or in RAM.
Links your program to Device Service Routines.
Links your program to the Loader to load TMS9900 tagged object
code.

Several general use addresses are predefined with symbols. You may use them
instead of the addresses they represent so that you do not have to memorize the
addresses. Their use is described i n Section 16.3.

Name Address Data Contained
SCAN >000E Entry address of the keyboard scan utility,
UTLTAB >2022 Ut i l i t y table entry address.
PAD >8300 The scratch pad used by T I BASIC, GPL, T I BASIC, and

other programs. You may use some areas. See Section
24.3.1 for a detailed description of this area.

GPLWS >83EO GPL Workspace.

Some addresses that are useful for accessing memory-mapped devices are predefined
with symbols. You may use these symbols i n your own memory access routines
instead of the uti l i t ies described above. The use of these symbols is described i n
Sections 16.4 and 16.5.

Name
VDPWA
VDPRD
VDPWD
VDPSTA
GRMWA
GRMRA
GRMRD
GRM WD

Address
>8C02
>8800
>8COO
>8802
>9C02
>9802
>9800

Data Contained
VDP RAM write address.
VDP R A M read data.
VDP R A M write data.
VDP R A M status.
GROMIGRAM write address.
GROMIGRAM read address.
GROMIGRAM read data.

>9C00 GROMIGRAM write data.

EDITOR/ASSEMBLER
Page 247

UTILITIES AND PREDEFINED SYMBOLS

16.1 VDP R A M ACCESS U T I L I T I E S

Several uti l i t ies provide access t o Video Display Processor RAM. All pa ramete rs a r e

passed through your program's Workspace Registers. T h e uti l i t ies are described

below.

Note: Before you change VDP Register 1, put a copy of i t a t address >83D4. The

b i t t h a t turns the screen on and off, which is used when no key is pressed for a
ce r ta in t ime, is in VDP Regis ter 1 and is s tored a t t h a t address. Therefore, if you
do no t put the copy there, the screen re tu rns t o a prior s t a t e when you press a key.

BLWP @VSBW: VDP RAM Single Byte Write--Writes the value in the
most-significant byte of Regis ter 1 t o t h e VDP RAM address
indicated in Register 0.

Regis ter 0: Address in VDP RAM.

Register 1: Most-significant byte conta ins t h e value t o b e
written.

For example, if Regis ter 0 is > lo00 and Register 1 is >2345, the
instruction s e t s address > lo00 in VDP RAM equal t o >23.

BLWP BVMBW: VDP RAM Multiple Byte Write--Writes the number of bytes
indicated in Register 2 from the RAM buffer pointed t o by
Register 1 t o the VDP RAM buffer pointed t o by Register 0. The
RAM buffer is normally included in your program space with t h e
BSS instruction.

Register 0: Star t ing address of the buffer in VDP RAM.

Register 1: Start ing address of t h e buffer in RAM.

Register 2: The number of bytes t o be written.

For example, if Regis ter 0 is >1000, Register 1 is >2345, and
Register 2 is >0014, t h e instruction se t s addresses > lo00 through
>I013 in VDP RAM equal t o the 20 bytes s tar t ing a t address >2345
in the Memory Expansion unit.

BLWP BVSBR: VDP RAM Single Byte Read--Reads a byte f rom the VDP RAM

EDITOR/ASSEMBLER
P a g e 248

UTILITIES A N D PREDEFINED SYMBOLS

address indicated i n Register 0 and places it i n the most-significant
byte o f Register 1.

Register 0: Address i n VDP RAM.

Register 1: Value i s placed i n the most-significant byte.

For example, i f Register 0 is >lo00 and address >I000 contains >12,
the instruct ion sets the most-significant byte of Register 1 t o >12.

BLWP BVMBR: VDP R A M Mul t ip le By te Read--Reads the number o f bytes
indicated i n Register 2 f r o m the R A M buf fer pointed t o by
Register 0 and places them i n the C P U R A M buf fer pointed t o by
Register 1.

Register 0: Start ing address of the buf fer i n VPP RAM.

Register 1: Starting address o f the buf fer i n RAM.

Register 2: The number of bytes t o be read.

For example, if Register 0 is >1000, Register 1 i s >2345, and
Register 2 i s >0014, the instruct ion reads the 20 bytes start ing a t

address > lo00 i n VDP R A M and sets addresses >2345 through >2358
i n CPU R A M equal to those bytes.

BLWP BVWTR: VDP R A M Wri te Register--Writes the value i n the least-significant
byte o f Register 0 to the VDP Register indicated in the
most-significant byte o f Register 0.

Register 0: Least-signif icant byte contains the value t o be
written. Most-signif icant byte indicates the VDP
Register t o be wr i t ten to.

For example, if Register 0 is >010E, the instruct ion loads VDP
Register 1 w i t h the value >OE. See Section 16.4 fo r more
information on the VDP Registers.

EDITOR/ASSEMBLER
Page 249

UTILITIES AND PREDEFINED SYMBOLS

16.2 EXTENDED UTILITIES

Five utilities, called extended utilities, allow you to access the routines bui l t into the
Home Computer. KSCAN allows you to use the routine that scans the keyboard.

GPLLNK allows you to link to Graphics Programming Language routines. XMLLNK

allows you to use routines in ROMs. DSRLNK allows you to link to Device Service

Routines. LOADER allows you to load assembly language programs.

16.2.1 KSCAN

The KSCAN ut i l i ty allows you to access the key scan routine in the computer. To

use this utility, you must include REF KSCAN in your program, select the keyboard
device to be checked, and call the ut i l i ty wi th the instruction

BLWP BKSCAN

Then check the STATUS byte to see if a key has been pressed for the f irst t ime and
check an address to see what the key was. You can also check to see i f the Wired
Remote Controllers have been moved.

Select the keyboard device to be checked by placing a byte a t address >8374. A
value of >00 checks the entire keyboard. A value of >01 checks the l e f t side of the
keyboard and places the values from Wired Remote Controller unit number one in

addresses >a376 (Y-position) and >I3377 (X-position). A value of >02 checks the r ight
side o f the keyboard and places the values f rom Wired Remote Controller unit number
two in addresses >a376 and >8377. The values that may be returned in the addresses
for the Wired Remote Controller are >04 (up or right), >00 (center), and >FC (down or
left). For more information on key units, see the explanation of the CALL KEY
subprogram in the User's Reference Guide.

The status b i t which indicates i f a key has been pressed can be tested with a compare
ones corresponding (COC) instruction. The STATUS byte is a t address >837C and is
as shown below.

EDITORfASSEMBLER
Page 250

UTILITIES AND PREDEFINED SYMBOLS

When KSCAN is called, b i t 2 of the STATUS byte is set i f a key was pressed that was
different from the key pressed on the last call to KSCAN. The ASCII value of the

key pressed is placed at address >8375. I f no key was pressed, this address contains
>FF.

For example, i f your program places >00 a t address >8374, BLWP @KSCAN is called,
and the B key is pressed for the f i rst time, then b i t 2 of the byte a t address >83C7 i s

set, the value >42 is in address >8375.

16.2.2 GPLLNK

GPLLNK allows you to use routines written in Graphics Programming Language.

These routines allow you to perform such tasks as loading character sets, giving
tones, allocating space for strings, and so on. Some of the routines are described
below.

To use GPLLNK, you must include REF GPLLNK in your assembly language program,
set the STATUS byte (at address >837C) to >00, branch to GPLLNK with BLWP, and

provide the address of the routine in the console as data. For example, the following

instructions branch t o the routine which loads the standard character set.

REF GPLLNK

CLR R1
MOVE R1,@>837C
BLWP @GPLLNK
DATA >DO16

The GPL routines described below return to your program when they finish executing.
This ut i l i ty lets you access any address in GROM. However, other routines than the
ones given may branch to other code or have other side effects. To be sure that a
routine returns to your program, check to see that i t ends with a GPL return
instruction (>00). You must also check that the routine does not use memory areas

that your program is also using.

EDITOR/ASSEMBLER
Page 251

UTILITIES AND PREDEFINED SYMBOLS

In the routines shown below, FAC (the Floating Point Accumulator) starts a t address
>834A and ARG (which contains arguments) starts a t address >835C. The STATUS

byte is a t address >837C. VSPTR is a t address >836E.

16.2.2.1 General Purpose GPL Routines

The following are some useful general purpose GPL routines which you may access
with GPLLNK.

DATA >0016 Load Standard Character Set--Loads the standard character set into

VDP RAM.

Input: FAC is a pointer t o the beginning address i n VDP RAM where
characters are to be loaded.

DATA >DO18 Load Small Capitals Character Set--Loads the small capitals character

set into VDP RAM.

Input: FAC is a pointer t o the beginning address i n VDP R A M where
characters are t o be loaded.

DATA >0020 Execute Power-Up Routine--Initializes the system.

Output: The sound and VDP circuits are cleared and the default values
for the VDP Registers, character set, color table, and status
block are loaded. The available VDP R A M size is stored at
>8370.

DATA >0034 Accept Tone--Issues the tone associated with correct input.

DATA >0036 Bad Response Tone--Issues the tone associated with incorrect input.

DATA >0038 Get String Space Routine--Allocates a memory space i n VDP R A M
with a specified number of bytes. This routine should not be used
outside the T I BASIC environment. I f there is not enough space, the
routine does a "garbage collection" to eliminate temporary strings and
then tries again. I f there is s t i l l not enough space, the routine issues
the MEMORY FULL error message.

EDITOR/ASSEMBLER
Page 252

UTILITIES AND PREDEFINED SYMBOLS

Input: Addresses >830C and >830D should contain the number of

bytes t o be allocated.

Output: Address >831C points t o the allocated string space and
address >831A points t o the f i r s t free address i n VDP RAM.
The four bytes a t addresses >8356 through >a359 are used by
this routine. The F A C area may be destroyed if a garbage
col lect ion is done.

Note: Although this rout ine is designed t o allocate a string space i n

VDP RAM, it is also useful f o r assigning space fo r the Peripheral
Access Block (PAB) and data buf fer required by a DSR. See Section
18.2 for a description o f Peripheral Access Blocks.

DATA >DO38 B i t Reversal Routine--Provides a mi r ro r image o f a byte. This rout ine
i s used t o f o rm a mir ror image o f a character definition.

Input: F A C is the address of the data i n VDP RAM. FAC+Z (>834C)
is the number o f bytes t o be reversed.

Output: I n each byte, bi ts 0 and 7, 1 and 6, 2 and 5, and 3 and 4 are
exchanged. CPU R A M addresses >8300 through >8340 are
destroyed.

DATA >003D Cassette DSR Routine--Accesses the cassette DSR routine.

Input: The Peripheral Access Block and data buf fer must be set up
i n VDP R A M prior t o the call. The screen of fset for T I

BASIC is >60 and >00 outside the T I BASIC environment.
The screen start address must be >00 for the prompts issued
by the cassette DSR. F A C is the device name (for example,
"CS1"). Address >a356 points t o the f i rs t character - after the
name in the PAB. Addresses >8354 and >a355 are the length
of the name (for example, >OD03 for "CS1"). The word a t
address >83DO should be set to >0000. Address >836D must
be set t o >08 t o indicate a DSR call. The STATUS byte must
be >00.

Output: The cassette DSR prompts fo r the operation o f the cassette.

EDITOR/ASSEMBLER
Page 253

UTILITIES AND PREDEFINED SYMBOLS

DATA >004A Load Lower-Case Character Se t (TI-99/4A only)--Loads the lower-case
character set into VDP RAM.

Input: FAC is a pointer t o the beginning address in VDP RAM where
characters a r e t o be loaded.

16.2.2.2 M a t h e m a t i c a l R o u t i n e s

When errors occur during the execution of these floating point routines, they a r e
indicated at address >a354 with t h e error codes listed.

Code Error Description - -
01 Overflow
02 Syntax
03 Integer overflow on conversion
04 Square root of a negative number
0 5 Negative number t o non-integer power
06 Logarithm of a non-positive number
07 Invalid argument in a trigonometric function

The abbreviations for these routines given in parentheses a r e the TI BASIC functions
which call the routines.

DATA >a014 Convert Number t o String (STR)--Converts a floating point number t o
an ASCII string.

Input: FAC contains the eight bytes defining the number. FAC+11
083551, if set t o 0, indicates t h a t t h e output string is t o b e
in TI BASIC format. Otherwise, the output is in FIX mode.
If fix mode is indicated, then FAC+12 (>8356) and FAC+13
(>8357) must contain data. FAC+12 is the number of
significant digits. I t contains 0 t o express overflow from t h e
calculation range. FAC+13 indicates t h e number of digits t o
the right of t h e decimal point. A negative value disables t h e
FIX mode.

EDITOR/ASSEMBLER
Page 254

UTILITIES AND PREDEFINED SYMBOLS

Output: FAC is modified, FAC+11 (>8355) contains the least
significant byte of the address where the result string is
located. >a300 must be added to FAC+11 t o find the address
of the result string. FAC+12 (>8356) contains the length of

the result string i n bytes.

DATA >0022 Greatest Integer Function (1NT)--Computes the greatest integer
contained in the value.

Input: FAC contains the floating point value.

Output: FAC contains the result. For positive numbers, the integer is

the truncated value. For negative numbers, the integer is the

truncated value plus one. The STATUS byte is affected.

DATA >DO24 Involution Routine--Raises a number to a specified power.

Input: FAC is the exponent value. ARG is the base value.

Output: FAC is the result in floating point format. The result is
computed as EXP(exponent-value*LOG[ABS(base-value)]). The
STATUS byte is affected. Locations >8375 and >8376 are
destroyed and the word content of VSPTR is decremented by
eight.

DATA >0026 Square Root Routine (SQR)--Computes the square root of a number.

Input: FAC is the input value.

Output: FAC is the square root of the input value. The STATUS byte
i s affected. Addresses >a375 and >a376 are destroyed.

DATA >0028 Exponent Routine (EXP)--Computes the inverse natural logarithm of a
number.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.
Addresses >8375 and >a376 are destroyed.

EDITOR/ASSEMBLER
Page 255

.UTILITIES A N D PREDEFINED SYMBOLS

DATA >002A Natural Logarithm Routine (LOG)--Computes the natural logarithm of a

mmber.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.
Addresses >a375 and >a376 are destroyed.

DATA >002C Cosine Routine (C0S)--Computes the cosine of a number expressed i n
radians.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.
Addresses >a375 and >a376 are destroyed.

DATA >OOZE Sine Routine (SIN)--Computes the sine of a number expressed i n
radians.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.
Addresses >a375 and >a376 are destroyed.

DATA >0030 Tangent Routine (TAN)--Computes the tangent of a number expressed
in radians.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.
Addresses >a375 and >a376 are destroyed.

DATA >0032 Arctangent Routine (ATNI--Computes the arctangent of a number
expressed i n radians.

Input: FAC is the input value.

Output: FAC is the result value. The STATUS byte is affected.
Addresses >a375 and >a376 are destroyed.

EDITOR/ASSEMBLER
Page 256

UTILITIES AND PREDEFINED SYMBOLS

Note: A GPL rout ine is executed in t h e main program of the Editor/Assembler.
Prior t o t ransfer t o the Editor/Assembler, t h e GPLLNK routine s e t s a flag.
However, t h e Editor/Assembler main program checks t h e GPL s ta tus bit for e r ro r
handling before i t checks for t h e f lag set by the GPLLNK routine. Thus, you must

reset t h a t s t a tus b i t a t address >837C before calling GPLLNK. Otherwise, a

meaningless error message is returned.

16.2.3 XMLLNK

The XMLLNK utility allows you t o link an assembly language program t o a routine in
ROM or t o branch t o a rout ine in t h e Memory Expansion unit. The ROM routines

perform such tasks as floating point ar i thmet ic , s t ack ar i thmet ic , str ing t o number
conversions, and so on.

In linking t o console ROM routines, you re fe r t o table en t r i es with DATA
instructions. These t ab le en t r i es contain t h e addresses of t h e routines which you
wish t o execute. The following describes t h e rout ines contained in t h e tables and the
addresses of the tables. Each entry in the table t akes up two bytes, so the addresses
accessed are incremented by t w o for each entry.

Table
Number
>O
>1
>2
>3
>4
>5
>6
>7

Function Address
Floating Point Routines Specified at >OCFA
Conversion and TI BASIC rout ines Specified at >OCFC
Memory Expansion unit > Z O O 0
TI BASIC enhancement >3FCO
TI BASIC enhancement >3FEO
Peripheral ROM >4010
Peripheral ROM >4030
ROM in Command Module >6010

To link t o a routine in ROM, t h e DATA instruction is followed by a word t h a t
specif ies t h e table and en t ry you wish t o use. The f i r s t byte of the word indicates
t h e t ab le and en t ry you a r e referr ing to, with t h e second by te equal t o >00.

The f i rs t nybble o f the by te is f rom > O through >7, indicating the table which you
wish t o use. The second nybble of t h e by te i s f rom >O through >F. When doubled, i t
indicates t h e o f f s e t f rom the beginning of t h e table, f r o m >00 through >1E. For

EDITOR/ASSEMBLER
P a g e 257

UTILITIES AND PREDEFINED SYMBOLS

example, DATA >I100 indicates the f i rst table, two bytes from the beginning (the
address of the beginning of the table is stored at address >OCFA); DATA >3400
indicates the third table, eight bytes from the beginning, or address >3FC8; and DATA
>5C00 indicates the f i f t h table, >18 bytes f rom the beginning, or address >4028.

When you branch to XMLLNK, the address of the routine to be executed is obtained
from the table, and then the routine is executed starting a t the address obtained.
For example, the following sequence branches t o the convert integer t o floating point
routine a t address >ZOO6 in the Memory Expansion unit.

REF XMLLNK

BLWP QXMLLNK
DATA >2300

You may also use the XMLLNK ut i l i ty to branch to an address and start executing
there. I n this case, the DATA instruction is the address to which you wish to
branch. The first b i t of the word must be on, so the address may be f rom >8000
through >mF.

This use of the XMLLNK has the same effect as using the BL instruction (see Section
7.2), except that the GPL Workspace Registers are used during the instructions
executed after the branch. When the program returns, then your Workspace
Registers are again used.

For example, the following sequence branches t o address >C13A i n the Memory
Expansion unit.

R E XMLLNK

BLWP QXMLLNK
DATA >C13A

EDITOR/ASSEMBLER
Page 258

UTILITIES AND PREDEFINED SYMBOLS

16.2.3.1 ROM Routines

The following describe some o f the routines in ROM that you can access with
XMLLNK, giving the data required, the input, and the output. Since XMLLNK

accesses routines in the console, care must be taken to obtain the intended result.
You must be sure that the GPL Workspace Registers are not changed, the memory
space used in the routine is set up properly, and the ut i l i ty returns t o the calling
program on completion.

FAC (the Floating Point Accumulator) starts a t address >834A, ARG (which contains
arguments) starts a t address >835C, and VSPTR is a t address >836E. The STATUS

byte is a t address $837C. A l l overflow errors, except in Convert Floating Point to

Integer (CFI), return >01 at address >8354.

DATA >0600 Floating Point Addition (FADD)--Adds two values.

Input: FAC is the first value and ARG is the second value.

Output: FAC is the result of the addition.

DATA >0700 Floating Point Subtraction (FSUB)--Subtracts two values.

Input: FAC is the value to be subtracted. ARG is the value from

which FAC is subtracted.

Output: FAC is the result of the subtraction.

DATA >0800 Floating Point Multiplication (FMUL)--Multiplies two values.

Input: FAC is the multiplier. ARG is the multiplicand.

Output: FAC is the result of the multiplication.

DATA >0900 Floating Point Division (FD1V)--Divides two values.

Input: FAC is the divisor. ARG is the dividend.

Output: FAC is the result of the division.

EDITORIASSEMBLER
Page 259

UTILITIES AND PREDEFINED SYMBOLS

DATA >DADO Floating Point Compare (FC0M)--Compares two floating point numbers.

Input: ARG is the f i rst argument. FAC is the second argument.

Output: The STATUS byte i s affected. The high bi t is set i f ARG is
logically higher than FAC. The greater than b i t is set i f
ARG is arithmetically greater than FAC. The equal b i t is set

i f ARG and FAC are equal.

DATA >OB00 Value Stack Addition (SADD)--Adds using a stack i n VDP RAM.

Input: VSPTR contains the address in VDP R A M where the left-hand
term is located. FAC is the right-hand value.

Output: FAC is the result of the addition.

DATA >OCOO Value Stack Subtraction (SSUB)--Subtracts using a stack in VDP RAM.

Input: VSPTR contains the address in VDP RAM where the left-hand
term is located. FAC is the value to be subtracted.

Output: FAC is the result of the subtraction.

DATA >OD00 Value Stack Multiplication (SMUL)--Multiplies using a stack in VDP
RAM.

Input: VSPTR contains the address in VDP RAM where the
multiplicand is located. FAC is the multiplier value.

Output: FAC is the result of the multiplication.

DATA >OED0 Value Stack Division (SD1V)--Divides using a stack in VDP RAM.

Input: VSPTR contains the address in VDP RAM where the dividend
is located. FAC is the divisor value.

Output: FAC is the result of the division.

EDITOR~ASSEMBLER
Page 260

UTILITIES AND PREDEFINED SYMBOLS

DATA >OAOO Floating Point Compare (FC0M)--Compares two floating point numbers.

Input: ARG is the f irst argument. FAC is the second argument.

Output: The STATUS byte i s affected. The high b i t is set if ARG is

logically higher than FAC. The greater than b i t is set if
ARG is arithmeticatly greater than FAC. The equal b i t is set

i f ARG and FAC are equal.

DATA >0800 Value Stack Addition (SADDI--Adds using a stack in VDP RAM.

Input: VSPTR contains the address in VDP R A M where the left-hand
term is located. FAC is the right-hand value.

Output: FAC is the result of the addition.

DATA >OCOO Value Stack Subtraction (SSUB)--Subtracts using a stack in VDP RAM.

Input: VSPTR contains the address i n VDP R A M where the left-hand
term is located. FAC is the value to be subtracted.

Output: FAC is the result of the subtraction.

DATA >OD00 Value Stack Multiplication (SMUL)--Multiplies using a stack in VDP
RAM.

Input: VSPTR contains the address i n VDP R A M where the
multiplicand i s located. FAC i s the multiplier value.

Output: FAC is the result of the multiplication.

DATA >OEOO Value Stack Division (SD1V)--Divides using a stack in VDP RAM.

Input: VSPTR contains the address in VDP RAM where the dividend
is located. FAC is the divisor value.

Output: FAC is the result of the division.

EDITORJASSEMBLER
Page 260

UTILITIES AND PREDEFINED SYMBOLS

DATA >OF00 Value Stack Compare (SC0MP)--Compares a value in the VDP R A M
stack to the value in FAC.

Input: VSPTR contains the address in VDP RAM where the value to
be compared is located. FAC is the other value i n the
comparison.

Output: The STATUS byte is affected. The high b i t is set if the
value pointed to by VSPTR is logically higher thanFAC. The

greater than b i t is set if the value pointed to by VSPTR is
arithmetically greater than FAC. The equal b i t is set i f the
value pointed to by VSPTR and FAC are equal.

DATA >lo00 Convert String to Number (CSN)--Converts an ASCII string to a
floating point number.

Input: FAC+12 is the address of the string i n VDP RAM.

Output: FAC is the result of the conversion in floating point format.

DATA >I200 Convert Floating Point to Integer (CF1)-Converts a floating point
number to an integer.

Input: FAC is the floating point number to be converted.

Output: FAC is the one-word integer value. The maximum value is
XTF. I f an overflow occurs, FAC+lO (>a3541 is set t o the
overflow error code, >03.

DATA >2300 Convert Integer to Floating Point (C1F)--Converts an integer to a
floating point number.

Input: FAC is the one word integer value to be converted.

Output: FAC is the floating point result.

Note: This routine i s loaded i n the Memory Expansion unit by the
Editor/Assernbler Loader. I t is not loaded by the T I Extended BASIC
Loader and may not be used i n T I Extended BASIC.

EDITORIASSEMBLER
Page 261

UTILITIES AND PREDEFINED SYMBOLS

16.2.4 DSRLNK

DSRLNK links an assembly language program to any Device Service Routine (DSR) or

subprogram in ROM. The data given is >8 for linkage to a Device Service Routine
and >10 for linkage to a subprogram. Before this routine i s called, a Peripheral
Access Block (PAB) must be set up i n VDP RAM. A PAB is a block of memory that
contains information about the f i le to be accessed. In addition, CPU R A M addresses
>a356 through >a357 must contain a pointer to the device or subprogram name length
i n the PAB. See Section 18.2 for information on building a PAB.

A f te r the routine is executed, information is passed back to your assembly language
program in the UTLTAB area (see Section 16.3.2). For instance, suppose that the
following sequence of instructions is executed.

REF DSRLNK

BLWP QDSRLNK
DATA >8

I f no errors occur, the equal b i t i n the Status Register is reset on return from
DSRLNK. I f an 1/0 error occurs, the equal b i t i s set, and the error code is stored in

the most-significant byte of Register 0 of the calling program's Workspace.

Note: This routine does not work for cassette access because it only searches ROM
DSRs and the cassette DSR is in GPL i n the GROM. To access the cassette, BLWP
QGPLLNK with DATA >3D must be used. See Section 16.2.2.1 for more information
on accessing cassettes.

16.2.5 LOADER

LOADER loads TMS9900 tagged object code such as the Assembler produces. (See
Section 19 for a description of the Loader and Section 15 for a description of tagged
object code.) This ut i l i ty is only used when you wish t o load a f i le f rom your
assembly language program. Otherwise, selecting LOAD AND RUN from the
Editor/Assembler or executing a CALL LOAD statement from T I BASIC is
recommended.

EDITOR/ASSEMBLER
Page 262

UTILITIES AND PREDEFINED SYMBOLS

Before this ut i l i ty is called, a Peripheral Access Block (PAB) set for OPEN mode
must be set up in VDP RAM. A PA0 is a block o f memory that contains information

about the f i le to be accessed. See Section 18.2 for information on building a PAB.
I n addition, CPU R A M addresses >8356 through >8357 must contain a pointer to the
device or f i le name length in the PAB.

For example, the following loads a f i le if the proper PAB has been set up.

REF LOADER

BLWP @LOADER

After the ut i l i ty is executed, information is passed back to your assembly language
program in the UTLTAB area (see Section 16.3.2). To access this data, you must
include the instruction

REF UTLTAB

in your program.

Address Name Information
>2022 UTLTAB Entry address specified by a 1 or 2 tag.
UTLTAB+>2 FSTHI First free address in high memory.
UTLTAB+>4 LSTHI Last free address in high memory.
UTLTAB+>6 FSTLOW First free address in low memory.
UTLTAB+>8 LSTLOW Last free address in low memory.

I f no errors occur, the equal b i t in the Status Register i s reset on return from
LOADER. I f an I /O or load error occurs, the equal b i t is set and the error code is
stored in the most-significant byte of Register 0 of the calling program's Workspace.

Note: The Loader does not close the f i le when errors occur, so in that case you
must call the DSR to close the file.

EDITOR/ASSEMBLER
Page 263

UTILITIES AND PREDEFINED SYMBOLS

16.3 PREDEFINED SYMBOLS

Several predefined symbols which can be used in place of addresses are included in
the REF/DEF table when the uti l i t ies are loaded. You must l is t the symbols i n a REF
statement in your assembly language program t o use them.

16.3.1 SCAN

SCAN is the entry address of the keyboard scan routine i n the console and is set to
>000E. With SCAN, you have direct access to the keyboard scan routine KSCAN.
However, before using this address you must supply information to the GPL
Workspace Registers and load the Registers before branching to this routine. KSCAN
does this for you. For example, the following instructions branch to this address.

REF SCAN,GPLWS

LWPI GPLWS
BL @SCAN
LWPI MYWS

16.3.2 UTLTAB

UTLTAB is the ut i l i ty table. I t contains information provided by DSRLNK (see
Section 16.2.4) and LOADER (see Section 16.2.5). The following table lists the

elements of UTLTAB, their standard addresses, the names often used to refer t o
them, and the information that they contain.

EDITOR/ASSEMBLER
Page 264

UTILITIES AND PREDEFINED SYMBOLS

Reference
UTLTAB
UTLTAB+>2
UTLTAB+>4

UTLTAB+>6
UTLTAB+>B
UTLTAB+>A
UTLTAB+>C
UTLTAB+>E
UTLTAB+>10
UTLTAB+>12
UTLTAB+>14
UTLTAB+>16

Address
>2022
>2024
>2026

>2028
>202A
>202C
>202E
>2030
>2032
>2034
>2036
>2038

Name
UTLTAB
FSTHI
LSTHI

FSTLOW
LSTLOW
CHKSAV
FLGPTR
SVGPRT
SAVCRU
SAVENT
SAVLEN
SAVPAB

SAVVER

Information
Entry address.
First free address in high memory.
Last free address in high memory.

First free address i n low memory.
Last free address in low memory.
Checksum.
Pointer to the flag i n the PAB.
GPL return address.
CRU address of the peripheral.
Entry address of the DSR or subprogram.
Device or subprogram name length.
Pointer to the device or subprogram name in
the PAB.
Version number of the DSR.

16.3.3 PAD

PAD is the address of the beginning of the scratch pad in RAM. I t is from addresses

>8300 through >83FF. It is used by assembly language programs, console routines,

and Graphics Programming Language routines. See the Appendix for a complete
description of this memory area.

EDITOR/ASSEMBLER
Page 265

UTILITIES AND PREDEFINED SYMBOLS

16.4 VDP ACCESS

You can access VDP RAM and VDP Registers directly instead of using the ut i l i t ies
described a t the beginning of this section. The following sections demonstrate how
to use predefined addresses t o access various memory areas.

I n accessing memory i n VDP, allow enough time for the completion of the read from
or write to memory. This can most easily be accomplished by following the
instruction that uses the address with a NOP or SWPB instruction. Also, most of
these addresses require that you read or wri te the least-significant byte first.

16.4.1 VDPWA

VDPWA is the address of the VDP RAM Write Address Register and is set to >8C02.
This Register must be prepared when you wish to access VDP RAM. To set the
address you plan t o access in VDP RAM, move the two-byte address into this
location. The least-significant byte is transferred first, followed by a delay (wi th
NOP or SWPB), and then the most-significant byte is transferred. I f data is t o be
written, the most-significant two bits of the address must be 01.

For example, i f the address t o which you plan to read is i n Register 1, the following
code loads that address.

REF VDP WA Refers t o the address.

S WPB R 1 Gets the least-significant byte first.
MOVE R1,BVDPWA Writes the least-significant byte.
SWPB R 1 Takes time and gets the most-significant byte.

MOVE R1,DVDPWA Writes the most-significant byte.

The VDP RAM Register wri te address is auto-incrementing, so you can write
successive bytes without modifying the write address.

EDITOR/ASSEMBLER
Page 266

UTILITIES AND PREDEFINED SYMBOLS

You may also use this ut i l i ty t o change VDP Registers by setting the f i rs t bit,

specifying the VDP Register i n the second nybble, and giving the value to write i n the
second byte. For example, the following code changes VDP Register 2 to >01.

REF VDP WA Refers t o the address.

L I R1,>8201
S WPB R 1 Gets the least-significant byte first.
MOVB Rl,@VDPWA Writes the least-significant byte.
SWPB R 1 Takes time and gets the most-significant byte.
MOVB Rl,@VDPWA Writes the most-significant byte.

16.4.2 VDPRD

VDPRD is the address of the VDP RAM Read Data Register and is set to >8800.
The address of the VDP RAM must be set as described i n Section 16.4.1. Data can

then be read from VDPRD.

For example, i f Register 1 contains the address of VDP R A M that you plan to read,
the following code puts the value from that address into Register 0.

R E VDPWA,VDPRD Refers to the addresses

SWPB R 1 Gets the least-significant byte first.
MOVB Rl,@VDPWA Writes the least-significant byte.
SWPB R 1 Takes t ime and gets the most-significant byte.
MOVB Rl,@VDPWA Writes the most-significant byte.
NOP Takes time.
MOVB @VDPRD,RO Reads the data into Register 0.

The VDP RAM Register read address is auto-incrementing, so you can read successive
bytes without modifying the read address.

EDITOR/ASSEMBLER
Page 267

UTILITIES AND PREDEFINED SYMBOLS

16.4.3 VDPWD

VDPWD is the address of the VDP RAM Write Data Register and is set to >8C00.
The address i n VDP RAM to which you plan to move data must f i rst be specified with
VDPWA with the most-significant two bits set t o 01. Data is then moved to the VDP
R A M write data address when the instruction MOVB QVDPWD is executed.

For example, i f Register 1 contains the address to which you plan to write and the
most-significant byte of Register 3 contains the data you wish t o write, the following
statements move the value from Register 3 to the specified address.

REF

LI

SWPB
MOVB
SWPB
soc

MOVB
NOP

MOVB

Refers to the addresses.

Sets Register 2 with the two most-significant

bits equal to 01.
Gets the least-significant byte first.
Writes the least-significant byte.
Takes time and gets the most-significant byte.
Sets the two most-significant bits in Register 1
to 01.
Writes the most-significant byte.

Takes time.
Writes the data from the most-significant byte
o f Register 3.

The VDP R A M write address is auto-incrementing, so you can write successive bytes
without modifying the write address.

EDITOR/ASSEMBLER
Page 268

UTILITIES AND PREDEFINED SYMBOLS

16.4.4 VDPSTA

VDPSTA is the address of the VDP RAM Read S t a t u s Regis ter and i s s e t t o >8802.
The S t a t u s Regis ter i s r ead by moving i t f rom t h a t address t o t h e desired destination.
The s ta tus i s t h e most significant b y t e of t h e address.

For example, t h e following code moves the s t a t u s byte t o Regis ter 1.

REF VDPSTA Refe rs t o t h e address.

MOVB @VDPSTA,Rl Reads t h e S ta tus Register.

T h e VDP S t a t u s Regis ter contains t h e following information.

Bit - Information
0 VDP interrupt flag. Set if a VDP interrupt has occurred. This f l ag

may b e read even if in terrupts have been disabled with the LIMI 0
instruction. The flag is cleared by reading t h e Sta tus Regis ter o r by
reset t ing VDP.

1 Five spr i tes flag. S e t if the re a r e f ive or more spr i tes on a screen
line. The flag is c leared by reading t h e S t a t u s Regis ter or by
reset t ing VDP.

2 Coincidence flag. S e t if t w o or more spr i tes have overlapping pixels,
including spr i tes t h a t are t ransparent and spr i tes t h a t a r e off t h e
bot tom of the screen. The flag is cleared by reading t h e S ta tus
Register o r by reset t ing VDP.

3-7 Fifth sp r i t e number. Equal t o t h e number of the f i f th spr i te on a line
if t h e Coincidence f lag is set. T h e value is c leared by reading t h e
S t a t u s Regis ter or by reset t ing VDP.

EDITOR/ASSE MBLER
Page 269

UTILITIES AND PREDEFINED SYMBOLS

16.5 GROM ACCESS

Yw can look a t information i n the GROM or GRAM i n the Command Module by
using the four addresses described below.

I n accessing memory i n the GROM, allow enough t ime for the completion of the read
from or write t o memory. This can most easily be accomplished by following the
instruction that uses the address with a NOP or SWPB instruction. Also, most of
these addresses require that you read or wri te the most-significant byte first.

16.5.1 GRMWA

GRMWA is the address of the GROM Write Address Register and is set t o >9C02.
This Register must be prepared when a GROM address is to be accessed. To set the
address to be accessed i n the GROM, move the two-byte address into this location.
The most-significant byte is transferred first, followed by a delay (with NOP or
SWPB), and then the second byte is transferred.

For example, i f the address t o which you plan to read or wri te is i n Register 3, the
following code loads that address.

REF GRMWA Refers t o the address.

MOVB R3,mGRM WA Writes the most-significant byte.
SWPB R3 Takes time.
MOVB R3,mGRM W A Writes the least-significant byte.
SWPB R3 Return Register to i t s original state.

16.5.2 GRMRA

GRMRA is the address of the GROM Read Address Register and is set to >9802.
The address is read by moving the two-byte address from the read address memory
location to the destination. The most-significant byte is transferred first, followed
by the least-significant byte. The address must be decremented by one. Af ter being

read, the GROM address value is indeterminate and must be restored or reset before
further data access can occur.

EDITOR/ASSEMBLER
Page 270

UTILITIES AND PREDEFINED SYMBOLS

For example, the following statements move the address into VALUE and VALUE+l.

REF GRMRA Refers t o the address.

MOVB @GRMRA,@VALUE Reads f irst byte of the address.
NOP Takes time.
MOVB @GRMRA,@VALUE+l Reads second byte of the address.

DEC @VALUE Corrects the address.

16.5.3 GRMRD

GRMRD is the address of the GROM Read Data Register and is set to >9800. The

address of the GROM must be set as described i n Section 16.5.1. Data can then be

read from GRMRD.

For example, if Register 3 contains the address of GROM that you plan to read, the

following statements put the value from that address into Register 1.

REF GRM WA,GRMRD Refers to the addresses.

MOVB R3,BGRMWA
SWPB R3
MOVB R3,BGRMWA
SWPB R3
MOVB @GRMRD,Rl

Writes the most-significant byte.
Takes time.
Writes the least-significant byte.
Takes time.
Reads the data into Register 1.

16.5.4 GRMWD

GRMWD is the address of the GROM Write Data Register and is set t o >9C00. No
data can be writ ten to a GROM. However, i f a GRAM is i n place, you may write
data.

For example, i f Register 1 contains the address t o which you plan t o write and

Register 3 contains the data you wish to write, the following statements move the
value from Register 3 to the specified address.

EDITORIASSEMBLER
Page 2 7 1

UTILITIES AND PREDEFINED SYMBOLS

REF GRMWA,GRMWD Refers t o the addresses.

MOVE Rl,@GRMWA Writes the most-significant byte.
SWPB R 1 Takes time and gets the least-significant by
MOVB Rl,@GRMWA Writes the least-significant byte.
NOP Takes time.
M OV R3,QGRMWD Writes the data from Register 3.

EDITOR/ASSEMBLER
Page 272

SECTION 17: T I BASIC SUPPORT

The Editor/Assembler Command Module contains seven T I BASIC subprograms that
can be used in addition to the subprograms described in the User's Reference Gui,de.

They are described below and discussed i n greater detail i n Section 17.1.

Name - Use
INIT Loads uti l i t ies and tables into the Memory Expansion unit and clears

any previously loaded programs.
LOAD Loads an assembly language f i le or pokes values into CPU RAM.

L INK Passes control from T I BASIC to an assembly language program.

PEEK Reads bytes from CPU R A M into T I BASIC variables.

PEEKV Reads bytes from VDP R A M into T I BASIC variables.

POKEV Pokes values into VDP RAM.
CHARPAT Returns the value of character patterns.

Examples of using some of these subprograms are given i n Section 17.1.8.

I n addition, the Editor/Assembler diskette labeled Part A contains the f i le BSCSUP
which contains several T I BASIC support utilities. These uti l i t ies allow you to access

variables and values passed in the parameter l is t of the T I BASIC subprogram LINK.
I n addition, ERR allows you t o return an error to the calling T I BASIC program.

These uti l i t ies use their own Workspace Registers. The Workspace Registers starting
at USRWS are loaded by the Name Search Routine i n the ut i l i ty before branching to
your program and are available for your use unless your program runs because an
entry point was specified after the END directive (see Section 14.5.2). I n this case,
you must specify that Workspace yourself or provide your own Workspace Registers.
A l l parameters are passed through the calling program's Workspace Registers. An
example of using some of these uti l i t ies is given in Section 17.2.6.

The following l ist gives the available uti l i t ies and describes briefly what each does.
They are described in greater detail i n Section 17.2.

Name Use -
NUMASG Makes a numeric assignment.
STRASG Makes a string assignment.
NUMREF Gets a numeric parameter.
STRREF Gets a string parameter.

ERR Reports errors.

EDITOR/ASSEMBLER
Page 273

T I BASIC SUPPORT

17.1 INTERFACE WITH TI BASIC

Seven subprograms, which are included i n the Editor/Assembler Command Module, are
added to T I BASIC for use in interfacing wi th assembly language programs. The
LOAD, POKEV, PEEK, and PEEKV subprograms can be used whether or not the
Memory Expansion unit is attached. They are described i n the following sections.

17.1.1 CALL IN IT

The format of the IN IT subprogram is

CALL IN IT

wi th no parameters. The I N I T subprogram tests t o be sure that the Memory
Expansion unit is properly connected, loads u t i l i ty routines from the Editor/Assembler
module into the Memory Expansion unit starting a t address >2000, and loads REFIDEF
tables i n the Memory Expansion unit a t addresses >3F38 through >3FFF.

The IN IT subprogram should be called before assembly language programs are loaded
by T I BASIC. If the IN IT subprogram is called while an assembly language program
is in memory, it removes al l information relating to that program, making the
program inaccessible. However, the program itself may remain in memory.

17.1.2 CALL LOAD

The format of the LOAD subprogram depends on the use to which it is put. I t may
be used to load an object f i le such as is produced by the Assembler or to "poke" data
dirbctly into memory locations.

17.1.2.1 Loading a Program with LOAD

I f you use the LOAD subprogram to load an assembly language object file, the format
is

CALL LOAD("object-filename'f,"object-filename", ... 1)

EDITOR~ASSEMBLER
Page 274

T I BASIC SUPPORT

The object filename is a string expression such as DSK1.OBJFILE. The f i le must

contain assembly language object code, such as that produced by the Assembler.
More than one f i le can be loaded at a t ime by separating the files you want to load
with commas.

For example, the statement

CALL LOAD("DSK~.OBJ~",'~DSK~.OBJ~")

loads the files OBJ l and OBJZ from the diskette in Disk Drive 1.

Relocatable code is loaded starting a t the f i rst available address, which is set to

>A000 by the IN IT subprogram (described in Section 17.1.1). Room is reserved for

the program according to the length specified i n the character tag 0 field in the
object file. (See Section 15.2 for a description of character tags.) Absolute code is
loaded as specified in the assembly language program.

CAUTION
You must take extreme care that absolute code i s really
needed and works properly. Loading data into memory
already being used by T I BASIC can cause the system to
stop functioning so that you must turn the computer of f
and back on in order to continue.

I f more than one program is loaded, the additional programs are loaded in the
memory following the previous program. See Section 19 for more information on the
Loader.

17.1.2.2 Poking Data with LOAD

I f you use the LOAD subprogram to put data directly into memory ("poking"), the
format is

CALL LOAD(address,value[,value, ... [,"'f,address,value[,value, ... 111)

EDITOR~ASSEMBLER
Page 275

T I BASIC SUPPORT

The address i s a numerical expression or variable f rom -32768 through 32767.
Addresses f rom 0 through 32767 represent >0000 through > 7 m . Addresses f rom
-32768 through -1 represent >8000 through >FFF expressed i n two's-complement form.

To access an address above 32767, subtract 65536 f rom it. The values, which can be
repeated, are decimal numbers which specify the by te values t o be loaded start ing a t
the address specified. For example, the statement

C A L L LOAD(-16384,255,21)

places the values >FF and >15 i n the bytes start ing a t address >C000.

You can specify a new address and the values t o be loaded start ing a t that address by
separating the last value f r o m the new address w i th an empty str ing (""). For
example, the statement

CALL LOAD(-16384,255,21,'"',8192,85)

loads the same data i n the same addresses as the previous program and also loads the
value >55 a t address >2000.

You can use the L O A D subprogram t o load a program direct ly i n to memory.
However, you must enter the program name i n the REF/DEF table so tha t the
program can be run w i th the LINK subprogram (described in Section 17.1.3).

To enter the program name i n the REF/DEF table, use the PEEK subprogram
(described i n Section 17.1.4) t o f ind the values a t addresses >2028 and >202A. These
addresses contain the F i rs t Free Address i n Low memory (FFAL) and Last Free
Address i n Low memory (LFAL), respectively. These values must d i f fer by a t least

eight bytes t o have space for your program name and address. Change LFAL t o a

value eight less than i t s old value, and then load the program name, up t o six bytes,
start ing a t the new LFAL address, fol lowed by two bytes which give the start ing
address of the program. For example, suppose LFAL is >3F38, your program name is
OBJ1, and i t starts a t address >8300. Change LFAL t o >3F30 and load OBJ1, two
spaces, and >83 00 in to addresses >3F30 through >3F37 w i th the statement

C A L L LOAD(16176,79,66,74,49,32,32,131,00)

EDITOR/ASSEMBLER
Page 276

T I BASIC SUPPORT

17.1.3 CALL LINK

The fo rmat of t h e LINK subprogram is

The program-name is f rom one through six charac te r s t h a t give t h e name of t h e
assembly language program a s i t appears in t h e REFIDEF table. T h e assembly
language program must b e in memory, and i t s name must b e in the REFIDEF table.
See t h e explanation of LOAD (Section 17.1.2) for more information.

The optional parameter-l ist contains pa ramete rs you wish t o pass f rom the TI BASIC
program t o your assembly language program. Using paramete rs is discussed in
g rea te r detail in Section 17.1.3.1.

For example, t h e s t a t e m e n t

CALL LINK("START",1,3)

links the TI BASIC program t o the assembly language program START, with the
values 1 and 3 passed t o it.

The following act ions occur when the CALL LINK s t a t e m e n t is executed.

1. The utility program checks t o s e e t h a t t h e assembly language program name is
f rom one through six charac te r s long. If the n a m e is of the r ight length, t h e
Name Link Routine (which is p a r t of t h e utility program) looks up t h e name of
t h e program called in the RD-/DEF table, s tar t ing at the lowest address. T h e
Name Link Routine then pushes t h e program name on the value stack.

The Loader gives an e r ro r if you have duplicate names in DEF instructions, and
loading stops.

2. When the program name has been located in the REF/DEF table, the Name Link
Routine branches t o the program with a direct assembly language branch
instruction. In order t o re turn t o TI BASIC, your assembly language program
m u s t re ta in t h e values in Workspace Regis ters 11, 13, 14, and 15 and res to re
those values before ending.

3. Your assembly language program is executed.

EDITOR/ASSEMBLER
P a g e 277

TI BASIC SUPPORT

4. When your program has finished executing, t h e uti l i ty branches t o an error routine
if an error has been detected. Otherwise, i t c l ea r s t h e s tack and re turns t o the
TI BASIC program normally. Address >8310 contains the value s t ack pointer in
use by t h e T I BASIC interpreter.

17.1.3.1 Passing Arguments with LINK

You can pass up t o 16 arguments f rom your T I BASIC program t o your assembly
language program. If a simple variable (any variable excep t an expression) is passed,
any changes made in the value of t h a t variable in your assembly language program
also change the value on re tu rn t o your T I BASIC program. Ent i re arrays a r e passed
by following them with parentheses. If t h e array contains more than one dimension,
the dimensions beyond the f i r s t a r e indicated by placing commas between t h e
'parentheses.

For example, the following are all simple variables whose values c a n be changed.
The l as t one is a two-dimensional array.

If you wish t o pass the value of a simple variable, but do not need the assembly
language program t o make changes in it, surround i t wi th parentheses. However,
a r rays cannot b e passed by value. For example, you c a n pass al l but t h e las t of the
variables listed above without having thei r values a f f e c t e d on re turn t o your TI
BASIC program by listing t h e m a s follows.

In addition, constants and expressions, such a s A+3, do not have thei r values changed
on re turn t o your TI BASIC program.

The arguments a r e passed t o t h e assembly language program through an identif ier l ist
in C P U RAM. Address >a312 contains t h e number of arguments in t h e pa ramete r
list. The argument identifier, which specifies t h e type of argument, is located at
addresses >200A through >2019. Each identif ier is one byte in length. The values
are 0 for a numeric expression, 1 for a s t r ing expression, 2 for a numeric variable, 3
for a string variable, 4 for a numeric array, and 5 for a str ing array.

EDITOR~ASSEMBLER
P a g e 2 7 8

T I BASIC SUPPORT

Note: You do not need to know exacly how arguments are passed i f you use the
uti l i t ies described in Section 17.2

More information on each argument is stored in an eight-byte value stack in VDP

RAM.

o I f the argument is a numeric expression, the identifier is 0 and the stack
contains the value of the numeric expression in radix 100 notation. I n radix
100 notation, a number is from 1.000000000000 through 99.999999999999
multiplied by 100 raised to a power f rom -64 to 64. The f i rst byte in the
value stack indicates the exponent of the value of the numeric expression. I f
the exponent is positive, the byte value is 64 more than the exponent. I f the
exponent is negative, the byte value is obtained by subtracting the exponent
from 64. For example, i f the exponent i s 2, the byte is 66 or >42. I f the
exponent is -3, the byte is 61 or >3D. I f the number is negative, the f i rst
word (the exponent byte and the f i rst byte of the value) is given in
two's-complement form.

The remaining seven bytes indicate the value of the number. To find these

seven bytes, the number, in decimal form but with the decimal point missing,
i s converted to hexadecimal notation. For example, the following show how
several values are expressed i n radix 100 form.

Stack Value --
>40 >07 >OO >OO >OO >OO >OO >OO

Note: The value 0 is expressed by >00 in each of the f irst two bytes and
undefined values in the remaining six bytes.

EDITORIASSEMBLER
Page 279

T I BASIC SUPPORT

If the argument i s a str ing expression, the ident i f ier is 1. Bytes 0 and 1
contain >001C, byte 2 contains >65 (the string tag used by the T I BASIC
interpreter), byte 3 is not used, bytes 4 and 5 contain a pointer t o the value o f

the string in VPD RAM, and bytes 6 and 7 contain the length of the string.
Byte 6 is always zero because the maximum str ing length is 255 characters.

r I f the argument is a numeric variable or a numeric array element, the
ident i f ier l i s t contains a 2. Bytes 0 and 1 contain a pointer t o the variable's
symbol table entry i n VDP RAM, by te 2 contains zero, byte 3 is no t used, and
bytes 4 and 5 contain a pointer t o the eight-byte value o f the variable i n VDP
RAM.

I f the argument is a string variable or a string array element, the ident i f ier
l i s t contains a 3. Bytes 0 and 1 contain a pointer t o the variable's symbol
table entry i n VDP RAM, byte 2 contains >65 (the string tag used by the T I
BASIC interpreter), byte 3 i s no t used, bytes 4 and 5 contain a pointer t o the
string's value i n VDP RAM, and bytes 6 and 7 contain the string length.

If the argument is a numeric array o f the fo rm A() A(,), and so on, the
ident i f ier l i s t contains a 4. Bytes 0 and 1 contain a pointer t o the array's
symbol table entry i n VDP RAM, byte 2 contains zero, byte 3 is not used, and
bytes 4 and 5 contain a pointer t o the array's value space i n VDP RAM. The
value space has two bytes fo r each dimension, indicating the maximum index

for t ha t dimension. Following the dimension information are the values, stored
in radix 100 notation. No te that i n a numeric array the array elements are
stored i n consecutive eight-byte sections of memory.

I f the argument is a str ing array, i t i s similar to the entry f o r a numeric array

except the ident i f ier l i s t contains a 5 and byte 2 o f the stack entry contains
>65. Thus bytes 0 and 1 contain a pointer t o the array's symbol table entry i n
VDP RAM, by te 2 contains >65, byte 3 is not used, and bytes 4 and 5 contain a
pointer t o the array's value space i n VDP RAM. The value space for a str ing
array contains two bytes for each dimension, indicating the maximum index.
Following the dimension information are two bytes fo r each array element,
which are used as a pointer t o the element's value string i n VDP RAM. Note

tha t i n a numeric array the array elements are stored i n consecutive eight-byte
sections of memory, while i n a string array the elements are no t usually i n
order.

EDITOR/ASSEMBLER
Page 280

T I BASIC SUPPORT

17.1.4 CALL PEEK

The format of the PEEK subprogram is

CALL PEEK(address,variable-list[,"", ... 1)
The address is a numerical expression or variable from -32768 through 32767.
Addresses from 0 through 32767 represent >0000 through >7FFF. Addresses from

-32768 through -1 represent >8000 through >FFFF expressed i n two's-complement form.
To access an address above 32767, subtract 65536 from it.

The PEEK subprogram reads bytes from CPU RAM and, starting a t the address,
assigns those values to the numeric variables i n the variable-list. You can read
values starting a t more than one address by separating the last value i n the
variable-list from the next address wi th an empty string P). For example, the
statement

CALL ~~EK(8192,A,B,C(8),"",-24576,X)

places the value f rom address 8192 (>2000) i n A, the value from address 8193 (>2001)
in B, the value from address 8194 (>2002) in C(8), and the value from address -24576

(>AOOO) i n X.

17.1.5 CALL PEEKV

The format of the PEEKV subprogam is

CALL ~~~~~(address,variable-list[,"", ... 1)
The address is a numerical expression or variable from 0 through 16383, corresponding
to VDP R A M addresses >0000 through > 3 W .

The PEEKV subprogram reads bytes from VDP RAM and, starting a t the address,
assigns those valuea t o the numeric variables i n the variable-list. You can read
values starting a t more than one address by separating the last value in the
variable-list from the next address wi th an empty string (""1. For example, the
statement

CALL PEEKV(784,A,B,C(8),'"',2,X)

EDITOR/ASSEMBLER
Page 281

T I BASIC SUPPORT

places the value f rom address 784 (>0310) i n A, the value f rom address 785 (>0311) i n

B, the value f rom address 786 (>0312) i n C(8), and the value f rom address 2 (>0002) in
X.

Note: Using an address higher than 16383 (>3FFF) can cause the system t o stop

functioning so that you must turn the computer o f f and back on i n order t o continue.

17.1.6 CALL POKEV

The format of the POKEV subprogram is

CALL POKEV(address,value-list[,"",.,.])

The address is a numerical expression or variable f rom 0 through 16383, corresponding

to VDP R A M addresses >0000 through > 3 m .

The POKEV subprogram wri tes bytes t o VDP R A M f rom the value-list start ing a t the

address. You can wr i t e values start ing a t more than one address by separating the

last value i n the value-list f r om the next address w i th an empty str ing (" I 1) . For

example, the statement

C A L L POKEV(784,30,30,30,"",2,V)

places the value 30 (> lE) i n addresses 784 (>0310), 785 (>0311), and 786 (>0312), and

places the value of V i n address 2 (>0002).

Note: Using an address higher than 16383 (>3F?F) can cause the system t o stop

functioning so that you must turn the computer o f f and back on in order to continue.

17.1.7 CALL CHARPAT

The fo rmat of the CHARPAT subprogram is

C A L L CHARPAT(character-code,string-variable[, ... 1)

The character-code is any character number f rom 32 to 159. The 16-character

hexadecimal pattern ident i f ier associated w i t h the character code is returned i n the

string-variable. The pattern ident i f iers for characters 32 through 95 are normally

reserved fo r ASCII characters and are in i t ia l ly defined by T I BASIC. They can be

EDITOR/ASSEMBLER
Page 282

T I BASIC SUPPORT

changed, and characters 96 through 159 defined, by the CHAR subprogram. See the
User's Reference Guide for more information.

17.1.8 TI BASIC Examples

The following program initializes memory, loads the f i le SPRITE from the diskette in
Disk Drive 1, and executes the program, starting a t the entry point BEGIN.

100 CALL I N I T
110 CALL LOAD("DSK1. SPRITE")
120 CALL LIN(("BEGIN1')

The program below initializes memory, loads the T I BASIC support uti l i t ies (BSCSUP)

and the f i le DSKl.TEST, and executes the program, starting at the entry point TEST.
The parameters passed to the assembly language program are the numeric array A
and the string expression HELLO. Af ter the assembly language program has finished
running, the program prints the value of A(9).

100 D I M A (3 0)
110 CALL I N I T
120 CALL LOAD(IIDSK~. BSCSUP~ , 'IDSK~. TEST")
130 CALL L I M ("TEST" ,A() , "HELLO")

140 PRINT A (9)

The following commands read the one-word value a t CPU RAM address >8370 and
calculate and print the value. The value contains the highest memory location
available in VDP RAM.

CALL PEEK(-31888,A,B)
VALLE=A*256+6
PRINT VALUE

The program below loads color table 16 at VDP R A M address >0310. As the program
executes, the background color of the space characters on the screen changes rapidly.

100 FOR 1=1 TO 16
110 CALL PCKEV(784,16+1)
120 N X T I

EDITOR/ASSEMBLER
Page 283

17.2 T I BASIC SUPPORT UTIL IT IES

The TI BASIC suppor t u t i l i t ies a r e conta ined in t h e f i le ESCSLJP a n t h e
Editor/Assembler d i ske t t e labeled P a r t A. These u t i l i t ies help you find t h e values,
and assign va lues t o t h e variables, passed in t h e pa rame te r - l i s t of t h e LINK
subprogram.

The f ive u t i l i t ies a r e NUMASG, STRASG, NUMREF, STRREF, and ERR. They a r e in
r e loca t ab le code and a r e abou t 900 by tes long. You c a n use t h e m in your assembly
language program by listing t h e m in a REF s t a t e m e n t . T o load them, put t h e
s t a t e m e n t

CALL LOAD("DSK1.BSCSUP")

in your TI BASIC program. T h e Loader loads t h e m in t h e Memory Expansion unit
and p u t s t he i r n a m e s in t h e REF/DEF table.

An example of t h e use of t hese ut i l i t ies is given in Sec t ion 17.2.6.

17.2.1 Numeric Assignment--NUMASG

This ut i l i ty l e t s you assign a value t o a numer i c variable passed a s a n a rgumen t in the
TI BASIC subprogram LINK.

For ass ignments t o a s imple numer i c variable, p l ace 0 in Workspace Reg i s t e r 0. For

a n ass ignment t o a n ar ray , p l ace t h e a r r ay e l e m e n t number in Workspace Reg i s t e r 0.
With OPTION BASE 0 (the d e f a u l t f rom TI BASIC) in e f f e c t , t h e e l e m e n t number
ranges f rom 0 t o t h e maximum number of e l e m e n t s minus 1. With OPTION BASE 1
(f rom TI BASIC) in e f f e c t , t h e e l e m e n t number r anges f r o m 1 t o t h e maximum

number of e lements . S e e t h e User's R e f e r e n c e Guide fo r informat ion on OPTION

BASE. The e l e m e n t number f o r mult iple dimension a r r a y s is found by counting

through t h e f i r s t e l emen t s , t hen t h e second e l emen t s , and so on. For ins tance , if an

a r r a y h a s been def ined a s A(5,5,5) and t h e b a s e is 0, a r r a y e l e m e n t A(1,2,3) is given
2 in Workspace Reg i s t e r 0 a s 1 * 6 + 2 * 6 + 3 or 51.

P l ace t h e a rgumen t number, a s a full word, in Workspace Reg i s t e r 1. The a r g u m e n t

number gives t h e o rde r of appea rance of t h e var iab le in t h e pa rame te r - l i s t of t h e
LINK subprogram. For example , if t h e LINK subprogram s t a t e m e n t is

EDITORIASSEMBLER
P a g e 284

A is argument number 1 and B is argument number 2.

The floating point variable is assigned in the Floating Point Accumulator at address
>834A. Numbers in the Floating Point Accumulator are kept in radix 100 notation.
See Section 17.1.3.1 for an explanation of radix 100 notation.

The ut i l i ty is accessed by BLWP BNUMASG. For example, suppose the T I BASIC
statement CALL LINK("PROG1',A,B,C) was executed to pass control to the assembly
language program. Then i f the Floating Point Accumulator, starting at address
>834A, contains >41 23 45 00 00 00 00 00, Register 0 is >00, and Register 1 is >03,
then BLWP @NUMASG assigns 356.9 to C.

As a further example, the following program segment assigns the value 3 t o the third
argument passed by the LINK subprogram.

REF NUMASG

FAC EQU >834A

NUMBER DATA >4003,>0000,>0000,>0000

LI
L I

LI
LOOP MOV

DEC
JNE
CLR
LI
BLWP

R4,4
R3,NUMBER
R2,FAC
*R3+,*R2+ Load floating point number 03 into FAC area.
R4
LOOP
RO

R1,3 Third numeric variable in list.

@NUMASG

EDITOR/ASSEMBLER
Page 285

17.2.2 S t r i n g Assignment--5TRASG

This u t i l i t y allows a string t o be assigned t o a string variable passed as an argument
in the T I BASIC subprogram L INK. The u t i l i t y allocates space for the string i n VDP
RAM, copies the string in to VDP RAM, and assigns the string t o the selected
variable. I t then modif ies the original argument stack entry t o point to the new
string.

Before using this ut i l i ty , your program must create the str ing in the Memory

Expansion uni t w i t h the f i rs t byte i n the string giving the length of the string. Then
the u t i l i t y i s called w i th the str ing address i n Register 2 and the argument number in

Register 1 as a f u l l word. The number must be the same as it appeared i n the C A L L
LINK statement. The u t i l i t y is accessed by BLWP BSTRASG.

For assignments t o a simple string variable, place 0 in Workspace Register 0. For an
assignment to an array, place the array element number in Workspace Register 0.
With OPTION BASE 0 (the default f rom T I BASIC) i n effect, the element number
ranges f rom 0 to the maximum number of elements minus 1. With OPTION BASE 1
(f rom T I BASIC) i n effect, the element number ranges f rom 1 t o the maximum
number of elements. See the User's Reference Guide fo r information on OPTION
BASE. The element number fo r mult ip le dimension arrays is found by counting
through the f i r s t elements, then the second elements, and so on. For instance, if an
array has been defined as A$(5,5,5) and the base is 0, then array element A$(1,2,3) is
given i n Workspace Register 0 as 1 * 6' + 2 * 6 + 3 or 51.

For example, i f your program has placed >00 i n Register 0, >02 in Register 1, >COO0
i n Register 2, and >02 48 49 i n the addresses start ing a t >COO0 (where >02 is the
number of characters i n the string, >48 is the ASCII code fo r H, and >49 is the
ASCII code for I), and the T I BASIC statement C A L L LINK("START",A,B$,C) is
executed, then BWLP BSTRASG sets B$ equal to HI.

17.2.3 G e t N u m e r i c Pa ramete r - -NUMREF

This u t i l i t y allows you t o get the value o f a numeric parameter specified i n the T I
BASIC subprogram LINK. I f the parameter is an array, Register 0 contains the
element number. Otherwise, Register 0 contains 0. Register 1 contains the

parameter number. The value o f the numeric parameter i s returned i n the Float ing
Point Accumulator area start ing a t address >834A i n radix 100 form. For details, see

Section 17.2.1 on numeric assignment. The u t i l i t y is accessed by BLWP @NUMREF.

EDITOR/ASSEMBLER
Page 286

17.2.4 Get String Parameter--STRREF

This utility allows you t o g e t the value of a string parameter specified in the TI
BASIC subprogram LINK. If t he parameter is a n array, Register 0 contains t h e
element number. Otherwise, Register 0 contains 0. Register 1 contains t he
parameter number. Register 2 contains t he s tar t ing address of t he str ing in t he
Memory Expansion unit. P u t the length of t he buffer into which you a r e going t o
read t he str ing in t he first byte of t he s tar t ing address. If t he str ing length actually
read exceeds the number specified, an e r ro r is issued. Otherwise the actual length is
placed in t he first byte. For details, see Section 17.2.2 on string assignment. The
utility is accessed by BLWP BSTRREF.

17.2.5 Error Reporting--ERR

This utility t ransfers control t o the e r ro r reporting routine in the TI BASIC
interpreter. The assembly language program can repor t any existing TI BASIC error
or warning upon re turn t o TI BASIC. Upon return, Workspace Register 0 contains
t he error code in t he most significant byte. The utility is accessed by BLWP @ERR.
In order t o obtain a meaninful e r ro r code, t he Peripheral Access Block address must
be stored a t address >831C prior t o t he ERR call.

The error messages t h a t can be issued f rom your program a r e given on the next page.

EDITOR~ASSEMBLER
Page 287

Error
Code -
>oo
>01

>02

>03

> 04

>05
>06

>D7
> 08
>09

>OA

>OB

>oc
>OD

> O E

> O F

>10

>11
>12
>13

>14
>15

>16

>17

>18

>19

>1A

>1B

> l C
>1D
>1E
> 1F
>20

>21

>22 - >FF

Messaqe
I/O error (bad name).

110 error (write protected).
110 error (bad attr ibute).
110 error (illegal operation).
I/O error (buffer full).
I/O error (read past Em).
I/O error (device error).
110 error (file error).
Memory full (closes files).
Not applicable; signifies an incorrect s t a tement .

Bad tag.
Checksum error.
Duplicate definition.
Unresolved references.
N o t applicable; signifies an incorrect s ta tement .
Program not found.
Incorrect Sta tement .
Bad name.
Can' t continue.
Bad value.
Number too big.
String-number mismatch.
Bad argument.
Bad subscript.
Name conflict.
Can' t do that.
Bad line number.
For-next error.
110 error.
File error.
Input error.
Da ta error.
Line too long.
Memory full (does not close files).
Unknown error.

EDITORIASSEMBLER
P a g e 288

Note that on any error code >00 through >07, an 110 ERROR message is displayed on
the screen. The ERR ut i l i ty then transfers control to the T I BASIC error-handling
routine, which reads the 110 error code from the Peripheral Access Block.

17.2.6 T I BASIC Util it ies Example

The following program demonstrates how T I BASIC support uti l i t ies are called f rom
an assembly language program. The T I BASIC program f i le loads and runs an
assembly language program called DSK1.STRINGO. Together, these programs assign
B$="HAPPY BIRTHDAY" to an array element A$(X) and display A$(X) on the screen.

The user specifies X when the program is executing.

The T I BASIC program loads the BSCSUP fi le and the f i le STRING0 and links to the
program called STRING. T I BASIC lists the arguments X, B$, and A$O to be passed
in the CALL L INK statement. Before transferring control to the assembly language
program, it prompts for the element number X.

The assembly language program STRING reads the element number X, reads the
string B$, and assigns B$ to the array element A$(X). Since Workspace Register 11
was not altered by this program, the RT instruction can be used to return to T I
BASIC.

The T I BASIC program then displays A$(X), which is HAPPY BIRTHDAY, on the
screen.

100 D I M A $ (1 5)
110 B$="HAPPY BIRTmAY"
120 CALL I N I T
130 CALL L W ("DSK1. BSCSLP" , "DSKZ . TRY")
140 I W U T "ELDVENT W E R ? " :X

150 IF X>15 M N 140
1 6 0 CALL LIN(("STRIf f i " ,X,B$,A$())

170 PRINT A$(X)
180 EN3

EDXTOR/ASSEMBLER
Page 289

DEF
REF

*
FAC EQU
X

BUFFER BYTE
BSS

X

STRING
CLR
LI
BLWP

X

MOV
AND1

CLR
LI

L 1
BLWP

MOV

LI
LI
BLWP

RT
END

STRING
STRREF ,STRASG,NUMREF

RO
R1,l Read numeric value X.
BNUMREF

@FAC,R5
R5,>00FF Keep the element number.

RO
R1,2 Second argument B$.
R2,BLFFER Points to the buffer area.

BSTRREF Read i n the string value.

R5,RO Element number.

R1,3 Assign the string to A$(X).

R2,BUFFER
BSTRASG

EDITOR/ASSEMBLER
Page 290

SECTION 18: FILE MANAGEMENT

With assembly language, you can control the way in which fi les a r e accessed. This

section describes t h e f i le management sys tem as i t is provided. By making
appropriate changes, you c a n const ruct your own system to interface wi th devices in
other ways.

The file management sys tem regards al l devices (except t h e screen and keyboard) a s
identical. Different Device Service Routines (DSRs) a r e used for d i f ferent devices,
b u t they all appear the s a m e t o the assembly language programmer. They support
both random access and sequential files, and fi les with records of both fixed and
variable length. The following sect ions describe the way in which you access t h e
DSRs.

18.1 FILE CHARACTERISTICS

A file consists of a collection of d a t a groupings called logical records. These records
d o not necessarily correspond with t h e t h e physical divisions of t h e d a t a in the file.
For example, a logical record often does not correspond t o a sector on a diskette.
File input and output (110) are done on a logical record basis. Manipulation of
physical records is handled by t h e DSR.

The records on sequential files can only be read from, or wri t ten to, in sequential
order. This is appropriate for printers, modems, cassettes, and some kinds of d a t a
files. The records on sequential f i les can be of e i ther fixed or variable length.

The records on relat ive fi les can be read from, or wri t ten to, in e i ther sequential
order o r in random order. You c a n only use re la t ive fi les on diskettes. The records
o n relat ive fi les a r e of fixed length.

Each record on a f i le h a s a number f rom zero up t o one less than the number of
records in t h e file. You use these record numbers t o specify which record t o access
on relat ive files.

When a f i le is created, i t s character is t ics must b e defined. Most of these
character is t ics cannot be changed la te r in t h e file's existence. The character is t ics of
f i les a r e discussed below.

EDITOR/ASSEMBLER
P a g e 291

F I L E MANAGEMENT

18.1.1 File Type--DISPLAY or INTERNAL

The f i l e type at t r ibute specifies the format o f the data in the file.

a DISPLAY sets the f i l e type t o contain displayable or printable character

strings. Each data record corresponds t o one pr in t line.

a INTERNAL sets the f i le type to contain data i n internal machine format.

The f i l e type at t r ibute is no t signif icant t o the DSR. I t is merely passed on without

af fect ing the actual data stored.

18.1.2 Mode of Operation--INPUT, OUTPUT, UPDATE, or APPEND

A f i l e i s opened for a specific mode o f operation.

a INPUT specifies tha t the contents of the f i l e can be read f rom but not wr i t ten
to.

a OUTPUT specifies tha t the f i le is being created. I t s contents can be wr i t ten

to but no t read from.

w UPDATE specifies that the contents o f the f i le can be both wr i t ten t o and

read from.

a APPEND specifies tha t data can be added t o the end of the f i l e but data

cannot be read.

The DSK determines whether a specific mode fo r an I/O operation can be accepted

by the given device. For example, the T I Thermal Pr in ter can only be opened i n

OUTPUT mode.

EDITORIASSEMBLER
Page 292

FILE MANAGEMENT

18.2 PERIPHERAL ACCESS BLOCK (PAB) DEFINITION

DSRs are accessed through a Peripheral Access Block (PAB). The format of the 'PAB

is the same for every peripheral. I n a program that you write, the only difference

between peripherals is that some of them do not allow every option provided for in
the PAB. An example of using a PAB is given in Section 18.3.

The PABs are in VDP RAM. They are created before an OPEN statement and are
not released unt i l the I/O for their corresponding peripheral has been closed.

The following describes the bytes which make up a PAB.

Byte - Bit Contents Meaninq
0 A l l I /O Op-code The op-code for the current 110 call. See

Section 18.2.1 for a description of the op-codes.

1 Al l FlaglStatus A l l information the system needs about the f i le

type, mode of operation, and data type. The
meaning of the bits is described below.

0-2 Error code No error is 0. Other errors are indicated in
combination with the I/O op-code. The error
codes are discussed i n Section 18.2.2.

3 Record type "Fixed length records" are 0 and "variable length
records" are 1.

4 Datatype DISPLAY is 0 and INTERNAL is 1.

5,6 Mode of UPDATE is 00, OUTPUT is 01, INPUT is 10, and
operation APPEND i s 11.

7 Fi le type "Sequential file" is 0 and "relative file" is 1.

293 A l l Data Buffer The address of the data buffer that the data
Address must be written to or read from i n VDP memory.

4 A l l Logical Record The logical record length for fixed length
Length records or the maximum length for a variable

length record.

5 A l l Character The number of characters to be transferred
Count for a WRITE op-code or the number of bytes

actually read for a READ op-code.

EDITOR/ASSEMBLER
Page 293

FILE MANAGEMENT

Bit Contents Meaning

697 A l l Record Number (Only required for a re la t i ve record type file.)
The record number on which the current 110

operation i s performed. The most-significant b i t
i s ignored, so this number can be f rom 0 through
32767.

8 A l l Screen Of fset The of fset of the screen characters w i th respect

to their normal ASCI I value. This i s used only
by the cassette interface, which must pu t prompts
on the screen.

9 A l l Name Length The length of the f i l e descriptor, which starts i n

byte 10.

10+ A l l F i le The device name and, i f required, the filename

Descriptor and options. The length of this descriptor is
given i n byte 9.

The fol lowing f igure summarizes the bytes which make up a PAB.

1 2 , 3 I
[D a t a B u f f e r A d d r e s s I
+ - +

1 4 1 5 I
I L o g i c a l R e c o r d L e n g t h I C h a r a c t e r C o u n t I
+ - +

1 6 ,7 I
I R e c o r d Number
+ -

I
+

1 8 1 9 I
1 S c r e e n O f f s e t I N a m e L e n g t h
+ - ' -

I
+

1 1 0 + I
I F i l e D e s c r i p t o r I

Errors that occur in input/output calls are returned i n byte 1 (Flag/Status) o f the
PAB.

EDITOR/ASSEMBLER
Page 294

FILE MANAGEMENT

The following describes the op-codes which can be used i n byte 0 (110 Op-code) o f
the PAB.

The OPEN operation must be performed before any data-transfer operation except
those performed with LOAD or SAVE. The f i le remains open unt i l a CLOSE
operation i s performed. The mode of operation must be given in byte 1 (Flag/Status)
of the PAB. Changing the mode of operation after an OPEN causes unpredictable
results.

I f a record length of 0 is given in byte 4 (Logical Record Length) of the PAB, the
assigned record length (which depends on the peripheral) is returned in byte 4. I f a
non-zero record length is given, i t is used after being checked for correctness wi th
the given peripheral.

The CLOSE operation closes the file. I f the fi le was opened in OUTPUT or APPEND
mode, an End of File (EOF) record is writ ten to the device or f i le before closing the
file.

After the CLOSE operation, you can use the space allocated for the PAB for other
purposes.

The READ operation reads a record from the selected device and copies the bytes
into the buffer specified in bytes 2 and 3 (Data Buffer Address) of the PAB. The
size of the buffer is specified i n byte 4 (Logical Record Length) of the PAB. The
actual number of bytes stored is specified in byte 5 (Character Count) of the PAB.
I f the length of the input record exceeds the buffer size, the remaining characters
are discarded.

EDITOR/ASSEMBLER
Page 295

FILE MANAGEMENT

The WRITE operation writes a record f rom the buf fer specified i n bytes 2 and 3
(Data Buffer Address) of the PAB. The number of bytes to be wr i t ten is specified i n

byte 5 (Character Count) of the PAB.

The RESTOREIREWIND operation repositions the f i l e read lwr i te pointer t o the

beginning o f the f i l e or, i n the case of a relat ive record f i le, t o the record specified

i n bytes 6 and 7 (Record Number) o f the PAB.

The RESTORE/REWIND operation can only be used i f the f i le was opened i n INPUT

or UPDATE mode. For relat ive record files, you can simulate a RESTORE i n any

mode by specifying the record a t which the f i l e is to be positioned in bytes 6 and 7
(Record Number) o f the PAB. The next operation then uses the indicated record.

The L O A D operation loads a memory image of a f i l e f r om an external device or f i l e

in to VDP RAM. The L O A D operation is used without a previous OPEN operation.

Note tha t the L O A D operation requires as much buffer in VDP R A M as the f i le

occupies on the diskette or other device.

For a L O A D operation, the PAB needs the op-code i n byte 0 (110 Op-code), the

start ing address of the VDP R A M memory area in to which the f i le i s to be copied i n

bytes 2 and 3 (Data Buffer Address), the maximum number of bytes t o be loaded in

bytes 6 and 7 (Record Number), the name length i n byte 9 (Name Length), and the

f i le descriptor information i n bytes 10+ (File Descriptor).

For related information, see the explanation of the R U N PROGRAM F ILE option f rom

the Editor/Assembler selection l i s t in Section 2.5.

EDITOR/ASSEMBLER
Page 296

FILE MANAGEMENT

The SAVE operation writes a f i le f rom VDP R A M to a peripheral.. The SAVE
operation is used without a previous OPEN operation. Note that the SAVE operation

copies the entire memory image from the buffer in VDP R A M to the diskette or
other device.

For a SAVE operation, the PAB needs the op-code in byte 0 (110 Op-code), the

starting address of the VDP R A M memory area from which the f i le is to be copied in
bytes 2 and 3 (Data Buffer Address), the number of bytes to be saved i n bytes 6 and
7 (Record Number), the name length i n byte 9 (Name Length), and the f i le descriptor
information i n bytes 10+ (File Descriptor).

For related information, see the explanation of the SAVE ut i l i ty in Section 24.5.

The DELETE operation deletes the f i le from the peripheral. The operation also
performs a CLOSE.

18.2.1.9 SCRATCH RECORD-8

The SCRATCH RECORD operation removes the record specified in bytes 6 and 7
(Record Number) from the specified relative record file. This operation causes an
error for peripherals opened as sequential files.

The status is in byte 8 (Screen Offset) of the PAB. The status byte returns the
status of a peripheral and can be examined at any time. A l l of the bits have
meaning i f the f i le is currently open. Bits 6 and 7 only have meaning for files that
are currently open. Otherwise, they are reset. The bits return the information
shown on the next page.

EDITOR/ASSEMBLER
Page 297

FILE MANAGEMENT

B i t -
0

Informat ion

I f set, the f i l e does no t exist. I f reset, the f i l e does exist. On some

devices, such as a printer, this b i t is never set since any f i l e could exist.

I f set, the f i le i s protected against modification. I f reset, the f i le is no t
protected.

Reserved fo r possible fu ture use. Fixed t o 0 by the current peripherals.

I f set, the data type is INTERNAL. I f reset, the data type is DISPLAY or

the f i le is a program file.

I f set, the f i l e is a program file. I f reset, the f i l e is a data file.

I f set, the record length is VARIABLE. I f reset, the record length is

FIXED.

I f set, the f i le is a t the physical end of the peripheral and no more data can

be written.

I f set, the f i le is a t the end o f i t s previously created contents. You can

s t i l l wr i te to the f i le (i f i t was opened i n APPEND, OUTPUT, or UPDATE

mode), bu t any at tempt to read data f rom the f i l e causes an error.

18.2.2 Error Codes

Errors are indicated i n bi ts 0 through 2 of by te 1 (Flag/Status) o f the PAB. An error

code o f 0 indicates that no error has occurred. However, an error code o f 0 w i th the

COND b i t (bi t 2) set i n the STATUS byte a t address >837C indicates a bad device
name.

The table on the fol lowing page shows the possible error codes and their meanings.

EDITOR/ASSEMBLER
Page 298

FILE MANAGEMENT

Error
Code
0
1
2

Meaninq
Bad device name.
Device is w r i t e protected.
Bad open a t t r ibu te such as incorrect f i le type, incorrect record length,
incorrect 110 mode, or n o records in a re la t ive record file.
Illegal operation; i.e., an operation no t supported on t h e peripheral o r a
conf l ic t with t h e OPEN attr ibutes.
O u t of t ab le o r buffer space on t h e device.
A t t e m p t t o read past t h e end of file. When th i s error occurs, the f i le is
closed. Also given for non-extant records in a relat ive record file.
Device error. Covers al l hard device errors such a s pari ty and bad
medium errors.
File er ror such a s programldata f i le mismatch, non-existing fi le opened in
INPUT mode, etc.

18.2.3 Device Service Routine Operations

Device Service Routines (DSRs) react in specific ways t o various operations and
conditions. These react ions a r e described in t h e following sections.

18.2.3.1 Error Conditions

If a non-existent DSR is called, the File Management System re turns wi th the COND
b i t (bit 2) set in t h e STATUS byte a t address >837C.

If t h e DSR d e t e c t s an error , i t indicates t h e e r r o r in bi ts 0 through 2 of by te 1 of
t h e PAB. Therefore, your assembly language program must c lear these bi ts before
every 110 operation and check them a f t e r every 110 operation.

18.2.3.2 Special Input/Output Modes

The DSR uses only t h e f i r s t pa r t of t h e f i le descriptor in i t s search for the requested
peripheral. T h e remainder of t h e descriptor can be used t o indicate special
device-related funct ions such as transmission r a t e , pr in t width, etc. T h e DSR ignores
descriptor portions t h a t i t does not recognize.

EDITOR/ASSEMBLER
Page 299

FILE MANAGEMENT

An e x a m p l e of a spec i a l 110 mode descr ip tor t h a t s e t s va lues f o r t h e RS232 I n t e r f a c e
is

182.33 Default Handling

The DSR h a s c e r t a i n de fau l t s t h a t a r e used if no va lues a r e specif ied. The fol lowing
shows t h e s e defaul ts .

Possibi l i t ies - D e f a u l t

Sequent ia l or r e l a t i v e Sequential .
UPDATE, OUTPUT, INPUT, or APPEND UPDATE.
DISPLAY or INTERAL DISPLAY.
Fixed or var iab le length Fixed if r e l a t i ve and var iab le if

sequential .
Logica l r eco rd l e n g t h Depends on t h e spec i f i c peripheral .

18.2.4 Memory Requirements

The DSR uses R e g i s t e r s 0 th rough 10 of t h e ca l l ing Workspace and add res se s >834A
through >836D. If t h e DSR is ca l led in a non- in te r rupt dr iven mode (fo r example ,
through a s t anda rd DSR ent ry) , add re s se s >83DA through >83DF a r e used. Also used

a r e P A D (See Sec t ion 24.3.1) and VDP RAM.

18.2.5 Linkage to T I BASIC

When using TI BASIC, t h e P A B is modif ied by t h e addi t ion of fou r b y t e s a t t h e
beginning of t h e PAB. T h e l is t on t h e next p a g e descr ibes t h e by t e s which make up

a P A B when i t is ca l led f r o m TI BASIC.

EDITOR/ASSEMBLER
P a g e 300

FILE MANAGEMENT

Byte Contents Meaning
&I L ink t o next PAB The address of the next PAB in the chain of PABs used

by T I BASIC. The last PAB in the chain has a value
o f >0000 i n these bytes.

Fi le Number The number assigned t o the f i l e by T I BASIC.

Internal Of fse t I f 0, there is no effect. I f non-zero, it i s the value t o

be added t o the s tar t address of the data buffer before
the next PRINT or INPUT operation. This is only used

if the previous PRINT operation ended i n a semicolon
(;) or comma (,) or i f the previous INPUT operation
ended i n a comma (,).

4 I/O Op-code Same as byte 0 i n the PAB described i n Section 18.2.

5 Flag/Status Same as byte 1 i n the PAB described i n Section 18.2.

697 Data Buf fer Same as bytes 2,3 in the PAB described in Section
Address 18.2.

8 Logical Record Same as byte 4 i n the PAB described in Section
Length 18.2.

9 Character Count Same as byte 5 i n the PAB described i n Section 18.2.

10,ll Record Number Same as bytes 6,7 i n the PAB described i n Section
18.2.

12 Screen Of fse t Same as byte 8 i n the PAB described i n Section 18.2.

13 Name Length Same as byte 9 i n the PAB described in Section 18.2.

14+ Fi le Descriptor Same as bytes 10+ i n the PAB described in Section
18.2.

EDITOR/ASSEMBLER
Page 301

FILE MANAGEMENT

The following figure summarizes the bytes which make up a PAB.

+ - +
I 0,l I
I L i n k t o n e x t PAB
+ -

I
+

1 2 1 3 I
I F i l e Number 1 I n t e r n a l O f f s e t 1
+ - +

1 4 1 5 I
I 1 / 0 Op-code 1 F l a g / S t a t u s I
+ - +

1 6,7 I
I D a t a B u f f e r Add ress
+ -

I
+

8 1 9 I
I L o g i c a l Reco rd L e n g t h I C h a r a c t e r Count I
+ - +

1 1 0 , l l I
I Reco rd Number I
+ - +
1 1 2 1 1 3 I
1 Sc reen O f f s e t I Name L e n g t h 1
+ - +

1 1 4 + I
1 F i l e D e s c r i p t o r 1

The following shows how three PABs might be linked i n T I BASIC.

+ - - - - - - - - - + + - - - - - - - - - + + - - - - - - - - - + + - - - - - - - - - +

I OFAB I - - > I OE27 I - - > I ODlA I - - > I 0000 I
+ - - - - - - - - - + + - - - - - - - - - + + - - - - - - - - - + + - - - - - - - - - +

1 0 4 1 - - I 1 0 1 1 - - I I 2 A I - - I
+ - - - - - - - - - + + - - - - - - - - - + + - - - - - - - - - +

I PAB #1 I I PAB /I2 1 I PAB lF3 I

EDITOR/ASSEMBLER
Page 302

FILE MANAGEMENT

18.3 EXAMPLE OF FILE ACCESS

The following program opens a fixed 80 f i le called DSKLDATA, reads a record from
it, waits for you to press a key, closes the file, and returns to the calling program.

PABBUF
PAB
X

STATUS
PNTR
X

SAVRTN

PDATA

READ
CLOSE
X

MYREG
BUFFER
X

DEF
REF

EWU
EQU

EQU
EQU

DATA

DATA
TEXT
EVEN
BYTE
BYTE

BSS
BSS

MOV
LWPI
L I
L I
L I
BLWP

LI
MOV

BLWP
DATA

MOVB
LI

BLWP

DSR
DSRLNK,VMBW,VMBR,VSBW,KSCAN

R11,gSAVRTN Save return address.
MYREG Load own registers.
R0,PAB

R1,PDATA
R2,>20
@VMBW Move PAB data into PAB in VDP RAM.

R6,PAB+9 Pointer to name length.
R6,BPNTR Store pointer to name length in >8356.

BDSRLNK Open file.
8

@READ,Rl
R0,PAB
gVS%W Change 110 op-code to read.

EDITOR~ASSEMBLER
Page 303

FILE MANAGEMENT

X

LOOP

X

OVER

MOV R6,BPNTR

BLWP QDSRLNK

D A T A 8

L I R0,PABBUF

L I R1,BUFFER

L I R2,80

BLWP @VMBR

LI R0,>102

L I R1,BUFFER

L I R2,80

BLWP @VMBW

BLWP QKSCAN

MOVB @STATUS,RO

JEQ LOOP

MOVE @CLOSE,Rl
L I R0,PAB

BLWP @VSBW

MOV R6,BPNTR

BLWP QDSRLNK

D A T A 8

Restore pointer to name.

Read one record.

Move t o CPU buffer.

Specify beginning screen location.

Move l ine t o screen.

Wait for key press.

Change I/O op-code to close.

Restore pointer t o name.

Close file.

CLR RO

MOVB RO,@STATUS So that no error is reported.

MOV @SAVRTN,Rl l Saved re tu rn address.
RT Return to cal l ing routine.

E N D

EDITOR/ASSEMBLER
Page 304

SECTION 19: THE LINKING LOADER

The Linking Loader loads assembly language programs in to the Memory Expansion

unit. The Loader is wr i t ten i n assembly language and is included i n the u t i l i t y

programs i n the Editor/Assembler Command Module. Both compressed and

uncompressed tagged object code can be handled by the Loader.

The Loader is loaded in to the Memory Expansion un i t as par t of the u t i l i t y programs

when you select the L O A D A N D RUN option f rom the Editor/Assembler selection l i s t
or when a T I BASIC program executes the CALL I N I T statement. I t is also loaded

the f i rs t t ime C A L L L O A D is executed without the Loader i n memory. The u t i l i t y

programs are loaded i n the lower block of memory, start ing a t address >2000, in the

Memory Expansion unit.

19.1 MEMORY ALLOCATION

The Loader always attempts t o load relocatable programs in to the 24K block o f high

memory located i n the Memory Expansion uni t a t addresses >A000 through >FFD7. If
insuff ic ient space is there, the Loader places the program between the ut i l i t ies and

the REF/DEF table i n the low memory o f the Memory Expansion unit a t
approximately addresses >2676 through >3F37.

When a 0-tag (see Section 15.2 for a description of tags) is encountered, and high

memory has enough space, the start ing load address is updated f rom the Fi rs t Free
Address in High memory (FSTHI, equal t o UTLTAB+2 or address >2024), and the

module length is added t o FSTHI.

I f the high memory is f u l l or has insuff icient space t o allocate the program, the

Loader checks the low memory. I f suff ic ient space is there, the start ing load
address is updated f rom the Fi rs t Free Address i n Low memory (FSTLOW, equal to

UTLTAB+6 or address >2028) and the module length is added to FSTLOW.

Loading absolute code does no t a f fec t these memory pointers. Thus, loading

relocatable code af ter absolute code has been loaded may cause the absolute code to

be overwritten. Similarly, loading absolute code a f te r relocatable code may

overwri te the relocatable code.

EDITOR~ASSEMBLER
Page 305

THE LINKING LOADER

The Loader can b e called repeatedly t o load more than one fi le until both high and
low memory a r e full. The programs t h a t have been loaded a r e accessible until one of

the following conditions occurs.

The EDIT, LOAD, or SAVE option i s se lected f rom the Editor/Assembler
selection l ist , causing t h e Editor t o be loaded into memory.

The ASSEMBLE option is se lected f rom the Editor/Assembler selection l i s t and
the Assembler program is loaded into memory.

0 The LOAD AND RUN option is se lected f rom the Editor/Assembler selection
list and t h e file name is entered.

w The RUN PROGRAM FILE option is selected f rom the Editor/Assembler
selection list, and a program file is loaded into memory.

w CALL INIT is executed f rom TI BASIC.

An error occurs when loading a program. Then all previous loads a r e invalid.

EDITORIASSEMBLER
P a g e 306

THE L I N K I N G LOADER

19.2 THE REFIDEF TABLE

The object tags generated by DEF statements (5- and 6-tags--see Section 15.2.1 for

more information on tags) define locations i n a program tha t can be referenced by

other routines. Additionally, they can define assembly language programs which can

be called by name f rom the L O A D A N D R U N or R U N options on the

Editor/Assembler selection l i s t or f r om the C A L L L I N K statement f r om T I BASIC.

I f the entry point is specified i n the label f ield of an END statement (tag 1 or 2), the

Loader branches t o the entry address and starts execution without returning t o the

Editor/Assembler. I n this case, the screen is no t cleared or changed i n color, so

clearing the screen and specifying a screen color is your responsibility. Also, the

Workspace Registers a t USRWS are not loaded, so you must load USRWS or your own

Workspace Registers w i th the LWPI instruction.

The 5- and 6-tags contain the name and address tha t are associated w i th a DEF

instruction. These names and addresses are placed i n the R E / D E F table start ing a t

the highest address i n low memory (> 3 f T F) and going toward >3000. Each entry is

eight bytes, six for the ASCII name and two for the address. Some REFs and DEFs

are predefined and are placed in the REF/DEF table when the Loader is placed i n

memory. The REF/DEF table entries for your programs normally start a t >3F38 and

go toward >3000 f rom there. Each t ime an i t em is added t o the REF/DEF table, the

pointer t o the Last Free Address in L o w Memory (LSTLOW, equal to UTLTAB+8 or

address >202A) is adjusted.

The Loader also resolves REFs i n your programs. Any DEFed symbol can be R e e d i n

your program. REFed symbols are stored i n the REF/DEF table i n the same way as

DEFed symbols. To distinguish a REF entry f r om a DEF entry, the f i rs t word of REF

entries is i n two's-complement form.

REFS are resolved and deleted f rom the table as soon as the corresponding DEF is

found. DEFs remain un t i l the next t ime the ut i l i t ies are loaded, which resets the

memory pointers.

The following l i s t gives the predefined symbols for which the Loader resolves

references. The address is the address to which the symbols are equated. A n error
occurs when the program is executed i f a reference is never defined w i th the DEF
instruction. The use of these symbols is described i n Section 16.

EDITOR/ASSEMBLER
Page 307

THE L I N K I N G LOADER

Name

UTLTAB
P A D

GPLWS

SOUND

VDPRD

VDPSTA

VDPWD
SPCHRD

SPCHWT

GRMRD

GR M R A

G R M WD

GRMWA

SCAN

Address

>2022
>a300

>83EO

>a400

>8800

>8802

>8COO
>9000

>9400

>9800

>9802

>9COO

>9C02

>000E

Description

Star t of the u t i l i t y variable table.
Start of CPU scratch pad RAM.
GPL interpreter workspace pointer.

Sound chip register.

VDP R A M Read Da ta Register.

VDP R A M Read Status Register.

VDP R A M Write Address Register.

Speech Read Data Register.

Speech Wri te Da ta Register.

GROMIGRAM Read Data Register.
GROMIGRAM Read Address Register.

GROMIGRAM Write Data Register.

GROMIGRAM Write Address Register.

Address of branch t o the keyboard scan u t i l i t y (KSCAN).

The fol lowing l i s t gives the uti l i t ies, also discussed i n Section 16, fo r which the
Loader resolves references.

Name
VSBW

VMBW
VSBR

VMBR
VWTR

KSCAN

GPLLNK

X M L L N K

DSRLNK

LOADER

Use
Writes a single byte t o VDP RAM.

Writes mult ip le bytes to VDP RAM.

Reads a single byte f rom VDP RAM.
Reads mult ip le bytes f rom VDP RAM.
Writes a single byte to a VDP Register.

Scans the keyboard.

Links your program t o Graphics Programming Language routines.

Links your program to the assembly language routines i n the console

R O M or RAM.

Links your program t o Device Service Routines.

Links your program t o the Loader to load TMS9900 tagged object

code.

EDITOR/ASSEMBLER
Page 308

THE L I N K I N G LOADER

19.3 OBJECT TAGS

Object format tags are created i n object code when your assembly language code is
assembled. The tags provide the Loader w i th the information it needs t o load the

object code. A l l tags 0 through 9 and A through I, wi th the exception of D, E, G,

and H, can be used by the Loader. Any other tags cause the Loader t o stop w i th an

error. In addition, the colon (:) as the f i rs t character i n a record signifies the end of
the file. The actions taken for each of the object format tags are described below.

For a further discussion o f object fo rmat tags, see Section 15.2.

Code Name -- Actions

0 Module ID The Fi rs t Free Address pointer is placed i n the relocation
base register and the load address register. The module

length is added t o the F i rs t Free Address pointer. The

module name i s ignored.

1,2 Ent ry A value o f 1 indicates an absolute entry address. A value
Address o f 2 indicates a relocatable entry address. One of these

tags may appear a t the end of the object code f i le by

specifying an entry point w i t h an END i n your assembly

language program. The Loader immediately executes any
object code start ing w i th one of these tags.

3,4 External A value o f 3 indicates tha t the symbol i s i n relocatable

References code. A value o f 4 indicates that the symbol is i n absolute
code. The REFed symbol i s placed i n the REF/DEF table
w i t h the address of the symbol (plus the relocation base i f
the tag is 3). The entry is deleted f rom the table when the
corresponding DEF is found. The f i rs t word o f the
reference is given i n two's-complement notation.

5,6 External A value o f 5 indicates tha t the symbol i s i n relocatable

Def ini t ions code. A value of 6 indicates that the symbol is i n absolute

code. The DEFed symbol is placed i n the REF/DEF table

w i t h the address of the symbol (plus the relocat ion base if
the tag is 5).

7 Record The checksum i s tested w i th the computed value.
Checksum

EDITOR~ASSEMBLER
Page 309

THE L I N K I N G LOADER

Code Name -- Actions

8 Ignored The value f ie ld i s ignored.

Checksum

9 Absolute The value i s placed in the current address register.

Load Address

A Relocatable The value plus the relocation base register is placed in

Load Address the current address register.

B Absolute The data is placed a t the address specified by the

Data current address register. The current address is

incrernented by 2.

C Relocatable The value o f the data plus the relocation base register is

Data placed a t the address specified by the current address

register. The current address is incrernented by 2.

D Load Bias Loading halts w i th an error.

E Undefined Loading halts w i th an error.

F End o f The rest o f the record is ignored and a new record is

Record read.

G,H Undefined Loading halts w i t h an error.

I Program Ignored.

Segment I D

End of Fi le When the f i rs t character o f a record, loading halts.

EDITOR/ASSEMBLER
Page 310

THE LINKING LOADER

Note: When absolute code is loaded in to memory, f r e e space pointers a r e not
updated or checked against t h e size of t h e program. Thus, t h e Loader does not issue

an error message if the program overwrites a utility program (including the Loader
i tself) or does not f i t in memory. When loading a shor t program by poking d a t a into

memory, the same situation occurs. To run t h e poked program, you must modify t h e
REF/DEF table by adding a DEFed entry for the program. To avoid having t h e
Loader overwrite memory, t h e f r e e space address pointer should b e adjusted s o t h a t
the Loader does not load a program into an a r e a where an AORGed or poked program
is located. The TI BASIC subroutine PEEK can be used t o read t h e pointers before
they a r e modified. See Section 17.1.4 for more information.

19-3.1 L o a d e r E r r o r C o d e s

If no error occurs, the second bit in the STATUS byte a t > a 3 7 0 i s r ese t on re turn
from the Loader. If an I/O or loading e r ro r ocurs, t h e s t a tus bit is set. The
following a re the error codes used.

Code Meaninq
0-7 Standard 110 errors.
8 Memory overflow.
9 Not used.
10 Illegal tag.
11 Checksum error.
1 2 Unresolved reference.

Note : If the Loader finds a label in t h e DET s t a t e m e n t t h a t is already defined in
the REF/DEF table, a duplicate definition error is issued and loading stops.

EDITOR/ASSEMBLER
Page 3 1 1

SECTION 20: SOUND

With the T I Home Computer, your program can generate up to three tones, w i t h a

range of 110 to 55,938 Hz, and one noise. Sound generation involves sett ing the

frequency of the tone or the type of noise desired, sett ing the volume or attenuation,

sett ing the duration of the tone or noise, and then start ing the sound. Sound is

generated using the TMS9919 Sound Generator Controller.

Three addresses i n CPU R A M are associated w i th processing sound information. You

place a pointer t o the sound table i n VDP R A M a t address >83CC. You place >01 a t

address >83CE t o start the processing of the sound generator. This address is used

by the interrupt rout ine as a count-down t imer during the execution of sound. The

least-significant b i t of the byte a t address >83FD (which is the least-significant byte

of GPL Workspace Register 14) must be set to indicate that the sound table is i n VDP

RAM.

The VDP interrupt must be disabled while you are sett ing up memory for sound

operation. Normal ly the VDP interrupt is disabled when control is transferred to

your assembly language program. I f necessary, you can disable the VDP interrupt

w i th the L I M I 0 instruction. A f te r the memory has been set up, you must enable

VDP interrupt w i t h the L I M I 2 instruction i n order t o start processing sound

operation.

Note: Interrupts should never be enabled while your program i s accessing VDP
memory because the interrupt routines can change the VDP read or wr i te addresses.

To execute sound l ists automatically, you must enable interrupts momentari ly a t least

every sixt ieth o f a second. I f your program has a key scanning loop, such as the one

shown below, t ha t is often a good place to enable interrupts.

GETKEY LIMI 2 Test for interrupt.

LIMI 0

BLWP QKSCAN

MOVE @>837C,O

JEQ GETKEY

EDITOR/ASSEMBLER
Page 312

20.1 SOUND TABLE

You must construct a sound table i n order t o create sounds. The sound table consists

of sound lists, each of which provides the information necessary f o r the operation of

the sound processor. For a tone, the information consists of the register value and

data for frequency and attenuation. For a noise, the information consists of a noise

source and attenuation. Tones can be specified, singly or in combination, for

generator 1, 2, or 3. Noise can be specified by a noise generator.

When you are generating tones, the f i rs t byte i n the sound l i s t is the number o f bytes

to be loaded in to the sound processor. Following tha t are the bytes to be loaded. A

generator and frequency can be specified by two bytes. A generator and attenuation

can be specified by one byte. A generator and noise can be specified by one byte.

A f t e r you give a l l generator, tone, noise, and attenuation specifications, you give a

duration time. A sound l i s t consists o f a series o f these specifications. Each

specification consists of a byte count, a series o f generator, tone, noise, and

attenuation specifications, and a duration time.

The two bytes tha t specify the tone information contain the following.

Byte B i t Contents

1 0 1.
1 - 3 Operation.

4 - 7 Four least signif icant frequency bits.

2 0 - 1 00.

2 - 7 Six most signif icant frequency bits.

The byte tha t specifies attenuation information contains the following.

Byte B i t - Contents
1 0 1.
1 1 - 3 Operation.

1 4 - 7 Attenuation.

EDITOR/ASSEMBLER
Page 313

The byte that specifies noise information contains the following.

Byte - B i t Contents
1 0 1.
1 1 - 3 Operation.

1 4 0.

1 5 White noise or periodic noise.

1 6 - 7 Type of noise.

20.1.1 Operation Specification

The operations are described i n b i ts 1 through 3 of byte 1.

Operation Siqnificance

0 0 0 Tone 1 frequency

0 0 1 Tone 1 attenuation

0 1 0 Tone 2 frequency

0 1 1 Tone 2 attenuation

1 0 0 Tone 3 frequency

1 0 1 Tone 3 attenuation

11 0 Noise contro l

111 Noise attenuation

20.1.2 Frequency Specification

The frequency value required i n the Sound Table is contained i n b i ts 2 through 7 o f

byte 2 and b i ts 4 through 7 o f byte 1 of the bytes specifying tone information. This

allows a value of f r om 00 0000 0000 through 11 1111 1111 (>000 through >3FF). This

value, which is kept i n the period register, defines hal f of the period of the desired

frequency, N. The value is loaded in to a 10-stage tone counter which is decremented

a t a ra te equal to n/16, where n is the standard input clock frequency, 3.579545 MHz.
When the tone counter decrements t o zero, a borrow signal is produced. This borrow

signal toggles the frequency f l ip-f lop and reloads the tone counter. Thus, the period

of the desired frequency is tw ice the value of the period register.

EDITOR/ASSEMBLER
Page 314

The frequency code, f, is equal to (n/32)/N, or KIN. The ra te is specified so that the

value o f K is equal to 111860.8 regardless of the input clock frequency. Thus, f =

111860.8/N can always be used t o calculate the frequency code. The lowest possible

frequency is 110 Hz, and the highest is 55,938 Hz.

For example, t o output a frequency o f 110 Hz, f = 111,860.8/110 or approximately

1017 (>3F9 or 11 1111 1001 binary). Placing this value in to the correct positions

(most signif icant six b i ts i n b i ts 2 through 7 o f byte 2 and least signif icant four bi ts

i n b i ts 4 through 7 o f byte l), adding an operation description o f 000 i n b i ts 1 through

3 o f byte 1 t o specify a frequency for generator 1, and putt ing in the required b i t

values gives the correct byte values. They are 1000 1001 089) i n byte 1 and 0011

1111 (>3F) i n byte 2.

20.1.3 Attenuation Specification

The attenuation can be f rom 0 to 28 DB. I n addition, the generator can be made

silent by specifying the maximum attenuation. The attenuation is specified in bi ts 4
through 7 o f the byte specifying attenuation. I n determining the attenuation, these

four bi ts may be regarded as having a binary 0 a f te r them. Thus, a value o f 0001

may be considered as 00010, or an attenuation o f 2 DB. A value of 0110 may be

considered as 01100, or an attenuation o f 12 DB. Sett ing a l l the b i ts on, or a value

o f 1111, turns the sound generator off.

For example, to turn o f f generator 1, data 1001 1111 (>9F) is placed i n the byte. lo
put an attenuation o f 0 DB in the noise generator, data 1111 0000 (>FO) is placed i n
the byte.

20.1.4 Noise Specification

The noise generator consists of a noise source and an attenuator. The noise source is

a 15-stage shi f t register w i t h an exclusive OR feedback network. The feedback

network has provisions t o protect the sh i f t register f r om being locked i n the zero
state.

The feedback network has t w o feedback tap configurations as determined by b i t 5.
I f b i t 5 is 0, the noise is of the periodic type. I f b i t 5 is 1, white noise results.
(See the User's Reference Guide for more information on white noise and periodic

noise.) When b i t 5 is changed, the sh i f t register is cleared.

EDITOR/ASSEMBLER
Page 315

SOUND

The register shi f ts a t one o f four rates as determined by bi ts 6 and 7. The f ixed

shi f t rates are derived f rom the input clock, which has a frequency, n, of 3.579545
MHz. A value o f 00 specifies a shi f t r a t e o f n/512 or 6991. A value o f 01 specifies
a sh i f t r a te o f n/1024 or 3496, and a value o f 10 specifies a sh i f t r a t e o f n/2048 or

1738. With a value of 11, you can define the sh i f t r a t e by feeding the shi f t r a t e in to
generator 3.

For example, to produce a white noise w i t h a sh i f t r a t e of 1748, data 1111 0110 (>F6)

must be placed in the byte.

20.1.5 Duration Control

Af te r the byte giving the number of specification bytes t o be loaded and the

specifications are entered, a by te which controls the duration of the sound is given.
This byte specifies the length i n sixtieths o f a second. I t can range f rom >00 (no

time, which stops the generator) through >FF (approximately 4.25 seconds).

For example, t o specify a tone w i th a frequency o f 110 Hz and 2 DB o f attenuation

for 0.5 seconds on generator 1, the bytes t o load are >03, >89, >3F, >91, >1E. The
f i rs t byte 003) specifies tha t there are three data bytes t o load i n to the sound

generator hardware. The next two bytes (>893F) specify a tone o f 110 H z on
generator 1. The next byte 0 9 1) specifies an attenuation o f 2 DB on generator 1.
The last byte (>1E) specifies a duration o f 30/60ths o f a second. You can terminate
sound w i th data >01, >9F, 0.

EDITOR/ASSEMBLER
Page 316

SOUND

20.2 DIRECT ACCESS TO THE SOUND GENERATOR

Any sound list, excluding the t ime duration data , can be directly loaded into the
sound processor a t address >8400. This address is in the DEF table in the utility
program, so REF SOUND must be included in your program. If you use this d i rect
loading, you must include an appropriate t i m e delay s o tha t the sound i s heard for the
desired period. This method does not involve the in terrupt processing routine in the
console.

EDITOR/ASSEMBLER
Page 317

20.3 SOUND GENERATOR FREQUENCIES

The fol lowing table l ists the data used to produce various notes w i t h generator 1.
The f i rs t nybble must be changed to use generator 2 or 3.

Alternatively, you can f ind the note half a step above a given note by the fol lowing

formula.

New frequency = old frequency * 2 (1112)

For example, the frequency hal f a step higher than middle A is 440 * 2(1'12) or

466.16.

I n the table, the f i rst number af ter the note specifies the octave o f the note. The

second number, which is always 1, specifies tha t this is for generator 1. This table,
and similar ones fo r generators 2 and 3, are of ten useful i n producing music. For

example, your program might contain

A01 EQU >893F A on generator 1.
A02 EQU >A93F A on generator 2.
A03 EQU >C93F A on generator 3.
A t 0 1 EQU >803C A// on generator 1.

and so on. You may then re fe r to notes by name rather than by the data required t o

produce them.

Note

A01

ABOl
501
C11
C B l l
D l1

D#11
E l l
F11
F l l l
G I 1

G i l l 1

Da ta

8 9 X

Desired

Frequency

110.00
116.54
123.47
130.81
138.59
146.83
155.56
164.81
174.61
185.00
196.00

207.65

Frequency

Code

1017 (>3F9)
960 (>3CO)

906 (>38A)
855 (>357)
807 0327)
762 (>2FA)
719 (>2CF)
679 (>2A7)
641 (>281)
605 (>25D)
571 (>23B)
539 (>21B)

EDITOR/ASSEMBLER
Page 318

SOUND

N o t e

A l l
A # l l
E l l
C21

CIi21
D21
D1/21

E21
F21

F1\ 21
G21

G#21
A21

A t 2 1
821
C31
Cl l31

D31

D#31
E31
F31

F//31
G31

G#71
A31

Al l31
631
C41
C1/41
D 4 1

Db41
E41

F4 1
F#41
G41
Gl /4 l
A41

Al l41

841

Data -
8C1F
801E

851C
8C1A
8419

8D17

8816
8315
8014

8E12

8 D l l
8D10
8EOF
800F
820E
860D
8AOC

8EOB
8408

8AOA
800A

8709
8F08

8708
8F07
8807

8107
8806
8506
8F05

8A05

8505
8005

8C04
8704
8304
8004

8C03

8903

Desired

Frequency

220.00
233.08

246.94
261.63
277.18

293.66
311.13

329.63
349.23

369.99

392.00
415.30
440.00
466.16
493.88
523.25

554.37
587.33

622.25
659.26
698.46

739.99

783.99
830.61
880.00
932.33

987.77
1046.50
1108.73

1174.66

1244.51

1318.51
1396.91

1479.98
1567.98
1661.22
1760.00

1864.66

1975.53

Frequency
Code

508 (>lFC)
480 (>1EO)

453 (>1C5)
428 (> lAC)
404 (>194)

381 (>17D)
360 0168)

339 (>153)
320 0140)

302 (>12E)

285 (>11D)
269 (>10D)
254 (>OFE)
240 (>OFO)
226 (>OE2)
214 (>OD61
202 (>OCA)

190 (>OBE)

180 0084)
170 (>OAA)
160 (>OAO)

151 (>097)

143 (>08F)
135 (>087)
127 (>07F)
120 0078)

113 (>071)
107 0068)
101 (>065)

95 (>05F)

90 (>05A)

85 0055)
80 (>050)

76 (>04C)
71 (>047)
67 (>043)

64 (>040)

60 (>03C)
57 (>039)

EDITOR/ASSEMBLER
Page 319

Note -
C51

C#51
0 5 1

D#51
E51

F51
F151

G51
G#51
A51

A#51
851
C61

Cb61
D61
DW61
E61

F61

Da ta -
8503
8203
8003

8D02
8A02
8802
8602

8402
8202
8002
8E01

8C01
8801

8901
8801
8601
8501

8401

Desired

Frequency

2093.00
2217.46

2349.32
2489.02
2637.02
2793.83
2959.96

3135.96
3322.44
3520.00
3729.31

3951.07

4186.01
4434.92
4698.64
4978.03
5274.04

5587.65

Frequency

Code

53 (>035)
50 (>032)

48 (>030)

45 0 0 2 0)
42 (>02A)
40 (>028)

38 0026)

36 (>024)

34 0022)
32 (>020)
30 (>DIE)

28 (>OlC)

27 (>OlB)
25 0019)
24 (>Ole)
22 (>016)
21 (>015)

20 (>014)

EDITOR/ASSEMBLER
Page 320

20.4 EXAMPLES

The fol lowing sections show a program segment which accesses the sound controller
and two programs, one that plays a chime, and one tha t makes a crashing sound.

20.4.1 Accessing the Sound Controller

This program segment shows how to access the sound controller, assuming tha t the
sound table i s i n VDP RAM.

H01 BYTE >01
EVEN

X

START L I M I 0
L I R10,TABLE

*
MOV RlO,@>83CC
MOVB @H01,@>83CE
SOCB @H01,@>83FD
L I M I 2

Disable VDP interrupt.
Load sound table address in VDP
RAM.
Load it at >83CC.
Trigger sound processing.
Set VDP R A M flag.
Enable VDP interrupt.

20.4.2 A Chime

The following program repeatedly plays a chime.

*
* Example program to play a chime.
X

REF VMBW
DEF C H I M E

X

BUFFER EQU >lo00
*
*
H01 BYTE >01

EVEN

VDP R A M buf fer used by the sound
generator.

EDITOR/ASSEMBLER
Page 3 2 1

SOUND

X

C H I M E
L I

L I
L I

X

BLWP
Y

LOOP

LIMI
L I

MOV
SOCB
MOVB
LIMI

MOVE

JEQ
JMP

Y

CDATA BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

Load VDP RAM buf fe r address ,
P o i n t e r t o t h e soirnd data .

118 b y t e s t o move t o t h e \/UP KA?,?

buffer .
Move t o t h e VDP KAi\/l.

Disable \/UP in t e r rup t .
Load sound t a b l e address .

Load poin ter t o t h e table.
S e t VDP flag.
Tr igger sound processing.
Enab le VDP in te r rupt .

@>83CE,@>83CE Check i f Lirria is up.

LOOP R e p e a t t h e sound.
LOOP2 Wait unt i l finished.

EDITOR~ASSE MBLER
Page 322

SOUND

BYTE >03,>97,>84,>01,6
BYTE >03,>98,>85,>D2,7

BYTE >03,>9F,>BF,>DF,O
E N D

20.4.3 A Crash

The following program makes a crashing sound.

* Example Program t o make a crash sound.
*

REF VMBW
DEF CRASH

*
BUFFER EQU >lo00
*

*
CRASH

*
LOOP

BYTE
EVEN

BLWP

L I M I

L I
MOV

SOCB
MOVB
L I M I

MOVB
JEQ
J M P

@>83CE,@>83CE
LOOP

LOOP2

VDP R A M buf fer used by sound
generator.

Load VDP R A M buf fer address.

Pointer t o the sound data.

32 bytes t o move to the VDP R A M
buffer.
Move to VDP R A M buffer.

Disable VDP interrupt.
Load sound table address.
Load pointer t o the table.

Set VDP R A M flag.
Star t sound processing.

Enable VDP interrupt.

Check i f t ime is up.
Finished w i th the sound table.

Wait un t i l finished.

EDITOR/ASSEMBLER
Page 323

X

CDATA BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
END

EDITOR/ASSEMBLER
Page 324

SECTION 21: COLOR, GRAPHICS, AND SPRITES

The T I Home Computer gives you the capabil i ty o f displaying a wide variety of

colored graphics and sprites, enabling you t o make your programs l ively and

interesting. You can place the screen i n one of four modes: text, graphics,

mult icolor, and bit-map (available only on the TI-99/4A).

I n graphics mode, you can use the standard ASCII characters and define new

characters. You can make characters and their backgrounds a variety o f colors.

The screen is 32 columns by 24 lines. This is the mode used by the Editor/Assembler

except when editing, T I BASIC, and most applications.

I n mult icolor mode, you can set the colors o f a number o f small boxes. The screen

is 64 columns by 48 lines.

I n t ex t mode, you can use the standard ASCI I characters and define new characters.

A l l characters are one color, and the background is one color. The screen is 40

columns by 24 lines. This i s the mode used by the Editor.

I n bit-map mode (available only on the TI-99/4A because o f i t s use o f the TMS9918A

video processor instead of the TMS9918 video processor), you can set any p ixe l (the

smallest dot on the screen) on or o f f and make the pixels and the background a

var iety of colors. The screen is 256 columns by 192 lines.

I n a l l modes except text, up to 32 sprites (moving graphics) can be created and set i n

motion without further program control.

EDITORJASSEMBLER
Page 325

COLOR, GRAPHICS, A N D SPRITES

21.1 VDP WRITE-ONLY REGISTERS

Before using the d i f ferent modes, certain preliminary information is necessary. The
fol lowing describes the eight VDP write-only registers.

VDP Register 0 The default fo r Register 0 is >00 fo r the Editor/Assembler, T I
BASIC, and T I Extended BASIC.

Bi ts 0 - 5 Reserved. Must be 000000.

B i t 6 Mode b i t 3, called M3. I f this b i t is set, the display
is i n bit-map mode.

B i t 7 External video enableldisable. A value o f 1 enables

video input and a value o f 0 disabies video input.

VDP Register 1 The default fo r Register 1 is >EO i n the Editor/Assembler, T I

BASIC, and T I Extended BASIC. Note: Before changing this

Register, pu t a copy o f the new value you wish it t o have a t

address >83D4. When a key is pressed, a copy o f the value a t this
address i s placed i n Register 1.

B i t 0 4/16K selection. A value o f 0 selects 4K R A M
operation, and a value o f 1 selects 16K R A M
operation.

B i t 2

B i t 3

B i t 4

B i t 5

B i t 1 Blank enableldisable. A value of 0 causes the act ive
display (the ent i re screen) t o be blank, and a value o f

1 allows display on the screen. With a value o f 0,
the screen only shows the border color.

In terrupt enableldisable. A value of 0 disables VDP
interrupt, and a value o f 1 enables VDP interrupt.

Mode b i t 1, called M1. I f this b i t is set, the display
is i n text mode.

Mode b i t 2, called M2. I f this b i t is set, the display
is i n mult icolor mode.

Reserved. Must be 0.

EDITOR/ASSEMBLER
Page 326

COLOR, GRAPHICS, AND S P R X

Bit 6 Spri te s ize selection. A value of 0 se lec t s standard

s ize spri tes, and a value of 1 se lec t s double-size
sprites.

Bit 7 Spri te magnification selection. A value of 0 se lec t s
unmagnified spri tes, and a value of 1 se lec t s
magnified sprites.

VDP Register 2 The defaul t for Regis ter 2 is >00 in t h e Editor/Assembler, TI
BASIC, and TI Extended BASIC.

Defines t h e base address of the Screen Image Table. The Screen
Image Table base address is equal t o t h e value of this regis ter
t imes >400.

VDP Register 3 The de fau l t f a r Regis ter 3 is >OE in the ~ d i t o r / A s s e m b l e r , >OC i n
TI BASIC, and >20 in TI Extended BASIC.

Defines t h e base address of t h e Color Table. The Color Table
base address is equal t o t h e value of this regis ter t imes >40.

VDP Register 4 The defaul t for Regis ter 4 is >01 in t h e Editor/Assembler and >00
in TI BASIC and TI Extended BASIC.

Defines t h e base address of the P a t t e r n Descriptor Table. The
P a t t e r n Descriptor Table base address is equal t o t h e value of this
register t i m e s >800.

VDP Register 5 The defaul t for Regis ter 5 is >06 in the Editor/Assernbler, TI
BASIC, and TI Extended BASIC.

Defines t h e base address of the Spr i te At t r ibute List. The Spri te
At t r ibu te List base address is equal t o t h e value of this regis ter
t imes >80.

EDITOR/ASSEMBLER
Page 327

COLOR, GRAPHICS, AND SPRITES

VDP Register 6 The defaul t for Register 6 is >00 i n the Editor/Assembler, T I

BASIC, and T I Extended BASIC.

Defines the base address of the Sprite Descriptor Table. The
Sprite Descriptor Table base address is equal to the value of this

register t imes >800.

VDP Register 7 The default for Register 7 is >F5 i n the Editor/Assembler and >17
i n T I BASIC and T I Extended BASIC.

Bi ts 0 - 3 The color code o f the foreground color i n text mode.

Bi ts 4 - 7 The color code for the background color in a l l modes.

The mode bits, M1, M2, and M3, are i n b i ts 3 and 4 o f Register 1 and b i t 6 of
Register 0. They determine the mode of the display. I f they are a l l reset, the

display is in graphics mode. I f M1, i n b i t 3 of Register 1, is set, the display is in
tex t mode. I f M2, i n b i t 4 o f Register 1, is set, the display is i n mult icolor mode.

I f M3, i n b i t 6 o f Register 0, is set, the display is i n bit-map mode, available only on

the TI-99/4A.

EDITOR/ASSEMBLER
Page 328

COLOR, GRAPHICS, AND SPRITES

21.2 GRAPHICS MODE

I n graphics mode, you can use the standard ASCII characters and define patterns or

characters and their foreground and background colors. The display is 32 columns by

24 lines. You can use sprites. Color and graphics are available by defining each o f

the 256 characters and sett ing their foreground and background colors. The standard

ASCI I characters are predefined by the system software.

21.2.1 Pattern Descriptor Table

The Pat tern Descriptor Table contains descriptions o f the 256 patterns or characters.

By changing these descriptions, you can a l ter the appearance of the character on the

screen. The description o f each of the 256 patterns or characters takes eight bytes

of information. The description of the subprogram CHAR i n the U L J Reference

Guide discusses character definition.

I n the Editor/Assembler, the Pat tern Description Table starts a t address >0800.

Thus, the description o f character >00 occupies addresses >0800 through >0807,

character >Dl occupies addresses >0808 through >080F, and character >FF occupies

addresses >OFF8 through > O m .

21-2.2 Color Table

The Color Table contains the descriptions of the foreground and background colors of

the characters. The most-significant four b i ts of the byte specify the foreground

color and the least-significant four b i ts specify the background color. Each by te

specifies the color for a group o f eight characters. The 16 colors available on the T I
Home Computer and their hexadecimal codes are l isted on the next page.

EDITOR/ASSEMBLER
Page 329

COLOR, GRAPHICS, AND SPRITES

Color

Transparent

Black

Medium green

L igh t green

Dark blue

L igh t blue

Dark red

Cyan

Hexadecimal

Code

0
1

2

3
4

Color

Medium red

L igh t red

Dark yellow

L igh t yellow

Dark green

Magenta

Gray

White

Hexadecimal

Code

8
9

A
B

C

D
E
F

In the Editor/Assembler, the Color Table starts a t address >0380. Thus, the byte a t

address >0380 specifies the colors o f characters >00 through >07, the byte a t address

>0381 specifies the colors of characters >08 through >OF, and the byte a t address

>039F specifies the colors of characters >F8 through >FF.

For example, placing a value of >17 a t address >0384 sets the colors of characters

>20 through >27 t o black on cyan.

21.2.3 Screen Image Table

The Screen Image Table specifies the characters tha t occupy each of the screen

positions. Each byte specifies the character a t one screen position. The 768 screen

positions are arranged on the screen i n 24 rows of 32 columns.

I n the Editor/Assembler, the Screen Image Table starts a t address >0000. The f i rs t

32 addresses (>0000 through >001F) contain the characters for the f i rs t row, the

second 32 addresses (>0020 through >OO3F) contain the characters fo r the second row,

and so on.

For example, i f the value >41 (normally the code fo r the ASCII character A) is a t

address >0022, the character described a t addresses >OA08 through >OAOF of t he

Pat tern Descriptor Table appears i n the th i rd column o f the second row, assuming the

Pat tern Descriptor Table starts a t address >0800.

EDITOR/ASSEMBLER
Page 330

COLOR, GRAPHICS, AND SPRITES

21.3 MULTICOLOR MODE

I n mult icolor mode, the display is divided in to 48 rows, each containing 64 "boxes"

t ha t are four pixels by four pixels. Each of the 3072 boxes thus defined can be one

o f the 16 colors available. You can use sprites i n rnult icolor mode.

You should ini t ia l ize the Screen Image Table so tha t the f i rs t >80 bytes contain >00
through >1F repeated four times, the nex t >80 bytes contain >20 though >3F repeated

four times, and so on, so tha t the last >80 bytes contain >A0 through >BF repeated

four times.

The Pattern Descriptor Table, instead o f containing patterns, contains colors. Each

pat tern i n the Pat tern Descriptor Table contains eight bytes. I n mult icolor mode,
each group of eight bytes contains 16 color descriptions, each giving the color of one

box. The colors are as given i n Section 21.2.2. The l e f t four b i ts o f each byte

describe the color o f one box and the r i gh t four bi ts describe the color of the next

box on the same row.

The f i rs t byte i n the Pat tern Descriptor Table defines the colors of the f i rs t t w o

boxes i n the f i r s t row. The second byte defines the colors of the f i rs t two boxes i n

the second row. The th i rd byte defines the colors o f the f i rs t t w o boxes i n the th i rd

row. This continues un t i l the colors of the f i rs t two boxes i n each of the f i r s t eight

rows have been defined.

The next eight-byte segment similarly defines the colors of the th i rd and four th boxes

i n each o f the f i rs t eight rows. This def ini t ion continues un t i l the f i rs t 32 eight-byte

segments have described a l l the boxes i n the f i rs t eight rows. Subsequent groups of
eight rows are described i n a similar manner by subsequent groups o f 32 eight-byte

segments.

The following diagram represents the screen and how it is divided i n mult icolor mode.

The Screen Image Table address i s the of fset f rom the beginning. The Screen Image

Table value is what you should insert i n the memory location.

EDITOR/ASSEMBLER
Page 331

COLOR, GRAPHICS, AND SPRITES

S c r e e n Image
T a b l e A d d r e s s
>oooo - >001F

>oooo - >001F
>0020 - >003F

>0020 - >003F
>0040 - >005F
>0040 - >005F
>DO60 - >007F

>DO60 - >007F
>0080 - >009F
>OD80 - >009F

Row
1

2
3

C o l u n n s
1 2 3 4 ... 63 64

I I I I I . . . ! I 1

S c r e e n Image
T a b l e V a l u e --
>oo - >1F

The following table shows t h e Screen Image Table charac te r code, the addresses in
the P a t t e r n Descriptor Table, assuming t h a t i t s t a r t s a t address >0800, and the
portions of the screen t h a t those charac te r s and addresses describe.

Screen Image Table
Charac te r Code
>oo
200
>oo
> 00
>oo
> 00
>oo
> 00
>01

>01

Pat te rn Descriptor
Table Address
>0800

>0801
>0802
>0803
>0804

>0805
>0806

>0807
>0808

>080A

Row and Columns Described
Row Columns
1 1 and 2
2 1 and 2

3 1 and 2
4 1 and 2
5 1 and 2
6 1 and 2
7 1 and 2
8 1 and 2
1 3 and 4

2 3 and 4

48 63 and 64

EDITOR/ASSEMBLER
P a g e 332

COLOR, GRAPHICS, A N D SPRITES

21.4 TEXT MODE

I n t ex t mode, the display is 40 columns by 24 lines. You cannot use sprites. The
tables used t o generate the patterns are the same as the Screen Image Table and
Pat tern Descriptor Table used i n graphics mode. However, since 960 screen positions
are used instead of 768, the Screen Image Table is longer. The definitions ignore the
last t w o bi ts i n each entry so tha t each character has a 6-by-8 p ixe l definition. The
Edi tor is i n tex t mode.

The two colors available i n tex t mode are defined i n VDP write-only Register 7. The
le f tmost four b i ts describe the color o f the pixels tha t are on and the r ightmost four
b i ts describe the color of the pixels t ha t are off.

For example, if the Screen Image Table starts a t address >0000 and >41 is a t address
>0202, the ASCI I symbol A is placed on the 35th column o f the 13 th row. I n
graphics mode, however, this address and value would place the A on the th i rd column
o f the 17th row.

EDITOR/ASSEMBLER
Page 333

COLOR, GRAPHICS, A N D SPRITES

21.5 BIT-MAP MODE

I n the TI-99/4A Home Computer, the bit-map mode is available f o r defining the
display. I n bit-map mode, you can independently define each o f the 768 (32-by-24)
positions of the screen. Additionally, more color information is available for each
8-by-8 pixel pattern. You can use sprites, but no t their automatic motion feature.

I n the bit-map mode, the patterns tha t occupy screen positions are described in the
Screen Image Table, the pat tern descriptions are i n the Pat tern Descriptor Table, and
the colors of the characters are described i n the Color Table.

21.5.1 Screen Image Table

The Screen Image Table l ists the names o f the patterns, f r om the Pattern Descriptor
Table, that are t o be generated. Each name is a single byte f rom >00 t o >FF.

The table i s divided in to three sections, w i t h each section describing 256 entries.
The f i r s t section of 256 entries uses descriptions taken f rom the f i r s t 256 entries in
the Pat tern Generator Table and the Color Table. The second section o f 256 entries
uses descriptions taken f rom the second 256 entries in the Pat tern Generator Table
and the Color Table, and the th i rd section of 256 entries uses descriptions taken f rom
the th i rd 256 entries i n the Pat tern Generator Table and the Color Table.

The f i rs t 32 entries describe the patterns that are placed on the f i r s t r ow o f the
screen, the second 32 entries describe the patterns on the second row of the screen,
and so on. The Screen Image Table should usually be placed start ing a t address
>I800 by sett ing VDP write-only Register 2 to >06.

21.5.2 Pattern Descriptor Table

The Pat tern Descriptor Table i s divided i n to three sections o f 256 entries each and
thus contains the 768 possible patterns. Each description is eight bytes long. The
description o f the subprogram CHAR i n the User's Reference Guide discusses
character definition.

EDITOR/ASSEMBLER
Page 334

COLOR, GRAPHICS, AND SPRITES

1 he descriptioris in the f i r s t third of the table, 256 entr ies or 2048 bytes, describe the

i.na:acters i l l ttie f i rs t third of the screen. The descriptions in the second third of

the table describe the characters in the second third of the screen and the
:iescriptiorls in the last third of the table describe the charac te r s in the las t third of

i:.he sc7reerl0

Tile P a t t e r n Descriptor Table is > l a 0 0 bytes long. You must s t a r t i t ei ther a t
address >[I000 or >ZOO0 by placing e i ther >00 or >04 in VDP write-only Register 4. If

ttie Pntterrt Descriptor Table s t a r t s a t address >0000, the Color Table must s t a r t a t
zi?aress >200C. and vice versa.

,. - 1.5-3 Color Table

S i ~ i ? C o i x Table contains t h e descriptions of the colors of the charac te r s in the

I'aitern i lescriptor Table. The color codes a r e a s described in Section 21.2.2. Eight
bytes -re used to describe the colors of each character . The f i rs t nybble of each
: ~ ; ~ i e describes the color of the pixels t h a t a r e on in one row of eight pixels, and the
seronli rlyhhle describes the color of the pixels t h a t a re off in t h e same row of eight

pi::cis,

-
i he zolor descriptions in the f irst third of the table, 256 en t r i es or 2048 bytes,
describe t!i~: colors of the charac te r s in the f i rs t third of the screen. The

descriptiorls in the second third of the table describe the colors of the charac te r s in
the second third of the screen and the descriptions in the las t third of the table

describe the colors of the charac te r s in the l a s t third of the screen.

The Cuior Table is >1800 bytes long. You must s t a r t i t ei ther at address >0000 or
\2i>01i by piacing either >00 or >04 in VDP write-only Register 3. If the Color Table
s i ~ r t s a t address >OOOO, t he Pa t t e rn Descriptor Table must s t a r t a t address >2000,
a i l - i vice versa.

21-5.4 B i t - M a p M o d e Discuss ion

J n .sing the bit-map mode, i t is usually easiest t o initialize the Screen Image Table

t o > O n through >FF repeated three t imes, and then a l t e r the entr ies in the P a t t e r n
r)esrri?tor Table and the Color Table.

EDITOR/ASSEMBLER
Page 3:5

COLOR, GRAPHICS, AND SPRITES

To a l ter a pixel on the screen, you must calculate the byte and b i t t o be changed i n

the Pat tern Descriptor Table. To al ter the foreground and background colors o f a

row o f eight pixels, you must calculate the byte that must be changed i n the Color

Table. The fol lowing program segment al lows you t o f ind those values.

The program segment assumes that the X-value o f the pixel is i n Workspace Register
0 (RO) and the Y-value of the pixel is in Workspace Register 1 (Rl). The of fset o f

the byte that you must change i n the Pat tern Generator Table is returned i n

Workspace Register 4 (R4), and the b i t tha t must be al tered is returned i n Workspace

Register 5 (R5). The of fset o f the byte tha t you must change in the Color Table is

also returned i n Workspace Register 4.

MOV

SLA

SOC
ANDI
MOV
ANDI
A

S

Rl ,R4 R 1 is the Y value.

R4,5

Rl ,R4
R4,>FF07

RO,R5 RO is the X value.

R5,7

RO,R4 R 4 is the byte offset.

R5,R4 R5 is the b i t offset.

21.5.5 Bit-Map Mode Example

Suppose the entry for a character in the Pat te rn Descriptor Table i s
>FF9999FF182442C3. This defines the character shown below.

C h a r a c t e r P a t t e r n

EDITOR/ASSEMBLER
Page 336

COLOR, GRAPHICS, A N D SPRITES

If the entry in the Color Table is >464646464D4D4D4D, the pat tern is as follows,
w i th B representing dark blue (>4), R representing dark red (>6), and M representing

magenta (>DL

C h a r a c t e r P a t t e r n C o l o r s

On a magenta background, the magenta portions of the character blends w i th the
background. With the p ixe l markings removed, the character appears as follows, wi th
* representing dark blue (>4) and = representing dark red (>6).

EDITOR/ASSEMBLER
Page 337

COLOR, GRAPHICS, - AND SPRITES

21.6 SPRITES

Sprites are moving graphics tha t can occupy space on the screen indeperider~t!y ;ind i r i

addit ion to the characters which normally make up the screen. You car1 define rid

place i n motion up to 32 sprites of any shape and several d i f ferent sizes. A f t e r you
star t sprites moving, their motion continues without further program control. ' vn~ i

can use sprites i n graphics, mult icolor, and bit-map mode. I n bit-map mode,

however, automatic motion cannot be used. Sprites are defined by sett ing up tables

that indicate their position, their pattern, their color, their size, and their rr~otlnn,

21.6.1 Sprite Attribute List

The Sprite A t t r ibu te L i s t defines the position and color of each of the 32 possible

sprites, numbered 0 through 31. As sprites move, the entries i n the Sprite A i t l i h u t e

L i s t are changed.

For sprites, the screen is divided in to 192 OCO) rows of 256 (>loo) columns. Each of

these locations i s called a pixel, the smallest dot that can be displayed on the screeii.

The top row of pixels is designated >FF, followed by >00, >01, and so fo r th up t o >BE.
The l e f t colurnn a f pixels is designated >00, followed by >01, >02, and so fo r th up to

>FF.

Each sprite def ini t ion takes up four bytes i n the Sprite At t r ibute List. The first byte
is the vert ical (Y) position of the sprite and starts a t >FF, fol lowed by >00 tlhrough

>BE. The second byte is the horizontal (X) position o f the sprite, which can I:e frorn
>00 through >FF. The third byte is the pat tern code, which can be f rom >00 throiiqh
>FF. The fourth byte is the early clock attr ibute, which controls the location o f the

sprite, and color of the sprite.

Y-locations w i th values of >CO through >FE are ef fect ive ly o f f the bottorn of the

screen. However, a Y-location o f >DO causes tha t sprite and a l l fol lowing i t i n the

Sprite At t r ibute L i s t t o be undefined. For example, i f the Sprite A t t r ibu te L i s t
starts a t address >0300 and no sprites are defined, the value >DO should be placed a t

address >0300. If the f i f t h sprite is the last one active, a value o f >DO should be

placed a t address >0314. You can leave a l l 32 sprites act ive w i th the ones yolu do

not wish to appear located o f f the bot tom of the screen. However, i t is
recommended that you cause the f ina l unused sprites t o be undefined w i th a

Y-location of >DO.

EDITORIASSEMBLER
Page 338

COLOR, GRAPHICS, A N D SPRITES

The th i rd byte o f each entry o f the Sprite A t t r ibu te Table defines the character
pat tern t o use fo r the sprite. The pattern can be f r o m >00 to >FF and corresponds t o

a character defined in the Sprite Descriptor Table. For example, i n the

Editor/Assembler addresses >400 through >407 contain the entry for character >80.

The four most-significant b i ts i n the four th byte contro l the early clock of the sprite.
I f the last o f these four b i ts is 0, the early clock is off. Then the sprite's location is
i t s upper left-hand corner, and it fades i n and out on the r igh t edge of the screen.
I f the last of these four b i ts is 1, the early clock is on. Then the sprite's locat ion is
shi f ted 32 pixels to the le f t , allowing it t o fade i n and out on the l e f t edge o f the
screen.

The color of the sprite is specified i n the four least-significant b i ts of the four th byte
o f the sprite description. The values used are the same as those given i n Section
21.2.2.

I n the Editor/Assembler, the Sprite A t t r ibu te L i s t starts a t address >0300. I f you
wish t o use automatic motion, the Sprite A t t r ibu te L i s t must s tar t a t that address.
I f you pu t the default base address (>0000) i n VDP Register 6, the Sprite Descriptor
Table (described i n Section 21.6.2) starts a t address >0000. Since the area >0000
through >03FF i s used fo r the Screen Image Table, Color Table, and Sprite A t t r ibu te
L i s t , character codes start ing a t >80, a t address >0400, are then normally used for
sprites. When you use sprite motion, only the character codes f rom >80 through >EF
can be used because the Sprite Mot ion Table starts a t address >0780.

21.6.2 Sprite Descriptor Table

The Sprite Descriptor Table describes the sprites' patterns i n the same way as i n the
Pat tern Descriptor Table. However, sprites can be double-size or magnified by
wr i t ing a value t o the two least-significant bits i n VDP Register 1. The fol lowing
description tel ls the d i f ferent sizes and magnifications possible.

EDITOR/ASSEMBLER
Page 339

COLOR, GRAPHICS, AND SPRITES

Value -- Descript ion
0 0 S tanda rd s i ze sprites. Each s p r i t e is 8 by 8 pixels, t h e s a m e a s a

s tandard c h a r a c t e r on t h e screen .

01 Magnified spri tes . Each s p r i t e is 1 6 by 1 6 pixels, equal t o four s t anda rd
c h a r a c t e r s on t h e screen. T h e p a t t e r n defini t ion is t h e s a m e a s fo r
s t anda rd s i z e spr i tes , bu t each pixel occup ie s four pixels on t h e sc ieen .

1 0 Double-size spri tes . Each s p r i t e is 16 by 1 6 pixels, equal t o four
s t anda rd c h a r a c t e r s on t h e screen. Each s p r i t e is defined by Four
consecut ive p a t t e r n s f rom t h e Spr i t e Descr ip tor Table. For example ,

e a c h of t h e c h a r a c t e r c o d e s >80, >81, >82, or >83 causes a double-size

sp r i t e t o use c h a r a c t e r s >80, >81, >82, and >83 fo r t h e spri te . The f i r s t
of t hese c h a r a c t e r s i s t h e upper lef t-hand co rne r of t h e spri te , t h e second

is t h e lower le f t -hand co rne r , t h e third is t h e upper right-.hand cfiri?er,

and t h e fou r th is t h e lower r ight-hand corner .

11 Double-size magnif ied spri tes . Each s p r i t e is 32 by 32 pixels, equa l t o 16
s t anda rd c h a r a c t e r s on t h e screen. Sp r i t e s a r e defined a s described u r ~ d e r
double-size spr i tes , and e a c h pixel occupies four pixels on t h e screen .

In t h e Edi tor /Assembler , t h e Spr i t e Descr ip tor Table s t a r t s a t address >no00 fo r

p a t t e r n c o d e >00. However, add res ses >0400 and above a r e usually used fo r t h ~ block
because t h e lower addresses a r e used fo r t h e Sc reen I m a g e Table, Color i a h l e , and
S p r i t e A t t r i b u t e List. The p a t t e r n defined s t a r t i ng a t address >0400 is referrer: t o a s
p a t t e r n code >80 in the Spr i t e A t t r ibu te Table.

21.6.3 S p r i t e M o t i o n Table

The Spr i t e Mot ion Table de f ines t h e mot ion of sprites. I t must s t a r t a t address
>0780. In order t o move spr i tes , you m u s t set up a number of condit inr~s.

F i rs t , i n t e r rup t s mus t be enabled during t h e execut ion of t h e program. Therefore ,

eve ry t i m e t h e program a c c e s s e s t h e VDP RAM, in t e r rup t handlin; mi.~st be disebled,
which is t h e default . If you h a v e enabled in t e r rup t handling wit.h t h e l L ! i ~ , i ! 7
instruct ion, you m u s t disable i t with a L I M I 0 ins t ruc t ion s o t h e t t h e i.nte!:rupl

handling rout ine does not a l t e r t h e VDP w r i t e address.

Second, an indicat ion of t h e number of s p r i t e s which have motiorl rrlust be put i i i CPU
RAM address >837A. For example , if s p r i t e s 2 and 4 a r e rrio..!ing, the number 5 mus t
be p u t a t t h a t address t o al low fo r t h e mot ion of sp r i t e s 0, 1, 2, 3, and 4 ,

EDITOR~ASSEMBLER
P a g e 3 4 0

COLOR, GRAPHICS, ANDSPRITES

Third, descriptions of the motion of the sprite must be put i n the Sprite Mot ion Table
which always starts a t VDP address >0780. Each sprite's motion takes up four bytes

i n the table. The f i rs t by te defines the vert ical (Y) motion of the sprite. The

second byte defines the horizontal (X) motion of the sprite. The th i rd and four th

bytes are used by the in terrupt routine.

The velocity i n the f i rs t and second bytes can range f rom >00 t o >FF. Velocities

f rom >00 to >7F are positive velocities (down fo r ver t ica l motion and r igh t f o r

hor izontal motion), and velocit ies f rom >FF to >80 are taken as two's-complement

negative velocit ies (up for vert ical motion and l e f t for horizontal motion).

A value of >01 causes the sprite to move one pixel every 16 VDP interrupts, or about
once every 16160th~ o f a second.

Since sprites are set up by loading data into VDP RAM and the T I BASIC interpreter
allows interrupts, you can run sprites by successive use of the statement C A L L
POKEV (see Section 17.1.6). However, caution must be taken no t t o interfere w i th

the T I BASIC interpreter, which does no t recognize the existence of sprites. I t is

possible tha t the sprites may cause the T I BASIC interpreter to stop functioning. I n
T I Extended BASIC, this problem does not exist.

EDITOR/ASSEMBLER
Page 341

COLOR, GRAPHICS, AND SPRITES

21.7 GRAPHICS AND SPRITE EXAMPLES

The f i r s t two of the following three assembly language programs are similar in their
effect. The f irst places several bubble shapes on the screen and moves them up the
screen. I t does not use sprites, so the motion i s not smooth. The second program

defines the shapes as sprites, so the motion is quite smooth. I n addition, pressing

any key toggles the sprites from standard size to magnified sprites and back. The

third program is a demonstration of automatic sprite motion.

Each of these programs must be assembled with the R option, which automatically
generates Workspace Registers, and run wi th the LOAD AND RUN option of the
Editor/Assembler.

21.7.1 Graphics Example

I n the following program, several characters shaped l ike bubbles are placed on the
screen and moved up the screen. These characters are not sprites, so the motion i s

not smooth. Run the program with the LOAD AND RUN option of the

Editor/Assembler, using the program name BUBBLE. To leave the program, the
computer must be turned of f because no provision has been made for returning t o the
Editor/Assembler.

t

BBLE
COLOR
BBL
SPACE
L OC
MYREG
*

DEF
REF

DATA
DATA
BYTE
BYTE
DATA
BSS

BUBBLE
VMBW,VMBR,VSBW

* Set up colors.
*
BUBBLE

LWPI MYREG
LI R0,>394 Color Table 20 and 21.
L I R1,COLOR Load colors >F3 and >33.
LI R2,2 Two bytes to load.

BLWP QVMBW Move to VDP RAM.

EDITOR~ASSEMBLER
Page 342

COLOR, GRAPHICS, A N D SPRITES

*
* Set up character definition.
*

LI RO,>DOO

L I R1,EELE

L I R2,8
BLWP @VMEW

*
* Clear screen
*

CLR RO

L O O P l MOVE @SPACE,Rl
BLWP @VSBW
INC RO

C I R0,>300
JNE LOOP1

*
* Place bubbles on the screen.
*

MOVE @EBL,Rl
L I R2,LOC

LOOP2 MOV *R2+,RO
MOV R0,RO
JE Q SCROLL
BLWP @VSEW
J M P LOOP2

X

* Scroll Screen.
*
VDPBFl BSS >20
VDPBFZ BSS >20
*
SCROLL

CLR RO
L I R1,VDPBFl
L I R2,>20
BLWP QVMBR

*
LI R0,>20
L I R1,VDPBFZ

L I R2,>20

Character >A0 location.

Def ini t ion o f bubble character.
8 bytes t o move.

Star t a t VDP R A M >0000.
Move space character.
Move one space a t a time.
Points to next location on screen.

Out o f screen.

Load character code for bubble.
Load pointer t o address for bubble.

Load real address.
Check i f finished loading.

Finished. Start scrolling the screen.
Wri te bubble on the screen.

VDP source address.
C P U buffer address.
Number of bytes t o move.
Move >20 f rom VDP RAM.

VDP address >20.
CPU buffer address.

Number of bytes t o move.

EDITORIASSEMBLER
Page 343

COLOR, GRAPHICS, A N D SPRITES

LOOP3 BLWP
A I
BLWP
A1
C I
J L

*
LI

LI
BLWP

*
J M P

X

E N D

@VMBR
RO, >20
BVMBW
RO,>4O
R0,>300
LOOP3

R0,>2EO
R1,VDPBFl
gVMBW

SCROLL

Copy the line.
Move to lower VDP memory.
Write back t o the lower line.
Read next line.
Check i f end o f screen.
If not, copy more.

Wri te the last line.
CPU buffer where the f i rs t l ine is.
Move CPU to VDP.

Keep scrolling.

21.7.2 Sprite Example

I n the fol lowing program, several sprites shaped l i ke bubbles are placed on the screen
and moved up the screen. Because sprites are used, the motion is quite smooth.
Run the program wi th the L O A D A N D R U N option o f the Editor/Assembler, using the
program name SBBLE. To leave the program, the computer must be turned o f f
because no provision has been made for returning to the Editor/Assembler.

DEF
REF

REF
*
BBLE DATA
BBL BYTE
SPACE BYTE
SLIST DATA

DATA
DATA

MYREG BSS

SBBLE
VMBW,VMBR,VSBW,VSBR
VWTR,KSCAN

EDITOR/ASSEMBLER
Page 344

COLOR, GRAPHICS, A N D SPRITES

*
* Set up character
*
SBBLE

LWPI
LI
LI
LI
BLWP

*
* Define sprites.
*

LI
LI
LI
BLWP

*
* Scroll screen.
i t

KEYBRD EQU
STATUS EQU
*
SET D A T A
*
SCROLL

C L R
LOOP

LI

READ BLWP
SRL
CI

JEQ
DEC
JNE
LI

MOVE SLA
BLWP
A1
J M P

definition.

MYREG
R0,>400
R1,BBLE
R2,8
@VMBW

RO,>3OO
R1,SLIST
R2,26
@VMBW

>8375
>837C

>zoo0

R5

R0,>300

@VSBR
R1,8
R1,>00DO
K E Y

R 1
MOVE
R1,>00C8
R1,8
@VSBW
R0,>4
R E A D

Sprite character >80.

Def in i t ion o f character.
8 bytes t o move.

Address of Sprite A t t r ibu te List.
Pointer t o the list.
Move 26 bytes t o VDP R A M a t >300.
Move the list.

Counter for sprite size.

Pointer to the f i rs t Y-location.

Read one byte in to R1.
Make it a word operation.
Check t o see i f i t i s finished.
Check on key input.
Decrement Y-location.
Move up one pixel.
Adjust the pointer.

Change i t back t o byte operation.
Wri te back t o the list.
Points t o the next location.
Read next Y-pointer.

EDITOR/ASSEMBL.ER
Page 345

COLOR, GRAPHICS, A N D SPRITES

X

K E Y
CLR
BLWP
MOV
coc
JE Q
J M P

CHANGE
M OV
JNE

LARGE
I N C
L I
BLWP
J M P

SMALL
CLR

L I
BLWP
J M P

X

BKEYBRD Clear keyboard.
B K S C A N Ca l l key scan routine.
@STATUS,R3 Move status byte.
@SET,R3 Check for status bit.
CHANGE Key pressed, change size of sprites.

LOOP Otherwise, keep scrolling.

R5,R5 I s R5 null?
SMALL Make sprites small.

R5 Change R5.
RO,>OlEl Change R1 to >El.
@VWTR Modi fy VDP register.
LOOP Go back to loop.

R5 Clear R5.

RO,>OlEO Change R l t o >EO.
@VWTR Modi fy VDP register.
LOOP Go back to loop.

E N D

21.7.3 A u t o m a t i c S p r i t e M o t i o n E x a m p l e

This program is an example o f using automatic motion. I t places four magnified

sprites i n the middle of the screen and moves them i n d i f ferent directions a t
d i f ferent speeds. Note tha t the LIMI 2 instruct ion is given t o allow interrupts t o
occur. Without interrupts, sprites cannot be moved. Then, the L I M I 0 instruction is

given to prevent the rest o f the program f rom inadvertantly changing VDP R A M
registers which are being used by the sprites' motion.

Run the program w i th the L O A D AND R U N option of the Editor/Assembler, using the
program name MOVE. To leave the program, the computer must be turned o f f
because no provision has been made for returning t o the Editor/Assembler.

EDITOR/ASSEMBLER
Page 346

COLOR, GRAPHICS, AND SPRITES

DEF
REF

*
NUM EQU
SAL EQU
COLTAB EQU
PATTN EQU
SPEED EQU
*
COLOR DATA
BALL DATA
SDATA DATA

DATA
DATA
DATA

SPDATA DATA
DATA

MYREG BSS
*
MOVE

LWPI
LI
MOVB
BLWP

*
L I
L I
L I

BLWP
*

L I
L I
LI
BLWP

*
L I
L I
L I

BLWP

MOVE

VMBW,VWTR,VMBR,VSBW

MYREG Load my own registers.
R0,COLTAB
@COLOR,Rl
BVSBW Load background color as white.

R0,PATTN
R1,BALL
R2,8

@VMBW Load ball pattern.

R0,SAL
R1,SDATA
R2,17
@VMBW Load Sprite Attribute List.

R0,SPEED
R1,SPDATA
R2,16
QVMBW Load speed o f sprites.

EDITOR/ASSEMBLER
Page 347

COLOR, GRAPHICS, AND SPRITES

*
LOOP

NEXT

ADJUST

L I
BLWP

LI
SLA
MOVB

L I M I
L I M I

L I
BLWP
A I
C I
JH
A1
DEC
JEQ
JMP

L I
LI
BLWP
JMP
END

R0,>81E1
@VWTR Load VDP Register t o magnify sprites.

R1,4
R1,8
Rl,@NUM Specify number of sprites.

R0,SAL
R3,4 Repeat 4 times.

R2,2

2 Enable interrupt.
0 Disable interrupt.

Rl,MYREG+14 Read i t into Register 7.

@VMBR
R7,-24
R7,>B8C8 Check i f 0 < Y < 184, 24 < X < 224.

ADJUST
R0,4 Look a t next sprite.
R3
LOOP
LOOP2
R1,SDATA Reload Sprite Attribute L i s t .

R2,2
QVMBW
NEXT

EDITOR/ASSEMBLER
Page 348

SECTION 22: SPEECH

--
' i t t ; i , 5i;Iid ! i ta te Speech T M Synthesizer and t h e T I Memory Expansion unit
a t t ached ts the coiiipirtar, your assembly language programs can include speech. (See

t h e owners manuals for these products for connection instructions.)

To have the computer speak a word or phrase from t h e resident Speech Synthesizer
vocabulary, your prograni must check t h a t the Speech Synthesizer is present, obtain

t h e address of the word or phrase t o be spoken, load the address in the synthesizer so
t h a t i t can be spoken, and give the command t o speak. You can obtain the address

by looking i t up in the Section 24.6, or you can find it with your prograni.

You cai? also provide speech d a t a directly to the Speech S y n t h e s i ~ s r instead of using
a word from the 'esident vocabulary. Then you use a different command t o have the

word or phrase spoken.

22.1 PRELIMINARY INFORMATION

Before i ~ s i n g tije Speech Synthesizer, you must b e familiar with the timing

reql~ireii ients, addresses, and commands t o use, and know how t o load speech
addresses, read data , and check t o see t h a t the Speech Synthesizer is a t tached.

22.1.1 Timiny considerations

The Speech Synthesizer requires t ime f o r each of i t s commands t o be executed. The
delay t ime necessary from t h e t ime a read da ta or read s ta tus command is given until

the d a t a or s t a tus is available is 12 microseconds. The delay t i m e f rom writing
externai d a t a until the next access is 10 microseconds. The delay t ime from loading
an address untii the next command is 42 microseconds.

During t h e delay a f t e r a read, the 8-bit peripheral bus which is connected to t h e
I'4ernory Expansion unit cannot be used. Therefore, t h e reads of d a t a froln the
Speech Synthesizer and t h e delays must b e in the a r e a accessed by the 16-bit bus.
One area convenient for this s t a r t s a t address >8328.

The following program1 segment shows how t o place t h e necessary delay in the proper
place.

EDITOR/ASSEMBLER
P a g e 349

REF SPCHRD
Y

SPDATA EQU >a328
READIT EQU >8330
X

CODE MOVB @SPCHRD,@SPDATA
NOP
NOP
NOP
RT

CLEN EQU $-CODE
START
* Put read routine on 16-bit bus.

L I R1,READIT
L I R2,CODE
LI R3,CLEN

ST2 MOV *RZ+,*Rl+
DECT R3
JH ST2

Then to read a byte of speech data, use the instruction BL @READIT. The data is

returned a t the address SPDATA.

A delay o f 12 or 42 microseconds can be accomplished by branching to routines, using
NOP instructions, and returning. The following code segment shows the routines to

delay for 12 and 42 microseconds. They can be called with BL BDLYlZ and BL
@DLY42 instructions respectively.

DLY l2 NOP
NOP
RT

*
DLY42 L I R1,lO

DLY42A DEC R 1
JNE DLY42A
RT

EDITOR/ASSEMBLER
Page 350

:i~l t i is ~ e s i of th is section, the necessary delays are indicated by a comment as

ioiio,,.,,s. Section 22.2.2 gives a complete program using these methods of delay.

-a

* Ljelay as described i n Section 22.1.1.
*~

21?,1-2 Addresses

-
i i;e t!n;o addresses used t o read and wr i te speech data are SPCHRD a t address >9000

2nd SPLli\AiT a t >9400. You make them available by put t ing them i n a REF

sLater;.?e!lt a t the beginning o f your program.

\iiCiii -,i, .~ .,,., qive the Speech Synthesizer commands by placing a value i n the SPCHWT

ad+.- .less. i f you load > lo , you can read a byte f r om the SPCHRD address. I f you

i~iaci i4 ;< , where >< i s a nybble t o be loaded, the nybble i s loaded. This is used t o

1 3 2 ~ spei;ch addresses as described i n Section 22.1.4. I f you load > S O , the word or

pi-i!.z.se wiiose address you have loaded is spoken. I f you load >60, you can load the

word or phrase data, which you have constructed, t o be spoken. Other commands are

oosc r i be~ i i r i the TMS52OO Voice Synthesis Processor Da ta Manual, available f r o m
--

I e; .a> . .. 11;struments.

2 ' . . wading Speech Addresses

,/.,. , .>;, Losd t.he address o f the resident speech data by loading f ive nybbles o f data.

i l ~ i e i i~ .s t nybble i s always >0, w i t h the nex t four nybbles equal to the address. You
losd each nybble w i t h the >4X command, where the X is replaced by the nybble you

./isii t c load. The least signif icant nybble is loaded f irst. The f i f t h nybble t o be
loaded is always >O so the f i f t h byte loaded is >40, which marks the end o f the

acdri-ss. The fol lowing program segment demonstrates how to load the address given

i i ~ lcication PtiRC3M.

EDITOR/ASSEMBLER
Page 351

SPEECH

REF SPCHWT

PHROM
DATA <data>

X

L O A D
MOV @t'HROM,RO Address t o load.
L I

LOADLP
SRC
M OV
SRC
AND1
OR1
MOVB
DEC
JNE

LI
MOVB

R2,4 Four nybbles t o load.

R0,4 Start w i t h least signif icant nybble.

Get only particular nybble.
Put i n >4X00 format.

R1,QSPCHWT Write the nybble.
R2
LOADLP

R1,>4000
R1,QSPCHWT Write the f i f t h nybble.

I n the rest o f this section, the above process is indicated by a comment as follows.

X

* Load address as described i n Section 22.1.4.

EDITORIASSEMBLER
Page 352

SPEECH

22.1.5 Reading Data

Data can be read f rom the Speech Synthesizer by loading the correct address using

the 4X command, wr i t ing a read command (> lo) a t SPCHWT, and reading data f rom
SPCHRD. The fol lowing program segment shows how t o read one word of data and

store it a t DATAAD.

REF SPCHWT,SPCHRD
*
PHROM D A T A <Speech Synthesizer R O M address>
DATAAD DATA >0000 Data storage may be ini t ia l ized to
Y zero.

SPDATA EQU >8328
READIT EQU >a330
H10 BYTE >10

EVEN
*
READ
*
* Load address as described i n Section 22.1.4.
*

MOVE @HlO,@SPCHWT Read command.
*
* Delay as described i n Section 22.1.1.
*

EL BREADIT Read one byte f r o m the Speech
* Synthesizer.

MOVE @SPDATA,@DATAAD

MOVE @HlO,@SPCHWT Read command again.
*
* Delay as described i n Section 22.1.1.
*

BL @READIT Store i t in the nex t byte.

MOVE @SPDATA,@DATAAD

EDITOR/ASSEMBLER
Page 353

22.1.6 Checking to See if the Speech Synthesizer is Attached

Before your program attempts t o produce speech, i t must determine whether the
Speech Synthesizer is attached. The Speech Synthesizer addresses s ta r t a t >0000. If

this locat ion contains >AA, the Speech Synthesizer is attached. The fol lowing

program segment checks t o see i f the speech un i t is attached. The program segment

assumes that label RUN i s where to go if the Speech Synthesizer i s connected and
label NOT is where to go i f it i s not connected.

REF SPCHWT,SPCHRD
*
PHROM D A T A >0000 Pointer t o speech data.
H10 BYTE >10 Read data command.
H A A BYTE >AA

EVEN

READIT EQU >8330
*

CLR BPHROM Look a t >0000 first.
*
* Load address as described i n Section 22.1.4.
*

MOVB @HlO,@SPCHWT Read data command.
Y

* Delay as described i n Section 22.1.1.
*

EL @READIT Read one byte.
C B @SPDATA,@HAA I s i t >AA?
JE Q R U N Run the program.
J M P NOT

EDITOR/ASSEMBLER
Page 354

SPEECH

22.2 SPEECH EXAMPLES

To speak a word or phrase f rom the resident vocabulary, specify i t s address. You

can f ind the address by looking it up in the Appendix or w i th your program. A f te r

you have obtained the address, load i t using the >4X command as described i n Section
21.1.4, and then use the >50 command t o have it spoken.

The addresses of a l l o f the words and phrases are l isted in the Appendix. For

example, the address o f the word HELLO is >351A. The fol lowing program segment

causes the computer t o say HELLO if the Speech Synthesizer is attached.

22.2.1 Accessing Speech using the Address from the Appendix

REF SPCHWT,SPCHRD
*
HELLO EQU
*
READIT EQU
PHROM D A T A
H50 BYTE

EVEN
*
WAIT B L

MOVB
coc
JEQ

*

Speech data address f rom the
Appendix.

@READIT Read f rom speech read data.
@SPDATA,RO
aH8000,RO Check on Status.
WAIT Wait un t i l finished speaking.

L I R0,HELLO Load address of HELLO.

MOV RO,@PHROM
L I R2,4 Four nybbles t o load.

*
* Load address as described in Section 22.1.4.
*

* Delay as described i n Section 22.1.1.
*

MOVE @H5O,@SPCHWT Write execute speak command.
*
* Delay as described i n Section 22.1.1.
*

EDITOR/ASSEMBLER
Page 355

22.2.2 Accessing Speech Directly and by Finding the Speech Address

You can also find speech d a t a addresses in the Speech Synthesizer by searching a

table, located a t the beginning of the Speech Synthesizer's memory, for the word or
phrase you need. The following list describes t h e information for each word or
phrase included In t h e table.

I t e m Length Example
ASCII Length 1 byte >4
Word or Phrase in ASCII n bytes >77 >79 >82 >69 ("MORE")

Less-Than Pointer 2 bytes >0486
Greater-Than Pointer 2 bytes >OEB5
Speech Data Pointer 3 bytes >004642
Speech Data Length 1 byte >51

The less-than pointer gives t h e table address of the information re la ted t o the word
or phrase next in alphabetical order. The greater- than pointer gives the table

address of the information re la ted t o the preceding word or phrase in alphabetical
order.

In addition, you c a n load speech d a t a directly in a program and have i t spoken using

t h e >60 command.

In t he following program, the en t ry point START looks up the address of the word
"HELLO" in the Speech Synthesizer. The word is then spoken until a key is pressed.
Control is then re turned t o the calling program.

The entry point DIRECT is an example of providing t h e Speech Synthesizer with
di rect data. When DIRECT is used, a phrase i s spoken once. Af te r i t is spoken,
control is returned t o the calling program.

EDITOR/ASSEMBLER
P a g e 356

SPEECH -

REF
DEF

PHROM DATA
DATAAD DATA
SPDATA EQU
READIT EQU
RS A DATA
SSA DATA
HE000 DATA
H4000 DATA
HELLO EQU
SPEECH DATA

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

EDITOR/ASSEMBLER
Page 357

SPEECH

STRING BYTE 5
TEXT 'HELLO'

H50 BYTE >50

H10 BYTE >10

H60 BYTE >60

HAA BYTE >AA
EVEN

CODE MOVE @SPCHRD,@SPDATA
NOP

NOP
NOP
RT

CLEN EQU $-CODE
DIRECT
* Put read routine on 16-bit bus.

L I R1,READIT

LI R2,CODE
LI R3,CLEN

DR2 MOV *R2+,*RI+
DECT R3
JH DR2
LI R2,SPEECH
MOV *R2+,R3
L I R1,16
MOVB @H60,@SPCHWT
BL @IDLY12

LOOPR
MOVE *RZ+,@SPCHWT

DEC R3
JE Q OUT
DEC R l
JNE LOOPR

LOOPB
BL BREADIT
MOVE @SPDATA,RO
COC @H4000,RO
JNE LOOPB
L I R1,8
JMP LOOPR

Pointer t o speech data.
Size.
16 bytes to load.
Speak external command.

Send a byte.

Finished with data.

Speech not terminated; wait more.
Queue half finished; send more data.

EDITOR/ASSEMBLER
Page 358

SPEECH

START
* Put read routine on 16-bit bus.

LI R1,READIT

LI R2,CODE

L I R3,CLEN

ST2 MOV *RZ+,*Rl+
DECT R3
JH ST2

* Check fo r existence o f Speech Synthesizer.
BL @THERE

D A T A OUT

* Start looking af ter the validation byte.

I N C gPHROM

SEARCH LI R3,STRING

MOVB *R3+,R7 Length o f target string.

SRL R7,8

JEQ OUT Nu l l string.
*

B L

B L

MOVB
BL
E L

M OV

SRL
I N C

NEXT
BL
BL
MOVB

E L

E L

CB
JE Q

JH
J M P

@LOAD
@DLY42
@HlO,@SPCHWT

BDLY12

@READIT

*R3+,@SPDATA

M A T C H

HIGH
LOW

Load speech data address.

Read length byte o f string.

Make i t a word.

Address o f next let ter.

Read the let ter.

Does i t match?

Yes.

Too high.

Too low.

EDITOR~ASSEMBLER
Page 359

SPEECH

M A T C H
I N C

DEC

JNE

DEC

JEQ

H I G H
LI

J M P

STRN DEC
JNE

LOW
CLR

NXTPHR
A

A

B L

M OV

JE Q
M OV

J M P
X

SPEAK

L I
A
E L

B L
M OV

EL

B L
MOVE
B L

B

@PHROM

R4

STRN

R7

SPEAK

R8,2
NXTPHR

R7
NEXT

More le t ters available.

Found the word.

Skip one pointer.

R8 Do not skip pointer.

R4,QPHROM Skip over rest of word.

R8,@PHROM (Maybe) skip f i r s t pointer.

@READ Read two bytes.

@DATAAD,R5

OUT Word no t found.

R5,BPHROM

SEARCH Keep looking.

R8,5

R8,@PHROM
B R E A D Read address of speech data.

@DLY 12

@DATAAD,@PHROM

@LOAD Load address o f speech data.

@DLY42

@H5O,@SPCHWT Speak word.

@WAIT Wait fo r finish (or exit).

@START Do i t a l l again.

EDITOR/ASSEMBLER
Page 360

SPEECH

WAIT
MOV

EL

MOV

BLWP

MOVB

JNE

COC

JE Q

€3

OUT LWPI
B

R11,RlO

@READIT

@SPDATA,RO

@KSCAN

@>837C,R1

OUT

@H8000,RO
WAIT

*R10

GPLWS
@>6A

Save return address.

Read the status byte.

Scan keyboard.

Was a key pressed?

Yes. Exit.
Word finished?

No. Keep waiting.

Yes. Return.

Return to calling program.

* Read a word of data.

* Address in PHKOM, data returned i n DATAAD.

* Call wi th EL

READ MOV R11,QRSA Save return address.

EL @LOAD Load the address.
BL BDLY42 Wait.

MOVB @HlO,@SPCHWT

BL BDLY12

EL @READIT Read f i rs t byte.

MOVB @SPDATA,@DATAAD
MOVB @HlO,@SPCHWT

B L @DLY12

E L @READIT Read second byte.
MOVB @SPDATA,@DATAAD+l

MOV @RSA,R11 Return.
RT

* Check to see i f the Speech Synthesizer is attached.

* Called as EL @THERE
DATA <not there>

THERE MOV Rll,@RSA Save return address.

CLR @PHROM Location 0.

BL @LOAD
BL @DLY42

MOVB @HlO,@SPCHWT
BL @DLY12

BL @READIT Read the byte.
CB @SPDATA,@HAA Is is >AA?

JE Q RUN Yes. The peripheral is attached.

EDITORIASSEMBLER
Page 361

Fetch data word as alternate return.

* Not there.
MOV @RSA,R11
MOV *Rll,R11
RT

* There
RUN MOV @RSA,R11

INCT R11 Skip alternate return.
RT

* Load address.
* Called as BL @LOAD with address in PHROM.
* Uses RO, R1, and R2.
LOAD MOV @PHROM,RO

LI R2,4
LOADLP SRC R0,4

MOV R0,Rl
SRC R1,4
AND1 Rl,>OFOO Pick o f f four bits.
OR1 R1,>4000 Make it >4X.
MOVB RI,@SPCHWT

DEC R2 Do i t four times.
JNE LOADLP
LI R1,>4000 Write the >40.
MOVE Rl,@SPCHWT
RT

D L Y l 2 NOP Short delay.
NOP
RT

DLY42 LI R1,lO Long delay after address set up.
DLY42A DEC R 1

JNE DLY42A
RT
END

EDITORlASSEMBLER
Page 362

SECTION 23: THE DEBUGGER

The Debugger program allows you to f ind errors in your program while i t is actually
running. You can read values i n memory, wr i te new values, inspect Workspace
Registers and a l ter their values, move memory f rom one location t o another, perform
hexadecimal arithmetic, and a variety o f other functions. Each funct ion is easily

available w i t h a single-letter command.

With many o f the commands, you can enter a G or V af ter an operand to indicate
tha t the operation is t o take place in the Command Module GROM or VDP RAM,
respectively, instead of in CPU R A M or ROM.

You can define up t o three bias characters, labeled X, Y, and Z. When one o f these

characters is appended t o an operand, i t s value i s added t o the value of the operand.
Thus, i f you have set X t o >12A and enter an operand o f >1B2X, the operand used is
the sum of >12A and >1B2 or >2DC.

The Debugger i s located on the Editor/Assembler diskette labeled Pa r t A. In
addit ion to the compressed object file, called DEBUG, the entire source l ist ing o f the
Debugger is included. DEBUGS i s the main program, consisting mostly o f COPY

directives; DEBUGA is the f i r s t 400 l ines of the Debugger; DEBUGB is the second 400
lines; DEBUGC is the th i rd 400 lines; DEBUGD is the four th 400 lines; and DEBUGE
i s the f i f t h 400 lines. You should make a backup copy of these files.

The Debugger program is a modif ied version of the TIBUG program designed t o be
used on a T I Home Computer. The Debugger is relocatable and can be loaded by the
L O A D A N D R U N option on the Editor/Assembler or w i th C A L L L O A D f rom T I
BASIC. The name of the f i l e to load is DSK1.DEBUG if the diskette labeled Par t A
is i n Disk Dr ive 1. Since the Debugger is relocatable, i t is suggested that you f i rs t
load the program to be debugged and then load the Debugger. Then enter the
Debugger and do the required set up so that you can return t o the Debugger when
desired. The Loader places the Debugger program in memory the same way any
other assembly language program is loaded.

Follow these steps to access the Debugger f r om the Editor/Assernbler.

1. Insert the Editor/Assembler Command Module in to the console.

2. Press any key to make the master selection l i s t appear. Select the
Editor/Assernbler.

EDITOR/ASSEMBLER
Page 363

THE DEBUGGER

3. Insert the Editor/Assembler diskette that contains the Debugger program
(Part A) into Disk Drive 1.

4. Select LOAD AND RUN from the EditorIAssembler selection list.

5. Enter the f i le name of the program to be debugged. I f there is no such
program, go to the next step.

6. Type DSK1.DEBUG (the f i le name of the Debugger), and press <return>.

7. Press <return> again to advance to the next prompt.

8. Enter DEBUG as the program name of the Debugger.

9. The Debugger is loaded and ready to accept commands.

Follow these steps to use the Debugger from T I BASIC.

1. Insert the EditorIAssembler Command Module into the console.

2. Press any key to make the master selection l ist appear. Select T I BASIC.

3. Insert the EditorlAssembler diskette that contains the Debugger program
(Part A) into Disk Drive 1.

4. Load the program that you wish to debug, using the CALL LOAD statement.

5. Execute CALL LOAD ("DSK1.DEBUGt') f rom T I BASIC.

6. Execute CALL LINK("DEBUG").

7. The Debugger is loaded and ready to accept commands.

Note: If the Debugger is entered from T I BASIC, you should immediately select the
U command so that the display is correct.

EDITORIASSEMBLER
Page 364

THE DEBUGGER

Pressing single-letter commands executes the Debugger routines. The Debugger

automatically places a space af ter the let ter, although you cannot see it because no

cursor appears on the screen. Do no t press <space> fol lowing the command le t te r

unless you intend t o terminate the command.

A f t e r choosing the command, you enter the command's operands, which consist of up

t o three hexadecimal fields, depending on the command. Operands contain four

hexadecimal digits each. I f you enter more than four digits, only the last four are

used. I f you enter fewer than four digits, they are considered by the Debugger to be

the right-most digits of the operand.

The fol lowing are the Debugger commands.

Command

Load Memory w i th ASCI I

Breakpoint Set/Clear

CRU Inspec t/Change

Execute

Find Word or Byte

GROM Base Change
Inspect Screen Location

Find Data N o t Equal

Memory Inspect/Change

Move Block

Compare Memory Blocks

Quit Debugger

Inspect or Change WP, PC, and SR
Execute in Step Mode

Trade Screen

Toggle Of fset t o and f rom T I BASIC

VDP Base Change

Inspect or Change Registers

Change Bias

Hexadecimal to Decimal Conversion

Decimal to Hexadecimal Conversion

Hexadecimal Ar i thmet ic

Le t te r

A

B

C

E
F

G

I
K
M

N
P

Q

R
S

T
U
v
W

X, Y, or Z
>

Section

23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9
23.10
23.11
23.12
23.13
23.14
23.15
23.16
23.17
23.18
23.19
23.20
23.21
23.22
23.23

Each command description consists o f the fol lowing information.

EDITOR/ASSEMBLER
Page 365

THE DEBUGGER

o A heading, consisting of the command name and command letter

o The syntax definition

o An example of the command

o The definition of the command

I n the syntax definition, the following notational conventions are used. Items
surrounded by <angle brackets> represent keys or items that you must provide. Items
surrounded by {braces] indicate that you must choose between the two or more items
included. Items surrounded by [brackets] indicate optional material. The elipsis (...I
indicates that the previous i tem may be repeated.

Note: I n the Debugger, the <escape> key i s not the same as the <esc> key used i n
the rest of the EditorIAssembler. The <escape> key is SHIFT X on the TI-9914 and
FCTN X on the TI-9914A.

I n the example and definition of the commands, the information you type is
underlined.

EDITOR/ASSEMBLER
Page 366

THE DEBUGGER

23.2 LOAD MEMORY WITH ASCII--A

Syntax definition:

Example:

A lOOO<return> -
1000 NEW WORDS<escape> Places the ASCII str ing NEW WORDS in memory

s tar t ing at address >1000.

Definition:
Places t h e ASCII str ing in memory s tar t ing a t t h e given hexadecimal address.
Any information, including <return>, t h a t is typed before <escape> is placed in
memory. Af te r e a c h 16 0 1 0) bytes, t h e cur ren t memory location is shown on the
screen.

EDITOR~ASSEMBLER
Page 367

THE DEBUGGER

23.3 BREAKPOINT SETICLEAR-B

Syntax definitions:

To s e t a breakpoint:

To c lear a breakpoint:

a To show breakpoints:

T o c lea r all breakpoints:

Example:

B AOOO<return> Sets a breakpoint to be performed at address >A000. -

Definition:
Se t s a breakpoint t o be performed at t h e given address if B is followed by an
address and <return>. Clears a breakpoint if B i s followed by a n address and <->.
Shows all breakpoints if B is followed by <return>. Clea rs all breakpoints if B is
followed by <->.

From 11 t o 16 breakpoints can be s e t a t t h e same t ime, depending on your
computer. When a breakpoint i s encountered during execution, t h e workspace
pointer, program counter, and s t a t u s are saved, t h e breakpoint is cleared, and the
Debugger i s entered.

Sett ing a breakpoint replaces the contents of the breakpoint address with an XOP
1 call (>2F40) or a branch t o BENTRY (two words). If your console does not
support XOP 1, the Debugger automaticaly uses t h e two-word BENTRY and
provides t h e message

BKPT USES 2 WORDS

EDITORIASSEMBLER
Page 368

THE DEBUGGER

Some TI-99/4A computers support XOP 1 and some do not. I f you get the

message BKPT USES 2 WORDS when you enter a breakpoint, yours does not.

I f your computer uses two-word breakpoints, you must observe several

precautions. First, you cannnt set breakpoints a t consecutive words. I f you

at tempt to do so, the fol lowing message is displayed.

ILLEGAL CONSECUTIVE BREAKPOINT

Second, under some circumstances the computer may in terpret the address of the

Debugger as an instruction. For instance, suppose your program reads as follows.

ADDR JMP START Code 1010

LOOP MOV Rl,R2 Code COO1

DEC RS Code 0603

JGT LOOP Code 15FD

START LI R3,6 Code 0203

0006

J M P LOOP Code l O F O

I f you then set a two-word breakpoint a t ADDR (assuming tha t the address of the

Debugger entry is >B062), the program becomes

ADDR BLWP @BENTRY Code 0420

LOOP Code 8062

DEC R 3 Code 0603

JGT LOOP Code 15FD

START LI R3,6 Code 0203

0006
J M P LOOP Code l O F O

When the program executes the JGT LOOP instruction, it interprets the address

o f BENTRY as an AB instruction. This situation can be avoided by not inserting
breakpoints where the second word is a label.

EDITOR/ASSEMBLER
Page 369

THE DEBUGGER

In two-word breakpoints the previous contents of the memory are saved.
Clearing a breakpoint restores the original contents of the memory location. If a
breakpoint is set more than once a t the same location, the following message is
displayed.

ILLEGAL CONSECUTIVE BREAKPOINT

The show breakpoint command, B<return>, gives the addresses of the current
breakpoints in the order in which they were set.

EDITORIASSEMBLER
Page 370

THE DEBUGGER

23.4 CRU INSPECTICHANGE--C

Syntax definition:

Example:

C 1380,l<return> Gives the value of the least-significant CRU bit a t address -
>1380.

Definition:
Gives the value of the specified number of CRU bits. If you specify 1 through
15 bits, tha t many bits a r e returned as a hexadecimal number. If you specify 0
a s the bit count, 16 bits are returned.

Each CRU bit takes up two bytes on the CRU. For example, supppose the CRU
is a s shown in the following table.

CRU
Bit -
0
1
2
3
4
5
6
7
8
9
A
I3
C
D
E
F

Value -
1
0
1
1
0
1
1
0
1
0
0
0
1
0
1
0

CRU
Address
>1380
>1382
>1384
>1386
>1388
>138A
>138C
>138E
>1390
>1392
>1394
>1396
>1398
>139A
>139C
>139E

EDITOR/ASSEMBLER
Page 371

THE DEBUGGER

Then i f you give the command

The Debugger returns 0001. I f you give the command

The Debugger returns OOOD. I f you give the command

The Debugger returns 006D. I f you give the command

The Debugger returns 516D.

The C command uses the STCR and L D C R instructions. For more information on

these instructions, see Sections 9 and 24.3.2.

The corresponding CRU output bits can be altered by inputt ing data in the same

format that it is given by the Debugger. I f a change is fol lowed by <return>,

control is returned to the Debugger. I f a change is followed by <space>, the

C R U input b i ts are displayed again.

Reading CRU data immediately after changing C R U data a t the same address

does not always give the same value because the C R U input and output may not

have the same hardware configuration a t the same address.

For example, the Disk D r i ve Controller CRU address >1100 is designed to enable

the disk Device Service Routine ROM. This is a write-only C R U bit, so there is

no input circuit. Performing an SBO instruction on address >I100 enables the

Device Service Routine ROM. However, reading C R U output data f rom address

>I100 gives meaningless data.

I n addition, i n some devices, such as the clock, b i ts may be altered by the t ime

the C R U b i t is read af ter wr i t ing t o the CRU. Thus, the same data cannot be
read even though you wr i te the data correctly.

EDITORIASSEMBLER
Page 372

THE DEBUGGER

Syntax definition:

Example:

E - 2000<return> Enters the program w i th the parameters defined by the R
command, start ing a t address >2000.

Definition:
Enters the program w i t h the parameters defined by the R command, start ing a t
the address provided. I f the optional address i s entered, execution begins a t that
address rather than a t the address specified by the R command. Normally, you
should use the Q command rather than the E command since the Q command

restores the screen and updates the screen offset, VDP address, and screen width.

EDITOR/ASSEMBLER
Page 373

THE DEBUGGER

23.6 FIND WORD OR BYTE--F

Syntax definition:

Example:

F 2000 3003 AFlO<return> - Compares the data in addresses >2000 through
>3003 with > M l O and displays the addresses and
contents of those that match.

Definition:
Compares the values in the start address through the stop address with the values
given by the data and displays the addresses and contents of those that match.
I f the final entry is <return>, words are compared. I f the final entry is <->,
bytes are compared. I f words are compared, the address is incremented by 2
before the next comparison so that comparisons are made on word boundaries. I f
a byte comparison is performed, the address is only incrernented by one after
each comparison.

A G or V can be entered a t the end of the start address to indicate that the
comparison should be made a t the address in GROM or VDP, respectively, rather
than in CPU memory. The F command is the opposite of the K command.

EDITORlASSEMBLER
Page 374

THE DEBUGGER

23.7 GROM BASE CHANGE--G

Syntax definition:

Example:

G - Causes the current GROM Read Data address t o be displayed. I t can

then be altered.

Definit ion:

Displays the present GROM Read Data address. This address can be altered by

typing the new address desired and pressing <return>. This procedure allows you

to use the commands tha t access GROMs or GRAMS t o be used i n the GROM

l ibrary memory areas or any other GROM address spaces. The read and wr i te

addresses are > lo00 apart. The default address is >9800.

Note: This command is not useful unless you are developing special hardware.

For example, i f you enter G, the response is

GROM BASE = 9800

You can then enter a new address if the device is a GRAM or press <return> to
accept the address.

EDITOR/ASSEMBLER
Page 375

THE DEBUGGER

23.8 INSPECT SCREEN LOCATION--I

Syntax definition:

I
[<new screen address>]<return>
[<new screen offset>]<return>
[<new width>]<return>

Example:

I - Displays the previous beginning
VDP SCREEN ADDRESS = 0000 <return> screen address and accepts it.
SCREEN OFFSET = 0000 60<return> Displays the previous screen offset
WIDTH (>20 or 28) = 0020 <return> and changes i t t o >0060. Displays

the previous width and accepts it.

Definition:
Displays the current beginning screen address, screen offset , and width, and
allows you to change them. The screen address (Screen Image Table) normally
s t a r t s a t VDP address >0000. To move this table, you inform the Debugger with
the I command. Note t h a t the Debugger does not change t h e VDP Registers. I t
sets up a temporary word t h a t contains t h e new address. The Registers a re
changed the next t ime the Debugger is entered via a breakpoint. If the

Debugger is entered in another way, such as by LINK (from TI BASIC) or the
LOAD AND RUN option (from the Editor/Assernbler), the changes a r e not made.

The screen offse t is useful if you a r e using TI BASIC because the ASCII values
of the TI BASIC screen characters a r e offset by >60.

If your program is running in t ex t mode, you can s e t the screen width t o >28
ra the r than the default of >20.

The following example shows the use of the I command t o change the screen
address to >0400, the screen offset t o >60, and t h e width t o >28.

I -
VDP SCREEN ADDRESS = 0000 400<return>
SCREEN OFFSET = 0000 60<return>
WIDTH (>20 or 28) = 0020 28<return>

EDITOR~ASSEMBLER
Page 376

THE DEBUGGER

23.9 FIND DATA NOT EQUAL--K

Syntax definition:

Example:

K 2000 2100 AFlO<return> - Compares the data i n addresses >ZOO0 through
>2100 w i th >AF10 and displays the addresses and
contents of those that do no t match.

Definit ion:

Compares the values i n the start address through the stop address w i th the values

given by the data and displays the addresses and contents of those that do not
match. I f the f ina l entry i s <return>, words are compared. I f the f ina l entry is

<->, bytes are compared. I f words are compared, the address i s incremented by

two before the next comparison so tha t comparisons are made on word

boundaries. I f a byte comparison is performed, the address is only incrernented

by one a f te r each comparison.

A G or V can be entered a t the end of the start address t o indicate that the

comparison should be made a t the address i n GROM or VDP, respectively, rather

than i n CPU memory.

EDITOR/ASSEMBLER
Page 377

THE DEBUGGER

23.10 MEMORY INsPECT/CHANGE--M

Syntax definitions:

To see or a l ter a memory location:

To see multiple memory locations:

Examples:

M 2000<return> -
2000=1000 A35C<return> Changes the values in address >ZOO0 from >lo00

M 2000 2100<return> Displays addresses >2000 through >2100 and their
values.

Definition:
Displays t h e address and i t s value if a single address is given. If a s t a r t address

and s top address are given, displays t h e addresses and their values.

If a single address is given, followed by <return> and a value, t h a t value is placed
in the address. If a change is followed by <return>, control is returned t o the
Debugger. If a change is followed by <space>, t h e next address and i t s value are
displayed and you can change t h a t value. If a change is followed by <->, the
previous address is displayed and you c a n change it. Note t h a t entering a change
followed by <space> <-> allows you t o check the memory location t h a t you have
just changed.

The following example shows how t o change the value in address >4042 from
>1234 to >5678 and then check the change. The example assumes t h a t address
>4044 contains >CDEF. The final <return> re turns you t o the Debugger.

EDITOR~ASSEMBLER
Page 378

THE DEBUGGER

M 4042<return> -
4042 = 1234 5678<space>
4044 = CDEF <-> -
4042 = 5678 <return>

I f you choose t o see mult ip le memory locations, each l ine of the display consists
of the address of the f i rs t memory locat ion fol lowed by 12 bytes o f data and the

ASCII representation o f the data w i t h an asterisk {) for the unprintable
characters. The display process can be halted by pressing <escape>. Press any

key to stop a l i s t of memory locations temporari ly and press a key again t o
resume the l ist .

A G or V can be entered a t the end of the start address t o indicate that the
comparison should be made a t the address i n G K O M or VDP, respectively, rather
than i n CPU memory. When GROM or VDP memory are being addressed, data is
accessed and altered one byte a t a time. Only addresses >0000 through >3F'F'F o f
VDP R A M can be accessed. GROM cannot be altered.

Note: Even accessing GROM can a l ter the GROM program counter, preventing
correct re turn t o your program.

To change a VDP register, enter an address of V8 followed by the register number
(0 through 7), the data byte, and <return>. For example, the fol lowing loads VDP
Register 1 wi th >60.

Note: You cannot read VDP Registers; you can only wr i te t o them.

EDITOR/ASSEMBLER
Page 379

THE DEBUGGER

23.11 MOVE BLOCK--N

Syntax definition:

Example:

N 2000V COO0 100<return> - Moves t h e 100 bytes s tar t ing at address >ZOO0 in
VDP RAM t o t h e 100 bytes s tar t ing at address
>COO0 in CPU RAM.

Definition:
Moves t h e number of bytes specified. If the command is terminated with

<return>, the bytes are transferred in t h e following order.

From Byte
from address
from address + 1
from address + 2

T o Byte
t o address
t o address + 1
t o address + 2

from address + byte count - 1 t o address + byte count - 1

If t h e command i s terminated with <->, the bytes transfer in the following order.

From Byte T o Byte
from address + byte count - 1 to address + byte count - 1
from address + byte count - 2 t o address + byte count - 2
f rom address + byte count - 3 to address + b y t e count - 3

from address to address

With t h e first method, you c a n effectively copy t h e same byte in to several
consecutive memory locations. For instance, if >13 is in address >2000, t h e
following command places >13 in addresses >ZOO0 through >2100.

EDITOR/ASSEMBLER
P a g e 3 8 0

THE DEBUGGER

23.12 COMPARE MEMORY BLOCKS--P

Syntax definition:

P<start address l>{<space> or <,>)<start address 2>{ <space> or <,>I
<byte count><return>

Example:

2000 3000G 100<return> Compares the 100 bytes starting a t address
>ZOO0 in CPU RAM to the 100 bytes starting at
address >3000 in the GROM and prints the
addresses whose data do not match and what is
actually in those addresses.

Definition:
Compares the number of bytes given in byte count from the locations starting a t
s t a r t address 1 to the locations starting a t s t a r t address 2 and prints the
addresses whose data do not match and what is actually in those addresses. A G
or V r a n be entered a t the end of s ta r t address 1 or s ta r t address 2 to indicate
that the comparison should be made with the address in GROM or VDP,
respectively, rather than in CPU memory.

EDITOR/ASSEMBLER
Page 381

THE DEBUGGER

23.13 QUIT DEBUGGER--Q

Syntax definition:

Example:

Q<return> Leaves the Debugger and executes the program whose
parameters were defined by the R command.

Definition:
Leaves the Debugger, restores the screen, updates data entered by the I
command, and executes the program whose parameters were defined by the R
command. I f the Program Counter is equal to >0000, the Debugger returns to
the Editor/Assembler screen. You can then run your program with either the
LOAD AND RUN or RUN option.

EDITORIASSEMBLER
Page 382

THE DEBUGGER

23.14 INSPECT OR CHANGE WP, PC, AND SR-R

Syntax definition:

Example:

R<return> Shows the Workspace Pointer value and allows you to change
it.

Definition:
Shows the Workspace Pointer, Program Counter, and Status Register and allows
changes to be made i n their values. Af ter you open a register, you can change
it. Then press <return> to return to the Debugger or <space> to open the next
register for inspection or change.

The Workspace Pointer points to the program workspace. The Program Counter
points to the f i rst instruction of the program to be executed. The Status
Register contains the status of the program. These values are passed to the
program when the Debugger commands Q, E, or S are executed.

EDITOR/ASSEMBLER
Page 383

THE DEBUGGER

23.15 EXECUTE IN STEP MODE--S

Note: Execut ing a program one s t e p a t a t i m e r equ i r e s spec ia l ha rdware t h a t is not

ava i lab le fo r t h e TI Home Computer . Without t h i s spec ia l hardware , t h e S command

has t h e s a m e e f f e c t a s t h e E command.

Syntax definition:

Example:

S<re tu rn> Execu te s one s t e p in t h e program and r e t u r n s con t ro l t o t h e Debugger.

Definition:

With t h e spec ia l ha rdware required, e n t e r s t h e program with t h e p a r a m e t e r s

def ined by t h e R command, e x e c u t e s s t e p coun t s teps , shows t h e values in t h e
Workspace Po in t e r , P r o g r a m Counter , and S t a t u s Reg i s t e r , and r e tu rns t o t h e
Debugger. If s t e p coun t is omi t t ed , t h e de fau l t is 1.

Cau t ion should be used when single-stepping through a sec t ion of your program

t h a t s e t s up VDP w r i t e addresses because t h e Debugger a l so changes VDP wr i t e

addresses. You should a lso avoid single-stepping through code which acces ses t h e

GROM because of possible a l t e r a t i o n s t o t h e GROM program counter .

EDITOR/ASSEMBLER
P a g e 384

THE DEBUGGER

23.16 TRADE SCREEN--T

Syntax definition:

Example:

T - Trades the Debugger screen fo r the screen as i t was when the program

stopped a t a breakpoint.

Definit ion:

Trades the Debugger screen fo r the screen as it was when the program stopped a t

a breakpoint. You remain i n the Debugger aiid can continue t o use the Debugger

commands. However, using commands again scrolls the screen.

EDITOR/ASSEMBLER
Page 385

THE DEBUGGER

23.17 TOGGLE OFFSET TO AND FROM T I BASIC--U

Syntax definition:

Example:

U - Changes the of fset by plus or minus >60.

Definit ion:
Changes the screen of fset by plus or minus >60 t o allow you t o alternate
displaying the screen as T I BASIC uses it and as the Debugger uses it. The
ASCI I characters used by T I BASIC are of fset >60 f rom the way in which the
Debugger uses those characters.

EDITOR/ASSEMBLER
Page 386

THE DEBUGGER

23.18 VDP BASE CHANGE--V

Syntax definition:

Example:

V<return> Causes the present VDP Read Data address t o be displayed.

The address can be altered by typing a new address and
pressing <return>.

Definit ion:
Causes the present VDP Read Data address t o be displayed. The address can be

altered by typing a new address and pressing <return>. This procedure allows you
t o use the commands tha t access VDP t o be used i n the VDP l ibrary memory

areas or any other VDP address space. The read and wr i te addresses are >lo00

apart. The default address is >8800. Note: A t present, no alternate VDP

memory spaces exist.

For example, i f you enter V, the response is

VDP BASE = 8800

You can then enter a new address or press <return> to accept this address.

EDITOR/ASSEMBLER
Page 387

THE DEBUGGER

23.19 INSPECT OR CHANGE REGISTERS--W

Syntax definition:

Example:

W <return> Displays all of your Workspace Registers and their values.

Definition:
Displays all of your Workspace Registers and their values if no Workspace
Register number or d a t a a r e given and the command is followed by <return>. If
a Workspace Register number is given, i t and i t s value a r e displayed and the
value can be changed. Af te r changing a value, you can press <return> t o re turn
t o the Debugger, press <space> t o display the nex t Workspace Register and i t s
value so t h a t you can a l t e r t h a t value, or press <-> t o display the previous
Workspace Register and i t s value so t h a t you can a l ter t h a t value.

EDITORIASSEMBLER
Page 388

THE DEBUGGER

23.20 CHANGE BIAS--X, Y , OR Z

Syntax definition:

Change X bias:

Change Y bias:

Change Z bias:

Example:

Y 34<return> - Changes the Y bias t o >34.

Definit ion:
Changes the X, Y, or Z bias t o the value given. A f te r a value is assigned, you
can give the characters X, Y, and Z fol lowing an address i n any other command
and al ter t ha t address by the amount of the bias. I f the result of the al terat ion
is an odd value, the actual address displayed i s the next lower value.

For example, if the Y bias has been set t o >34, the fol lowing M command displays
the value in address >0134.

EDITOR~ASSEMBLER
Page 389

THE DEBUGGER

23.21 HEXADECIMAL TO DECIMAL CONVERSION-->

Syntax definition:

Example:

> 34<space> - Displays the decimal value o f >34, which i s 52.

Definit ion:
Displays the decimal value o f up t o four hexadecimal digits. Values of >8000 t o
>FFFF are interpreted as two's-complement numbers and are thus given as
negative decimal numbers.

EDITORIASSEMBLER
Page 390

THE DEBUGGER -

23.22 DECIMAL TO HEXADECIMAL CONVERSION--.

Syntax definition:

Example:

. 52<space> - Displays the hexadecimal value o f 52, which is >34.

Definit ion:
Displays the hexadecimal value o f any decimal value f rom -32768 through 65535.

For negative numbers the sign precedes the number. Values less than 0 are
returned in two's-complement form. Thus, both the value 65535 and -32768 are
returned as >FFFF.

EDITOR/ASSEMBLER
Page 391

THE DEBUGGER

23.23 HEXADECIMAL ARITHMETIC--M

Syntax definition:

Example:

H A 6<return> - Displays the sum, difference, product, quotient, and rer ix indar

o f >A and >6.

Definit ion:

Displays the sum, difference, product, quotient, and rernsinder of the f i x t nuiz?-ir
and second number. Each hextidecirrial number car1 have up to four digits. Ir
the example, the information is displayea as fol!iws.

EDITOR/ASSEMBLER
Page 3 ~ 2

SEC?T.QN 2m: APPENDICES

-
'tie lollclwing a r e t h e append ices con ta ined in t h i s sec t ion .

A lpend ix - -
Numbering Sys t ems a n d Oraan iza t ion

Memory Organi ra t ior ;
Memory, C R U , and I n t e r r u p t S t r u c t u r e

C ~ r n p a r i s o n s wi th TI Extended BASIC Loade r
SAVE Ut i l i ty

Speech Synthes izer Res iden t Vocabulary
7 i h a r a c t e r 5 e t

Assernb.iar. D i rec l ive Tab le

Sec t ion
24.1
24.2
24.3

24.4
24.5

24.6
24.7

24.8
I-lsxsdecimal Ins t ruc t ion T a b l e 24.9
Alphabet ica l In s t ruc t ion Tab le

P r o g r a m Organ iza t ion

EDITBR/ASSEMBLER

Page 393

APPENDICES

24.1 NUMBERING SYSTEMS AND ORGANIZATION

The fol lowing sections discuss the decimal, binary, and hexadecimal number systems,
fol lowed by a description of the byte and word organization i n the T I Home Computer
and the two's-complement representation o f negative numbers.

24.1.1 Binary Number System

The number system we commonly use, using the digi ts 0 through 9, is known as the
decimal system, or base 10. I n a decimal number, each place value represents a
power of 10. For example, the number 1111 i n the decimal system represents the
following.

The binary (base 2) number system uses only the two digi ts 0 and 1. I n a computer,

these digits represent two electronic states, o f f and on. Each place o f the binary
number represents a power o f two. For example, the number 1111 i n the binary
system is interpreted as follows.

The decimal numbers 0 through 15 can each be represented by a four-digit binary
number as shown i n the fol lowing table. Each four-digit binary number corresponds
t o a one-digit hexadecimal (base 16) number, represented by the digi ts 0 through 9

and the upper-case le t ters A through F.

EDITORIASSEMBLER
Page 394

APPENDICES

Decimal
Number
0
1

2
3
4
5
6

7
8
9
10
11
12
13
14
15

Binary
Number
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal
Number
0
1

2

3
4
5
6

24.1.1.1 H e x a d e c i m a l N o t a t i o n

The hexadecimal (base 16) numbering system is often used as a convenient shorthand
method for representing binary numbers. As the previous table shows, any four-digit

binary number can be represented by one hexadecimal digit. I n this manual (and i n
Assembler source statements), hexadecimal numbers are preceded by a greater-than
sign (>).

The fol lowing i l lustrates the relationship between a binary number and i t s
hexadecimal equivalent.

24.1.2 B y t e Organ i za t i on

A b i t (binary digit) - is the smallest uni t o f computer information. It corresponds
direct ly t o the electronic c i rcu i t ry of the computer. A b i t i s either on or off, and
thus can be used t o make e i ther lor distinctions. For example, a b i t can distinguish
between yes or no, up or down, on or off, one or zero, or any two opposites. B i ts
are usually represented in the binary number system.

EDITOR/ASSEMBLER
Page 395

APPENDICES

Four b i ts equal a nybble and eight bi ts equal a byte. A byte is the smallest

addressable uni t o f information i n the Home Computer. I n the Home Computer, the

most-significant (left-most) b i t (MSB) is designated as b i t 0 and the least signif icant

(right-most) b i t (LSB) is designated as b i t 7.

Memory B y t e

(MSB) (L S B)
.

b i t 0 1 2 3 4 5 6 7

24.1.3 Word Organization

Two bytes, or 16 bits, of memory const i tute a word. The computer can process a

maximum of one word o f information a t a time. I n the Home Computer, the most

signif icant b i t (MSB) o f a word of memory is b i t 0, while the least signif icant b i t

(LSB) is b i t 15.

Memory Word

(MSB) (LSB)
.

b i t 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

The 16 b i ts of a word can represent such things as a machine language computer

instruction, a memory address, the b i t configurations o f two characters, or a number.
I f the contents of a word are t o be interpreted as a number, the number may be

interpreted as a signed number i n the range o f -32,768 through +32,767 or as an

unsigned number i n the range o f 0 through 65,535. Signed numbers are designated i n

two's-complement form. See Section 24.1.4

Each word begins a t an even-numbered address (location) i n memory. The

even-address byte contains b i ts 0 through 7 of the word, and the odd-address by te

contains bi ts 8 through 15. When word instructions address an odd byte, the

computer automatically accesses the preceding even-numbered byte. A l l instructions

must begin on a word boundary. Instructions are 1, 2, or 3 words long.

EDITOR/ASSEMBLER
Page 396

APPENDICES

24.1.4 Two's Complement

I n the Home Computer, negative numbers are represented i n two's-complement form.

I n two's-complement form, the le f t -most b i t of a computer word is designated as the

sign bit, which indicates whether the number is posit ive or negative. The sign b i t

does no t funct ion as a par t of the value of the number but only indicates positive or

negative, 0 or 1, respectively.

The binary number t o be subtracted (the subtrahend) must be "complemented" by

changing a l l the 0's to 1's and a l l the 1's to 0's. Then 1 is added to the

complemented binary number t o get the two's complement. The following examples

show how to f ind the two's complement o f 26 and 53.

O O O l l O l O 26 (>1A)

11100101 complemented

O O l l O l O l 53 (>35)

11001010 complemented

+I plus 1 +1 plus 1
11100110 2's complement (-26, >E6) 11001011 2's complement (-53, SCB)

Not ice that the b i t a t the fa r l e f t o f the byte (MSB) is always 1 when a negative

number i s represented. Conversely, the MSB i s 0 i f a posit ive number i s represented.

When performing subtraction, the computer converts the binary number t o be

subtracted t o a negative number by using two's complement and then adds. I n the

previous example, 26 (00011010) was converted t o negative 26 (11100110) or the 2
two's complement. The fol lowing example demonstrates how t o subtract '26 f r om 53.

00110101 00110101 53 >35
-00011010 becomes +11100110 or -26 - +>E6 -

100011011 27 >1B

The answer is 110112, or 27, w i t h the n inth digi t disappearing because i n a byte
ar i thmet ic operation the computer recognizes only eight digits i n one byte, leaving

the correct answer o f 000110112.

EDITOR~ASSEMBLER
Page 397

APPENDICES

24.2 MEMORY ORGANIZATION

To understand memory organization, you must understand some basic terms and how
they apply t o the T I Home Computer.

The Centra l Processing U n i t (CPU) of the computer contains a l l the c i rcu i t ry for

ar i thmet ic functions, comparisons, hardware registers, and a l l other functions tha t
actually process computer instructions. The CPU processes a l l commands and

instructions fed in to the computer and accesses a l l memory spaces. The CPU i n the

Home Computer is the TMS9900 Microprocessor.

One way t o divide memory is in to R A M (Random Access Memory) and ROM (Read
Only Memory). R A M is a memory which can be wr i t t en to, or read from, by any
program. I t stores programs and data. R O M is a memory which can only be read
bu t no t altered by any program. I t is used to store information used by the
computer itself, such as the bui l t - in T I BASIC language and the makeup o f the
alphanumeric characters.

So that you can re fe r t o any specific byte i n the computer's memory, each byte is
assigned a number. These sequential numbers, called the addresses of the bytes, are

unique within each of the computer's memory spaces. They are usually referred to i n
hexadecimal notation.

The TMS9900 microprocessor has an address space o f 64K bytes. I n the Home
Computer, some o f this address space contains R A M and some contains ROM. I n
addition, some addresses are used fo r access t o special devices, such as sound and
speech, and t o other areas o f memory, such as VDP R A M and GROMs.

24.2.1 Directly Addressable Memory

When a l l possible devices are connected, 64K (65,536 or >10000) bytes of memory are
direct ly addressable.

Addresses >OD00 through >lW are bui l t i n to the console. They contain 8K bytes of
R O M that contain the T I BASIC language and other information necessary to the
functioning o f the computer.

Addresses >ZOO0 through > 3 W are the 8K bytes o f R A M tha t make up the low

memory of the Memory Expansion unit. They can only be used when the Memory
Expansion uni t is connected.

EDITORIASSEMBLER
Page 398

APPENDICES

Addresses >4000 through > 5 m are bui l t in to various peripherals. They contain up to

8K bytes of R O M for the Device Service Routine used to run peripheral devices, such

as disk drives and printers. These ROMs are selected by C R U operations (see

Section 9), so several ROMs can be a t the same address.

Addresses >6000 through >7FFF are available on the Command Module port. Some

Command Modules, for example T I Extended BASIC, have R O M i n this space.

Addresses >8000 through >9FFF are bui l t in to the console. They contain P A D f rom

addresses >a300 through >83FF (see Section 24.3.1) and a l l o f the memory-mapped

device locations.

Addresses >A000 through >FFFF are the 24K bytes of R A M that make up the high

memory of the Memory Expansion unit. They can only be used when the Memory
Expansion unit is connected.

The following memory map summarizes the above information.

CPU Memory Use

General Case

> o o o o + - +

I (C o n s o l e RCM) I
1 Two 4K RCM c h i p s

> z o o 0
I

+ - +

I L o w Memory E x p a n s i o n
>4000 + -

I
+

I P e r i p h e r a l RCMs (mapped)
I

I
f o r D e v i c e S e r v i c e R o u t i n e

> 6 0 0 0
I

+ - +

I A p p l i c a t i o n RCMs i n Corrmand M o d u l e
> a 0 0 0 + -

I
+

I Memory-mapped d e v i c e s f o r
1 V D P , GRCM, Sound, and S p e e c h

I
I

I PAD a t > a 3 0 0
>A000 + -

I
+

I
I

I
H i g h Memory E x p a n s i o n

I
I
I

EDITOR/ASSEMBLER
Page 399

APPENDICES

When the L O A D AND RUN option o f the Editor/Assembler is i n use, the fol lowing

diagram shows how the memory is used.

CPU Memory U s e
LOAD AND R W O p t i o n f r o m t h e E d i t o r / A s s e m b l e r

> o o o o + - +

I (C o n s o l e RCM) I
I Two 4K RCM c h i p s I

> z o o 0 + - +
1 L o w Memory E x p a n s i o n I
I L o a d e r , y o u r p r o g r a m , I
1 and REFIEF T a b l e
+ -

I
>4000 +

I P e r i p h e r a l RCMs (mapped) I
I f o r D e v i c e S e r v i c e R o u t i n e
+ - + - -

I
> 6 0 0 0 +

1 U n a v a i l a b l e I
>BOO0 + - +

1 Memory -mapped d e v i c e s f o r I
I VDP, GRCM, S W , and SPEECH 1
I CPU RPM a t > a 3 0 0 I

>A000 + - +

I I
I H i g h Memory E x p a n s i o n

Y o u r p r o g r a m
I

I I
I I

24.2.1.1 Expansion RAM

The Memory Expansion uni t is a 32K-byte peripheral on an eight-bit bus. I t has two

blocks o f memory, an 8K block f rom >ZOO0 through >3FFF and a 24K block f rom
addresses >A000 through >mF. Addresses >FFD8 through >FFFF are used for XOP 1
on the TI-99/4A. When your program is executing, the 24K block contains your

program and the 8K block contains the Loader, your program (i f i t was too large to

f it in the 24K block), uti l i t ies, and the REF/DEF table.

EDITOR/ASSEMBLER
Page 400

APPENDICES

24.2.1.2 ROM

A l l the ROMs (Read Only Memory) are direct ly accessible by an assembly language

program. Two 4K-byte console ROMs are located a t addresses >0000 through >lm.
They contain the operating system, the GPL interpreter, and par t o f the T I BASIC

interpreter.

The memory block a t addresses >4000 through >5FFF is assigned to the peripheral

ROMs which can be accessed by sett ing the b i t assigned fo r the C R U (Communication

Register Unit) to enable the particular ROM. These ROMs contain DSRs (Device

Service Routines), and they are located i n a peripheral. See Section 9 for more

information.

Application ROMs are contained i n command modules. They occupy address >600O

through > 7 W .

24.2.1.3 GROM

A GROM (Graphics Read Only Memory) is another type o f ROM. I t is designed to

contain GPL (Graphic Programming Language) programs which are executed by the

GPL interpreter i n the console. GPL is commonly used i n applications software and

can only be executed through a GROM.

A GROM is a memory-mapped device, just as VDP R A M is. A GROM's memory is

addressed by wr i t ing i t s address t o a specific CPU address and reading data f rom

another specified CPU address. See Section 16.5 fo r a discussion o f accessing

GROMs.

GROM addresses are f rom >0000 through >F7FF. Each GROM has 6K bytes of

memory that s tar t f r om an even-numbered f i rs t -d ig i t address. For example, GROM 0

is a t addresses >0000 through >17FF and GROM 1 is a t addresses >ZOO0 through

>37FF. The computer can access up to eight GROMs a t a time.

GROMs 0, 1, and 2 are i n the console and contain the monitor program, pa r t of the

operating system, and most o f the T I BASIC interpreter. Five additional GROMS can
be located i n a Command Module. The number o f GROMs used i n a Command
Module depends on the size o f the applications program.

EDITORlASSEMBLER
Page 401

APPENDICES

24.2.2 Memory-Mapped Devices

The memory-mapped devices are VDP (Video Data Processing) RAM, the Speech
Synthesizer, the sound processor, GRDMs, and so forth. VDP R A M i s discussed i n

this section. For discussions o f other memory-mapped devices, see Sections 16, 20,

21, and 22.

The Video Display Processor (VDP) RAM, located i n the console, is used chief ly fo r
common video functions, such as screen images, character pat tern tables, color

tables, etc. See Section 21 fo r a discussion o f the use o f VDP R A M for
screen-related functions.

When T I BASIC is in use, VDP R A M also contains the T I BASIC program, the
program symbol table, the value stack, and the string space. VDP R A M i s also used
as a storage space by applications programs. Pa r t o f VDP R A M is used as a data

buffer. Another pa r t o f VDP R A M functions as a P A 8 (Peripheral Access Block) to
pass information f rom a f i le t o the appropriate DSR (Device Service Routine).
Assembly language programs cannot be executed f rom VDP RAM.

VDP R A M is a memory-mapped area o f 16K (16,384 or >4000) bytes numbered >0000
through > 3 m . VDP R A M addresses are automatically incremented, so only one
address i n CPU R A M is required t o read or wr i te a specif ic block o f data. Assigned
addresses exist for each 110 funct ion i n the RAM. For example, the VDP R A M read
data Register is located a t C P U R A M address >8800, the VDP read status Register is
found a t CPU R A M address >8802, the VDP wr i te data Register i s a t CPU R A M
address >8C00, and the VDP wr i t e address Register i s a t CPU R A M address >8C02.
See Section 16 for more information on wr i t ing t o and reading f rom VDP RAM.

The diagram on the next page shows the memory o f VDP R A M when it is being used
by the Edi tor/Assembler.

EDITORlASSEMBLER
Page 402

APPENDICES

VDP R A M Memory Use
EditorIAssembler

+ - +
I S c r e e n Image T a b l e I
I (> 3 0 0 b y t e s) 1
+ - +

I S p r i t e A t t r i b u t e L i s t I
+ - +

I C o l o r T a b l e I
I a n d f r e e s p a c e I
+ - +

1 S p r i t e D e s c r i p t o r T a b l e
+ -

I
+

I S p r i t e M o t i o n T a b l e I
+ - +

I P a t t e r n G e n e r a t o r T a b l e I
I S t a n d a r d c h a r a c t e r s a t > 0 9 0 0 t h r o u g h > AFF I
I A l s o u s e d f o r PABs I
+ - +

I F r e e memory s p a c e I
1 A l s o u s e d f o r PABs a n d b u f f e r s 1
+ - +

I B l o c k s r e s e r v e d f o r d i s k e t t e DSR 1
+ - +

EDITORIASSEMBLER
Page 403

APPENDICES

24.3 MEMORY, CRU, AND INTERRUPT STRUCTURE

The fol lowing gives the structure and addresses o f the memory use i n P A D a t
addresses >8300 through >83FF, CRU use, and interrupt handling.

24.3.1 CPU R A M PAD Use

C P U R A M P A D i s located a t addresses >a300 through >83FF. The system software

uses the high memory locations a t addresses >83CO through >83FF. The rest of the

CPU R A M is used according t o the type o f routines being executed. The fol lowing

describes the use o f this memory.

Addresses - Use -
>8300 - >8349 Available fo r use by your program, w i th some limitations. The

system software uses this area only fo r temporary storage.
However, i f your assembly language program is executed through

a T I BASIC program by C A L L L O A D and C A L L LINK, and the
assembly language program returns control to T I BASIC, only the
area f rom >8300 through >El317 is available. Further, if
parameters are passed by C A L L L INK, then only the area f rom
>8300 through >830F is available. However, i f T I BASIC i s used

only to load and transfer control t o an assembly language
program, a l l o f this area is available to your program.

>834A - >836D Used as a stack area by the interpreter, f loat ing point routines,
and DSR routines. Unless console routines are called by your
assembly language program, this area i s available fo r use.

>836E - >836F Available fo r your use. However, if the T I BASIC interpreter or

f loat ing point routines are running, this area is used as a value
stack pointer.

>a370 - >837F Used fo r the GPL status block as follows.
>8370 Contains the highest available address of VDP RAM.
>8372 The least-significant byte of the data stack pointer. The

most-significant byte i s >83. When the computer is init ial ized,

this contains a value o f >CF. However, a f te r the f i rs t t ime i t is
accessed, i t is changed to >DO.

>8373 The least-significant byte o f the subroutine stack pointer. The

most-significant byte is >83. When the computer is initialized,
this contains a value o f >7E. However, a f ter the f i r s t t ime i t is
accessed, i t is changed to >80.

>8374 The keyboard number t o be scanned, w i th a default value o f >O.

EDITORIASSEMBLER
Page 404

APPENDICES

Addresses
>a375
>a376
>8377
>a378
>a379

Use -
The ASCI I key code detected by the scan routine.
The Wired Remote Control ler Y-location.
The Wired Remote Controller X-location.
The random number generator.
The VDP interrupt t imer. I t is incremented every sixt ieth of a
second.

The number of sprites tha t can be in motion. I t is originally set
to >00.
The VDP status byte. I t is a copy of the VDP status Register.
B i t 0 i s the 60 H z VDP interrupt. I t is on every t ime the screen
is updated and o f f when the b i t is read.
B i t 1 i s on any t ime there are f i ve or more sprites on a line.
B i t 2 i s on any t ime that sprite coincidence occurs.
B i ts 3 through 7 contain the number of the f i f t h sprite on a l ine
when there are f ive or more sprites on a line.
The GPL STATUS byte. A l l the values are controlled by the GPIL
interpreter.

B i t 0 is the high bit.

B i t 1 is the greater than bit.
B i t 2 i s the condit ion bit. The key scan rout ine turns this b i t on
when a new key i s detected. Also, the DSR routine turns this b i t
on to indicate that a f i le does not exist.
B i t 3 i s the carry bit.
B i t 4 is the overflow bit.
The character buf fer used by the VDP. I t ref lects the code
loaded i n the screen image area o f the VDP RAM. Loading a
character code a t this address results i n displaying the character
on the screen based on the pointers a t address >837E and >837F.
Points t o the current row on the screen.
Points t o the current column on the screen.
The default subroutine stack address is >8380 and the default data
stack address is >83AO. Your assembly language program may
use this area unless it uses the GPLLNK routine. GPL uses
subroutine stacks and data stacks while executing the routine.
Thus, i t is important t o leave this area untouched. The T I
BASIC interpreter uses address >838A through >83BF as the
subroutine and data stack area. Additionally, addresses >I3388
and >I3389 are reserved fo r the T I BASIC interpreter.
In terpreter Workspace. You must not use this area. The bytes

are used by the interpreter as follows.

EDITOR/ASSEMBLER
Page 405

APPENDICES

Addresses
>83CO

Use -
Random number seed.
TI-9914 only: Eight bytes for remote handset debounce and
internal flags.

TI-9914A only: Used as a f lag byte to control interrupt routine.

TI-99/4A only: Address of the user-defined in terrupt routine.

Console keyboard debounce.
Sound l i s t pointer.
Number o f the sound byte, decremented on each VDP interrupt.
Search pointers for GROM and R O M search. Four bytes.

Current value stored in VDP Register 1.
Screen time-out counter, decremented on each VDP interrupt.
Screen blanks after the word reaches >0000. Upon new key

detection, the word is reset.
Return address saved by the scan routine.
Player number used by the scan routine.
GPL Workspace Registers. This area is used as a register area

by a l l the cpnsole routines, including the GPL and T I BASIC
interpreters. Use of the registers depends on the routine being

executed. However, Registers 13, 14, and 15 always contain the
GROM wr i t e address, the system flags, and the VDP wr i te
address, respectively.

24.3.2 CRU Allocation

The Communication Register U n i t (CRU) is used for system access t o peripherals.
There are 4K C R U bits, numbered >0000 through > O m . The C R U address loaded

in to Workspace Register 12 is twice the b i t number. Thus, loading Workspace

Register 12 w i th > lo00 sets the base equal t o C R U b i t >800. (See Section 9 for

more information.) O f the available 4K o f C R U bits, the f i rs t K, a t addresses >DO00
through >07FE, are used internal ly by the console. This includes the TMS9901 110

chip, which addresses the keyboard, joysticks, cassette, etc. See Section 24.3.3 for

more information on 1/0 mapping.

The second K, at addresses >0800 through > W E , are reserved fo r fu ture use.

The last 2K, a t addresses > lo00 through >lm, are reserved fo r the peripherals that
are attached t o the console port. A block o f 128 CRU bi ts i s assigned t o each

peripheral es shown below. A0 through A15 are the CPU address bus lines.

EDITOR/ASSEMBLER
Page 406

APPENDICES

CRU Addresses
>0000 - >OFF€
>lo00 - >lOFE

>I100 - >1lFE

>1200 - >12FE
>1300 - >13FE

>I400 - >14FE

>1500 - >15FE

>1600 - >16FE

>1700 - >17FE

>la00 - >18FE

>I900 - >19FE

>1A00 - > lAFE
> M O O - >1BFE

>1C00 - > lCFE

>ID00 - >1DFE
>1E00 - >1EFE

>1F00 - >1FFE

A3 A4 A5 A6 A7 -----
o x x x x

l o o 0 0

1 0 0 0 1

1 0 0 1 0
1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0
1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

Use (Peripheral) -
Internal use
Reserved

Disk controller

Reserved

RS232, ports I and 2

Reserved

RS232, ports 3 and 4
Reserved

Reserved

Thermal Pr inter

Future expansion

Future expansion
Future expansion

Future expansion

Future expansion

Future expansion

P-Code peripheral

Device
Number

C R U address 0 at A8 through A14 is the memory enable b i t i n each device address
space. Setting the b i t t o 1 turns the device R O M I R A M on, and resett ing it t o 0

turns it off. This enables the address space f rom >4000 through >5FFF reserved for

the peripheral ROM.

24.3.3 Interrupt Handling

The highest pr ior i ty interrupts are the reset and load vectors w i th a pr ior i ty o f 0.
The reset interrupt is used when the computer is turned on. In terrupt pr ior i ty 1
connects through the TMS9901 Programmable Systems Inter face for interrupt

expansion. The fol lowing shows the interrupts available.

EDITOR/ASSEMBLER
Page 407

APPENDICES

9900 Interrupts

In terrupt Vector Memory Device

Leve l -- Address CPU P i n Assiqnment

Highest >0000 RESET Reset

0 >FFEC L O A D Load

1 >OD04 I N T l External Device (TMS9901)

Note that the lower pr ior i ty CPU interrupts are no t used. The fol lowing additional

interrupts are implemented on the TMS9901.

9901 Interrupt Mapping

Address

>0000

>0002

>OD04

CRU B i t

0

9901 P in

Control

I N T l 17

INT2 18

INTB (P14) 33

INT9 (P13) 32

I N T l 0 (P12) 31

I N T l l (P11) 30

INT12 (P10) 29

INT13 - INT15 28, 27, 23
PO 38

P 1 37

P 2 26

P3 22

Function

Control.

External.

VDP vert ical

synchronization.

Clock interrupt, keyboard

enter line, and joystick f i re

button.

Keyboard 1 line and

joystick le f t .

Keyboard p l ine and

joystick right.

Keyboard 0 l ine and

joystick down.

Keyboard sh i f t l ine and

joystick up.

Keyboard space line.

Keyboard q line.

Keyboard 1 line.

Not used.

Reserved.

Not used.

Reserved.

Reserved.

B i t 2 of keyboard select.

B i t 1 o f keyboard select.

EDITOR/ASSEMBLER
Page 408

APPENDICES --

Address

>OD28

>002A

CRU B i t

20

21

Pin -
21

20

Function
B i t 0 o f keyboard select.

Alpha lock on the

TI-99/4A.

Cassette control 1.

Cassette control 2.
Audio gate.

Magnetic tape output.

Magnetic tape input.

34 N o t used.

EDITOR/ASSEMBLER
Page 409

APPENDICES

24.4 COMPARISONS W I T H T I EXTENDED BASIC LOADER

The fol lowing sections compare the Loader tha t the Editor/Assembler uses w i th the
Loader used by T I Extended BASIC. The major differences involve memory use,

speed, external references, u t i l i t y references, entry points, duplicate definitions, tags,
and use of some routines.

24.4.1 Memory Use

One of the basic differences between the Editor/Assembler Loader and the T I
Extended BASIC Loader is the use of the memory i n the Memory Expansion unit.

The T I Extended BASIC interpreter uses the high memory locat ion start ing a t address
>A000 for i t s own program space and data. I t s u t i l i t i es are loaded a t the low
memory area start ing a t address >2000. The Loader only recognizes the area
between addresses >2000 and >3FFF (size about 8K) as the area fo r an assembly
language program.

The Editor/Assembler Loader, however, recognizes both areas (addresses >2000
through >3FFF and >A000 through >FFD7), and the Loader is loaded a t address >2000.
The Loader checks the high memory area f i rs t . I f there is not enough space l e f t t o
load the program it is loaded in to the low memory area. Thus, the Editor/Assembler

Loader has more space (about 32K including u t i l i t y routines and the Loader i tsel f) for

programs than the T I Extended BASIC Loader.

When using T I Extended BASIC, you can load the program in the high memory area
by loading absolute code w i th a program which starts w i th an AORG statement.
However, extreme caution must then be taken if the T I Extended BASIC program
needs t o run a f te r the load because the T I Extended BASIC program code, l ine
number table, and numeric values are located i n the high memory start ing f r o m the
top o f the memory.

The easiest way to f ind out the available memory space in the high memory area is

t o do a SIZE command a f te r running the T I Extended BASIC program once. The
program space displayed on the screen is the space available fo r the assembly
language program. Note tha t this value is given in decimal notation.

The other way t o f ind the highest memory address available fo r assembly language
programs is t o execute the C A L L PEEK statement a t address >8386. For example,

execute C A L L PEEK(-31866,A,B) and pr in t A and B. This address contains the

EDITOR/ASSEMBLER
Page 410

APPENDICES

pointer t o the highest f r e e address in t h e expansion memory. Conver t this value to s
hexadecimal value, and compare i t with the las t address in the assembly language
program.

I t is possible for your assembly language program and the TI Extended BASIC
program t o overwri te each other if one or both of t h e programs use large amounts of
space.

The utility routines include a Name Link Routine t o search the program and other
utility routines provided by the Loader. The basic memory configuration of both
Loaders is similar, except t h a t t h e EditorlAssembler Loader has more utility routines
available and has f r e e higher memory spaces.

The memory usage of the two Loaders i s shown in the following figures.

Memory Expansion Unit Use
by the Editor/Assembler Loader

+ - +
I I D c o d e >A55A I
+ - +

I XM v e c t o r s u s e d by E d i t o r / A s s e m b l e r I
+ - +
I UTLTAB u t i l i t y d a t a a r e a I
+ - +

I U t i l i t y B L W v e c t o r s I
+ - +
I U t i l i t y r o u t i n e s
+ -

I
+

I A s s e m b l y l a n g u a g e p r o g r a m a r e a 1
I I
+ - +
I REF/DEF t a b l e I
+ - +

I I
I I
I A s s e m b l y l a n g u a g e p r o g r a m a r e a
I

I
I

EDITOR/ASSEMBLER
P a g e 411

APPENDICES

Memory Expansion Unit Use
by t h e TI Extended BASIC Loader

> 2 0 0 0 + - +

I Xlvt v e c t o r u s e d by t h e i n t e r p r e t e r
> z o o 2 + -

I
+

I U t i l i t y d a t a a r e a I
>ZOO6 + - +

I I D c o d e >AA55
>ZOO8 + -

I
+

I U t i l i t y BLW v e c t o r s
+ -

I
+

1 U t i l i t y r o u t i n e s
+ -

I
- +

I I
I A s s e m b l y l a n g u a g e p r o g r a m a r e a I
I I
+ - +
1 DEF t a b l e

> 3 F F F + -
I
+

>A000 + - +
I F r e e s p a c e , e n d p o i n t e d t o by I
I CPU RAM a d d r e s s > 8 3 8 6
+ -

I
+

I N u m e r i c V a l u e s
+ -

I
+

I L i n e number t a b l e
+ -

I
+

I T I E x t e n d e d BASIC p r o g r a m s p a c e
>FFEO + -

I
+

24.4.2 Loading Speed

Both [Loaders a re tagged object loaders which load a fixed 80 display fo rmat f i le f rom
a diskette. The difference between t h e Loaders is t h e g rea te r speed of the
Editor/Rssernbler Loader. Also, i t handles compressed object files, which the TI
Extended BASIC Loader cannot handle.

EDITOR/ASSEMBLER
Page 412

APPENDICES

24.4.3 External References

The Editor/Assembler Loader is a linking loader which handles external references.
Thus, a program can be broken into di f ferent files, and any section of the program
can b e referred t o by the other f i les by means of REF and DEF instructions. The T I
Extended BASIC Loader does not allow external references.

For example, if both the following programs a r e loaded and run, t h e Editor/Assembler
resolves all references.

DEF DATA1,PRGM
*
DATA1 EQU >I234
*
PRGM ... Beginning of t h e program.

END

DEF MAIN
REF DATAl,PRGM,KSCAN

*

END

Beginning of the program.

EDITOR/ASSEMBLER
Page 113

APPENDICES

24.4.4 U t i l i t y References

The T I Extended BASIC Loader only handles DEF statements and DEFed labels that
are entered by the Loader as it loads the program. I n order to access the u t i l i t y

routines i n T I Extended BASIC, equated addresses must be specified i n the program
by EQU instructions. See Section 24.4.8 for descriptions o f the equated addresses.

The Editor/Assembler Loader creates pre-defined labels of a l l the u t i l i t y routines and
frequently accessed memory addresses. Thus, REF instructions i n your program are

suff ic ient t o access the u t i l i t y routines, and object tags 3 and 4 are accepted by this
Loader.

24.4.5 E n t r y P o i n t

Another feature o f the Editor/Assembler Loader is t ha t i t allows a program entry
point t o be specified w i th the E N D instructions. Any address label w i th the E N D

statement is considered t o be the address and executes the program immediately

without comming back t o the Editor/Assembler screen. Thus, object tags 1 and 2 are

accepted by this Loader.

24.4.6 D u p l i c a t e D e f i n i t i o n

Duplicate def ini t ion is allowed by the T I Extended BASIC Loader, w i th the Loader
replacing the new defintion w i t h the old definition. Thus, if two programs w i t h the
same entry name are loaded, the most recent ly loaded program is executed when the
name is specified.

The Editor/Assembler Loader, however, issues a DUPLICATE DEFINITION error
message, and loading stops.

24.4.7 Tags

The comparison o f the object tags is l isted on the nex t page.

EDITOR/ASSEMBLER
Page 414

APPENDICES

Taqs
0

1, 2
3, 4

5 , 6
7, 8
9, A
5 , c
D, E
F

G, H
I
M

Other

Function
Module I D
Entry address
External REFS
External DEFs

Checksum
Load address
Data
Load bias
End of record
Unused
Program I D
Data/common seg.

Extended BASIC Loader
Supported
Ignored

Issues error
Supported

Supported
Supported
Supported
Issues error
Supported
Issues error
Ignored
Ignored
Issues error

Editor/Assembler Loader
Supported
Supported

Supported
Supported

Supported
Supported
Supported
Issues error
Supported
Issues error
Ignored
Issues error

Issues error

I n order t o access the u t i l i t y routines of the T I Extended BASIC Loader, a i l the
u t i l i t y references must be done by equating (w i th EQU) to the rout ine address.

24.4.8 TI Extended BASIC Equates

The following shows the equates used i n T I Extended BASIC.

VDPWA EQU
VDPWD EQU
VDPRD EQU
VDPSTA EQU
F A C EQU

GPLWS EQU
P A D EQU
SOUND EQU
SPCHRD EQU
SPCHWT EQU
GRMRD EQU
GRMRD EQU
GRMWD EQU
GRMWA EQU
SCAN EQU
*
* U t i l i t y Branches

EDITORIASSEMBLER
Page 415

APPENDICES

NUMASG EQU
NUMREF EQU

STRASG EQU

STRREF EQU

XMLLNK EQU

KSCAN EQU

VSBW EQU
VMBW EQU

VSBR EQU

VMBR EQU

VWTR EQU

ERR EQU
FA DD EQU

FSUB EQU

FMUL EQU

FDIV EQU

SADD EQU

SSUB EQU

SMUL EQU

SDIV EQU

CSN EQU

CFI EQU
FCOMP EQU

NEXT EQU
COMPCT EQU

GETSTR EQU

MEMCHK EQU

CNS EQU

VPUSH EQU

VPOP EQU
ASSGNV EQU

C IF EQU

SCROLL EQU

VGWITE EQU
GVWITE EQU

EDITOR/ASSEMBLER
Page 416

APPENDICES

*
* Error Equates
X

ERRNO EQU
ERRSYN EQU
ERRIBS EQU
ERRNQS EQU
ERRNTL EQU
ERRSNM EQU
ERROBE EQU
ERRMUV EQU
ERRIM EQU
ERRMEM EQU
ERRS0 EQU
ERRNWF EQU
ERRFNN EQU
ERRSNS EQU
ERRRSC EQU
ERRMS EQU
ERRRWG EQU
EKRST EQU
ERRRBS EQU

ERRSSL EQU
E R R L N EQU
ERRBLN EQU
ERRLTL EQU
ERRCC EQU
ERRCIP EQU

ERROLP EQU
ERRBA EQU
ERRNPP EQU
ERRBV EQU
ERRIAL EQU
ERRINP EQU
ERRDAT EQU
ERRFE EQU
ERR10 EQU
E R R S N EQU
ERRPV EQU
ERRIVN EQU

WRNNO EQU

Numeric Overflow.
Syntax Error.
Illegal Af ter Subprogram.
Unmatched Quotes.
Name Too Long.
String-Number Mismatch.

Option Base Error.
Improperly Used Name.
Image Error.
Memory Full.
Stack Overflow.
NEXT Without FOR.
FOR-NEXT Nesting.
Must Be i n Subprogram.
Recursive Subprogram Call.
Missing SUBEND.

RETURN Without GOSUB.
String Truncated.
Bad Subscript.
Speech String Too Long.
Line Not Found.
Bad Line Number.
Line Too Long.

Can't Continue.

Command Il legal in Program.
Only Legal i n a Program.
Bad Argument.
No Program Present.
Bad Value.
Incorrect Argument List.
Input Error.
Data Error.
File Error.
I /O Error.
Subprogram Not Found.
Protection Violation.

Unrecognized Character.

Numeric Overflow.

EDITOR/ASSEMBLER
Page 417

APPENDICES

WRNST EQU >2A00 42 String Truncated.
WRNNPP EQU >2800 43 N o Program Present.
WRNINP EQU >2COO 44 Input Error.
WRNIO EQU >2D00 45 110 Error.

24.4.9 Subprograni Use

A11 the T I BASIC interface and support routines i n the T I Extended BASIC Loader
are supported by the Editor/Assembler Loader. However, some routines work sl ightly

differently. The use of these subprograms w i th T I BASIC when the Editor/Assembler
module is attached is described i n Section 17. The fol lowing describe how they d i f fe r

f r om the T I Extended BASIC routines w i t h the same names.

C A L L INIT--Loads the u t i l i t y routines f rom a T I Extended BASIC program or f rom
the Editor/Assembler command module. This subprogram functions similarly, bu t the
code that accomplishes it is different.

C A L L LOAD--The Editor/Assembler i s forced to load the u t i l i t y routines i f they have
not been loaded by I N I T routine. This is not done i n the T I Extended BASIC Loader,

and an an error is issued i f I N I T has not been called.

C A L L LINK--The Editor/Assernbler Loader uses i t s own workspace t o store
information f rom the parameter list. Only the addresses >I3310 through >El312 are
reserved for parameter passing purposes. T I Extended BASIC uses addresses >8300
through >8315 for this information. Your assembly language program must no t
modify this area if parameters are to be accessed i n the program.

C A L L PEEK--The Editor/Assembler allows the T I BASIC program t o peek more than
one consecutive memory area i n a statement by means o f a null str ing delimiter,
whereas T I Extended BASIC only allows one consecutive memory area t o be peeked i n
each statement.

C A L L PEEKV, C A L L POKEV--These are not supported by T I Extended BASIC.

ERROR LINK ROUTINE--The error code used w i th the T I Extended BASIC support
rout ine may no t give the same error message when the program is run in the
Editor/Assembler environment, due t o the fac t tha t the T I BASIC and T I Extended
BASIC interpreters have d i f ferent error messages and error handling routines.

EDITOR/ASSEMBLER
Page 418

APPENDICES

Note also that the error messages given by the Editor/Assembler while executing T I
BASIC interface routines use the console T I BASIC error messages. They are very
often different from the error message issued by T I Extended BASIC. For example,

the STRING-NUMBER MISMATCH error issured by T I Extended BASIC is a SYNTAX
ERROR when issued by the Editor/Assembler since the T I BASIC i n the console does
not contain the STRING-NUMBER MISMATCH error message.

The T I Extended BASIC support routines which are used t o access numeric and string
parameters are slightly modified i n the Editor/Assernbler version i n order t o ut i l ize
console routines i n the console T I BASIC interpreter. However, assembly language
programs access them exactly the same way as wi th the T I Extended BASIC utilities.

EDITORIASSEMBLER
Page 419

APPENDICES

24.5 SAVE UTILITY

The SAVE u t i l i t y alows you t o save TMS9900 tagged object code in memory image
format on either diskette or cassette. In this format programs can be run by using

the R U N PROGRAM F ILE option on the Editor/Assembler.

The SAVE program is on the Editor/Assembler diskette labeled P a r t B under the name
SAVE. The program is executed w i th the L O A D A N D RUN option on the
Editor/Assembler. However, before it is run, you must include cer ta in DEFs in your
program, assemble it, and load it.

Your program must contain DEF SFIRST,SLAST,SLOAD, w i th these symbols defined as
follows.

SFIRST must be a pointer t o the s tar t of your program. Further, the s ta r t of the
program must be an executable instruction. However, SFIRST does not
necessarily re f lec t where the memory image program is loaded.

SLOAD must be the address where the saved program is to be located. Since

memory image programs are no t relocatable, SLOAD should usually equal SFIRST.

SLAST must be a pointer t o the address a f te r the last word o f your program.
This can be done most easily by making SLAST the label fo r the END directive i n

your program.

Then choose the L O A D A N D R U N option. For the f i rs t f i l e name, enter the name o f
your object file: for example, DSK1.OBJECT. Then enter the name o f the SAVE
program, DSK1.SAVE. Then press <return> to go t o the next prompt, and enter the
program name as SAVE. The SAVE u t i l i t y then executes. It displays reminders
about using the u t i l i t y and prompts for a f i l e name fo r the f i l e t ha t it creates.

To output t o cassette rather than diskette, enter the f i l e name CS1.

The SAVE u t i l i t y can only save 8K i n one file. I f your program is larger than that
(SFIRST minus SLAST is greater than >2000 bytes), then the SAVE u t i l i t y creates a
second f i le by incrementing the last byte of the current f i l e name, thus creating a
new f i l e name. The Editor/Assembler option R U N PROGRAM F I L E expects f i les to
be l inked i n this way.

EDITOR/ASSEMBLER
Page 420

APPENDICES

Note: I f you save a f i le on CS1 that is larger than BK, do not rewind the cassette
when saving the additional files, even though you are instructed t o do so. Otherwise
you wi l l save the additional files over the f irst one. When loading programs that
consist of more than one f i l e using the RUN PROGRAM FILE option, give the input
f i le name as CS1. I f you give it as CS1, then the RUN PROGRAM FILE option
wi l l increment the name to CS2 for the second file, and CS2 is an invalid f i le name

i n RUN PROGRAM FILE.

EDITOR/ASSEMBLER
Page 421

APPENDICES

24.6 SPEECH SYNTHESIZER RESIDENT VOCABULARY

The following is a l ist of a l l the letters, numbers, words, and phrases that can be

accessed, followed by the location of their codes in ROM. See Section 22 for a
description of the use of speech.

Phrase Address
- (NEGATIVE) 48DC
. (POINT) 50EC
1 1409
3 149A
5 1531
7 15E8
9 1664

A (ay)
ABOUT
AGAIN

A M
AND
ANY
AS
AT

B 1A42
BASE 1A8F
BET WEEN l A D E
BLUE 1B8A
BOTTOM lBEA
BUY 1C48
BYE 1C48

C
CASSETTE
CHECK
CLEAR
COME
COMMA

COMPLETE
COMPUTER

Phrase
+ (POSITIVE)

A 1 (uh)

AFTER
ALL
A N
ANSWER
ARE
ASSUME

BACK
BE
BLACK
BOTH

BUT
BY

CAN
CENTER
CHOICE
COLOR
COMES
COMMAND

COMPLETED

CONNECTED

Address
5183

EDITOR~ASSEMBLER

Page 422

APPENDICES

Phrase
CONSOLE
COURSE

D
DECIDE
DID
DISKETTE
DOES
DONE
DOWN
DRAWING

E
EIGHT
ELEVEN
END

ENTER
EXACTLY

F
FIFTY
FIND
FINISH
FIRST
FIVE
FORTY
FOURTEEN
FROM

G
GET
GIVE

GO
GOING
GOOD WORK
GOT
GREEN

H

HAND

Address
20F3
2182

Phrase
CORRECT

Address

213C

CYAN 21CO

DATA 223C
DEVICE 22FD
DIFFERENT 23C4
DO 2480
DOING 24EA
DOUBLE 2599

DRAW 2612

EACH
EIGHTY
ELSE
ENDS
ERROR
EYE

FIFTEEN
FIGURE
FINE
FINISHED
FIT
FOR
FOUR
FOURTH

FRONT

GAMES
GETTING
GIVES

GOES
GOOD
GOODBYE
GRAY
GUESS

HAD 32EF

HANDHELD UNIT 337F

EDITOR/ASSEMBLER
Page 423

APPENDICES

Phrase
HAS
HEAD
HELLO
HERE

HIT
HOW
HURRY

I
IF
INCH
INSTRUCTION
I S

J
JUST

K

KEYBOARD

L

LARGER
LAST
LEFT
LET
LIKES

LOAD
LOOK
LOWER

M
MAGENTA
ME
MEMORY
MESSAGES
MIGHT
MORE
MOVE

Address
3405
348C
351A
34E5
360A
3689
3757

Phrase Address
HAVE 344A
HEAR 34E5

HELP 3571
HIGHER 35AE

HOME 363E
HUNDRED 36EF

I W I N 37 CF
IN 3872
INCHES 38FA
INSTRUCTIONS 39BD
IT 3A7A

JOYSTICK 3AED

KEY

KNOW

LARGE
LARGEST
LEARN
LESS
LIKE
LINE

LONG
LOOKS

MADE
MAKE
MEAN
MESSAGE
MIDDLE
MODULE
MOST
MUST

EDITOR/ASSEMBLER
Page 424

APPENDICES

Phrase
N
NEAR
NEGATIVE
NICE TRY

NINETY
NOT
NUMBER

Address
4786
4833
48DC
49A5

4A4E
4AAB
4820

0 4B7D

OFF 4C13
ON 4C41
ONLY 4C88
ORDER 4D34
OUT 4DD4

P

PARTNER
PERIOD
PLAYS
POINT
POSITIVE
PRINT
PROBLEM
PROGRAM
PUTTING

R 556E
READ (reed) 5652
READY TO START 5683
RED 57C1
REMEMBER 5861
REWIND 593A
ROUND 59C2

S 5A5A
SAVE 5AEF

SAYS 5BA2

SECOND 5C5B

Phrase
NAME
NEED
NEXT
NINE

NO
NOW

a=
OH
ONE
OR
OTHER
OVER

PART
PARTS
PLAY
PLEASE
POSITION
PRESS
PRINTER
PROBLEMS
PUT

RANDOMLY
READ1 (red)
RECORDER
REFER

RETURN
RIGHT

SAID
SAY

SCREEN

SEE

Address
47c0
4880

4959
1664

3C4F
4ADA

EDITOR/ASSEMBLER
Page 425

APPENDICES

Phrase
SEES
SEVEN
SHAPE
SHIFT
SHORTER

SIDE
SIX
SMALL
SMALLEST
SOME
SPACE
SPELL
START
STOP
SUPPOSED
SURE

T

TEEN
TEN
THAN
THAT I S INCORRECT
THE (thee)
THEIR
THERE
THEY
THINGS
THIRD
THIRTY
THREE
THROUGH
TO
TONE
TOP
TRY AGAIN
TWELVE
TWO

Address
5CBF

15E8
5DA5
5E27
5EA5

5F6D
15A8
6070
6W1

6197
6226
62CC
63713
63F7
6423
64F4

Phrase
SET
SEVENTY
SHAPES
SHORT
SHOULD

SIDES
SIXTY
SMALLER
SO
SORRY
SPACES
SQUARE
STEP
SUM
SUPPOSED TO

TAKE
TELL
TEXAS INSTRUMENTS
THAT

THAT I S RIGHT
THE1 (thuh)
THEN
THESE
THING
THINK
THIRTEEN

THIS
THREW
TI ME
TOGETHER
TOO
TRY
TURN
TWENTY
TYPE

Address
5d1b
5D50
5DDE
5E5C

5F24
5FC8
601A
60AE
6153

61C6
625D
6333
63C5
6197
6489

EDITOR/ASSEMBLER
Page 426

APPENDICES

Phrase
U

UNDER
UNTIL
UPPER

v
VERY

W

WANT
WAY
WEIGH
WELL
WHAT
WHEN

WHICH

WHO
WILL
WON
WORDS
WORKING

Y
YES
YOU
YOUR

Address
71BE
7245
732F
7 x 3

Phrase Address

UHOH 71F4
UNDERSTAND 72913
UP 739F
USE 7403

VARY 7487

WAIT
WANTS
WE
WEIGHT
WERE
WHAT WAS THAT
WHERE
WHITE

WHY
WITH
WORD
WORK
WRITE

YELLOW
YET
YOU W I N

ZERO

EDITOR/ASSEMBLER
Page 427

APPENDICES

24.7 CHARACTER SET

The Editor/Assembler recognizes the ASCI I characters l isted in the fol lowing table.

The table includes the ASCII code for each character represented as both a

hexadecimal and decimal value. The Editor/Assembler also recognizes the six special

characters shown i n the second table. On the TI-99/4A Home Computer, the

Editor/Assembler also represents the lower-case letters, {, }, and the t i lde as shown i n

the th i rd table.

Editor/Assembler Pr imary Character Set

Hexadecimal

Value

20
21
22
23
24
25
26
27
28
29
2A

28
2C
2D
2E
2F
30

31
32
33
34
35
36
37
38

39
3A

Decimal

Value

32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
5 2
53
54
55
56

57
58

Character

Space

!

EDITOR/ASSEMBLER
Page 428

APPENDICES

Hexadecimal
Value

3 6
3C
3 D
3E
3F
40
41
42

43
44
45
46
47
48

49
4A
48
4C
4 0

4E
4F
50
51
5 2
53
54
55
56
57
58
59
5A

Decimal
Value
59
60
6 1

62
63
64
65
66

67
68
69
70
7 1
72

7 3
74
75
76
77

78
79
80
8 1
82
83
84
85
86

87
88
89
90

Character

f

<

EDITOR/ASSEMBLER
Page 429

APPENDICES

Editor/Assembler Special Characters

Hexadecimal Decimal
Value
5 8

Value
9 1

Character

[

TI-99/4A Editor/Assembler Additional Characters

Hexadecimal Decimal
Value
61
62
63
64
65
66
67
68
69
6A
6 8
6C
6D

6E
6F
70
71
72

73
74
75
76
77
78
79

Value
97

Character
a
b

EDITOR/ASSEMBLER
Page 430

Hexadecimal Decimal

APPENDICES

Character
z

I
I -

EDITOR/ASSEMBLER
Page 431

APPENDICES

24.8 ASSEMBLER DIRECTIVE TABLE

The assembler directives for the T I Home Computer are l isted i n the fol lowing table.

A l l directives may include a comment f ie ld fol lowing the operand field. Those
directives tha t do not require an operand f ie ld may have a comment f ie ld fol lowing

the operator field. Those directives that have optional operand fields (RORG and
END) may have comment f ields only when they have operand fields.

The fol lowing symbols and conventions are used in defining the syntax o f assembler
directives.

Angle brackets (< >) enclose i tems you supply.
Brackets ([1) enclose optional items.
An ellipsis (...) indicates tha t the preceding i t em may be repeated.
Braces ({ 1) enclose two or more i tems of which one must be chosen.

The fol lowing words are used i n defining the i tems used i n assembler directives.

label A symbol used i n the label field.
str ing A character string o f a length defined fo r each directive.
expr An expression.

wd expr A well-defined expression.

t e r m The t e r m used t o re fe r t o an extended operation.
operation A mnemonic operation code, macro name, or previously defined

operation or extended operation.

Assembler Direct ives

Force

Word
Direct ive
Page TiTLe

Program IDTnt i f ie r

External DEFinit ion
External REFerence
COPY f i le

Absolute ORiGin

Relocatable ORiGin

Dummy ORiGin

Syntax
[<label>] T ITL <string>

[<label>] IDT <string>

[<label>] DEF <symbol>[,<symbol>l ...
[<label>] REF <symbol>[,<symbol>] ...
[<label>] COPY "<f i le name>"
[<label>] AORG <wd expr>

[<label>] RORG [<expr>]

[<label>] DORG [<expr>]

Boundary Note
N A
N A
N A
N A
N A
No

No

No

EDITOR/ASSEMBLER
Page 432

APPENDICES

Force
Word

Direct ive Syntax Boundary Note
Block Starting [<label>] BSS <wd expr> No

w i th Symbol

Block Ending [<label>] BES <wd expr> No
w i th Symbol

In i t ia l ize word f<label>] D A T A <expr>[,<expr>] ... Yes
In i t ia l ize TEXT [<label>] TEXT [-I <string> N o 1
Define extended [<label>] DXOP <symbol>, <term> N A

Operation
Def ine assembly- [<label>] EQU <expr> N A 2

t ime constant
Word boundary
N o source L i s t
L IST Source
PAGE eject
In i t ia l ize BYTE
Program END
Program SEGment
Program segment END
Data SEGment
Data segment END
Common SEGrnent
Common segment END
Secondary REFerence
Force L O A D

[<label>] EVEN
[<label>] UNL
[<label>] L IST
[<label>] PAGE

[<label>] BYTE <wd expr>[,<wd expr>] ...
[<label>] E N D [<symbol>]
[<label>] PSEG
[<label>] PEND
[<label>] DSEG
[<label>] DEND
[<label>] CSEG [<string>]
[<label>] CEND
[<label>] SREF <symbol>[,<syrnbol>] ...
[<label>] L O A D <symbol>[,<symbol>] ...

Yes
N A
N A
N A

N o
N A
Yes
Yes
Yes
Yes
Yes
Yes
N A
N A

Notes:

 he minus sign causes the Assembler t o negate the right-most character.
'symbols i n expressicns must have been previously defined.
3 ~ y m b o l must have been previously defined.

4 ~ h e s e directives have no e f fec t when using the Loader provided w i th the
Editor/Assembler.

EDITOR/ASSEMBLER
Page 433

APPENDICES

24.9 HEXADECIMAL INSTRUCTION TABLE

The following table lists the TMS9900 assembly language instructions, their format,
and the section in which they are described. They are i n order according to their

hexadecimal operation code. For an alphabetical listing by their mnemomic operation

code, see Section 24.10. See Section 5 for an explanation of the format.

Hexadecimal
Operation
Code -
0200
0220
0240
0260

0280
OZAO
0 x 0
02EO

Mnemonic
Operation

Code
LI
A1
AND1
OR1

C I
STWP
STST
LWPI

L I M I

IDLE
RSET
RTWP

CKON

CKOF
LREX
BLWP

B
X
CLR
NEG
INV
INC
INCT
DEC

DECT
BL

Name
Load Immediate
Add Immediate
AND Immediate
OR Immediate
Compare Immediate
STore Workspace Pointer
STore STatus
Load Workspace Pointer

Immediate
Load Interrupt Mask

Immediate
IDLE
ReSET
ReTurn with Workspace

Pointer
ClocK ON

ClocK OFf
Load or REstart execution
Branch And Load Workspace

Pointer

Branch
Execute
CLeaR operand
NEGate
INVert
INCrement
INCrement by Two
DECrement

DECrement by Two
Branch and Link

Format
V I I I
V I I I
V I I I
V I I I

V I I I
V I I I
V I I I
V I I I

V I I I

V I I
V I I
V I I

V I I
V I I

V I I
v 1

Section
10.1
6.4
11.1

11.2
8.3
10.7
10.6
10.3

EDITOR/ASSEMBLER
Page 434

APPENDICES

Hexadecimal
Operation
Code -
06CO
0700
0740
0800
0900
OAOO
OBOO

1000
1100
1200

1300
1400

1500
1600

1700
1800
1900
lAO0
lBO0
lC00
lDOO
lEOO
lF00
2000
2400
2800
2coo
3000
3400

3800
3COO
4000
5000

Mnemonic
Operation
Code
SWPB
SET0

ABS
SRA
SRL
SLA
SRC
JMP
JLT
JLE
JE Q
JHE
JGT
JNE
JNC
JOC

JNO
JL
JH
JOP
SBO
SBZ
TB
COC
czc
XOR
XOP
LDCR
STCR
MPY
DIV
szc
SZCB

Name -
SWaP Bytes
SET to One
ABSolute value
Shift Right Arithmetic
Shift Right Logical
Shift L e f t Arithmetic
Shift Right Circular
Unconditional JUMP
Jump Less Than
Jump i f Low Or Equal
Jump EQual
Jump High Or Equal
Jump Greater Than
Jump Not Equal
Jump No Carry
Jump On Carry

Jump No Overflow
Jump if logical Low
Jump i f logical High
Jump Odd Parity
Se t CRU B i t to One
Set CRU B i t t o Zero
Test B i t
Compare Ones Corresponding
Compare Zeros Corresponding
EXclusive OR
Extended Operation
LoaD CRU
STore CRU
Mu l t i p l y

DIVide
Set Zeros Corresponding
Set Zeros Corresponding,

Byte
Subtract words
Subtract Bytes

Compare words
Compare Bytes

Format
v I
v I
VI
v
v
v
v
I 1
I I

I1
I 1
I I
I I
I I
I 1

I 1
I1
I 1
I 1

I I
I I

I 1
I I

I11
111
I11
I X
I V
I V
I X
I X
I
I

Section
10.8

EDITOR/ASSEMBLER
Page 435

APPENDICES

Hexadecimal
Operation
Code

A000
BOO0
COO0

DO00

€000

FOOO

Mnemonic
Operation
Code
A
AB +

M OV

MOVE

SOC
SOCB

Name Format Section

Add words I 6.1
Add Bytes I 6.2

MOVe words I 10.4

MOVe Bytes I 10.5

Set Ones Corresponding I 11.7

Set Ones Corresponding, I 11.8

By te

EDITOR/ASSEMBLER
Page 436

APPENDICES

24.10 ALPHABETICAL INSTRUCTION TABLE

The following table lists the TMS9900 assembly language instructions, their format,
and the section i n which they are described. They are in alphabetical order by their

mnemonic operation code. For a listing in order according to their hexadecimal

operation code, see Section 24.9. See Section 5 for an explanation of the format.

Hexadecimal
Operation
Code -
A000

Mnemonic
Operation
Code
A
AB
ABS
A1
AND1
B
BL
BLWP

C
CB
C I
CKOF
CKON

CLR
coc
czc
DEC
DECT
DIV
IDLE
INC
INCT
INV
JE Q

JGT
JH
JHE
JL
JLE

Name
Add words
Add Bytes
ABSolu te value
Add Immediate
AND Immediate
Branch
Branch and Link
Branch And Load Workspace

Pointer
Compare words
Compare Bytes
Compare Immediate
ClocK OFf

ClocK ON
CLeaR operand
Compare Ones Corresponding
Compare Zeros Corresponding
DECrement

DECrement by Two
DIVide
IDLE
INCrement
INCrement by Two
INVert
Jump EQual

Jump Greater Than

Jump if logical High
Jump High Or Equal
Jump i f logical Low

Jump i f Low Or Equal

Format
I
I
v I
V I I I
V I I I
v I
v I
v I

I
I
V I I I
V I I

V I I
V I
I11
I11
v I
v I
I X
V I I
v I
v I
v I
I I
I1
I I
I I
I I

I I

Section
6.1
6.2
6.3
6.4
11.1

7.1
7.2

7.3

EDITOR~ASSEMBLER
Page 437

APPENDICES

Hexadecimal
Operation
Code

1100
1000

1700
1600
1900
1800
lC00
3000
0200
0300

6000
7000
lDOO
lEOO
0700
OAOO
EOOO
FOOO

Mnemonic
Operation
Code

JLT
JMP

JNC
JNE
JNO
JOC
JOP
LDCR
LI
L I M I

LREX

LWPI

M OV
M OVB
MPY
NEG
OR1
RSET
RTWP

S
SB
SBO
SBZ
SET0
SLA
SOC

SOCB

SRA
SRC
SRL
STCR
STST

STWP

Name
Jump Less Than
Unconditional JUMP

Jump No Carry
Jump Not Equal
Jump No Overflow
Jump On Carry
Jump Odd Parity
LoaD CRU
Load Immediate

Load Interrupt Mask
Immediate

Load or REstart execution
Load Workspace Pointer

Immediate
MOVe words
MOVe Bytes

Mu l t ip l y
NEGate
OR Immediate
ReSET
ReTurn with Workspace

Pointer
Subtract words
Subtract Bytes
Set CRU Bi t to One
Set CRU B i t to Zero
SET to One
Shift L e f t Arithmetic
Set Ones Corresponding

Set Ones Corresponding,
Byte

Shift Right Arithmetic
Shift Right Circular
Shift Right Logical
STore CRU
STore STatus
STore Workspace Pointer

Format
I I
I 1
I I
I 1
I I
I I
I I
IV
V I I I

V I I I

V I I
V I I I

I
I

I X
v I
V I I I
V I I
V I I

v
v
v
I v
V I I I
V I I I

Section
7.10
7.11
7.12
7.13
7.14
7.16
7.15
9.1
10.1
10.2

EDITOR/ASSEMBLER

Page 438

APPENDICES

Hexadecimal
Operation
Code
06CO
4000

5000

Mnemonic
Operation
Code

SWPB
szc
SZCB

TB
X
XOP

XOR

Name
SWaP Bytes
Set Zeros Corresponding

Set Zeros Corresponding,
Byte

Test B i t
Execute
Extended Operation
Exclusive OR

Format Section

V I 10.8

I 11.9
I 11.10

EDITORIASSEMBLER
Page 439

APPENDICES

24.11 PROGRAM ORGANIZATION

You can wr i te your program so that i t returns t o the Editor/Assembler, t o the T I

BASIC or T I Extended BASIC program that called it, or t o the master t i t l e screen.

The program must re ta in the return address and must no t have al tered the GPL

Workspace Registers.

24.11.1 Returning When Your Program Is Run Automatically

The f ina l instruction in your program can be an END instruction fol lowed by a label

which has been mentioned i n a DEF instruction. Then the program is run

automatically when i t is loaded by the Editor/Assembler L O A D A N D RUN option, the

Editor/Assembler R U N option, or the T I BASIC or T I Extended BASIC statement

C A L L LOAD. When your program is run automatically, the user Workspace equate

(USRWS EQU >20BA) is not loaded. To use this area for your Workspace Registers,

use the following sequence.

USRWS EQU >20BA

LWPI USRWS

You may define your own Workspace Register area instead.

When your program is run automatically, i t starts i n the Graphics Progamming

Language Workspace (start ing a t GPLWS). The re tu rn address is in Workspace

Register 11. Do not use GPLWS as your Workspace. Instead, branch t o your own

area, save the return address f rom GPL Workspace Register 11, and set up your own

Workspace. When your program is done, re tu rn by clearing the GPL STATUS byte at

address >837C to indicate tha t there are no errors, pu t the return address i n your

Workspace Register 11, and return. The fol lowing program segment shows these

steps.

SAVRTN DATA 0
MYWS BSS 20

STATUS EQU >837C

EDITOR/ASSEMBLER
Page 440

APPENDICES

START MOV Rl l ,@SAVRTN Save GPL return address.
LWPI MYWS Set up Workspace Registers.

CLR RO Prepare t o return t o GPL.
MOVB RO,@STATUS Indicate no errors.
MOV @SAVRTN,Rl l Load re tu rn address.

R T Return.
END START

24.11.2 Returning When Your Program Is Not Run Automatically

I f you run your program by answering the PROGRAM NAME prompt in the
Editor/Assembler L O A D A N D RUN or R U N options or w i t h the C A L L L I N K
statement i n T I BASIC, the user Workspace equate (USRWS EQU >20BA) i s loaded

and you can use the area tha t starts a t tha t address for your Workspace Registers or
you can define your own Workspace Register area instead.

The address in Workspace Register 11 does not need to be saved unless you use the
Workspace Register for some other purpose. When you wish to return, simply clear
the GPL STATUS byte and return. The fol lowing program segment shows these steps.

DEF START

STATUS EQU >837C
START .

CLR RO Prepare t o return to GPL.

MOVB RO,@STATUS Indicate no errors.
R T Return.
E N D

EDITOR/ASSEMBLER

Page 441

APPENDICES

24.11.3 Other Returns

You can return t o the call ing program by branching to address >0070. Before doing
this, clear the GPL STATUS byte t o indicate tha t there are no errors and load the
GPL Workspace Registers. The fol lowing program segment shows these steps.

C L R RO
MOVE RO,@STATUS Indicate no errors.

LWPI GPLWS Load GPL Workspace Registers.
B @>0070 Return.

You can return t o the master t i t l e screen by enabling interrupts, loading the GPL

Workspace Registers, and branching through the vector >0000. The fol lowing program
segment shows these steps.

LIMI 2 Enable interrupts.
LWPI GPLWS Load GPL Workspace Registers.

BLWP @>OOOO Return t o color bar screen.

EDITOR/ASSEMBLER
Page 442

APPENDICES

24.12 ERROR MESSAGES

The following sect ions give t h e e r ro r messages t h a t may be re turned by the
Editor/Assembler.

24.12.1 Input/Output Error Codes

The following table l ists the input/output error codes.

Error
Code
0
1

2

Meaninq
Bad device name.
Device is wr i t e protected.
Bad open a t t r ibu te such as incorrect f i le type, incorrect record
length, incorrect I/O mode, or no records in a re la t ive record file.
Illegal operation;, i.e., an operation n o t supported on t h e peripheral or
a conflict with the OPEN attributes.
O u t of table or buffer space on the device.
A t t e m p t t o read past the end of file. When this er ror occurs, the
file is closed. Also given for non-existing records in a re la t ive
record file.
Device error. Covers al l hard device errors such as parity and bad
medium errors.
File er ror such a s p r o g r a d d a t a file mismatch, non-existing fi le
opened in INPUT mode, etc.

24.12.2 Error Messages Issued by GROM Code

The following a r e the error messages t h a t may b e issued by code in a GROM.

NAME TOO LONG
NO MEMORY EXPANSION
I/O ERROR n, where n is the 110 e r ro r code f rom 0 through 7.

EDITORlASSEMBLER
Page 443

APPENDICES

24.12.3 Errors Issued by the Loader

The fol lowing are the error messages t ha t may be issued by the Loader.

110 ERROR n, where n i s the 110 error code f r o m 0 through 7.
MEMORY FULL
ILLEGAL TAG
CHECKSUM ERROR
DUPLICATE DEFINITION

UNRESOLVED REFERENCE

24.12.4 Execution-Time Errors

The fol lowing are the error messages t h a t may be issued a t execution t ime.

I /O ERROR n, where n i s the 110 error code f r o m 0 through 7.
PROGRAM NOT FOUND
ERROR CODE n, where n is the er ror code l isted below.

The table on the fol lowing page l is ts the errors tha t may be issued when you a t tempt

to r un your program.

EDITOR~ASSEMBLER
Page 444

APPENDICES

Error
Code
00 - 07
08
09
OA
OB
OC
OD
OE
OF
10
11
12

13
14
15
16
17
18
19

1A
15
1C
1D
1E
1F
20
21
22 - FF

Meaning

Input/Ou tput error
MEMORY FULL
INCORRECT STATEMENT
ILLEGAL TAG
CHECKSUM ERROR
DUPLICATE DEFINITION
UNRESOLVED REFERENCE
INCORRECT STATEMENT
PROGRAM NOT FOUND
INCORRECT STATEMENT
BAD NAME
CAN'T CONTINUE

BAD VALUE
NUMBER TOO BIG

STRING-NUMBER MISMATCH
BAD ARGUMENT
BAD SUBSCRIPT
NAME CONFLICT
CAN'T DO THAT

BAD LINE NUMBER
FOR-NEXT ERROR
I/O ERROR
FILE ERROR
INPUT ERROR
DATA ERROR
LINE TOO LONG
MEMORY FULL
UNKNOWN ERROR CODE

EDITOR/ASSEMBLER
Page 445

GLOSSARY

Addresses: The numbering system which defines the memory locations within the

com~u te r .

Addressing mode: A way of using memory addressing. I n the Editor/Assernbler, the

addressing modes are Workspace Register addressing, Workspace Register

indirect addressing, Workspace Register indirect auto-increment addressing,

symbolic memory addressing, and indexed memory addressing.

Ar i thmet ic greater than bit: A b i t in the Status Register t ha t is set when a signed

number is compared w i th a smaller signed number.

Ar i thmet ic operators: The ar i thmetic operators are + for addition, - for subtraction,

* for mult ipl ication, and / for signed division.

ASCII: American Standard Code for In format ion Interchange. The code used to

represent data.

Assembler: The port ion o f the Editor/Assembler on Diskette A tha t allows you to

assemble an assembly language program in to object code (machine language).

Assembling: Changing an assembly language program in to a machine language

program, called object code, that can be run by the computer.

Assembly language: A lower-level language that allows fast access t o a l l machine
resources, including functions not available f rom higher-level languages.

Assembly options: Options tha t you provide a t the t ime of assembly. They are R
for automatic Workspace Register generation, L for l i s t f i l e generation, S for a

symbol table, and C for compressed object format.

Assembly-time constant: An expression i n the operand f ie ld of an EQU directive.

Binary: The base 2 numbering system used by the computer.

B i t 110 instructions: Format I 1 instructions whose operand f ie ld contains a

well-defined expression which evaluates t o a C R U b i t address, relat ive t o the

contents of Workspace Register 12.

EDITOR/ASSEMBLER
Page 446

GLOSSARY

Bit-map: A way of handling graphics in the TI-99/&A Home Computer.

Bit: A BInary digiT.

Byte: Eight bits.

Carry bit: A S ta tus Register bit t h a t is s e t by a carry of 1 from the most
significant bit (sign bit) of a word or byte during ar i thmet ic and shift
operations.

Character constant: A str ing of one or two charac te r s enclosed in single quotes.

Character set: The charac te r s t h a t a r e recognized by the AssemblerJLinker. I t is

listed in Section 24.7.

Character string: A string of charac te r s enclosed in single quotes.

Color Table: A table in memory tha t defines the colors of graphics.

Command mode: The mode in the Editor in which you may perform special
functions, such a s copying lines, deleting lines, altering data , and the like.

Comment field: An a r e a in which t o make comments t h a t increase the readability of
the program but tha t do not a f f e c t the operations of the computer.

Compressed object code: Object code t h a t t akes up less space on diskettes. The
code has compressed hexadecimal numbers for the tagged fields.

Console: The main physical unit of the computer.

Constant: An unchanging value. The four types of constants recognized by the
Assembler a r e decimal integer constants, hexadecimal integer constants,
character constants, and assembly-time constants.

Contex t switch: A change in the location of the next address t o be accessed by the
comDuter.

Control and CRU instructions: The control and C R U instructions a r e Clock Off
(CKOF), Clock On (CKON), Load CRU (LDCR), Idle (IDLE), Load or R e s t a r t

Execution (LREX), Reset (RSET), Set CRU Bi t t o One (SBO), Set CRU B i t to
Zero (SBZ), Store CRU (STCR), and Test Bit (TB).

EDITOR~ASSEMBLER
Page 447

GLOSSARY

Cont ro l instruct ions: F o r m a t \ / I1 ins t ruc t ions which requi re no operand field,

CPU: C e n t r a l Process ing Unit.

C P U R A M : C e n t r a l Processing Unit Kandom Access Memory. Used in this manual

t o descr ibe any memory t h a t can b e d i rec t ly addressed by t h e CPU.

CRU: Communica t ions Reg i s t e r Unit. A command-driven bi t-addressable I f 0
in ter face .

Debuqqer: A program t o help you check memory locat ions, reg is te rs , and t h e l i k e in

o rde r t o find and c o r r e c t any e r ro r s which may occur in your program.

Decimal in teger cons tant : A deci111a1 riumber f r o m -32,768 t o +65,535. P o s i t ~ v e
dec imal i n t ege r cons t an t s g r e a t e r t han 32,767 a r e considered negat ive when

in t e rp re t ed a s two's complemen t values.

DEF/REF Table: A l is t of t h e variables which have been r e fe r r ed t o in a DEF o r REF
s t a t e m e n t in a program or se r i e s of programs.

Des t ina t ion ope la rd : The addres s where t h e resu l t of t h e pe r fo rmed manipulat ion is
s tored .

Device Service Routine: A rout ine t o handle communica t ions be tween t h e compute r
and al l e x t e r n a l devices, such a s pr in ters , disk drives, t h e RS232 In t e r f ace , e t c .

Direct ives: Ins t ruc t ions t o t h e Assembler t h a t cont ro l t h e assembly process.
Direc t ives a f f e c t t h e Loca t ion C o u n t e r and t h e Assembler ou tpu t , in i t ia l ize

cons tants , provide l inkage be tween programs, and have o the r functions.

DSR: Device Se rv ice Routine.

Edi t mode: The mode in t h e Edi tor in which you may c r e a t e and a l t e r files.

Editor: The port ion of t h e Edi tor /Assembler t h a t a l lows you t o c r e a t e , edi t , p r in t ,
and save files.

End-of-file marker : (*Em). The mark t h a t indica tes t h e end of a f i le t h a t you a r e
editing.

EDITOR/ASSEMBLER
P a g e 4 4 8

GLOSSARY

Equal bit: A Status Register b i t tha t is set when the two words or bytes being

compared are equal.

Expressions: Used i n the operand fields of assembler directives and machine

instructions. An expression is a constant or symbol, a series of constants or

symbols, or a series of constants and symbols separated by ar i thmetic

operators.

Extended operation bit: A Status Register b i t that is set when an extended operation

(available in some TI-99/4A Home Computers) is being executed.

Fa ta l error: An error which stops the assembly process.

Field: A division of a record. A source record consists of the label field, op-code

field, operand field(& and comment field.

File: A group o f program statements, object code, data, or the like, contained i n the

computer's memory or on an external device such as a diskette.

GPL: Graphics Programming Language. The language frequently used to program

Command Modules.

GROM: Graphics Read Only Memory.

Hexadecimal integer constant: A string of up t o four hexadecimal numerals preceded

by a greater than (>) sign. Hexadecimal numerals include the decimal values 0

through 9 and the le t ters A through F.

Hexadecimal: Base 16 numbering system. Of ten used as an easy representation of

the binary numbering system.

Immediate instructions: Format V I I I instructions which contain a Workspace Register

address fol lowed by a comma and an expression. Use the contents of the word

fol lowing the instruction word as the operand o f the instruction.

Indexed memory addressing: Specifies the memory address that contains the operand.
An indexed memory address is preceded by an "at" sign (@I and fol lowed by a

register name enclosed i n parentheses.

Instruct ion formats: One o f nine formats that specify the way in which instructions

are assembled t o machine language.

EDITOR/ASSEMBLER
Page 449

GLOSSARY

Interrupt mask bits: B i ts 1 2 through 1 5 i n the Status Register. They determine

what devices are permi t ted to interrupt the processor.

Jump instructions: Format 11 instructions tha t use Program Counter relat ive

addresses coded as expressions corresponding t o instruction locations on word

boundaries.

Label field: The f i rs t f ie ld i n a source record. I t serves as a reference point.

L i s t f i le: A f i le which the Assembler can create. I t contains a record of the

assembly process.

Loader: An assembly language program used t o load assembly language programs in to

the Memory Expansion unit.

Loading: The process of putt ing object code in to the computer's memory so tha t it

can be run.

Locat ion counter: A counter tha t keeps t rack o f where the Assembler is i n the

assembly process.

Logical greater than bit: A Status Register b i t tha t is set when an unsigned number
is compared w i th a smaller unsigned number.

Machine language: The code in to which assembly language is translated by the

Assembler. The code produced can be recognized and operated on by the
TMS9900 microprocessor.

Memory: The storage locations or addresses in the computer.

Mnemonic codes: Codes which help you t o remember the instructions i n assembly

language.

Mode of operation: The way i n which a f i l e may be accessed. May be INPUT,
OUTPUT, UPDATE, or APPEND.

Non-fatal error: An error which does not stop the assembly process.

Nybble: Four bits; ha l f a byte.

EDITOR/ASSEMBLER
Page 450

GLOSSARY

Object code: The machine code in to which assembly language is translated by the

Assembler.

Odd pari ty bit: A Status Register b i t t ha t is set when the par i ty o f the result is odd

and is reset when the par i ty is even.

Op-code field: The second f ie ld i n a source record. I t is the operation code (a

number, name, or abbreviation) o f the task t o be performed by that source

statement.

Operand field: The f ie ld tha t stipulates the value t o be operated upon or

manipulated by the op-code.

Operands: The numbers, expressions, or characters upon which assembly language

instructions operate.

Overf low bit: A Status Register b i t t ha t is set when the result of an ar i thmetic

operation is too large or too small to be represented i n two's complement

representation.

PAB: Peripheral Access Block.

Peripheral Access Block: A set o f locations i n VDP memory tha t defines how

devices, such as printers and disk drives, are accessed.

Predefined symbols: Symbols for addresses tha t are predefined i n the DEFIREF table.

Program Counter Register: Keeps track of the locat ion o f the next instruction i n

memory.

Program Counter relat ive addressing: Used only by jump instructions. I t is wr i t ten
as an expression that corresponds t o an address a t a word boundary.

Pseudo-instruction: An assembly language statement tha t has the fo rm of an

instruction, but is defined i n terms o f other instructions. The
pseudo-instructions are No Operation (NOP) and Return (RT).

RAM: Random Access Memory.

EDITOR/ASSEMBLER
Page 451

GLOSSARY

Re-entrant programming: A technique tha t allows the same program code to be used

for several d i f ferent applications while maintaining the in tegr i ty of the data

used w i th each application.

Register: A memory word tha t serves a secif ic purpose. Registers i n Random

Access Memory (RAM) are called "software" registers. A set of 16
consecutive registers is called a "workspace."

ROM: Read Only Memory.

Screen Image Table: A table i n memory corresponding t o graphics on the screen.

Source operand: The number, address, string, etc., which is t o be manipulated or

operated upon.

Source statements: The statements of an assembly language program.

Special keys: Special characters and functions and cer ta in keys available for cursor

movement when using the Editor/Assembler.

Sprite: One of 32 characters that may be placed on the screen and moved smoothly.

Sprite A t t r ibu te List: A l is t i n memory tha t defines the location, color, and pattern

of sprites.

Sprite Descriptor Table: A table i n memory defining sprite patterns and sizes.

Sprite Mot ion Table: A table i n memory tha t defines the motion o f sprites.

STATUS byte, GPL: The byte a t address >837C that contains status information.

Status Register: The register that contains indications of the present status o f the

computer.

Symbol table: A table constructed by the Assembler o r T I BASIC i n the assembly

process. I t l ists a l l of the symbols used in a program and contains information

on the symbols i n the program, their addresses, and their types.

Symbol: A string of alphanumeric characters (A through Z and 0 through 9), the f i rs t
o f which must be an alphabetic character, and none o f which may be a blank.

EDITOR/ASSEMBLER
Page 452

GLOSSARY

Symbolic Addresses: Addresses associated w i t h Locations i n the program tha t must

not be used in the label f ie ld of other statements.

Symbolic memory addressing: Specifies the memory address tha t contains the
operand. A symbolic memory address is preceded by an "at" sign (@).

Syntax definition: A description of the required fo rm for the use o f commands as

related t o the fields.

Syntax: The required fo rm for source statements.

T- f ie ld value: A value which indicates the type of addressing mode used.

TMS9900 microprocessor: The chip on which the TI-9914 and TI-99/4A Home
Computers are based.

Tag characters: Characters tha t describe the information i n an object file.

Terms: A decimal or hexadecimal constant, an absolute assembly-time constant, or a

label having an absolute value.

Transfer vector: Two consecutive words of memory which contain a new Workspace
pointer and a new program counter. The computer uses a transfer vector to

perform a transfer of control called a context switch.

Two's complement: The way i n which negative numbers are expressed i n binary in
the computer.

Undisplayable characters: Characters t ha t have val id ASCII meanings bu t cannot be
displayed on the screen.

Ut i l i t ies: Programs provided by Texas Instruments t o enable quick and easy use of
certain computer capabilities. They are VSBW, VMBW, VSBR, VMBR, VWTR,
XMLLNK, KSCAN, GPLLNK, DSRLNK, SAVE, LOADER, NUMASG, STRASG,
NUMREF, STRREF, and ERR.

VDP RAM: Video Display Processor Random Access Memory. This memory can be
accessed indirectly.

Well-defined expressions: Expressions whose symbols or assembly-time constants have
been previously defined.

EDITOR/ASSEMBLER
Page 453

GLOSSARY

Window: A 40-column area that is displayed on the screen. The ent ire f i l e is 80
characters wide, made up of three overlapping windows.

Workspace Pointer Register: Contains the address of the current software
workspace.

Workspace Register addressing: Specifies the Workspace Register tha t contains the

operand.

Workspace Register indirect addressing: Specifies a Workspace Register that contains
the address of the operand. An indirect Workspace Register address is

preceded by an asterisk (*).

Workspace Register indirect auto-increment addressing: Specifies a Workspace
Register tha t contains the address o f the operand.

Workspace: A set o f 16 consecutive words of memory.

EDITOR/ASSEMBLER
Page 454

. (decimal t o hexadecimal conversions) Ar i thmet ic instructions 78

Debugger command 391 Ar i thmet ic instructions examples . . 98
. > (hexadecimal t o decimal conversions) Ar i thmet ic operators 49

. Debugger command 390 Arrow keys 20. 25
ASCI I values 428

. . . A Assembler directives 46. 208. 432
. A (add words) instruction . . . 80 Assembler output 235

A (load memory w i th ASCII) Assembler output directives 220

. Debugger command 367 Assembler output example 243

AB (add bytes) instruction 82 Attenuat ion specification. sound . . 315

ABS (absolute value) Automatic program execution . . . 234

instruction 84 Automatic program running 414

Absolute value instruction 84

Absolute code 311 €3
Absolute origin directive 210 B (branch) instruction 107

Accept tone 252 B (breakpoint setlclear)

Add bytes instruction 82 Debugger command 368

Add immediate instruction . . . 85 Backspace key 20

Add words instruction . . 80 Bad response tone 252

Addressing modes 56 BASIC P A 6 linkage 300

Addressing summary 63 BASIC examples 283

Addressing. C R U b i t 6 1 BASIC support 273

immediate 62 BASIC support u t i l i t ies 284

indexed memory 5 9 BASIC support u t i l i t ies example . . 289

. program counter re lat ive 60 BES (block ending w i th symbol)

. symbolic memory 58 direct ive 213

Workspace Register 57 Binary numbering system 394

Workspace Register indirect . . . 57 B i t access example 159

Workspace Register indirect B i t reversal routine 253

auto-increment 58

Adjust command 30

A1 (add immediate) instruction 85

Alpha lock key 21

AND1 (and immediate)

instruction 176

AORG (absolute origin) direct ive . . 210
APPEND mode o f operation 292

Arctangent rout ine 256

Argument passing w i th LINK
subroutine 278

. Bit-map mode 334

Bit-map mode example 336

B L (branch and l ink) instruction . . 108

Block ending w i th symbol

direct ive 213
Block start ing w i th symbol

direct ive 212
BLWP (branch and load Workspace

pointer) instruction 109

Branch and l ink instruction 108

EDITOR/ASSEMBLER
Page 455

Branch and load Workspace
poin ter ins t ruc t ion 109

Branch instruct ion 107
Branch ins t ruc t ions 104
Branch ins t ruc t ions examples 127

BSCSUP (BASIC suppor t)
u t i l i t ies 284

BSS (block s t a r t i ng with

symbol) d i r ec t ive 212
BYTE (ini t ial ize by te) d i r ec t ive . . 225
Byte organiza t ion 395

C
C (compare words) instruct ion . . . 140
C (C R U inspect /change) Debugger

command 371
CALL CHARPAT 282

CALL INIT 274
CALL L I N K 277
CALL LOAD 274
CALL PEEK 281
CALL PEEKV 281
CALL POKEV 282
C a s s e t t e DSR rout ine 253
CB (compare bytes) instruct ion . . . 142
CEND (common s e g m e n t end)

d i r ec t ive 216
Changing objec t c o d e 241

C h a r a c t e r s e t 47. 428
C h a r a c t e r s t r ings 55
CHARPAT subrout ine 282
C h i m e sound example 321
C I (compare immedia t e)

ins t ruc t ion 143
CKOF (clock of f) ins t ruc t ion 157
CKON (clock on) ins t ruc t ion 157
C l e a r instruct ion 184
Clock off ins t ruc t ion 157
Clock on ins t ruc t ion 157

CLOSE PAB op-code 295
C L R (c l ea r) ins t ruc t ion 184

C O C (compare ones corresponding)
ins t ruc t ion 144

Color c o d e s 330
Color table. b i t -map mode 335

graphics mode 329
Color. graphics. and sp r i t e s 325
C o m m a n d mode 26
Commands . Debugger 365
C o m m e n t field and l ine . 48

C o m m e n t s 46
Common s e g m e n t d i r ec t ive 215
Common segmen t end d i r ec t ive . . 216
C o m p a r e by te s ins t ruc t ion 142
C o m p a r e immedia t e instruct ion . . 143
C o m p a r e ins t ruc t ions 138
C o m p a r e ones corresponding

ins t ruc t ion 144
C o m p a r e words instruct ion 140
C o m p a r e ze ros corresponding

ins t ruc t ion 146
Compressed ob jec t c o d e 240
C o m p u t e r d i f f e rences . . . 20.125.233.

325. 334. 366
C o n s t a n t ini t ial izat ion

d i r ec t ives 224
Constants . assembly-t ime . 51

c h a r a c t e r 51
dec ima l in teger 50
hexadecimal i n t ege r . 50

C o p t e x t swi tch 45
C o n t e x t switch example 129
Contro l instruct ions 148
Contro l le r access. sound 321
Conver t f loa t ing point t o

i n t ege r 261
Conver t i n t ege r t o f loa t ing

point 261
Conver t number t o s t r i ng 254
Conver t s t r ing t o number 261
Copy command 29

COPY (copy f i le) directive 229

EDITOR/ASSEMBLER
P a g e 4 5 6

INDEX ..

. Cosine routine 256
CPU R A M P A D use 404

Crash sound example 323
C R U allocation 406
C R U b i t addressing 6 1
CRU examples 158
C R U instructions 148
CRU. memory. and in terrupt

structure 404
CSEG (common segment)

directive 215
C Z C (compare zeros

corresponding) instruct ion 146

D
DATA (ini t ia l ize word) direct ive . . 225
Data segment direct ive 217

. . . . Data segment end directive 219
. Debugger 363

. DEC (decrement) instruction 86
Decimal t o hexadecimal conversions

. (.) Debugger command 391
. . . . Decrement by two instruct ion 87

Decrement by t w o instruct ion
example 101

Decrement instruction 86
Decrement instruct ion example . . . 99
DECT (decrement by two)

instruction 87
DEF (external definit ion)

direct ive 227
OEF/RE table 307
Define assembly-time constant

directive 224
Def ine extended operation

direct ive 233
Delete character key 25
Delete command 29
Delete key 20
Delete l ine key 20. 25

DELETE PAB op.code 297

DEND (data segment end)
. directive 219

Device Service Routine (DSR)
operation 299

Device Service Routines (DSRs) . . 291
Devices. memory-mapped 402

. D i rec t access to sound 317
Direct ives that a f f ec t

assembler output 220
Direct ives that a f fec t the

locat ion counter 209
Direct ives that in i t ia l ize

constants 224
. . . Direct ives that l ink programs 227

Directives. assembler . . . 46. 208. 432
Directives. miscellaneous 233
DISPLAY f i le type 292
D I V (divide) instruction 88
DORG (dummy origin) direct ive . . 212

Down arrow key 20
DSEG (data segment) direct ive . . . 217
DSR (Device Service Routine)

operation 299
DSR input/output modes 299

. DSR memory use 300
DSRLNK (Device Service Routine

. l ink) u t i l i t y 262
DSRs (Device Service Routines) . . 291
Dummy origin direct ive 212

. Duplicate definit ions 414
Durat ion control. sound 316
DXOP (define extended

operation) direct ive 233

E
E (execute) Debugger command . . 373

. Early clock sprite at t r ibute 339
Ed i t command 26
E d i t mode 24

Ed i t option 23

Edi tor use 22

EDITOR/ASSEMBLER
Page 457

. . . . END (program end) directive 234
. Enter key 20

Entry points 414

EQU (define assembly-time
. constant) directive 224

Equates. T I Extended BASIC 415
ERR (error reporting) u t i l i t y 287

. . . Error codes and messages 229. 236.

254. 288. 298. 299. 311. 443. 444

Error equates. T I Extended
BASIC 417

. Escape key 20. 25

EVEN (word boundary) directive . . 213
Example. asssembler output 243

. bit-map mode 336
. chime sound 321
. context switch 129

. copy f i l e direct ive 230

crash sound 323
. crash sound output 243

. execute 136
. extended operation 136

. f i le access 303
. game 230

. l ist ing 243
. . . load and move instructions 172

. object code 245
. set C R U b i t t o one 159

set CRU b i t t o zero 159
. shif t 204

sprite motion 346

subroutine 133

test b i t 160
T I BASIC support u t i l i t ies . . . 289

Tombstone C i t y 230
. . . . Workspace Register shi f t 204

Examples. ar i thmetic
instructions 98

. C R U 158 graphics and sprite 342

jump and branch 127

sound
speech

. T I BASIC
. Exclusive or instruction

. Execute example
. Execute instruction

. Execute power-up rout ine
Expansion R A M

. Exponent routine
. Expressions

. Extended BASIC equates
. Extended BASIC loader

. . . . Extended operation example
. . . Extended operation instruction

. Extended ut i l i t ies
. . . . External definit ion directive
. . . . External reference directive

. External references

F
F (find word or byte) Debugger

. command 374
Field. comment 48

label 47

. operand 48
. operation 48

. Fi le access example 303

. Fi le characteristics 291
Fi le defaults 300

. Fi le management 291
Fi le memory use 300

. Fi le specif ication 33
. Fi le type 292

. Find command 27
Floating point addit ion 259

. Floating point compare 260
. Floating point division 259

. . . . Floating point mult ip l icat ion 259
Floating point subtraction 259

. Force load direct ive 231
Format. source statement . . 46

EDITOR/ASSEMBLER
Page 458

. Formats. instruct ion 65
. Frequencies. sound 318

. . . Frequency specification. sound 314

G

G (GROM base change) Debugger
command 375

. Game example 230
. General addressing modes 56

. . . . Generator frequencies. sound 318
. Get string space routine 252

. GPL routines 252
. GPLLNK (GPL l ink) u t i l i t y 251
. . . . Graphics and sprite examp!es 342

. Graphics mode 329

. Graphics. color. and sprites 325

. Greatest integer function 255
GRMRA (GROM read address)

. symbol 270

GRMRD (GROM read data address)
. symbol 271

G R M W A (GROM wr i te address)
. symbol 270

GRMWD (GROM wr i t e data address)

. symbol 271
. GROM 401

. GROM access 270

H
H (hexadecimal ar i thmetic)

. Debugger command 392

Hexadecimal numbering system . . 395

tlexadecimal t o decimal conversions

(>) Debugger command 390

. Home command 30

1
1 [(inspect screen location)

. Debugger command 376

. 1DI.F instruction 157

I D T (program ident i f ier)

. directive 223

Immediate addressing 62
I N C (increment) instruction 90

. Increment by two instruction 9 1

Increment instruction 90

Increment instruction example 9R

INCT (increment by two)

. instruction 9 1

Indexed memory addressing 59

. I N I T subroutine 274

In i t ia l ize byte direct ive 225

In i t ia l ize text direct ive 226

. In i t ia l ize word direct ive 225

INPUT mode o f operation 292

Input/Output op-codes 295

Insert character key 20. 25
Insert command 29

Insert l ine key 20. 24

Instruct ion formats 65

Instructions. alphabetical l i s t 437

ar i thmetic 78

branch 104

compare 138

. contro l 148

. CRU 148
hexadecimal l is t 434

. jump 10b

. load and move 161

logical 174

. machine 46

set.up 18

. . . . Workspace Register shi f t 194

INTERNAL f i l e type 292

Interrupt handling 407

Interrupt. memory. and CRU

. structure 404
INV (invert) instruction 182

Involut ion routine 255

EDITOR/ASSEMBLER
Page 459

J
JEQ (jump if equal) instruction . . .
JGT (jump if g rea te r than)

instruction
J H (jump if logical high)

instruction
JHE (jurnp if high or equal)

instruction
J L (jurnp if logical low)

instruction
JLE (jurnp if low or equal)

instruction
JLT (jump if less than)

instruction
J M P (unconditional jurnp)

instruction
J N C (jurnp if no carry)

instruction
J N E (jurnp if not equal)

instruction
J N O (jurnp if no overflow)

instruction
J O C (jump on carry)

instruction
J O P (jump if odd pari ty)

instruction
Joystick use
Jump if equal instruction
Jump if g rea te r than instruction . .
Jump if high or equal

instruction
Jump if less than instruction
Jump if logical high instruction . .
Jump if logical low instruction . . .
Jump if low or equal instruction . .
Jump if no carry instruction
Jump if no overflow instruction . .
Jump if not equal instruction
Jump if odd parity instruction . . .

. Jump instruction examples

Jurno instructions

Jump on carry instruction 122

K
K (find d a t a not equal)

. Debugger command 377
. Keys. special 20

. . . KSCAN (keyboard scan) utility 250

L
. Label field 47

. . . LDCR (load CRU) instruction 151
Lef t ar row key 20. 25
LI (load immediate) instruction . . 163
L I M l (load in terrupt mask

. immediate) instruction 164
Line numbers 26

. LINK subroutine 277
Linking Loader 305

. . . . Linking a PAB in TI BASIC 300

Linking directives 227
LIST directive 221
Listing example 243

. Listing. source 235
Load and run option 36
Load C R U instruction 151

. . . . LOAD (force load) directive 231
. Load immediate instruction 163

. Load instructions 161
. Load instructions example 172

Load in terrupt mask immediate
. instruction 164

. . . Load lower-case charac te r s e t 254
. Load option 22

Load or res ta r t execution
. instruction 157

LOAD PAB op-code 296
Load small capitals charac te r

s e t 252
. . . . Load standard character set 252

LOAD subroutine 274

EDITOR/ASSEMBLER
Page 460

INDEX ..

Load Workspace pointer immediate

instruction 165

Loader 305

Loader error codes 311

LOADER u t i l i t y 262

Loader. T I Extended BASIC 410

Locat ion counter directives 209

Logical instructions 174

LREX (load or restar t execution)

instruction 157

LWPI (load Workspace pointer

immediate) instruct ion 165

M
M (memory inspect/change)

Debugger command 378

Machine instructions 46

Machine language 15. 242

Magnif icat ion o f sprites 340

Mathematical routines 254

Memory allocation w i th the

Loader 305
Memory Expansion uni t 400

Memory map. Editor/Assembler . . 403

general case 399

. . . . L O A D AND R U N option 400

Memory Expansion unit.

Editor/Assembler Loader . . 411

Memory Expansion unit. T I

Extended BASIC Loader . . 412
Memory organization 398

Memory use by T I Extended BASIC

and Editor/Assembler 410

Memory. CRU. and interrupt

structure 404

Memory. direct ly addressable . . . 398

Memory-mapped devices 402

Miscellaneous directives 233

Mne~nonic codes 15

Mode of operation 292

Mode. command 26

edit 24

. Modes. addressing 56

. . . MOV (move word) instruction 166

. . . MOVE (move byte) instruct ion 168

. Move command 28

Move instructions 161

Move instructions example 172

Move word instruct ion 166

M P Y (multiply) instruction . 92

Mult icolor mode 331

Mul t ip ly instruction 92

N
N (move block) Debugger

command 380

Natura l logari thm routine 256

NEG (negate) instruction . 94

Negative numbers in

two's-complement notat ion . . . 397

Next window key 20. 25

N o operation pseudo-instruction . . 206

No source l i s t direct ive 220
Noise specification. sound 315

NOP (no operation)

pseudo-instruction 206

NUMASG (numeric assignment)

u t i l i t y 284

. Numbering systems 394

N U M R E (get numeric parameter)

u t i l i t y 286

Object code 238

Object code example 245

Object code. changing 241

compressed format 240

Object tag use by T I Extended

BASIC and Editor/Assembler . . 414
Object tags 307. 309

OPEN PAB op-code 295

EDITOR/ASSEMBLER
Page 4 6 1

. Operand f ie ld 47
. Operation f ie ld 47

Operation specification. sound . . . 314
Operators. ar i thmet ic 49
Option specification 33
Options 34
Options on the Editor/Assembler . 21
OR1 (or immediate) instruct ion . . . 178

Output example 243
OUTPUT mode o f operation 292
Output. assembler 235

P
P (compare memory blocks)

. Debugger command 381
PAB (Peripheral Access Block)

. definit ion 293

PAB op-codes 295
. P A D symbol 265

P A D use 404
. . . . PAGE (page eject) directive 221

Page t i t l e direct ive 222
Passing arguments w i th LINK

subroutine 278
Pat tern descriptor table.

bit-map mode 334
. graphics mode 329

mult icolor mode 331
PEEK subroutine 281
PEEKV subroutine 281
PEND (program segment end)

direct ive 215

Periodic noise 315
Peripheral Access Block (PAB)

def ini t ion 293

POKEV subroutine 282
Poking data w i th L O A D subroutine 274
Predefined symbols 53. 246. 264
P r in t option 31
Program counter register . 39

Program counter relat ive
addressing 60

. Program end directive 234
Program ident i f ier directive 223
Program linking directives 227
Program organization 440
Program segment direct ive 214
Program segment end directive . . 215
PSEG (program segment)

directive 214
Pseudo-instructions 46. 206
Purge option 32

Q
Q (quit Debugger) Debugger

. command 382
Qui t key 20

R
R (inspect or change WP. PC.

and SR) Debugger command . . 383
Radix 100 notat ion 279

. READ PAB op-code 295
REF (external reference)

direct ive 228
REF/DEF table 307
References. external 413

u t i l i t y 414
Registers 39
Registers. VDP write-only 326
Relocatable origin direct ive 210
Replace command 27
Reset instruct ion 157
RESTOREIREWIND PAB

op.code 296
Return key 20. 24
Return pseudo.instruction 207
Return w i th Workspace pointer

instruct ion 123
Returning 440
Right arrow key 20. 25

EDITOR/ASSEMBLER
Page 462

INDEX

. Roll-down key 20. 25
. Roll-up key 20. 25

R O M 401
R O M routines 259

RORG (relocatable origin)
directive 210

Routines. GPL 252
mathematical 254
R O M 259

RSET (reset) instruct ion 157

R T (return) pseudo-instruction . . . 207

RTWP (return w i t h Workspace
pointer) instruct ion 123

Run option 37
Run program f i l e option 38

s
S (execute i n step mode)

Debugger command 384
Save option 30

SAVE PAB op-code 297
SAVE u t i l i t y 420
SB (subtract bytes) instruct ion . . 96
SBO (set CRU b i t t o one)

instruction 152
SBZ (set C R U b i t to zero)

instruction 153
SCAN symbol 264

SCRATCH RECORD PAB
op.code 297

Screen image table.

bit-map mode 334
graphics mode 330

multicolor mode 331
tex t mode 333

Secondary external reference

directive 232
Set ones corresponding

instruction 186

Set C R U b i t t o one example 159

S e t CRU bit t o one instruction . . . 152

. . . Set C R U b i t to zero example 159

Set CRU b i t t o zero instruction . . 153
. Set t o one instruction 185

Set zeros corresponding

. instruct ion 190

Set zeros corresponding. byte
. instruct ion 192

. . . . SET0 (set t o one) instruction 185
. Set-up instructions 18

Shi f t instructions 194
. Shi f t instructions example 204

Shi f t l e f t ar i thmetic
. instruct ion 200

Sh i f t r igh t ar i thmetic

instruct ion 196
. . . Shi f t r igh t circular instruction 202

Shi f t r igh t logical instruction 198

Show command 29
Sine routine 256

Size of sprites 340
SLA (shi f t l e f t ar i thmetic)

. instruction 200
SOC (set ones corresponding)

instruction 186
SOCB (set ones corresponding.

. byte) instruction 188
Sound 312
Sound attenuation specif ication . . 315

Sound controller access 321

Sound duration control 316
Sound examples 321

Sound frequency specification . . . 314
Sound generator frequencies 318

Sound noise specification 315
Sound operation specification 314

Sound table 313
Sound. d i rect access 317

Source l ist ing 235
Source statement format . . . 46

Source statement length 47

Speech 349

EDITOR/ASSEMBLER

Page 463

Speech addresses 351
Speech checking t o s e e if t h e

Synthes izer i s a t t a c h e d 354

. Speech commands 351

Speech d a t a reading 353
Speech examples 355
Speech Synthes izer res ident

vocabulary 422
Speech t iming 349

. . . . Spr i t e and graphics examples 342
Spr i t e a t t r i b u t e l i s t 338

. Spr i t e descr ip tor t a b l e 339

Spr i t e magnif icat ion 340
. Spr i t e mot ion example 346

. Spr i t e motion t ab l e 340

. Spr i t e s i ze 340

Spr i t e s 338
. Spr i tes . graphics. and color 325

Squa re r o o t rout ine 255
SRA (shi f t r ight a r i t h m e t i c)

. ins t ruc t ion 196

S R C (sh i f t r ight c i rcu lar)
ins t ruc t ion 202

SREF (secondary e x t e r n a l

. r e f e r e n c e) d i r ec t ive 232
SRL (sh i f t r ight logical)

instruct ion 198

. STATUS by te 250

STATUS PAB op-code 297
. S t a t u s reg is te r 40

S t a t u s r eg i s t e r b i t s a f f e c t e d
by ins t ruc t ions 41

. . . STCR (s to re CRU) instruct ion 154
S to re s t a t u s ins t ruc t ion 169
S to re Workspace poin ter

ins t ruc t ion 170
STRASG (str ing assignment)

u t i l i ty 286

Str ings. c h a r a c t e r 55

STRREF (ge t s t r i ng p a r a m e t e r)
ut i l i ty 287

STST (s t o r e s t a tus) instruct ion . . . 169
STWP (s to re Workspace poin ter)

ins t ruc t ion 170
Subprogram use by TI Extended

BASIC and Edi tor /Assembler . . 414

Subrout ine example 127. 133
S u b t r a c t bytes ins t ruc t ion 96

Swap by te s ins t ruc t ion 1 7 1

Switch. c o n t e x t 45

SWPB (swap bytes) instruct ion . . . 1 7 1
Symbol. GRMRA 270

G R M R D 271

GRMWA 270
GRMWD 271

P A D 265

SCAN 264

UTLTAB 264
VDPRD 267

VDPSTA 269

VDPWA 266
VDPWD 267

Symbolic memory addressing . . 58

Symbols 52

Symbols. predefined 53. 246. 264
Syntax convent ions 46
SZC (se t ze ros corresponding)

ins t ruc t ion 190
SZCB (s e t ze ros corresponding.

by te) ins t ruc t ion 192

T (t r a d e screen) Debugger
command 385

Tab command 30
T a b key 20. 25
Tag use by TI Extended BASIC

and Editor/Assernbler 414
Tags. ob jec t 307. 309
Tangen t rout ine 256

TB (t e s t bi t) ins t ruc t ion 156

. T e r m s 54

EDITORIASSEMBLER
Page 464

. Test b i t example 160

Test b i t instruction 156

TEXT (ini t ia l ize text) direct ive . . 226

. Text mode 333

T I BASIC examples 283

T I BASIC PAD linkage 300

T I BASIC support 273

T I BASIC support u t i l i t ies 284
T I BASIC support u t i l i t ies

example 289

T I Extended BASIC equates 415
T I Extended BASIC loader 410

T ITL (page t i t le) directive 222

Tombstone C i t y 230

Transfer vectors 45

Two's-complement notation

(negative numbers) 397

U

U (toggle of fset t o and f rom T I

. . . BASIC) Debugger command 386

. . . Unconditional jump instruction 117
UNL (no source l ist) direct ive . . . 220

Up arrow key 20

UPDATE mode o f operation 292

Using the Editor/Assembler . . 21

Ut i l i t i es 246

Ut i l i t i es example. T I BASIC

support 289

Uti l i t ies. extended 250

T I BASIC support 284
VDP R A M access 248

U t i l i t y references 414

U t i l i t y references by T I Extended
BASIC and Editor/Assembler . . 414

U t i l i t y . SAVE 420

UTLTAB symbol 264

v
V (VDP base change) Debugger

command 387

. Value stack addit ion 260
. Value stack compare 261

. Value stack division 260
. Value stack mult ip l icat ion 260

. Value stack subtraction 260
. VDP access 266

. VDP R A M access ut i l i t ies 248
. VDP write-only Registers 326

VDPRD (VDP read data address)

. symbol 267

VDPSTA (VDP read status
register) symbol 269

VDPWA (VDP wr i t e address)

symbol 266

VDPWD (VDP wr i te data address)
symbol 268

Vectors. transfer 45

VMBR (VDP R A M mult ip le byte

read) u t i l i t y 249

VMBW (VDP R A M mult ip le byte

wri te) u t i l i t y 248

VSBR (VDP R A M single byte

read) u t i l i t y 248

VSBW (VDP R A M single byte

wr i te) u t i l i t y 248

VWTR (VDP R A M wr i te register)
. u t i l i t y 249

W
W (inspect or change Registers)

. Debugger command 388

. Well-defined expressions 49

. White noise 315

. . . . Wired Remote Controller use 250
. Word boundary directive 213

Word organization 396
. Workspace 45

Workspace pointer register . 39

. . . . Workspace Register addressing 57

Workspace Register indirect

addressing 57

EDITOR/ASSEMBLER
Page 465

Workspace Regis ter indirect
auto-increment addressing 58

Workspace Register shift
instructions. 194

Workspace Register shift
instructions example. 204

Workspace subroutine example . . . 127
Write-only Regis ters in VDP 326
WRITE PA6 op-code 296

X
X (change X bias) Debugger

c o m m a n d 389
X (execute) instruction 124
X M L L N K ut i l i ty 257
XOP (extended operation)

instruction 125
XOR (exclusive or) instruction . . . 180

Y
Y (change Y bias) Debugger

c o m m a n d 389

z
Z (change Z bias) Debugger

. command. 389

EDITOR/ASSEMBLER
Page 466

EDITOR/ASSEMBLER
Page 467

THREE-MONTH LIMITED WARRANTY
HOME COMPUTER SOFTWARE MEDIA

7-exas Instruments Incorporated extends this consumer warranty only t o the original
consumer purchaser.

WARRANTY COVERAGE

This warranty covers the e lect ronic and c a s e components of the sof tware program
s torage media. These components include all semiconductor chips and devices,
diskettes, plastics, boards, wiring and all o ther hardware contained in this s torage
media ("the Hardware"). This limited warranty does no t extend t o the programs
contained in the s torage media and the accoinpanying book mater ia ls ("the
Programs").

The Hardware is warranted against malfunction due t o defective mater ia ls or
construction. THIS WARRANTY I S VOID I F THE HARDWARE HAS BEEN
DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE, OR OTHER CAUSES NOT ARISING OUT W DEFECTS IN
MATERIALS OR WORKMANSHIP.

WARRANTY DURATION

The Hardware is warranted for a period of th ree months from the d a t e of the original
purchase by the consumer.

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
RUT NOT LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE-MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
HARDWARE OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,
EXPENSES OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER
USER.

Some s t a t e s do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above l imitations or exclusions may not apply to you in
those states.

EDITOR/ASSEMBLER
P a g e 468

THREE-MONTH L I M I T E D WARRANTY

LEGAL REMEDIES

This warranty gives you specif ic legal rights, and you may also have other r ights that

vary f rom state to state.

PERFORMANCE BY T I UNDER WARRANTY

During the above three-month warranty period, defective Hardware w i l l be replaced

when i t is returned postage prepaid t o a Texas Instruments Service Faci l i ty l isted

below. The replacement Hardware w i l l be warranted for three months f rom date of

replacement. Other than the postage requirement, no charge w i l l be made fo r

re~lacement .

T I strongly recommends tha t you insure the Hardware for value pr ior t o mailing.

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

U.S. Residents Canadian Residents only

Texas Instruments Service Faci l i ty Geophysical Services Incorporated

P.O. Box 2500 41 Shelley Road

Lubbock, Texas 79408 Richmond Hill, Ontario, Canada L4C5G4

Consumers i n Cal i fornia and Oregon may contact the fol lowing Texas Instruments

off ices for addit ional assistance or information.

Texas Instruments Consumer Service Texas Instruments Consumer Service
831 South Douglas Street 6700 Southwest 105th
E l Segundo, Cal i fornia 90245 Kr is t in Square, Suite 110
(213) 973-1803 Beaverton, Oregon 97005

(503) 643-6758

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE PROGRAMS

The following should be read and understood before purchasing and/or using the

software media.

EDITOR/ASSEMBLER
Page 469

THREE-MONTH LIMITED WARRANTY

I 1 cloes not warrant t h a t the Programs will be f r e e f rom error or will m e e t the
specific requirements of the consumer. The consumer assumes complete
respor-isibility for any decision made or ac t ions taken based on information obtained
tising the Programs. Any s ta tements made concerning t h e utility of the Programs a re
not t o be construed a s expressed or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,

REGARDING THE PROGRAMS AND MAKES ALL PROGRAMS AVAILABLE
SOLELY ON AN "AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES I N
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS

INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT
EXCEED THE PURCHASE PRICE OF THE SOFTWARE MEDIA. MOREOVER.
TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY
K IND WHATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THE
PROGRAMS.

Some s t a t e s do not allow the exclusion or l imitation of implied warranties or
consequential damages, so the above l imitations or exclusions may not apply to you in
those states.

EDITORlASSEMBLER
P a g e 470

ADDENDUM
Editor/Assembler Owner's Manual

Please mark the following changes in your manual.

Page
42

92

Section
3.1.3.1

6.1 0

Description
In the last sentence of the first paragraph, change "least" to "most".

In the second line of the example explanation, change "value of ADDR"
to "value in ADDR".

In the example, change "MOV *11,1" to "MOV *11 +,I".

In the next-to-last line, change ">2220n to " >C220".

In the example, change ">2A41n to "Q >2A41H and "Register 3" to
"Register 2".

(Add the following.) NOTE: Some devices modify the GROM read
address. RS232 and TP are known offenders. If your program accesses
these devices, save the current GROM address (see section 16.5.2)
before the 110 operation, and restore it (see section 16.5.1) after your
program has accessed the device. Otherwise, the program will not be
able to return to the EditorlAssembler or BASIC or to perform a
BLWP QGPLLNK properly.

Change line 130 in the BASIC program to
CALL LOAD("DSK1 .BSCSUP","DSK2.STRI NGO")

This assumes that you have entered the source file on the next page by
means of the Editor, saved the file as DSK2.STRING, and run the
Assembler, using DSK2.STRING for a source file and producing
DSK2SIBLhLGQ as an obkd f i l e - -

328 21.1 The default for VDP Register 7 is >07 in TI BASIC and Extended BASIC.
335 21.5.2 In the last paragraph, change ">00 or >04" to ">03 or >07".
335 21.5.3 In the last paragraph, change ">00 or >04" to ">7F or > FF".
415 24.4.8 Change the second instance of GRMRD to "GRMRA EQU >9802".
416 24.4.8 Change the second line to "NUMREF EQU >200CW.

Index

(Add the following.) NOTE: A program to be saved using the SAVE utility
should not have an entry point defined on the END statement. If you
want to save the Tombstone City game in memory image format, you
must first change the last line from "END START" to "END" and then
reassemble the program. Otherwise, the game starts to run as soon as
it is loaded, and you will not have a chance to execute the SAVE utility.

VDP Write-Only Registers: add page 267 to references.

Copyright 1982 by Texas Instruments Incorporated
Printed in U.S.A.

