.--
.- .#

e

?b
2?(34ﬁ01 A A1 A= -

-~

>

Qg >12ec

> o306 Y 7RR
>bo3zs VIR

024 V' SGw
> COHE STRASG
D> eo¥C §TR REFE

>602Y VIRBW
voOIl ¥ GPLLANL

y 6020 K SCHAS
76038 D SRLNK
>6650 FRR

>6p02C V SBR

h

it

Lt h#w

Pl < o

T -m
-
L

~
oy

- . - -

. LT - F
. lmlgl-*- -t q-!;ur-"'lu i
f []
': .
i

il ¥

[
-y

- L Ty
ﬂ \:}r h t‘-:f-" F'1II.'.-“|'-‘='."':-’-.".

DOW EDITOR /7ASSEMBL.ER

(c) 1982 John T. Dow

For the Texas Instruments 99/4A Home Computer
with the Mini Memory Command Module

| -Requir&s TI??!# or TI9?9/74A with cassette cable
. and recorder and the Mini Memory Command Module.

- Highly recommended: the Editor/Assembler Manual

from Texas Instruments.

Disk drive and printer may he used but are not

raeqgquired.

— i - .

o - -

Section 1:
Section 2@
Sectiun e
Hection 4&
Section S
Section 6:
Section 7
bection 8z
Section 9:
Dection 10:
Section 11:
Section 123

132

Section

OF CONTERNTS

Introduction « « « + «
Comparison of assemblers
OBYyMtax = « 2 = = = = 2 =
Commands s 2 2 = = oA
EDIT mode commands . . .

Assembler directives . .

Initializing the REF/DEF table

Recommended sequence .
Calling +rom Basic N
Frogram example
Frogram modularity . . .

Error messSages « « = o« o

Customizing for yvour equipment

TABLE OF CONTENTS

Ll R el FRTE L |

- e

T TR T e g

Fage

k3

Lod

L

DOW EDITOR/ASSEMBL.ER Page 2

INTRODUCT IO

4

This manual was written with the assumption
that vyou, the reader, are reasonably familiar
with assembly language on the Home Computer.
That is, this manual is not a tutorial, nor is
it a reference manual for the Home Computer.

You should become thoroughly familiar with the
Mini Memory Command Module®s Manual and with
the Editor/Assembler Manual, both from Texas
Instruments, for a technical description ot
the computer and its instruction set.

To help you understand how to use the DOW
Editor/Assembler, read first Section 2 of this
manual to put the assembler in proper
perspective, as compared to the two assemblers
fram Texas Instruments. Then read Sections 3
through & +$or an explanation of syntasx,
commands, and directives. Sections 7 through
9 give instructions for actually writing a
program while section 10 presents a complete
example program. Section 11 discusses how to
handle large programs. Section 12 lists and
explains the error messages. Finally, section
13 describes some minor changes you may wish
to make to customize the DOW Editor/Assembler

to your own Home Computer’s peripherals.

Section 1: INTRODUCTION

DOW EDITOR/ASSEMBLER Fage &

- der—rwTeirelr A e— .

COMFARISON OF #ﬁﬁﬁﬁﬁEEFﬂE&L_EEF?EEE

The DOW Editor/Assembler complements the
l.ine—-by—-Line Assembler and the Editor/
Assembler produycts Ffrom Texas Instruments.
Whichever assembler vyou use, vyou will need
TI’s Editor/Assembler manual as a technical
description o+f the Home Computer. The
diffarences between the three assemblers are,
briefly:

1) The Line-by-lLine Assembler uses the Mini
Memory Command Module. It runs in the
Module®’s 4K RAM, using roughly 754 of it.
It will remain in the Mini Memory Command
Modul e with your assembly language
program, if vour program is small enough.
In addition to the manual and module, you
only need a cassette tape recorder and the
cassette cable {(so vyou can load the
assembler into the module’s memory.)

2) The DOW Editor/Assembler also uses the
Mini Memory Command Module. l.ike the
Line—-by—-Line Assembler, you only neaed a
cassette tape recorder and cable, the
manual, and the module to use it.
However, 1t is in fact a Basic proqgram,
which means that it executes out of the
16X RAM in the console itselt. This
leaves all 4K RAM in the module available
for vyour assembly langquage program. This
also means that it has more features. For
instance, vyou can edit your unassembled
program, including operations such as
changing statements, deleting statements,
inserting new statements J(even 1in the
midcdle of the program), saving the program
on cassette, and listing the program i+
you have a printer. In short, you can
develap a pragram much the same way you do
in Basic, without having to type it in

Section 2: COMPARISON OF ASSEMBLERS

. LRSS [— el

DOW EDITOR/ASSEMBLER Fage 4

again or patch it in hex.
. |

The DOW Editor/Assembler will assemble all
instructions + o the 974 or 99744
processar. It also has several assembler
directives (DATA, BYTE, TEXT., BTXT, BSS,
ECH) . It does not recognize RT (use
H ¥XR1il1 instead) o NOF.

3) The Editor/Assembler does not use the Mini
Memaory Command Module but has: 1ts own
module. To use it you need the Feripheral
Expansion System with memory and disk
storaqge; this of course makes 1t more
powerful than either of the other two
assemblers, but also 1t requires
substantially more investment in computer

equipment to use 1t.

Section 2: COMPARISON OF ASSEMBLERS

DOW EDITOR/ASSEMBLER Fage 5

SYNTAX

S?atements are entered in standard format,
with just a few exceptions noted here.

l.abels are one to three characters: the. first
must be one of the letters A-Z, the others can
be A-Z or 0-9. There can be no more than 40
labels. A colon separates the label from the
statement.

The forms $+n and $-n are not allowed,
although these are typical forms for jump
instructions with other assemblers. An
example of what is not allowed might be: JIMF
$+20, meaning to jump down 20 bytes in the
program., With the DOW Editor/Assembler, all
jumps must refer to a labeled statement.

Do not use commas; use semicolons instead.
Do not use guotation marks.

Remarks on any statement are al lowed,
tfollowing at least ome blank space.

The assembler works with even byte addresses,
s0 there 1is an 1mplied EVEN statement
following each BYTE, TEXT, or BTXT statement.

The longest statement allowed 18 7&
characters.

Section 3: SYNTAX

DOW EDITOR/ASSEMBLER Fage &
COrFMFMaND S

{
The prompt for a command 1is "————2>", _The

commands are listed and described helow.

———>8TOP

Stops the DOW Editor/Assembler.

———>NEW

Initializes for a new program. (This need not
be done when the program is first run.)

————30LD

Restores assembly 1anguage progranm from
cassette. (It is not necessary to use the NEW
command first, even if vyou already had a
program in memory.) Before the program is read
in, you will be shown the title for tha
program on cassette so you can verify that it
is the correct program. See Section 13 1+ you

wish to use with a disk drive.

-———28AVE

Saves assembly language program on cassette.
The program remains 1in memory. The TITLE
command is automatically called; see below.
See Section 13 if you wish to use with a disk

drive.

==L IS8T

Lists the program and its title at the thermal

printer. The TITLE command is automatically
called; see below. See Section 13 if you have

a different printer.

Gection 4: COMMANDS

DOW EDITOR/ASSEMBLER | Page 7

~———>TITLE

shows old title, if any, and gives vyou the
option to change it. A title is whatever vou
want 1t to be to help to identify the program
listings. You may wish to put a revision date

and the name of the cassette on which the
program 1s stored in the title. The maximum

number of characters in a title is 180,

You will be shown the previous title, if any,
with the 1label "0OLD". You are then asked i+f
1t is "OK"; if you do not wish to change it,
enter "“Y'". Dtherwise the prompt "NEW" will
appear to ask you to enter a new title.

Each LIST or SAVE does the TITLE command for
you automatically.

>LOAD hhhh

Loads the pragram at hex address hhhh.
Example: LOAD 7&00, You will be asked to
confirm the loading address before loading
starts. After the program is loaded, you are
shown the address of the next available memory
location. Note: EGU’s at the end of the
program are not included when computing the
next available address. Any label errors are
found by this command. The LOAD process can
take ten minutes for a large program, so to
iet YO monitor the progress a "." is
displayed for each word (that is, for every
two bytes) loaded. Before the first "." is
displayed, there is a pause while the program
is scanned to assign locations to any labels.

There 1s no ADRG directive, as there is with
TIlI's assemblers. The praogram is 1l oaded
starting at the location specified by the LOAD
command. Make sure vou specify an even
address.

Section 4: COMMANDS

. DOW EDITOR/ASSEMBLER Fage S

———3_INK nase

]

Calls vyour assembly language program by means
of the Basic subroutine LINK, as though vyour
program were a subroutine having no arguments.
If you wish to test a program segment before
including it in & larger program, you can pass
data to and from it through specific memary
locations by uwsing the MINI command (see
below). You must prepare the User Defined
REF/DEF Table, which starts at the location
pointed to by LFAM (701E) and ends at *7TFFF,
before vou c¢call your program. (See Section

7.

If the name specified on the LINE command 1is

not f ound i the table, the DOW
Assembler/Editor will abort. In that case,
vou will have to use the Basic RUN command
again. Alsp, the source version ot your

assembly language program will vanish from VDF
RAM, so prudence dictates that vyou GSAVE and
LLIST (if vyou have a printer) your program
after making major changes, and that you type
the LINKE command very carefully. To return
from your program, use the B ¥R1il instruction.
Make sure your program does not alter VDF
memory other than a Basic program would alter
it; this precaution must be observed soO that
you can safely return to the DOW

Fditor/Assembler.

———>MINI hhhh

Displays or alters memory locations. Specity
the location in hex; &g, MINI 7FF8. (Al though
- the EASY BUG program development tool
"available with the Mini Memory Command Module
also allows vyou to display or alter memory,
vou have to wipe out the DOW Editor/Assembler
and your program in VDP RAM in order to use
it.) The display shows the location address 1in

Section 4: COMMANDS

DOW EDITOR/ASEEMBLER Fage 9

hex, the value at that and the next location
(also in hex), and prompts +or your action
with "?". You have three choices:
N
1) enter a “period to exit from the MINI
- command.

2) just press ENTER to move down two
locations.

3) enter a new value in hex or positive or
negative decimal to replace the wvalue 1in
MEMOr Y. In this case, the same two
locations are shown to you again so vyou
can verify that the correct change was
made.

You can use the MINI command to convert a
decimal value to hex. Just put the value into
some location in memory which you know can be
changed without harm.

Example: to convert 4029 to hex, do this...
(ﬁsﬁuming 7200 1s freea)

(hhhh is current value)
(FBD is hex equivalent)

————MINI 7200
*7200 >hhhh 740429
»7200 20FBD 7.

————>EDIT

Enters edit mode, which allows you to enter or
change your program’s source statements. In
edit mode, the prompt 1is "E->". There are
several commands 1In edit mode. They are
described in the next section of this manual.

Section 4: COMMANDS

-l TRt e = re—

DOW EDITOR/ASSEMBLER Fage 10

EDIT MODE COmMMAanNNDs

4

Aftter typing the EDIT command, you can use one
of the following commands.

1) 2. Typing a period causes vyou to leave
EDIT mode.

2) Fositioning and veritying commands. (The
commands are underlined below.)

2a) "T" Typing a "T" repositions at location

Y P

000,

2b) "Thhh" Typing a "T" followed by a

hexadecimal number repositions at that
location. Example: TOE repositions at
03E.

2c) “u" Typ1ng a "U" repaositions up one line.

2d) "Un" Typing a "U" followed by a decimal

number repositions up that many
statements.

2a) "D Typing a "D" repositions down one
line.

2¢) "Dn" Typing a "D" followed by a decimal
numbear repositions down that many

statements.

2g) “V" Typing a "V" verlfles the current line
by displaying it at vyour monitor. (The
current line is always verified after all

commands except T, U, D, and V.’

- 2h) “vya" Typing a "V" followed by a decimal
number verifies that many statements. The
last statement shown is the current line.

\

Section S: EDIT MODE COMMANDS

DOW EDITOR/ASSEMBLER Page 11

As a matter of caonvenience, two or more of
these commands may be joined together.
Any blanks between them are usually
ignored. - For instance, you could type
"TZ2E" and "Vé&" as “"T2E V&". To determine
the last instruction in the program, type
"TFFF V. As another example, having just
made several changes to your program, you

might want to review that part with
"Ue Vviot.

Except Ffor the "T" command, the space
between commands is not necessary. I+ you
wish to +follow the "T" command with the
"CY, "D"y or "E" comand, you must put a
"V or a space between them because the
letters C, D, and E would otherwise not be
treated as commands but as part of the
hexadecimal number following the Y"T"

command. Example: use "T18 C", not
"T18C". |

3) 2XP Typing an "X" deletes the current
statement. In S0 doingy, any following
statements are automatically shifted up in
memnory .

4) "?" Typing a question mark computes the
space remaining. I+ your program is large, do
this periodically. I+ the number of bvytes
remaining free goes negative, you will
probably lose your proagram when trying to SAVE

it or to LOAD it.

Section 9: EDIT MODE COMMANDS

—_— . w . —_—

DOW EDITOR/ASSEMEBLER Page 12

3 "C" Typing a "C" allows you to change the
current instruction. You will first be asked
tor the part to be changed, then you will be
asked to indicate what should replace it. 1In
this example, the "7" of "76" is changed to

"10" to make "106".

o8 A L1 RY376 R?=# 0OF SHIFS
"E-->C (Change command.)
FR:7 ("From" string.)
TO: 10 ("To" string.)

o84 A LI R?: 106 Ro=# 0OF SHIFS

I+ the statement has an error after the change
is made, the statement 1s restored to 1its

original foirm. I¥ the change i1s made and the
number of locations used by the i1instruction
changes, any following instructions are

automatically moved up or down in memory.
When entering a "f$rom" or "tao" string that
begine or ends with one or more blanks, you
have to enclose the string in quotation marks
hecause Basic trims blanks off either end of a

string. For example, do this to put the label
T0F on a statement which does not have a
label:

FiRRs " " (four blanks)

TO:TOP: (new label)

If you enter a null string for FR:, the TO:
string will be put in front of the
instruction. I+ you enter a null string tor

T0:, the FR: string will be deleted.

Section S: EDIT MODE COMMANDS

&)Y M"EY Tyvping an E puts the editor into

DOW EBITDR/QSSEHBLER Fage 15

enter
mode. This mode i1s used to enter (or insert)
new statements into vyour progeram. I+ no
statements have been entered already, it will
start at location 000, I+ some statements
have already been entered, the rMew
statement(s) will go immediately atter ,the
last one displayed on the monitor. Thus, you
may enter either in the middle of the program
or at the end but not before the first
statement). As you enter statements, any that
tollow will be automatically shifted down in

MEMmory .

For example:

E-->E ("Enter"” maode)
LOC LEL:0FCD OFPERAND{(S) (Column alignment aid.)
QSE X | (Your pirrompt)

(The » marks the position ot the cursor.)

Your prompt is the three digit hexadecimal
number which 1is the location the instruction
will have. Each statement is always loaded at
an even address, so the number displavyed is
always even.

The column alignment aid is a line printed o
show you in which columns you should enter the
various fields within the statement. The
"ILEBL:" wshows the columns in which you put a
label and the colon which must follow it.
Enter four spaces if you do not want a label.
Under "0OPCD" you enter the operation code,
then space over to "OPERAND(S)" to type any
operands. You may enter a remark atter the
operand(s), providing that vou leave at least
one space before it. I+ the instruction has
no operand, start the remark under or to the
right of the "P" of "OFERAND(S)". Note that
you must not use a comma or quotation marks,

Section S5: EDIT MODE COMMANDS

- —— — — ————

DOW EDITOR/ASSEMBLER Fage 14

since your input 1% read as a striﬁg by the
Basic interpreter. If the instruction has two
operands, use a semicolon for the separator.

To exit from enter mode, simply type a null
line. You will return to the normal edit mode
and be prompted with "E->v_ |

current

7) "R" Typing an "R* replaces the
statement with oane you type in. I+ the new
statement has an error and does not assemble,

the original statement ig not replaced. If it
1s replaced and the number of locations used
by the new instruction 1s different, any
tollowing instructions are automatically moved

Uup or down in memory.

Section 5: EDIT MODE COMMANDS

DOW EDITOR/ASSEMBLER

entered and edited the
l.abels and

These directiyes are
same way that instructions are.
remarks may be used.

DATA
This directive loads data into memory. Values
can be hexadecimal, positive decimal, or

decimal. More than one value can be

Examples

negative
specified.

DATA >2000 MASK
X :DATA >F9A2;-203 1000

BYTE

This is similar to DATA except that the values
are single byte values. Example:

BYTE >FD317

Negative decimal values are not permitted; use
the single byte hex equivalent instead. Note:
even though an odd number of bytes may be
specified, the next instruction will be at an

even address (relative to the address
specified when the program or program segment
is LOADed).

TEXT

A string of characters is loaded. The string
is set off by a beginning and ending break
character. Use any character vyou want.
Example:

TEXT /7HELLO/ THIS IS A REMARK

I

L
R
1
|
|

SE'Eti 1 M.

DOW EDITOR/ASSEMBLER Page 16

gstatement will
it an odd

Just as with BYTE, the next
start at an even location even
number of bytes is speéecified.

BTXT

If your program is to be called from Basic (eg
ie called via the LINK command), any text
characters have to be biased by »60. The BTXT
directive is identical to the TEXT command
except that each character is biased by 260,
For instance, a blank will generate >80
instead of >20.

You can reserve up to T12 bytes of space 1in
your program with BSS. For example. to
resarve 2 words, or 4 bytes:

BSS 4

The values already in these locations are not
changed when the program is loaded.

Suggestion: for large areas of memory, simply
decide on an area of memory and use EGU
directives to refer to it; make sure that you
do not let such data areas overlap with vyour
praogram or other data areas.

allows vyou to use a label to
For instance, to load Ri
a patrticular region ot

This directive
refer to an address.
with the address of
memory' {say 7C00):

LI R1; BUF
(other instructions here)
BUF:EQU »>7C00 TEMF SCREEN IMAGE TABLE

Section &: ASSEMBLER DIRECTIVES

DOW EDITOR/ASSEMBLER Page 17

As another example, to call VDFP Mult: BYteﬁ

Write (VMBW?:

-~ BLWP IMBW

(other instructions here)
MBW:EQU >6028 VMEBW

Some advantages of using EQU’s are:

1) There can be several references 1in a
program to the same value but 1t need only
be defined once. This makes it easy to
change.

2) It is pasier to key in the label than the
4 digit value.

3) If you group all the EQU’'s at the end
together, it 1is easy when reading the
program to see how it interacts with the
rest of the system. For instance, you can
see which utilities it uses, which regions
of memory you have defined, or which of
your own routines i1t uses.

4) It is easier to put a remark on one EQU
statement to identify its value than 1t
would be to identify the value each time
it is used.

Note that an EGU appears to occupy two bytes
of memory in your program. However, the LOAD
command does not load anything inta the Mini
Memory Command Module for those two bytes.
Furthermore, if the EGQU comes at the end of
the program, the LOAD process will not include
the bytes in its computation of the next
available memary location. For these reasons,
the best place for ERQU s is at the end of vyour

program.

Section &: ASSEMBLER DIRECTIVES

DOW EDITOR/ASSEMBLER Fage 18

THE REF/DEF TaBLE

To be able to call & program, its name must be
loaded into the User Defined REF/DEF Table.
See the Mini Memory Command Module Manual for
a description of the table.

In the two examples below, the name of the
program is "DEMO ", it is the only program in
the table, and the program is loaded at 73500.

Before keying in the program, i+ you know what

its entry point will be you tan create its
entry in the User Defined REF/DEF Table as
follows:

—eee—MINI 701E (Het LFAM to 7FF8)

F701E >hihhh 7?>7FF8 (hhhh 1s current value)
»7QlE >7FF8 7.

———eeEDIT

E- B -

LOE LBL:OFPCD OFERAND (S) .

Q00 TEXT /DEMO / (Name is DEMOD)

004 DATA >7300 (EF at 73500)

o088 (Just press ENTER)

004 DATA >7300 {(Ghows last entrvy)

E->. (Exit from edit mode.?
~-=—:_O0AD 7FF8 {.oad into table now.)
ADDR = 2>7FF8 0K7?Y

NEXT = >8000

———>NEW (bet ready to enter)
-—-~}§DIT (Now enter the program)
E—->E

Section 7: INITIALIZING THE REF/DEF TABLE

—— - Jp— - -

- -l

DOW EDITOR/ASSEMBLER Fage 19

The above technique cannot be used if you have
already keyed in your program (unless you SAVE
it +irst). The method below may be used if
you do not wish to destroy your program.

The drawback with this second method is that
it requires vyou to know the name of your
program in hex.

e 2MINL 701E

(et LFAM to 7FF8)

~701E >hhhh ?>7FF8 {hhhh is current value)
»7Q1E >7FF8 7.

———=;+MINI 7FF8

*7FF8 hhhh 7:>4445 (This loads "DE")
>7FF8 4445 7 (Just press ENTER)
~7FFA >hhhh 7 >4D4F (This loads "MO")
27FFA F4D4F 7 {(Just press ENTER)
A7FFC rhRhhh 722020 (This loads 2 blanks)
STFFLC 22020 7 {(Just press ENTER)
*7FFE >hhhh ?>7300 (7500 1s program’s
~7FFE >7300 7. entry point)

Section 7:

INITIALIZING THE REF/DEF TABLE

DOW EDITOR/ASSEMELER ' Page 20

RECOMMENMDED SEQGQULIENTCE

i
Below is a sequence of instructions you might
want to +faollow when working on a program.
First, +follow the examples in Section 7 to
make an entry in the REF/DEF table. Then
proceed as below: -

R) OLD You would do this only if vour
progiram had been saved earlier.

E) EDIT To enter or change your program.

cy I+ vyour program is large, use this
edit command often to see how much
memory is 58111l free. I+ not

enough, do not continue since vyou
may lose your program. Cut down on
remarks to gain more free spaces.

D) LOAD There are two reasons +for loading
betore SAVE, LIST, or LINE.
1) It might find a label error.
2 Do it right away so you do not
target to do it later.

£) SAVE In case something goes wrong with
L INK. Be especially caretul to do
this after making many changes.

F) LIST This 1s always a good idea, 1f vou
have a printer. As with the SAVE,

do this especially after making many
changes.

G} LINK Now give it a try.

H) Go back to step B to make any changes.

Dection 8: RECOMMENDED SEGUENCE

DOW EDITOR/ASSEMBLER | Fage 21

Al L ING FROM EASIC

Several things must be remembered for your
program to return successfully to a Basic
progranm. This includes the DOW
Editor/Assembler when your program is called
with the LINK command.

Make sure interrupts are turned off. That is,
i+ vyou enabled them with the LIMI 2
instruction, disenable them with LIMI O,

Return with a B XxR11l instruction. However,
1+ vyou wish to use register 11 in yvour program
(perhaps to call subroutines within vyour
program), you should +irst move the return
address to some other register (or location)
and return via that register (or location).

Make sure you clear location }83§C, the STATUS

byte, ‘before returning. This 1is set by
various calls to GFLLNE.

Section 9: CALLING FROM BASIC

DOW EDITOR/ASSEMBLER Fage 22

FOGRAM EXaMMPLE

4

This program demonstrates the use of Assembly

Language and the DOW Editor/Assembler to talk
to a user at the consale. As such 1t is
representative of part of a larger program,

which presumably would perform computations or
el aborate graphics or sound effects. Although
what it does is not flashy, it shows you some
important techniques you will need to know.

you will have to refer to both
Texas Instruments manuales to be able to
understand this program. These manuals are
the one supplied with the Mini Memory Command
Module and the Editor/Assembler manual, sold
separately. |

Remember that

After clearing the screen, the program prompts
the user for an input number with "“DATA:" and
by beeping. I+ characters other than digits
are entered, the bad response tone is given.
Once the ENTER key is pressed, the value is
stored in location >7200 and the program
returns to the Hasic program which called it.
(You can use MINI 7200 to check what it did.)
Betore entering the program, read Section 7
for two easy methods of preparing the REF/DEF
table.

The program is listed in parts bel ow.
Following each part is a paragraph or more of
explanation.

DEMO PROGRAM — INFUT AND DISFPLAY
INTEGER VALUE ((LOAD AT 7500)

000 . LI R1376&6 CLEAR SCREEN

004 L1 RZ2; >8080 (BLANKS)
008 TOP:MOV R23:;3BUF (R1)

0O0C DECT R1

O0E JOC TOFP

010 CLR RO WRITE

Section 10: PROGRAM EXAMPLE

- - — - — - ——— e =

DOW EDITOR/ASSEMBLER Fage 23
012 L1 R1i;BUF BLANKS

016 LI RZ23768 TO

014 BLWF 2MBW SCREEN.

The first two liheé.printed are the program

title. The program should be loaded at >7500,
as the title indicates.

The first nine instructions blank out the
screen by filling VDP locations O through 767
with blanks (>B80). Note: >80, not >20, is a
hlank because when Basic is running all
display characters must be biased by 2>60. The
768 blanks are +first loaded into CPU RAM,
starting at location >7200. They are then
written into VDF RAM.

The JOC operation is useful in conjunction
with DEC or DECT i¥+ a loop should continue
until less than 0. To stop at 0, use JGT.

The call "BLWF dW" (at 010 through 01A) uses
VMBW to write the 768 blanks to the screen to
clear it.

O1lE LI RO; 322 WRITE PROMPT

Q22 .1 R1;PRO TO

026 L1 R2:5 SCREEN.

Q24 BLWF MBW

O2E L1 RO; 397 INFPUT POS.

032 CLR R2 R2=NUMBER.

034 MOVEB R2;a9MOD MODE 0.,

0358 BLWF 2GPL. , ACCEPFT

Q30 DATA >34 TONE.

Locations OlE to OZA write "DATA:" to the

screen at position 392. At O0Z2E, RO is set to
point to the input position, which is
lmmediately to the right of the prompt message
on the screen. Register 2 is cleared to
accumulate the number to be enteread. The q
now 1n RZ is used to set the mode to O for the

Section 10: PROGRAM EXAMPLE

DOW EDITOR/ASSEMBLER Fage 24

call to EKSCAN which follows bel ow. At

038-03C, the

O3E LF sLIMI
042 LIMI
046 BL WF
044 MOVEH
Q4E Coc
092 JNE

The input 1

accept tone is started.

2 ALLOW INTER-
0 RUFTS EBRIEFLY.
PEEY CALL KSHTUAN.
p8TAsR1 CHECK STATUS
aMESK i R1 FOR NEW EEY.
LF NOT YET.

ocop starts at label LF. First,

interrupts are allowed briefly. This 1S

necessary so

KSCAN 13 call
Kl so bit
key has been

ta LF.

054 CLRK
OS54 MOVE
0OSA MOVE
OS5k - SWPB
460 Cl
064 JEQG

a tone can be generated. Then
ed. The status byte is moved to
2 can be tested. I+ 1t 18 set, a
pressed. I+ not set, loop back

R1 YES. |
R1:2STA CLR STATUS.
DINF;R1 LOOK AT IT.

R1
R1i3>D ENTER?
END GO IF DONE.

Rl is cleared so the status byte can be reset
to O. Then the value for the key which was

prassed 1s

maved into R1 and swapped to the

right, or low order, byte. At 060, a check is

made to see i1
go to END 1+

066 Al
D6A JLT
O&0 I
070 JGT
Q72 MPY
076 MOV
078 A

I1f not ENTER,

+ the ENTER key (>D) was pressed;
S0.

R1;-48 NO. CHECK
ERR FOR DIBIT.
Ri:9

ERR

AVI0:R2 DK. COMFUTE
R3I:R2 NUMBER
R1;R2 IN R2.

continue by subtracting »>30 tao

turn the key code into its value, 1f 1t is a

Section 10: PROGRAM EXAMPLE

C ome— . —_ —_— e —_

— e s ——— —————

- - — o — — — o m—— %

DOW EDITOR/AQASSEMEBLER | | Fage 25

digit. (Bubtract >30 by adding immediate
-48.) If the result is less than O or greater
than 9, go to ERR because it was not a digit.
I+ a digit, multiply the number so far (in RZ)
by 10. This puts a product in registers 2 and
3. Move the low order half of it, in R3, back
to RZd. Then add the latest digit, in R1, to
the total, in RZ2.

D74 Al Ris >90 NOW WRITE
O7E SWFE R1 DIGIT TO
080 BLWF 25BW SUREEN.

Bias the digit by >40 so it can be displayed
and by >»>30 = 48 (because it was subtracted out
above). In other words, add >90 to it. Then
swap it to the left byte and use VSBW to write
it to the screen.

084 INC RO
08é6 JMF LF GO FOR NEXT.

Increment the screen position pointer and loop
for another digit.

088 END:MOV R2Z3;2>7200 STORE R2.
08C E ¥R11 BACK TO BRASIC.

Terminate by returning to Basic. The
accumulated value is Ffirst stored at »7200.
It is safe to return because we cleared the
status bvyte after the last KSCAN. (I+f the
byte is not cleared, a false error can be

reported.?

OBE ERR:BLWP IGPL ERRDR.
092 DATA 3326 EAD TONE.
094 JMP LP

Qt ERR, the bad response tone is generated.

Section 10: PROGRAM EXAMPLE

DOW EDITOR/ASSEMBLER Fage 26

096 PRO:BTXT /DATA:/

02€ MSK:DATA >2000 | MASK.

OE V1O0:DATA 10 ‘- VALUE TEN.
OAC MOD:EQU >8374 MODE.

OAZ2 BUF:EGU >7200 BUFFER.

OA4 KEY:EQU >46020 KSCAN.

0A& STA:ERQU >837C STATUS.

0A8 INP:1EQGU 2>8375 KEY FPRESSED.
OAA GFL:EBU >6018 GPLLNK.

CAC SBW:EQU >6024 VSBW.

OAE MBW:EQGU 6028 VMBW.
Finally, data and equates end the program.

The BTXT directive is used because the program
i1s called +from Basic. The EQU’s come at the
end of the program; the next available address
reported to the programmer by the LOAD command
will be 735A0.

After entering the program (and correcting any
errors), use LODAD 7500 and LINK DEMO to run
it. (But first, SAVE and LIST.)

bection 10: FPROGRAM EXAMPLE

DOW EDITOR/ASSEMBLER Fage 27

FROGRAM MODULARITY

A restriction of the DOW Editor/Assembler is
that vyour ‘program must fit into 512 byte
saegments. I+ -1t 1is small enocugh to fit
entirely into 512 bytes, there is no problem.
That is of course 256 words, or due to the
fact that many instructions are two or more
words in length, about 150 instructions.

When you are editing your program, statements
are ldentified in the left margin by their

relative location within the program segment.
This value can range from 000 to 1FE. This is
the 512 byte limit.

If you break a large program into segments,

yOou may +find 1t convenient to load the
saegments at nice, even addresses, such as
7200, 7300, 7400, and =0 forth. This will
make it easier to change and reload a segment,
because vyou simply have to make sure that the
last address to be loaded in each segment does
not exceed OFE. I+ you wish, you may allow
each segment to grow to the full size of IFE;
in that case, load the segments at 7200, 7400,
7600, and so on. By using these addresses it
iIs easy to inspect or patch the program since
the computation of the actual address (known
as the absolute agddress) consists of adding a
value such as 7200 to a two or three digit
relative hex address such as >1Bé.

Each time vyou lbad a segment into the Mini
Memory Command Module’s 4K RAM, it will stay
there indefinitely. This means that you can
load the segments as you write and test them,
even if this process is spread out over hours,
days, or weaeks, | | |

In order for this type of program
work well, vyou have to design

writing to
your large

Section 11: PROGRAM MODULARITY

DOW EDITOR/ASSEMBLER Fage 28

program sa that 1t consists of meaningful
modul es. {Here the, term "module” refers not
to "Command Modules" but to software modules.
or program segments.) It is important that
each module make sense by itselt. That is, do
not simply divide a large program into chunks
of approximately 9512 bytes each.

The various modules of your program are like
building blocks. Each should be strong.
Strength means that everything in the module
belongs together for logical reasons.

It is also i1mportant that the links between
the modules are not strong. Modules are
weakened when things which should be together
in a module are distributed throughout more
than one. They are also weakened by having to
share taoo much data. Ideally, when one module
calls another, as little intormation as
possible should be passed because this makes
each module easier to understand, to write,
and to test by itself.

Data may be passed (or shared) between modules
by wusing EQU’s to define the same areas in
memory, but try to keep the number of
locations to a minimum and use each location
consistently in all modules. Try to pass all
information through registers i+ possible.

do not have one module “"know" how
Each should be treated as a
"black box™ which perftorms according to
external specifications. You should be able
to write and test your modules independently.

Above all,
another works.

A large program that is written by this type
- of modul ar approach is much more apt to work
than if it is developed as one very large and

very complicated program.

Section 11: FPROGRAM MODULARITY

DOW EDITOR/ASSEMELER Fage 2%

When a large program is broken into modules,
you have to specify how to get from one to the
other. & good overall scheme is to think of
one of the modules as a main program. The
main program contains the overall 1logic and
makes 1t happen by calling upon subprogram
modul es, using the BL instruction. Thus, by
Feading just the main program yvou can check
the sequence of major events in your program.
Use the EQU directive to enable the main
program to refer to the subprograms. The
subprogramg should be loaded at nice locations
(such as 7400) with the very first location of
each being the entry point. In this way the
FEOU's in the main program will have values
such as 7400, 7600, etc.

In addition to a main program and subprograms
(each of which may only be called once from
the main program), vou might want to write a
number of functions or subroutines. Usually
these are rather small and well defined
routines that are used a number of times.
Examples would be generating a seguence of
tones or clearing the screen. You could put a
number of these together into one module - a
subroutine library. This reduces the number
of cassette tapes needed to save them. It
also makes it easy to pack them into a block
aof menory. To do this neatly, you should
bhuild a "transter vector" into the front of
the library module.

L]

Section 11: PROGRAM MODULARITY

DOW EDITOR/ASSEMBLER Fage 30

The example below shows the outline for a
module having several library subroutines
(SIN, COS, and TAN):

JMF SIN (This is the

JMF CO0S transter

JME TAN vectaor.)
SIN:... (Do SIN here)

Bl XR11 (Retuirn)
C0S:z... | (Do COS here)

BL. ¥R11 (Return)
TAN: . . « (Do TAN here)

(Return)

BL XK11

Let us assume that this module has been loaded
at 7C00. A program needing to use §8SIN, £0S,
or TAN would equate them as follows:

SIN:EQU 7CQ0
COS:EQU 7C02
TAN:EQU 7C04

Because the Mini Memory Command Module will
hold your subroutine library indefinitely, you
can build 1t and test it, then use it again
and again within one program. You can
continue to use it even if vou write different
programs at different times, as long as vou do
not reuse the same memory space.

Section 11: PROGRAM MODULARITY

DOW EDITOR/ASSEMBLER Fage 31

EFRIRKOR MESSAGES
A "bad response” tone is given for all errors.

1) Commands and instructions. You will see
"ERROR" displavyed. AN Up arrow Ham is
displayed under the point where the error was
discovered. This is usually at or immediately
to the right of the offending character.

2) A BSS _statement that implies an address
past the 512 byte program limit is indicated

with a """ after the byte count vou entered.

3) I+ the break _character
TEXT or BTXT, the """ is displayed
first break character.

under the

4) OVERFLOW You get this when editing and you
try to enter beyond location 1FF. You also
get it by entering or changing an instruction
which would cause the last instruction to go

past 1FF.

) When using the "C" command in edit mode, if
the "from"” string is not found, vou will be

told INOT_FOUND™.

&) When loading, either an undefined label or

a multiply defined label is reported by:
~.ERR§ LBL xxx AT hhh"

where xxx is the labhel and hhh is the relative

location where the error was discovered. The

load process stops when the error 15

di scovered. |

than 76
changed)

7) A statement that is
characters on entry (or after

longer
being

Section 1Z: ERROR MESSAGES

DOW EDITOR/ASSEMBLER Fage JI2

CUSTOMI Z2ING
t! .

You can use a printer other than the Te:xas
Instruments Thermal Frinter (TF) . For
example, i+ vyou have the Texas Instruments
Impact Frinter, change the TP in statement
1450 to RS2Z2.BA=4800 (assuming that you have
the baud rate set at the recommended 4800).

If you have a disk drive and wish to load the
DOW Editor/Assembler from disk, be sure always
to type 1n the following statements betfore
loading it:

CALL FILES(1)
NEW

Alsa, to use with a disk drive, you must
change the value 3300 in statement 13510 toc be
2250; this reflects the loss of memory due to
having the disl drive on. You will see this
loss when vyou use the "?" command in edit
mode.

If you wish to save and load your assembly
language programs on disk, insert these two
statements:

2219 INPUT “FILE=":FILE$
2369 INPUT "FILE=":FILE$

Then change "(£51" {including the quotation
marks) to FILE® 1n statements 2220 and 2370.

To 1list to a disk file (so you can read it
with the editor in TI’°s Editor/Assembler),
change "TPF" 1in statement 14650 to FILE$® and

insert:

1649 INPUT "FILE=":FILES

Section 13: CUSTOMIZING FOR YOUR EQUIPMENT

