
T
'

' •

I 	'PP
- 	1 • -v.. ,

BEóINNI fe

AS 'BEIViiiiLY LANGUAGE

FOR THE

111

111111111111

BEGINNING

ASSEMBLY LANGUAGE

FOR THE

TI HOME COMPUTER

ii

For corrHspondence regarding this book

address the following:

D & D PUBLISHING Co.
3177 Bellevue
Toledo, Ohio 43606

Copyright 1984 D & D Publishing Co.

All rights reserved

No part of this boot . may be reproduced in any form or by any

means, electronic or mechanical, including photocopying,

without permission in writing from the publisher.

Printed in the United States of America 1984

i. INTRODUCTION
[

There is something really big underlying the BASIC language'

Many gifted programmers have considered writing e:,citing games
for the TI Home Computer only to be faced with the limitations of
the cumbersome BASIC language. It does not take one long to
realize that it is simply not possible to accomplish all that
arcade style games entail using BASIC alone. BASIC is sometimes
Just too slow.

There is essentially nothing wrong with using BASIC if you re
programming operations don't require a great deal of speed. But if
you are writing programs which have a lot of things happening
simultaneously, such as a number of obiects flying around the
screen with the program trying to keep track of coincidence
checks, BASIC Just can't do the ioh.

BASIC by its very nature Lends to use up a lot of memory in a
short period of time. For these reasons and the ones previously
alluded to, you may want to consider adding program modules
written in assembly language to your BASIC programs. Or even
writing your complete program entirely in assemblv language.

This boor is designed to help the beginner in introducing him
or her to assembly language. The boor assumes that you have no
previous egperience in programming other then BASIC. If you
already r.now BASIC, that is fine. If you are already developing
programs in assembly language, that is even better.

This boor was designed as a study text. That is, it wa ,; meant
to be read cover to cover, each chapter building on what was
learned in the preceding chapters. If something is discussed that
you do not quite understand after a thorough reading, go on as it
will probably become clear in later sectaons. Take the time to
complete the study questions at the end of each chapter. They will
reinforce important concepts.

-1-

2 	INTRODUCTION

This book begins with the fundamentals. Chapter 2 covers the

binary and hexadecimal numbering systems. It also discusses
important terms and concepts that will be carried throughout the
boot, . Make sure you completely understand chapter 2 before
proceeding.

GICIFAMINIT9: IEJF 	 EaDICIIK

This bool contains 14 chapters. In chapter 2 you are introduced
to the counting system that the computer uses to keep trac . [of
numbers. You are also introduced to the hexadecimal system which
greatly simplifies programming.

Chapter 3 discusses the assembler, memory utilization and the

internal registers of your Home Computer. It also explains how

assembly language programs are developed and written.

Additionally, you are introduced to the source statement, which is
a programing line in assembly language akin to a BASIC statement.

Chapter 4 introduces the instruction set. The -first topic ta[c.n
for discussion is Addressing Modes, or ways to inform the computer
e-actly where data or information can be found in memory.

Subsequent sections of this chapter introduce you to the
Instruction Set with each Instruction discussed at length as tu
its usage and purpose. Numerous e:\amples 	e used to dramatize
important points.

ln Chapter 5 you learn about Assembler Directives. These
consist of instructions to the assembler program that can

significantly reduce program development Lime on your part.

Chapter 6 discusses Utility programs in-depth. These are
already constructed assembly language programs that are available
to you. Again, numerous examples are provided to illustrate
important points.

Chapters 7, 8 and 9 discuss screen Graphics, Sprites and Sound
control. You learn how to control complex screen graphics as well
as how to incorporate sound into your programs.

Prior to chapter 10 this book discusses how to create assembly
language programs using the Editor/Assembler package. Chapter lo

is a complete description of how to create assembly language
programs using the lane-by-line assembler and the Mini-Memory

module. Explicit instructions are gaven e.:plaining the differences
and how to create programs that will run with either system
configuration.

Chapter 11 outlines the conversion of many BASIC commands into
their assembly language equivalents. This is done to illustrate

INTRODUCTION

general assembly language concepts.

Chapter 12 outlines BASIC support routines that are available.

It explains how to linF BASIC programs wit.h assembly language

programs. It also outlines how parameters are passed between the

two types of programs.

Chapter 	presents a brief description of tho advanced

mathematical routines that are available. Linking to console

resident routines is also discussed.

This book provides four appendices for your convenience.

Appendix A contains tables that aids in interchangind decimal and

hexadecimal numbers. Appendix B outlines the TMS990n instruction

Set. Appendix C lists the Assembler Directive set. Appendi:. D is

perhaps the most interesting, it provides some source code for

frequently used assembly language game modules. You can operate

joysticks, simulate gravity, scroll the screen, create delays

ect...

DID IL Li CT.:

1,,
1 	CONTENTS

Chapter

Chapter

Chapter

1:

2:

3:

Introduction 	

How A Computer Counts 	

The Assembler 	

1

5

15

Chapter 4: The Instruction Set 	 25

Chapter 5: Assembler Directives 	 65

Chapter 6: Utility Programs 	 77

Chapter 7: Graphics 	 97

Chapter 8: Those Spirited Sprites 	 115

Chapter 9: Let There Be Sound 	 127

Chapter 10: The Line-by-Line Assembler 	 139

Chapter 11: Converting BASIC to Assembly Language 	 149

Chapter 12: Linking With BASIC 	 169

Chapter 13: High Precision Mathematics 	 183

Index 	 195

11

4

a

I i

r
I

2

HOW COMPUTERS
COUNT
The difficulties encountered in learning assembly language have

often been greatly exaggerated. In fact, once the instructions and

the rules that govern them are understood, programming in assembly

language becomes almost as easy as programming in BASIC.

All humans are born with ten fingers and toes and hence it was

natural that our mathematics would develop along the base ten

numbering system. However, there is no natural "law" that states

this must be so. A computer is designed along a base 2 or binary
numbering system. It is made up of only two digits, 0 and 1 (in
contrast to the decimal system which is made up of the digits 0

through 9). When you are working with the binary numbering

numbering system you are talking in the computers on language.

The computer can act directly upon instructions rather then having
to go through an interpreter first as is necessary with any higher
level language like BASIC.

There is one additional numbering system that you should become

familiar with in this chapter. This is a base sixteen or

hexadecimal numbering system or simple HEX. The HEX system is made
up of the digits 0 through 9 and letters A through F. When

programming in assembly language the computer assumes all numbers

that you enter are decimal numbers unless you precede the number
with a "greater than" symbol CO. The greater than symbol

indicates to the computer that the number following it is in

hexadecimal notation.

124 	(Decimal) 	 >7C 	(HEX)

This chapter is a basic introduction to computer numbering

systems. It is aimed at those who have no or limited knowledge in

this area. If you already understand these concepts and how they

apply to assembly language programming, feel free jump ahead to
the next chapter.

—5—

6 	HOW A COMPUTER COUNTS

cD :E.1 I 	"he INI .1 hi E.c IE:1R.E3

The computer stores all the information contained within it in an
area called the memory. Memory can be thought of as a large

collection of electrical switches. Each switch can be either "on"

or "off" and each can be set or reset by the computer as needed.

Each individual switch can be thought of as the computers smallest

single memory cell. This single memory cell is known as a BIT

which is short for Binary DIgiT. A bit holds the smallest piece of
information that the computer can handle. A bit is either on or
off, true or false, plus or minus. It has no in-between states.

The On and Off settings of the memory bits correspond to the
two digits that make up the binary numbering system. The binary
system consists of the two digits 0 and 1 and is the fundamental

system the computer uses to keep track of numbers. The digits are
represented by 0(Off) and 1(On).

In your Home Computer groups of eight bits are lumped together
to form a single byte. It might be easier if you think of a byte
as a row eight lightbulbs mounted on a long board. Each lightbulb
represents a single bit and can be either on or off. The entire
board with its eight lightbulbs is taken as one byte. In the
following sections we will see how the computer can use these bits
and bytes to store information.

Looking at the above illustration of our byte we see that each

of the lights (bits) are currently turned off. From this we can

say that the byte is representing zero value. In computer language

it is said to be "holding" a zero. Now consider that we want this

byte to represent the number one instead of zero. As we watch the

light (bit) on the far right comes on:

HOW A COMPUTER COUNTS 	7

The column on the far right of our byte is the one's column and

hence the byte on the preceding page would represent or "hold" a
value of one. If we wanted our byte to hold a value of two instead

we would turn on the next bit in the row like so:

And to represent the number three we simple add the values of

the last two bits together like so:

By simply looking at a byte, checking to see which bits are

turned on, and adding their values together the computer can tell

the value of the number being held there. Each bit has its own

special position on the byte. Starting on the right and proceeding
to the left, each bit is worth twice what the one before it was.

Another way to think about it is to consider each bit (from right

to left) as an increasing power of two. Thus the rightmost bit is

2 to the power of 0 or 1, the next bit is 2 to the power of 1 or

2, then next 2 to the power of 2 or 4, and so on until the

leftmost bit is reached which is 2 to the power 7 or 128. By

adding combinations of bits that are turned on together the value

of any number from 0 (all bits off) through 255 (all bits on) can

be represented:

8 	HOW A COMPUTER COUNTS

Lets review, eight bits together make up a single byte. A
single byte can hold any value ranging from 0 to 255 decimal. The
following examples are binary (byte) representations of some

decimal numbers. Keep in mind that each 1 or 0 represents a bit

that is either ON(1) or OFF(2). The bits are divided into two

groups of four bits each to make them easier to read:

BBNARY 	 DECIMAL

0010 0010

(32)+(2)=
	

34

0100 001 0
(64)+(2).=
	

66

Normally you would not have to add binary numbers together when

programming, this function being performed by the computer.
However, to provide a complete presentation we will briefly

discuss the addition of binary numbers.

When adding binary numbers together you follow essentially the

same procedure as when adding two decimal numbers together. For

example, when adding the values 6 and 8 together you must carry a

1 into the "tens" column in order to arrive at the correct result
of "14". Similarly, when the two binary digits 1 and 1 are added

together, a 1 must be carried into the two's column. Thus the

addition of 0000 0001 with 0000 0000 becomes 0000 0001 and the

addition of 0000 0001 with 0000 0001 becomes 0000 0010. The

following illustrate some further examples of binary addition:

* 	 ** 	 ** 	*
1 	 1 1 	 11 	1

	

0101 	 0111 	 0110 0110

	

+_0001 	 + 0110 	 +.,_(...21 .11_0911,

	

011.0 	 1101 	 1101 1001

*carried l's

The first problem involves a carry of one from the first column

to the second (1+1). This carries over to the second column which

contains only two 0's. Adding the carried 1 makes the result under
this column a "1".

I 11441 la JD INI Li rai Et Fc

Up to this point we have been discussing how to represent

positive numbers with the binary system (using bytes). To

bits and bytes we must return to our row of eight bits that we

discussed in previous sections. Remember that each bit represented

HOW A COMPUTER COUNTS 	9

a certain value that was determined by its row position on the
byte. To make them easier to refer to, bits are numbered 0 through
7 starting on the left and proceeding to the right (in contrast to

their value which increases from right to left). The numbering of

bits is illustrated below:

/ 	s 9 S ,C 7
Bits are also said to become more significant as they increase

in value. That is, bit 7 is considered the least significant bit

(LSB), and bit 0 is the most significant bit (MSB). Also, bit 0 is

more significant than bit 1 and bit 1 is more significant than bit

2 and so on down the line. Significance than is tied to the

relative value of a bit. As the relative value increases, so does
the bits significance as illustrated below:

// 	
\I!

1:)

..".•1*0"

When a byte holds a signed number, only the 7 least significant

bits hold the value of the number (bits 1 thru 7). The most
significant bit (bit 0) is reserved and is used to indicate the

sign of the number being held. If this bit is set to "1" then it

indicates that the number being held is a negative number. If this

bit is reset to 0 then it indicates that the number being held is

a positive number.

As you may have already guessed, a byte that holds a signed

number uses bit 0 to hold the sign. Therefore it can't hold as

wide a range of values. Bytes holding positive numbers can only

hold values ranging from 0 (binary 0000 0000) to 127 (binary 0111

1111) while bytes holding negative numbers can hold values ranging

from -1 (binary 1111 1111) to -128 (binary 1000 0000).

You may be wondering why -1 is represented in binary as

1111 1111 instead of 1000 0000. The reason for this is that

negatively signed numbers are represented in what is known as

their 2's compliment form. By using 2's compliment to represent

negative numbers the dilemma of having zero be represented by all

0's (positive zero) and all O's with a 1 in the sign position

(negative zero) are avoided.

N 	r

10 	HOW A COMPUTER COUNTS

To find the binary representation of a negative,number (that
is, to find its two's compliment form) simply reverse each bit,

t that is change each 1 to 0 and each 0 o 1, then add 1 to the

result. The following example illustrates how to find the 2's

compliment representation of -65:

0100 0001 	+65

1011 1110 	Reverse all bits.
Add one.

1011 -iii1 	-65

The reverse procedure (reverse all bits and add 1) can also be

used to find the positive form of a negative number.

wolIR-AD13

A bit is the smallest piece of information that the computer
can hold. The computer lumps 8 of these bits together to form a
single byte which it can use to store usable information. By now

you should begin to see some limitations with this system. For

example, using bytes alone you could only represent unsigned

numbers whose values range from 0 to 255 or signed numbers whose

values range from -128 to +127. To represent numbers larger than

this we must devise some alternate scheme. The simplest approach
would be to hook two bytes together in order to form a larger

number of bits from which to draw information.

Two bytes hooked together in this fashion are referred to as a

single WORD. The left byte contains the first 8 bits that make
up the left-half of the "word" while the right byte contains the

second group of 8 bits that form the right-half of the "word". The

bits are numbered consecutively left to right from bit 0, the

left-most bit on the left byte, through bit 15 which is the right-

most bit of the right byte. The value of each bit is double as we

move from right to left along the bits. For example:

lEc -11- INIUMEclaFc=

0 	4 3 	 7

Q's dry 11 	.r .r* .21 -2e 4 9 24 2° Xi 	A 4 	••7 •

Notice that by linking two bytes together in this manner to

form a single word v%). can now represent a much greater range of

HOW A COMPUTER COUNTS 	11

numbers.

To sum up, in your Home Computer most chunks of information are

processed in units referred to as words. Each word is made up of

two bytes. Each byte is made up of eight bits.

For words that contain signed numbers, bit 0 (the left-most bit

of the left byte) is used to hold the sign of the number. Words

can hold signed values that range from 0 (0000 0000 0000 0000) to

32,767 (0111 1111 1111 1111). Words holding negative numbers can

hold values ranging from -1 (1111 1111 1111 1111) through -32,768

(1000 0000 0000 0000). Keep in mind that negative numbers are

represented in their two's compliment form. The following is a

graphic representation of -4356:

1.7"-z... - ZS. 1-11 ET. X Pt I.) la 	I Irl A L._ IN 13 -T- Pr -11- I C3i IN1

When computers were in their infancy programmers had to enter

each byte of binary code by hand. Not only was this a very tedious

and time consuming process, but it was extremely prone to error as

well. For example, a binary number like 0000 1110 could easily be

transposed into the entirely new value 0000 1101.

The HEX system (short for hexadecimal) was designed to speed up

the process of writing in binary code. The following chart

compares the Decimal, HEX, and Binary numbering systems:

DECIMAL
o
1

6

7
8
9

10#

11

12

13
14

15

HEy. 	 BINARY
>oo 	 0000 0000

>01 	 0000 0001#

>02 	 0000 0010

>07: 	 0000 0011

>04 	 0000 0100

>05 	 0000 0101

>06 	 0000 0110

>07 	 0000 0111

>08 	 0000 1000

>09 	 0000 1001

>OA 	 0000 1010

>OB 	 0000 1011

>OC 	 0000 1100

>OD 	 0000 1101

>OE 	 0000 1110

>OF# 	 0000 1111

C
I

-0
, C

,4
 t••

..)

12 	HOW A COMPUTER COUNTS

Note that (#) signifies that the digits begin to repeat on the
preceding page (10's decimal, 16's HEX, 2's binary).

If you study these systems you find that in decimal you begin

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, then start again in the 10's column:

10, 11, 12, 13, 14, ... and so on

With HEX you count >0, >1, >2, >3, >4, >5, >6, >7, >8, >9, >A,

>B, >C, >D, >E, >F, then start again in the 16's column: >10, >12,

>13, >14, >15, ... >18, >19, >1A, >1B, >1C, ... and so on.

In both decimal and hexadecimal numbering systems the

individual digits have some "weight" which is a power of the base.

In the HEX system the base is sixteen so each digit has a value 16

times the value of the digit to its immediate right (as opposed to

the decimal system where each digit has a value 10 times the value

of the digit to its immediate right). For example, the hexadecimal

number >4CEF has a decimal value of 19,695 because:

1 	0
(4x16)+(Cx16)+(Ex16)+(Fx16) = 19,695

reduces to the decimal form:

(4x4096)+(12x256)+(14x16)+(15) = 19,695

where C=12, E=14, and F=15 from the table on page 11.

When writing in assembly language all HEX numbers are

designated with a "greater than" sign (>) in front of them to

differentiate them from decimal values. The following are some HEX

equivalents of decimal values:

UNSIGNED NUMBERS
HEX 	DECIMAL 	 BINARY
>0A 10 0000 0000 0000 0000
>AA 170 0000 0000 1010 1010
>B3F 2,879 0000 1011 0011 1111

>FFFF 65,535 1111 1111 1111 1111
>FE03 65,283 1111 1110 0000 0011

>0214 532 0000 0010 0001 0100

SIGNED NUMBERS
>FC -4 1111 1111 1111 1100

>E9 -23 1111 1111 1110 1001
>08 8 0000 0000 0000 1000

>7FFF 32,767 0111 1111 1111 1111

Learning to work with hexadecimal numbers is perhaps the
biggest hurdle to get over when trying to master assembly

language. You should not be disillusioned if everything is not

HOW A COMPUTER COUNTS 	13

crystal clear up to now after all, this counting system is
unnatural. You should spend some time now practicing the

exercise at the end of this chapter. You should at least be fluent

in converting hexadecimal numbers into their decimal equivalents

and vice-versa before proceeding even if you don't quite

understand what is going on yet.

To sum up, in order to figure out the decimal value of a HEX

number, simply multiply the second digit by 16, the third by 16

squared the fourth by 16 cubed and add all four values together.

Thus >12A becomes (1x256)+(2x16)+(10x1)=298.

HEX at first does seem impossibly confusing. Do not let this

discourage you as the system will probably become second nature to

you after you have worked with it for awhile. You can quickly look

up HEX values that you need in a hurry in Appendix A at the end of

this book. Remember, all HEX numbers are distinguished by placing

a "greater than" sign (>) in front of them: >OA or >1222.

14

1.

HOW A COMPUTER COUNTS

CHAPTER 2 STUDY EXERCISES

Convert the following decimal 	values to their
equivalents:

binary

(A) 	15 	(B) 	24 	(C) 	30,121 	(D) -10,250

7. Convert the following unsigned binary values to decimal:

(A) 	0100 	(B) 	0010 0100 	1110 	1101 (c) 	1001 0000 0000

.=. Wrjte all 	four numbers in exercise 1
notation.

in hexadecimal

4. List the decimal 	equivalent of 	>1C34 if

(A) The value represents a signed number.

(B) The value represents a unsigned number.

0000

3

THE

In the last chapter we learned that the computer speaks in a
binary code. We also learned that binary code is the most
efficient and fastest executing language. In addition, we learned
an alternate method of designating numbers; that being the

hexadecimal system.

Early on programmers found it difficult to program instructions

into the computer using binary codes. For instance, to enter the

instruction that would add two numbers together required having to
type in the binary code 1010 0000 0000 0000, or the HEX
equivalent, >A000. Likewise, to enter the subtraction instruction

required having to enter the binary code 0110 0000 0000 0000, or

the HEX equivalent, >6000. As can be easily seen, this is not only

a time consuming process, but is extremely prone to error as well.

Eventually someone got the idea to replace the binary commands

with english abbreviations that programmers could easily remember.

In this way an addition instruction could be typed in as "A"

instead of 1010 0000 0000 0000, and a subtraction instruction

could be written as "S" instead of 0110 0000 0000 0000. A separate

program referred to as the "assembler" is then used to convert
these abbreviations into their binary equivalents.

When a program is first written in this "assembly language" it

cannot be run on the computer yet since the computer does not
understand the abbreviations. Before a program can be run it must
be assembled by the assembler program. There are thus two versions
of an assembly language program. The first version written by you

using the abbreviations is termed the source program (or source
code) while the second binary version created by the assembler
program is termed the object program (or object code).

In summary, the purpose of the assemble program is to convert

the source code which you have written into object code which the
computer can understand.

-15-

16 	THE ASSEMBLER

:T.- 	 C7-01I

Before we advance too far into assemble language programming

proper, it would be useful for us to discuss how the computer
keeps track of instructions and how it follows through with them
in a neat, orderly manner. The electronic brain of your computer
is the TMS 9900 processor. It has the capability to perform a wide
variety of tasks quickly and efficiently.

If we couid look down into the computer we would be able to see

distinct areas that serve specific functions. One area is called

RAM which stands for Random Access Memory. RAM contains a large

number of free bytes. You can, as the name implies, randomly
access any of the bytes located here. This is the area where your
program instructions are stored when you type them into the
computer. Thus, RAM can be though of as a blank slate waiting for
you to type in information.

Another area is referred to as ROM which stands for Read Only
Memory. This is an area where the computer permanently stores a

set of instructions that it can refer to when needed. For

instance, when you type in a BASIC command, ROM is where the

instructjons that translate the BASIC command into binary code

reside.

The third major area of the computer is termed the CPU or
Central Processing Unit. It is the heart and soul of the computer.

The CPU continuously takes in numbers from memory locations all

over the computer. These numbers can then be sent out unchanged to
other locations, or they can be compared, added to, or otherwise
modified before being sent back to RAM or ROM. The CPU can perform
all these tasks with the help of some special "tools". These
tools are referred to as Registers. A Register can be thought of

as a memory word that is reserved for a specific purpose

(remember, a word is made up of 2 bytes hooked together).
Registers located in RAM that you can alter during programming are

referred to as Software Registers. Registers located in ROM that
can be used only by the CPU are termed Hardware Registers. A set
of sixteen consecutive Registers is referred to as a Workspace.

It may be helpful to think of a Register as an area of memory

where you can store information that you want the CPU to perform

some operation on For example, suppose you wanted to add two
numbers together. You would first place the values to be added in
two Registers and then instruct the computer to add them together
and place the sum into a third Register. Registers can be located
anywhere in RAM as long as you tell the computer where they are.
In later chapters we will discuss how this is done.

In your Home Computer you have a total of sixteen Software
Registers (termed a workspace) available to you. Each Register is

THE ASSEMBLER 	17

one word (2 bytes) in size. These sixteen Registers are numbered
RO through R15. These sixteen Registers are collectively referred

to as your Workspace Registers.

In addition to the Software Registers available to you there

are three Hardware Registers that are used by the CPU to keep

track of things. These are as follows:

1. PROGRAM COUNTER REGISTER
2. WORKSPACE POINTER REGISTER
3. STATUS REGISTER

The following sections describe the three Hardware Registers in

great detail.

F"F:01D. R.' eAl M IC 01 L.JI INII -1- IU IR: F: U. IBIe -riE:F: 	(P-G)

The Program Counter Register (PC) keeps track of the location
of the next instruction to be executed by the CPU when it is

running a program. In this way a sequential and orderly flow of

instructions is maintained.

WOIIRCK.SF- IAIDIa IFJ'01I1 8,4 -1-- laIR: 	.1F.ZIE: I S -Fla.F.: 	<WIF")

The Workspace Pointer Register (WP) keeps track of the location

in memory of the current Software Workspace. This is the pointer

that informs the computer where your Software Workspace area

begins in RAM.

Each byte in RAM is numbered so that the computer can find it.

This number is referred to as the Address of the byte. This is
similar to how the location of each house in a large city is

designated by its street address. With this in mind it can be

stated that the Workspace Pointer Register holds the beginning
address of the current Software Workspace.

The Status Register is important in that it reports to the CPU

about the current Status of things. For example, when the computer

compares two numbers together it is useful to record the result of

this comparison somewhere in memory. That is the purpose of the

Status Register; it "holds" the information long enough for the

CPU to make a decision based on it. Remembering that a Register is

made up of sixteen bits, the Status Register reports various

status conditions in the first six of its bits (0-5). The four
least significant bits (12-15) hold information important towards

interrupting the computer; but we will have more on interrupts

18 	THE ASSEMBLER

later. Bits 7 through 11 are not used by the Status Register.

Each bit in the Status Register can be thought of as a flag
that signals some piece of information to the CPU. Every time a
bit is set to 1, it signals to the CPU which may act on the flag,
or ignore it depending on your program instructions.

The following figure demonstrates how the "flags" are arranged
in the Status register:

L> A> EQ C OF OP X NOT----USED INTERRUPT MASK
0 	1 	2 	3 ..) 	4 	,, 	6 	7 8 9 10 11 	12 13 14 15

E4 I ---ir INILJWIEKEEFR

L> -- LOGICAL GREATER THAN BIT
	

C -- CARRY BIT
A> -- ARITHMETIC GREATER THAN
	

OF -- OVERFLOW BIT
EQ 	EQUAL BIT
	

OP -- ODD PARITY BIT
X 	-- EXTENDED OPERATION

The Status flags signify the following conditions:

BIT 0: LOGICAL GREATER THAN (L>), is set to 1 if a larger
unsigned number is compared to a smaller unsigned number.

BIT 1: ARITHMETIC GREATER THAN (A>), is set to 1 if a larger
signed number is compared with a smaller signed number.

As we have noted in the preceding chapter, the most significant
bit (bit 0) of a word holds the sign of the number (0 for
positive, 1 for negative). For positive numbers, the remaining
bits represent the binary value of the number. For negative
numbers, the remaining bits represent the two's compliment form of
the binary number.

BIT 2: EQUAL (EQ), is set to 1 when two numbers being compared
are equal. The equal bit is set regardless if the comparison is
between two signed numbers or two unsigned numbers.

BIT 3: CARRY (C), is set to 1 if an add operation produces a
carry or if a subtraction operation produces a borrow of bit 0;
otherwise it is reset to O. The Carry bit also holds the value of
a bit that has been rotated or shifted out of a Register or Memory
location.

BIT 4: OVERFLOW (OF), is mainly an error indicator. It is set
to 1 when the addition of two like signed numbers, or the
subtraction of two oppositely signed numbers, has produced a
result that is too large or small to be represented correctly by a
single word.

Additionally, the OF bit is set to 1 if, during an arithmetic
left shift, the most significant bit of the Register being shifted

THE ASSEMBLER 	19

changes value.

Also, during divide operations the OF bit is set to 1 if the

most significant 16 bits of the dividend are greater than or equal

to the divisor.

BIT 5: ODD PARITY (OP), is set to 1 when the parity of the

result of a byte operation is odd. The OP is reset to 0 when the

parity of the result is even.

The parity of a byte is said to be odd when the number of bits

contained within it having a value of 1 is odd. For example the

byte 0001 1111 is said to have odd parity because it has an odd

(5) number of bits set to 1. Even parity is just the opposite.

BIT 6: EXTENDED OPERATION (X), is set to 1 when software

implemented extended operation is initiated. However, the

instruction XOP (for extended operation) is not available on all

Home Computers. The only way to see if your computer supports this

instruction is to try it.

BITS 7-11: UNUSED

BITS 12 - 15: INTERRUPT MASK, allows the TMS 9900 to recognize
interrupt requests from peripheral devices hooked into the system.

If the peripheral device has a level number less than or equal to

the value in the interrupt mask, it is permitted by the CPU to

interrupt a running program. Thus, if the four bits making up the

interrupt mask are set at 2 (0010), then any device with a level

D, 1, or 2 may interrupt a running program. In your Home Computer

the interrupt mask is always set at 2 (0010). Because of this only

values of 2 and 0 are useful.

Everybody has interruptions in their lives. Some of these are

necessary such as when a newborn cries for food, you must stop

what you are doing attend to the infants needs. While other times

you may be to busy to be interrupted, such as when the phone rings

during your favorite T.V. show; you may choose to let it go

unanswered! The same is true for the computer. Sometimes

peripheral equipment needs information from a running program and

interruptions are the only way they can get it. Also, some ROM

routines such as automatic sprite motion or sound generating

routines need to be able to interrupt your running program in

order to execute.

When you first turn on the computer all the Status bits are

reset to 0. Don't worry if your not quite sure yet as to the
significance of the Status Register, it should become clearer as

we progress.

20 	THE ASSEMBLER

75,1 WIRI -TIP49 F1RADIFRIPIMB

When first putting a program together from scratch you should

follow a certain logical sequence of steps. These steps are summed

up below:

1. Decide first exactly what it is you want the computer

to do. Rough diagramming a "plan" of the program,

referred to as a flowchart, helps get your thoughts

together.

2. Start putting the instructions (referred to as source

statements or code) down onto paper.

3. Enter the instructions into the computer through an

Editor program which we will discuss in greater detail

later.

4. Convert the source code you have written into

object code that the computer can understand using an

assembler program. If the assembler finds any errors,

correct these and reassemble.

5. Run the program on the computer. If it performs

differently than what you had expected, you must debug the
program. This involves taking a copy of your source code

and changing it until you can get the program to run right.

mia F.:nil- DER F.IRADGF,-A,m

The Editor is 'a program that we have not mentioned yet. The Editor

program allows you to write out your source code and edit it

directly on the screen before assembling it. The Editor program

also allows you to save an incomplete source program on disc for

later revision. This book assumes that you are already familiar

with the Editor program. If you are not sure, refer to the

instructions in the beginning of the Editor/Assembler manual that

accompanies the software. If you are using the mini-memory module

and line-by-line assembler refer to chapter 10.

fs-AoluIR.IDEE cf...DIDE:

Now that we have a general understanding about how to go about

constructing source code, it is time to proceed along the

specifics; namely creating a program.

The source code is a logical sequence of instructions designed

to guide the computer along a desired course. A source statement
can be categorized as an instruction, pseudo-operation, or an

assembler directive.

THE ASSEMBLER 	21

As we have mentioned before, an assembly language abbreviation

(instruction) is a symbolic representation of a binary
instruction. It is translated literally by the assembler program

during the assembly process.

Pseudo-operations and assembler directives give directions to

the assembler program (not the computer) as to what to do with

certain instructions or data.

Assembler directives, pseudo-operations and assembly language

instructions will be covered in greater detail in future chapters.

C:".", C11 NI -I- ink P,II -T" B 	I INI F" Ft: C3 B Ft: int 141 ri I !NJ

When entering numbers or constants into the computer you may use
one of several forms:

1. DECIMAL -- Entered as a base ten number. May be an
unsigned number from 0 through 65535, or a signed

value ranging from -32768 through 32767.

123
-2410
65535

2. HEXADECIMAL -- Entered as a string of up to +our
alphanumeric (A thru F) characters preceded by a

greater than (>) sign. The following are valid

examples of hexadecimal constants:

>OF
>1AC
>32FD

3. CHARACTER CONSTANTS -- Entered as a string of ASCII
characters enclosed in single quotes; for example
'A' or 'AD'. A character constant consisting of
only two quotes (no characters) is also valid. The

following are valid character constants:

Phac:t.Pr. (7,:on0=NA 	el!:-.) 	Yajqqs
'2' 	 1 (50)'

'AB' 	 1 (65)(66)'
'307.' 	 '(51)(48)(37)'
'HELLO !' 	 ' (72) (69) (76) (76) (79) (32) (33) '

4. ASSEMBLY-TIME CONSTANTS -- These constants are
defined at the time of assembly. The are written in

the operand field of an EQU instruction. We will
spend more time explaining how these constants are
used when we reach this instruction in later

chapters.

'1 '1
.4-.4. THE ASSEMBLER

Negative numbers are also easily specified. If the constant is
in decimal form simply precede it with a minus sign (e.g.-23). If

the number is in hexadecimal notation you must enter it in its

two's compliment form. For example, -42 and >D6 both represent the

same value.

MC: 	(:31._ 	 "1-sickMMIET4 -11-

Each line in an assembly language program is referred to as a

source statement. Each source statement contains up to four

Fields separated by a single blank space. The fields are

positioned as follows:

Label Op -code Operand(s) Comments

Of these four fields, only the op -code field is always required
for a valid source statement. The other fields may or maynot be

required depending on the op-code used. The maximum length of a

source statement is 80 characters, however only 60 of these will

be displayed when using a list file. The first character typed on

a line begins the label field. If you do not use the label field

then the first character must be a blank space. All the fields are

separated by at least one blank space. The following is an example
of a single source statement that uses all four fields:

MYREG BSS >32 *RESERVE MEMORY FOR MY WORKSPACE REGISTERS

The following sections will describe the four fields that make
up a source statement.

IL_IrA]BEA__ V- I .E...- L_Eli

The label field is a name or label that you give to a source
statement so that you can refer back to it. This label can then be

used in other instructions to refer back to it. For example, when

you instruct the computer to jump from one instruction to another,
you give its destination by specifying its label.

Unless the first character is a blank, the first character in a

source statement begins the label. It can be up to 6 characters in

length. A label can be made up of any alphanumeric characters, but

the first character must always be alphabetic. If you elect to
omit the label field the first character of the source statement

must be a blank space. Also, you are not allowed to put a blank

space in the middle of a label; ie: MYREG not MY REG.

Labels are usually used to identify the target of a jump
instruction.

THE ASSEMBLER 	23

C3F"—ICC3 rip 	F- I a 1...... ID

The op-code field (short for operation code) is also known as the
mnemonic field (pronounced knee-mon-ik). It holds the one to four
letter acronym for the microprocessor instruction. When the
assembler program is run it uses an internal reference table to
translate each acronym into the appropriate binary code. The type
of op-code used determines how many and what type of operands
should be found in the operand field.

10F.*IFc Pt Ni r) F- I la L.... ID

The operand field contains the data or the location of the data
needed by instruction in the op-code field. Some op-codes do not
require an operand while others require one or more. If more then
one operand is required they are separated by a comma. The operand
field may contain one or more terms, expressions, or constants
depending on the needs of the instruction in the op-code field.

To sum up, the operand field contains the data that the
instruction in the op-code field refers to. For example, in this
ADD operation:

A 	RO I R1

the ADD (A) instruction refers to the addition of the value in
Workspace Register 0 to the value in Workspace Register 1.

The comment field is an optional field that begins one space
after the operand field ends. It is always begun with an
asterisk (*). The comment fields contains comments written by the
programmer as a reminder to what the source statement does. These
statements are ignored by the assembler program during the
assembly process.

Comments are utilized to remind you what the function of a
source statement or group of source statements is. For example,
the statement:

MYWSP EQU >8300 *BEGIN WORKSPACE AT THIS ADDRESS

reminds you that your workspace was begun at the specified address
in memory. Comments can also stand alone on a line if the line
begins with an asterisk (*). In this way entire blocks containing
just comments can be constructed:

**
* 	 *

* 	 DEFINE EQUATES 	 *
**

6. Is the followinga valid_he,xadecim,al,number?
, 	• 	 .• ti t".4 	 6 0

;7,

re m ;„,

24 	THE - ASSEMBLER

74:1

CHAPTER 3 STUDY EXERCISES

•

1. What is the name of the program that converts sourFe code into
ti#

'object code?
0 4-

2. A Software Workspace area consists 'O-(how many registers?

3. Which bit of the Status Register is set when the result of

arithmetical expression is too large to
-
be represecited ih -

two's compliment form?

4. Regarding the four fields in the source statemeht?

(a) Which three of the fields may be optona_1? : _

(b) Which character always begins a 3ine of comment or is
the first letter in a comment field.

(c) Which field of a source statement is al
I
 ways.requi

-P
 red? ,

5. What is the difference between an assembler directive and a

instruction.

>DEFG
.t7

7. Which portion of a source statement ,determines which and what
type of operands are required.

-;

4
	

1

V -I

*.f

	

';-

tri 	 •=4 .5

"°3 	*

0

4

THE
INSTRUCTION SET
For a quick review, remember that the location of each byte in RAM
is designated by an address, much like the location of each house
in a city is specified by its address. Also keep in mind that the
number held at a particular address could in turn specify another
address where information is located. With this in mind we will
proceed with a discussion on addressing modes which simply stated,
are ways of telling the assembler program exactly at what address
in RAM needed information is located.

zi_o dembnnexiNie mcim.9

Your Home Computer provides a variety of ways to access the
numbers that your programs perform operations on. These numbers
are referred to as operands and specific ways to address them are
referred to as addressing modes. There are a total of five
addressing modes available when programming, they are

1. WORKSPACE REGISTER AND IMMEDIATE ADDRESSING
2. WORKSPACE REGISTER INDIRECT ADDRESSING
..›. SYMBOLIC REGISTER ADDRESSING
4. INDEXED MEMORY ADDRESSING
5. WORKSPACE REGISTER INDIRECT AUTO-INCREMENT ADDRESSING

The operand is the actual value that is to be "operated on" by
the instruction. How you want to specify the operand determines
the addressing mode that you will use.

In the sections that follow each addressing mode is discussed
in detail. An example is provided of each modes usage.

-25-

Zez 	II1L iNbIKULIWN bEF

VII C3 Fc IF< ', F" ite:4 IC E IF: EGIB -11- IR: enk ID Ell IR: 1E 9-. 9 I NI

In Workspace Register Addressing The operand is located in the
specified register. Remember that a Workspace consists of sixteen

consecutive Registers labeled RO through R15. Workspace Register 5

would thus be referred to as "R5". You specify in the beginning of
your program where these registers will be located in RAM. We
will have more on this later. An example of Workspace Register

Addressing is the statement:

MOV R2,R4

which moves a copy of the contents of Workspace Register 2 (R2)

into Workspace Register 4 (R4). Another example:

A 	R6,R7

adds the contents of Workspace Register 6 (R6) to the contents of

Workspace Register 7 (R7). The result is then placed in R7.

When using Workspace Register Addressing Mode it is important

to remember that the operand is found in the Register specified.

:I. Pi pi 1E: ID :11: ons "T. P.' onk 13 ID Fi: E !E -73 E3 I: NI C":3

You can also specify a constant as a source operand. In this way

the value is right there for the assembler to get and does not

have to be located in a Register or found at another address. This

is termed Immediate Addressing. An example is the following
statement:

LI 	R0,324

which places (loads) the value 324 into Workspace Register 0, and
the statement:

LI 	R9,>144

which loads the value >144 (324) into Workspace Register 9, and
the statement:

LI 	R6,-32

which loads the value -32 into Workspace Register 6.

NOTE: Remember when using signed numbers the most significant

bit holds the sign of the number. This limits signed

values to numbers that can be represented with only 15

bits. The signed values thus range from +32767 (>7FFF)

to -32768 (>8000). Unsigned numbers, however can range
from 0 (>0000) Lo 65535 (>FFFF) since bit 0 does not have

to be used to hold the sign of the number.

THE INSTRUCTION SET 	27

I rq ID I IFC 	-11- IA ID ID FZ. 	I t 10

With this type of addressing, the register specified contains the

address of the operand instead of the operand itself. An indirect

Workspace Register Address is preceded by an asterisk (*). For

example, the statement:

MOV *R3,*R0

copies the word at the address given in Workspace Register 3 into

the address found in Workspace Register 0. Notice how both R3 and

RO are indirectly addressed, that is they both contain the address

of the information rather then the information itself. Another

example is the statement:

A *R4,R6

which adds the contents of the word being held at the address

given in Workspace Register 4 to the contents of the word in
Workspace Register 6. The result is then placed in Workspace

Register 6. Notice how in this case R4 is indirectly addressed

while R6 is directly addressed.

I NI ID I IF: IC -1- anli Li -11. 	rA 	Fel ff.: NI in 	Ea) F:: IE.: E3 NI C3

With this type of addressing the register specified contains the

address of the operand as with indirect addressing. After the

address is obtained from the Workspace Register, the address in

the Workspace Register is incremented by 1 for a byte instruction

or by 2 for a word instruction. This allows you to access data in

memory in a sequential manner from a given starting point. A

Workspace Register auto-increment address is preceded by an

asterisk (*) and followed by a plus (A-) sign. For example, the

following statement:

A *R3+,R1

adds the contents of the word found at the address given in R3 to

the contents of Rl. The result is placed in R1. The address in

R3 is then incremented by two ('A' is a word instruction).

Another example is the statement:

MOV R9,*R10+

which copies the contents of R9 into the address given in R10 and

increments the address in R10 by two. Now lets consider an

example using real values. Suppose R1 contains >0004 and R2

contains >000A and address >0004 contains the value >0010, then

the statement:

A *R1+,R2

28 THE INSTRUCTION SET

adds the value found at address >0004 which is >0010, to the value
found in R2 which is >000A. The result, >001A is placed in R2.

The value in R1 is then incremented by two (A is a word

instruction). Thus, after completion of this statement R1
contains >0006, and R2 contains >001A.

miampliFey AnniFoIp41E3

This type of addressing allows you to use a symbol to represent

the address that contains the operand. The symbolic memory

address is preceded by an "at" character (@). For example, if RO

contains >0002 then the statement:

JOYI EQU >00FF

A 	@JOYI,R0

adds the contents of RO with the contents at "JOYI" (in this case
>00FF) the result, >0101, would then be placed in RO. Another

example is the statement:

MOV @>AA03,@>0E3F

which copies the word at address >AA03 into location >0E3F.

1-11-1o1F

With indexed addressing, the effective address is gotten by adding

the value of an index register to a displacement variable. You

often use this addressing mode to access elements in a table. In

such a case the value in the index register points to the

beginning of the table, and the displacement to an element in the
table.

The indexed memory address is preceded by an "at" sign (@)

after which comes the displacement value followed by the index

register which is closed in parentheses. For example,

A 	@4(R4),R1

gets the word found at the address computed by adding 4 to the

address in R4. This word, in turn, is added to the word found in

Rl. The result is then placed Rl. Another example in the

statement:

MOV R5,@TABLE+3(R7)

which copies the contents of register 5 into a memory word. The

address of this memory word is determined by taking the sum of

THE INSTRUCTION SET 	29

TABLE plus 3 and adding it to the contents of register 7 (R7).

note: Workspace Register 0 (RO) is reserved and may not be

specified as an indeg register.

F-F-Reic.31 locluitNimIF: IFcIL_PcirI. 	rvIDDIR78eIlNic-3

This addressing mode can only be used in the operand fields of

"jump" instructions the program counter relative address is

written as an expression that corresponds to an address at a word

boundary. An Example is the statement:

JMP GETKEY

which jumps unconditionally to location GETKEY. GETKEY is a label

that you gave another source statement in the program.

It should be noted that when an expression (like GETKEY in the

last example) is evaluated it is subtracted from the value of the

current location plus two 	This value is then divided by two with

the result being placed in the object code. This value must fall

between the values -128 through 127 or the jump will not be

executed. This means that the destination of a jump cannot be any

farther than 256 (>100) bytes from the current address in the

program counter.

To sum up you are not allowed to make a jump (using JMP) in

your program greater than >100 bytes in length.

IPAF:I -FIAMIa—VIIC DIF*IEF;:iPlirIIDINVe

When programming you will have occasion to add, multiply or
otherwise manipulate numbers. The TMS9900 allows addition (+),

subtraction (-), multiplication (*), and signed division (/).

When an expression is evaluated, the assembler first negates

all constants or symbols preceded by a minus (-) sign. All

succeeding operations are carried out from left to right.

Precedence is only given to the negation of symbols and constants,

not to any other procedure. Therefore 4+6/2 is evaluated as 5 and

not as 7. A remainder is disregarded in division, thus 5/2+4

equals 6.

Parentheses cannot be used to alter the order that an

expression is evaluated in.

4t - '_72 -T- FAI 	IINIB IIIIDINI 	EE -T-

The TMS9900 recognizes a number of different instructions. Table

4.1 lists the assembler mnemonic for each instruction and explains

what each mnemonic stands for. Also listed is the required

operand(s) and operand format for each instruction. You should

30 	THE INSTRUCTION SET

have a thorough understanding of addressing modes before
proceeding to the instruction set.

TABLE 4.1 INSTRUCTION SET

MNEMONIC 	DESCRIPTION 	 OPERAND(S) & FORMAT

A 	 ADD WORDS 	 G,(G)
AB 	 ADD BYTES 	 G,(G)
ABS 	 TAKES ABSOLUTE VALUE OF OPERAND 	 G
AI 	 ADDS AN IMMEDIATE VALUE TO WORKSPACE REG. 	(W),#
ANDI 	 LOGICAL AND IMMEDIATE VALUE 	 (W),#
B 	 BRANCH 	 G
BL 	 BRANCH & LINK 	 G
BLWP 	 BRANCH & LINK WORKSPACE POINTER 	 G
C 	 COMPARE WORDS 	 8,8
CB 	 COMPARE BITS 	 G,G
CI 	 COMPARE IMMEDIATE VALUE 	 W,#
CLR 	 CLEAR 	 G
COC 	 COMPARE ONES CORRESPONDING 	 G,W
CZC 	 COMPARE ZEROS CORRESPONDING 	 G,W
DEC 	 DECREMENT 	 G
DECT 	 DECREMENT BY TWO 	 G
DIV 	 DIVIDE 	 G,W
INC 	 INCREMENT 	 G
INCT 	 INCREMENT BY TWO 	 G
INV 	 INVERT 	 G
LDCR 	 LOAD CRU 	 G,#*
LI 	 LOAD IMMEDIATE VALUE 	 (W),#
LIMI 	 LOAD INTERRUPT MASK WITH IMMEDIATE VALUE 	#
LWPI 	 LOAD WORKSPACE POINTER W/ IMMEDIATE VALUE 	#
MOV 	 MOVE 	 8,(6)
MOVB 	 MOVE BYTE 	 G,(G)
MPY 	 MULTIPLY 	 G,(W)
NEB 	 NEGATE 	 G
ORI 	 LOGICAL OR IMMEDIATE VALUE 	 (W),#
RTWP 	 RETURN WORKSPACE POINTER
S 	 SUBTRACT 	 G,(G)
SB 	 SUBTRACT BYTES 	 G,(G)
SDO 	 SET CRU BIT TO ONE 	 CRU
SBZ 	 SET CRU BIT TO ZERO 	 CRU
SETO 	 SET TO ONE 	 G
SLA 	 SHIFT LEFT ARITHMETIC 	 (W),#**
SOC 	 SET ONES CORRESPONDING 	 G,(G)
SOCB 	 SET ONES CORRESPONDING, BYTE 	 G,(G)
SRA 	 SHIFT RIGHT ARITHMETIC 	 (W),#**
SRC 	 SHIFT RIGHT CIRCULAR 	 (W),#**
SRL 	 SHIFT RIGHT LOGICAL 	 (W),***

THE INSTRUCTION SET 	31

TABLE 4.1 INSTRUCTION SET (CONTINUED)

MNEMONIC 	DESCRIPTION 	 OPERAND(S) & FORMAT

JEQ 	 JUMP IF EQUAL 	 P
JGT 	 JUMP IF GREATER THAN 	 P
JH 	 JUMP IF LOGICAL HIGH 	 P
JHE 	 JUMP IF HIGH OR EQUAL 	 P
JL 	 JUMP IF LOGICAL LOW 	 P
JLE 	 JUMP IF LOW OR EQUAL 	 P
JLT 	 JUMP IF LESS THAN 	 P
JMP 	 JUMP 	 P
JNC 	 JUMP IF NO CARRY 	 P
JNE 	 JUMP IF NOT EQUAL 	 P
JNO 	 JUMP IF NO OVERFLOW 	 P
JOC 	 JUMP ON CARRY 	 P
JOP 	 JUMP IF ODD PARITY 	 P
STRC 	 STORE CRU 	 (G),#*
STST 	 STORE STATUS 	 W
STWP 	 STORE WORKSPACE POINTER 	 W
SWPB 	 SWAP BYTES 	 G
SZC 	 SET ZEROS CORRESPONDING 	 8,(G)
SZCB 	 SET ZEROS CORRESPONDING, BYTE 	 GOO)
TB 	 TEST CRU BIT 	 CRU
X 	 EXECUTE 	 G
XOP 	 EXTENDED OPERATION 	 (3,#***
XOR 	 EXCLUSIVE OR 	 G,(W)

* This operand represents the number of bits to be transferred.
This value ranges from 0 through 15 with 0 indicating 16 bits.

** This operand is the shift count.
***This operand specifies the extended operation.

G - Indicates a general address which can be in
one of any of the following modes:

a) Workspace Register
b) Indirect Workspace Register
c) Symbolic Memory
d) Indexed Memory Address
e) Indirect Workspace Register Auto-Increment

W - When this is specified the operand has to be a
Workspace Register Address.

- Value entered as a constant.
P - This operand is a program counter relative address.

CRU - Give CRU bit address.
() - The address at which a result is placed when two

operands are required.

-7 ,1
...) .e.:. THE INSTRUCTION SET

The instruction set can be divided into the following 7

functional groups:

1. DATA TRANSFER INSTRUCTIONS or LOAD AND MOVE
Instructions allow you to move information between
registers and memory locations.

2. ARITHMETIC INSTRUCTIONS allows you to perform
arithmetic operations.

3. JUMP AND BRANCH INSTRUCTIONS performs jumps, calls to
procedures, and returns from procedures, in this way
you can control the order in which the program
executes.

4. COMPARE INSTRUCTIONS let you compare words, bytes, or
immediate values with each other. They even let you
compare groups of bits within a byte or word that may
correspond with each other. These instructions only
affect the Status Register.

'''' 	LOGICAL INSTRUCTIONS permit the performance of logical
operations on workspace registers and memory locations.

6. SHIFT INSTRUCTIONS allow you to shift the bits in a
Workspace Register a specified number of positions.

7. BIT INPUT/OUTPUT INSTRUCTIONS allow you to manipulate
the LRU bits.

:0 ifnil "T de-211 	" 1-- 47-7,7. IP, NI 13 IF7 E.::: Uzi: 	I IMI 1E-3 1- IR! LOC: "T I CI ith4 1:3,

Data transfer instructions move numbers between registers and
memory locations. Table 4.2 outlines the format of each
insLruction as well as which bits of the Status Register are
affected by each instruction.

TABLE 4.2

Status Register Bits

(;) indiGates bits affecLed by instruction

MNEMONIC 	FORMAT 	 L> A> EQ C OV OP X 	INT MASK

MOV 	 6,(6) 	 X 	X 	X 	«A 1- 	- 	1- 	- 	- -

MOVB 	 6,(G) 	 X 	X 	X 	- - 	X 	1- 	- -1.

LI 	 (W),# 	 X 	X 	X 	- - 	- 	N.. 	- - - -

LWP1 	 # 	 - 	- 	- 	- - 	- 	-

LTM1 	 # 	 - 	- 	- 	- - 	- 	- 	XXXX
STST 	 W 	 -

STWP 	 W 	 -
SWF'S 	 6 	 -

- - - - - -

_ - 1- - _ 	1- - - _ _

- - - - - _ _ - - -

THE INSTRUCTION SET 33

C:0) 	Pi C3 '1/4.11 lE". 	VI C3

One of the foundational instructions in assembly language is the

"move word" (MOV) instruction. It can transfer a word from a

source operand into a destination operand. The destination

operand is then compared to zero and sets (or resets) the L>, A>,

and ED status bits accordingly.

The following are examples of operand combinations that are

legal:

MOV
MOV
MOV
MOV

@HERE,@THREE
@HERE,R7
R3,R4
R7,@DEST

*MEMORY TO MEMORY (COPY INTO THERE)
*MEMORY TO REGISTER (LOAD REGISTER)
*REGISTER TO REGISTER
*REGISTER TO MEMORY

Another use of the MOV instruction is to compare a memory

location to zero. For example, the following source statements:

MOV R5,R5
	

*Move R5 into itself and compares it to 0.
JEQ CHECK
	

*Jump to location "CHECK" if R5=0.

move Workspace Register 5 into itself and then compares the

contents of R5 to zero. If R5 is equal to zero than the EQ bit is

set and the JEQ instruction will cause the program to "jump" to
location "CHECK".

1F-3 	 IEE. 	Et. 14fer 'T. ET

This instruction copies the most significant byte of the source

operand into the destination operand.. For example suppose memory

location >2E32 contains the value >23A6 and HOLD is located at
address >2E32, and if R2 contains >34CC then the statement:

MOVB @HOLD,R2

changes the contents of R2 to >23CC and compares the contents of

R2 to zero. As a result of this comparison and the logical

greater than, arithmetic greater than, and odd parity bits are

set, while the equal status bit is reset.

Places a given number in a specified Workspace Register. The

contents of this register is compared with zero and the results of

this comparison affect the L>, A>, EQ bits of the Status Register
accordingly. For example, the statement:

LI R2,>23 	*Load Workspace Register 2 with >0023.

loads R2 with >0023 (35) and sets the logical greater than,

arithmetic greater than, and resets the equal status bits.

54 	THE INSTRUCTION SET

IL.WIF" I > 	 F" 	IE: IF"01 I NI -FE: 	im 	Y..> I Ir:41 -11- E:

Places the Workspace Pointer at the address specified by the
immediate operand. For example, the statement:

START LWPI >20BA *SET START EQUAL TO >20BA

Sets START equal to >20BA and also sets the Workspace Pointer to
location >20BA. The LWPI instruction has no effect on the Status
Register.

Pell I > 	C3IA:ID, 	I Kg 	 01-21...F3 1-:(I rail pi Ern I ir-A,

This instruction loads the interrupt mask of the Status Register
(bits 12-15) with a specified value. For example, the statement:

LIMI 2

sets the interrupt mask at 2 (>0010) and enables interrupts at
levels 0, 1, and 2. While the statement:

LIMI 0

disables all interrupts and is the normal state of the computer
(>0000).

,C 	r 7,0 	El; 	 tE.:3 --r 	Lit E3 	113 	E3 -11-

Stores the current contents of the Status Register in a specified
Workspace Register. For example the statement:

STST R5

stores the current Status Register contents in Workspace Register
5.

(--r 11.4F- > 	 Ft: 	WIDIE4i:II<E3F"IPICAE FAD

This instruction saves a copy of the contents of the Workspace
Po*nter Register in a specified Workspace Register. For example,
the statement:

STWP R4

stores the Workspace Pointer value in R4.

$3.3 	 E3WtqlF" 	Y -I
-
FEE];

This instruction switches the most si gnificant byte with the least
significant byte in a General Register. In other words, SWPB

THE INSTRUCTION SET ? IC
....),)

exchanges the left and right bytes of a specified word. For
example, the statement:

SWAP SWPB R2

replaces the most significant byte of register 2 (bits 0-7) with a
copy of the least significant byte (bits 8-15) contained within
the register. Conversely, the least significant byte of register
2 is replaced with a copy of the most significant byte. In this
way bytes can be interchanged in anticipation of various byte
instructions. In another example, suppose RO contained the value
>2244, and memory location >2244 contained the value >FF33, the
instruction:

SWPB *RO

would change the contents of memory location >2244 to >33FF.

In summary, the SWPB instruction exchanges left and right
(least/most significant bytes) of a word specified in a general
register. The SWPB instruction has no effect on the Status
Register.

.4. - -4 	1-- 11-11 E::: 	IC% F-4,-* ". I "T 1-11 tri E:: -11- I C.:: 	I V1/4.11 E3 -IF Fi: t.....11 Cf.:,' -11- I. ID trA :E .3%

Arithmetic instructions allow you to perform a variety of
arithmetic operations in your program. Table 4.3 shows which bits
of the Status Register that are affected by each instruction.

TABLE 4.3 ARITHMETIC INSTRUCTIONS ---___
STATUS REGISTER BITS

(X) INDICATES BITS AFFECTED BY INSTRUCTION
Mnemonic 	Format 	L> A> EQ C OV OP X 	INT MASK

A 	 6 , (G) 	 X 	X 	X 	X 	X 	- 	...- 	 ...- --- ^

AB 	 G,(G) 	 X 	X 	X 	X 	X X 	- 	- - -
ABS 	 G 	 X 	X 	X 	- 	X - 	- 	- - - -

AI 	 (W) , # 	 X X X X X - - ^ -

DEC, 	 G 	 X X X X X - - - -

DECT 	 G 	 X 	X 	X 	X 	X 	- 	Y._ 	- 1-- 1-- -

D I V 	 G , (W) 	 - - - - X - - - - -
I NC 	 G 	 X X X X X - - - -

I NCT 	 G 	 X 	X 	X 	X 	X - 	Y._ 	- - -

MPY 	 G , (W) 	 - - - - - - - - - -

NEB 	 G 	 X X X - X - - - -

S 	 G , (G) 	 X 	X 	X 	X 	X - 	̂ 	_ - - -

GB 	 G , (G) 	 X 	X 	X 	X 	X X 	- 	- - - -

36 	THE INSTRUCTION SET

) 	13 r) tAi F: 1.3 E3

This instruction adds a copy of the source operand to a copy of

the destination operand and places the sum in the destination

operand. For example, the statement:

A *R3,*R4+

adds the contents of the word found at the address in R3 to the

word found at the address in R4. The sum is placed at the address

given in R4 and the address in R4 is incremented by two (Workspace

Register auto-increment addressing). The sum is compared to zero

and the results of the comparison are reflected in the Status

Register. Another example we can look at supposes that the

address labeled TABLE contains >2123 and R2 contains >000B, the

statement:

A R2,@TABLE

then causes the contents at TABLE to change to >212E. The logical

and arithmetic greater than bits are set and the equal, carry and
overflow bits are reset in the Status Register. The contents of
R2 remain >000B.

dcb) 	E> 	:E.1 'Ye 11- 1E1 E3

This . instruction adds the left most byte (bits 0-7) of the

specified source register to the left most byte of the destination
register. The result is placed in the left-most byte of the
destination register. For example, in the statement:

AB R3,R4

the left byte of R3 is added to the left byte of R4 and the sum is

placed in the left byte of R4. Another example, suppose that R2

contained the address >23FA at which was located the memory word
>2233, and 'R3 contains >DD8B, then the statement:

AB *R2+,R3

changes the contents of R3 to >FF88 and increments R2 by one to
>23FB. This result is obtained by taking the left most byte of
the memory word specified in the address given in R2 (>22) and
summing it with the left most byte in R3 (>DD) coming up with >FF.
This sum is then placed in the left most byte of R3 and R2 is
incremented to >23FB. Comparison of the sum with zero sets the
logical greater then, overflow, and odd parity bits of the Status
Register while it resets the arithmetic greater than, equal, and
carry status bits. Another example, R4 contains >8100, and

THE INSTRUCTION SET 	39

The instruction is ignored and the overflow status bit is set

while the source and destination operands remain unchanged. Lets

take some time now to look at a few examples to see if we can

clarify things. Suppose that memory location LOCA contains >0005,
R2 contains >0001 and R3 contains >000D, then the statement:

DIV @LOCA,R2

divides 65549 (>0001000D) by 5 and places the quotient 13109

(>3335) in R2 and the remainder, .2 (represented as "2") in R3.

In another example suppose that LOCA contains >0002 and R2

contains >0004, also R3 contains a zero, then the statement:

DIV @LOCA,R2

attempts to divide 262144 (00040000) by 2. The resultant
quotient, 131072, cannot be represented in a 16-bit word. The

result is that the overflow bit is set in the Status Register and

the operation is canceled.

In summary, the destination operand is a consecutive 2-word

area of a Workspace Register. It should be noted that if the

destination operand is Workspace Register 15 (R15) the first word

of the destination operand is in R15 and the second word is in the
memory location immediately following the Workspace area.

Note that the DIV instruction does not let you divide by an

immediate value directly. To do this, you must put the immediate

value into a register a Register or memory location. The

following examples illustrates this point.

HERE EQU >14
	 *

THERE EQU >05
	

* Load equates
ZERO EQU >00
	 *

MOV @HERE,R7
MOV @THERE,R5
MOV @ZERO,R6
DIV R5,R6

Another example,

LI 	R5,>05
LI 	R6,0
LI 	R7,>14
DIV R5,R6

* Move
values into

Registers
* Computes 20/5, result goes in R6.

*
* Load Registers
*
* Computes 20/5, result goes in R6.

IN.11 	IR EL: r-1 FE: INI -r"

This instruction increments the source operand by one (1). The

result then replaces the source operand. The computer compares

the new value to zero and sets/resets the status bits accordingly.

40 	IHE INSTRUCTION SET

With a carry of bit 0, the carry bit is set. With an overflow,

the overflow bit is set. An example of the INC instruction is the

statement:

INC @ADRS

which increments the value specified at location ADRS by one.

(I) 	I INJFe.:1E:FIE-..- INUT- FAN' 1- 104101

This instruction increments the source operand by two (2). The

result then replaces the source operand. The computer then

compares the sum to zero and sets/resets the status bits

accordingly. When there is a carry of bit zero the carry bit is

set. With an overflow, the overflow bit is set. Lets consider an

example where R3 contains >0022:

INCT R3

this statement then increments R3 by two and places the result

(>0024) in R3. The arithmetic greater than, logical greater than

status bits are set while the equal, carry, and overflow status

bits, are reset.

Both the increment and the decrement instructions are useful to

index byte arrays while the increment and decrement by two

instructions are useful to index word arrays.

The MPY instruction performs a multiplication. The source

operand is multiplied by the destination operand. The product is

then placed in the 2-word destination operand. For example if RO

contains the value >0003, R3 contains the value >0005, and R4

contains the value >0EA7, the statement:

MPY R0,R3

multiplies the contents of RO and R3 together to get >000F and

places this value in R4. R3 now contains a zero (>0000). The

Status Register is unaffected by the MPY instruction. Another

example supposes that the memory location HERE contains >FFFF and

R3 contains >0002, then the statement:

MPY @HERE,R3

multiplies the contents HERE (65535) to the contents of R3 (2).

The product 131070 (>0001FFFE) is placed into R3 (>0001) and R4
OFFFE). Memory location HERE is unchanged as is the Status

Register. If the destination operand is specified as R15 the
product is placed into R15 and the first memory word immediately

following the workspace memory area.

THE INSTRUCTION SET 	41

c t.,41 e) 	IA la ID IA --r

This instruction replaces the source operand with its additive
inverse. The computer then compares the result to zero and

sets/resets the status bits to reflect this comparison. Suppose

memory location VALUE1 contains the value >9BC1, then the
statement:

NEB @VALUE1

changes the contents of VALUE1 to >643E. The logical greater than

and arithmetic greater than status bits are set in the Status

Register while the equal and overflow status bits are reset.

This instruction subtracts a copy of the source operand from a

copy of the destination operand and places the result in the

destination operand. The result is compared to zero and the

status bits are set/reset accordingly. When there is a carry of

bit zero, the carry bit is set. When there is an overflow, the

overflow bit is set. For example, suppose that memory location

HERE contains >2123 and memory location THERE contains >AA33, then
the statement:

S @HERE,@THERE

changes the contents of THERE to >8E10 (>AF33->2123). The logical

greater than, arithmetic greater than, carry and overflow status

bits are set, while the equal status bit is reset.

< 9 Ec)4 	9 Li -.1a -11- IF‹ IPI 1177; 11 - E:4 No' 11- E-17. 9;

This instruction subtracts the source operand, whiLh is a single

byte, from the destination operand, which is also a single byte.

The difference is then p]aced in the destination operand. The

computer compares the resulting byte to zero and sets/resets the

Status Register bits to reflect the results of this comparison.
When there is a carry of the most significant bit of the byte (bit
0), the carry status bit is set. When there is an overflow, the

overflow status bit is set. If the resulting byte has an odd

number of bits set to one, then the odd parity bit is set. If the

operand is specified in a Workspace Register, then only the left

most bits (bits 0-7) are used. For example the statement:

SB RO,R1

which subtracts the left-must byte of RO from the left-most byte

of R1, and places the difference in the leftmost byte of Rl.

Another example supposes that memory location ADDR contains the

value >131D and R5 contains the value >23F5, then the statement:

42 	THE INSTRUCTION SET

Sb R5,@ADDR

changes the contents of R5 to >F610. The logical greater than bit
is set, while the other status bits affected by this instruction
are reset.

aumF- 	EcIF:021rAIGFA

Jump instructions as well as branch instructions are used to
transfer control from one area of the program to another. This
control transfer may be conditional or nonconditional. These
instructions are mainly used to control the sequence in which a
program executes. Table 4.4 outlines the conditional and
nonconditional branch and jump instructions and the status bits
tested by each instruction:

TABLE 4.4 JUMP & BRANCH INSTRUCTIONS

STATUS REGISTER BITS TESTED/AFFECTED
(t) indicates bits tested by instruction

Mnemonic Format 	 L> A> EQ C OV OP X 	INT MASK

UNCONDITIONAL TRANSFERS

BL
BLWP
jivIP 	expression
RTWP .

^ M.. 1- - _ _ ^ ^ - _ _1-
- M.. - _ ^ - _ - - _ -
-- - - - - - - - - _

* X 	x 	x 	x x 	x 	x 	x x x x

CONDITIONAL TRANSFERS

JEQ 	expression 	 - 	- 	t
JNE 	expression 	 - 	- 	t
JH 	 expression 	 t 	- 	t
JL 	 expression 	 t 	- 	 t
JHE 	expression 	 t 	- 	t
JLE 	expression 	 t 	- 	t
JOT** 	expression 	 - 	t 	-
JLT** 	expression 	 - 	t 	t
JNC 	expression 	 - 	- 	- 	t
JOC 	expression 	 - 	- 	- 	t
JNO 	expression 	 - 	- 	- 	- t
JOP 	expression 	 - 	- 	-

ITERATION CONTROLS

X 	 source 	 ***x 	x 	x 	x x 	x 	x 	x x x x
XOP 	source,operation

t=tested status bit, x=affected status bit

_ ^ ^ - - -
-- - - _ M.. ^ -
_ _ _ ^ - - - y-
r- _ - - _ _ _ _
- - - - ^ - - -

-- - - _ - -
_ - - - -
^ _ - - _ _
_ - - - _
_ - - - -

THE INSTRUCTION SET 	43

* Restores all status bits to the value contained in
Workspace Register 15 (R15).

** Only JGT & JLT instructions use signed arithmetic

comparisons. All other comparisons are logical

(unsigned) comparisons.

*** The instruction 'X' does not directly affect any

status bits, however the executed instruction affects
the Status Register accordingly.

This instruction transfers control to another line in the program.

It does this by replacing the contents of the Program Counter

Register with the address specified in the operand. This

instruction has no affect on the Status Register. For example, if
R4 contains >32F1, the statement:

B *R4

causes the word at location >32F1 to be placed in the Program

Counter Register. This has the effect of letting the word at

location >32F1 be used as the next instruction executed by the
program.

Ec L... 	lB IA NI IC FI 	Nur) L._ I 104

This instruction transfers control to another line in the program.

It also stores the address of the instruction immediately

following the BL in RII. The transfer of control is accomplished

by replacing the value in the Program Counter Register with the

value specified by the source operand. The BL instruction has no

affect on the Status Register. For example, if the statement:

BL @SUBL

occurs at memory location >06CA, the instruction places the value

>06CE in RII and places memory location SUBL in the Program
Counter Register.

note: The instruction BL @SUBL requires two words of machine

code which are placed at addresses >06CA and >06CC.
Therefore, the word address immediately following the

second word is >06CE which is the value placed in RII.

L.4 F" 	ED: FR 01 P4 IC 	ir.41 V4 11) L_ C3 ir; 13
1,0,41 C3 FR E3 IF" 	EE IF- C3 rA 	IF:

When this instruction is implememnted the following occurs:

1) The source operand is placed in the Workspace Pointer
Register.

44 	THE INSTRUCTION SET

2) The word immediately following the source operand is placed

in the Program Counter Register.

3) The previous contents of the Workspace Pointer Register are

placed in new Workspace Register 13 (R13).

4) The previous contents of the Program Counter Register (the

address of the instruction immediately following BLWP) are

placed in new Workspace Register 14 (R14).

5) The contents of the Status Register are placed in the new
Workspace Register 15 (R15).

When all operations are finished, the computer transfers

control to the new value in the program counter. With the BLWP

instruction you can link to subroutines and program modules that

do not necessarily share the calling programs workspace.

(..31"1 F') 	IA PA 	CI(PA ID :t -11- I Ch I-A Pk L. 	0 1.....JI t1/41F-

The JMP instruction allows you to move around in your program. It

is similar to the GOTO instruction in BASIC. The JMP instruction

causes the computer to take its next instruction from another

location. It does not affect the Status Register. It's clean and

simple. The following are examples of the JMP instructions usage:

1) JMP THERE * Jumps to location THERE.
2) JMP >11AF * Jumps to address >11AF.

Keep in mind that when using 'jump' instructions the address

you are jumping to has to be within >100 bytes of the address of

the jump instruction or the instruction is ignored.

(IR 1- 1AP F") 	FR lc= 1- Li Fiz PA lAil C) Fc. I< :E.3 F---:" IA C:::: lE:-.: F" DI NI 1- IE.. IF:

This instruction serves to return the computer to how things were

before the calling of a subroutine through use of a BLWP

instruction. Also returns from an interrupt or XOP instruction.
The RTWP instruction accomplishes this in the following steps:

1) Replaces the contents of the Workspace Pointer with a copy
of R13.

2) Replaces Lhe value in the Program Counter Register with a
copy of R14.

3) Replaces the contents of the Status Register with a copy
of R15.

In summary, the RTWP instruction restores the execution

environment after completion of a BLWP instruction, interrupt, or
XOP instruction.

THE INSTRUCTION SET 	45

C.31 NI ic) 1 -r 1 pi rA ph IL.... 7- IR ink IN1 B F- FC B

There are 12 different instructions that allow your computer to
make a "decision" before proceeding along a course of action.

These decisions are based on the contents of the Status Register.

Some of the conditional jump instructions test to see if the carry

(C) bit has been set others test differing combinations of bits.

For instance, the instruction Jump on Odd Parity (JOP) jumps only
when the Odd Parity (OP) bit is set, others such as the Jump if

logical High (JH) only jump if the logical greater than (L>) bit

is set to 1 and the equal (EQ) bit is reset to 0.

The conditional jump instructions do not change any of the

status bits; instead they are the instructions which look at the

bits in the Status Register. They are the only instructions which
base their activity on Status Register settings. They are the
reason the Status Register exists at all.

All conditional transfer "jump" instructions occupy 2 bytes in

memory. The first byte holds the operation code, while the second

holds the relative displacement. You should always try and

construct your programs so that the expected outcome executes when
the jump is not taken.

Here are a few examples of conditional transfer "jump"
instructions:

1) A 	R0,R1 * Jumps to location BIG if the add instruction
JOC BIG 	* produces a carry.

2) S 	R4,R5 * Jumps to location ZERO if the result of this
JEQ ZERO 	* subtraction operation is a O.

You can also check to see if a Register contains a zero by

using a MOV instruction, as in the following example:

3) MOV R4,R4 * Copies the contents of R4 into itself and
* 	 compares the result to zero.
JEQ ZERO 	* Jump to location ZERO if EQ bit set.

You can also set up a counter in a program for use in creating

delays, loops, arrays, or printing to consecutive screen

locations. Counters have the general format:

4) LI R1,1000 * Put 1000 in R1.
DELAY DEC R1 	* Decrement R1.

MOV R1,R2 	* Copy R1 into R1 and compare R1 to O.
JNE DELAY 	* Jump if R1>0 (EQ=0) to DELAY.
. 	 * Continue program.

46 	THE INSTRUCTION SET

Conditional jump instructions have the general format:

j-- expression

where (--) is a one or two letter modifier. The expression may be
a constant or symbol. Looking at Table 4.5 we see a summary of the
conditioina' jump instructions, as well as the conditions that
cause a jump to occur. 'jump...if' refers to status bit settings.

TABLE 4.5 CONDITIONAL JUMP INSTRUCTIONS

Instruction Description 	 'Jump if....'

JEQ
JNE
JH
JL
JHE
JLE
JGT*
JLT*
JNC
JOC
JNO
JOP

JUMP IF EQUAL TO ZERO
JUMP IF NOT EQUAL TO ZERO
JUMP IF LOGICALLY HIGHER THAN ZERO
JUMP IF LOGICALLY LOWER THAN ZERO
JUMP IF LOGICALLY HIGH OR EQUAL TO ZERO
JUMP IF LOGICALLY LOW OR EQUAL TO ZERO
JUMP IF GREATER THAN ZERO
JUMP IF LESS THAN ZERO
JUMP ON NO CARRY (CARRY BIT RESET)
JUMP ON CARRY (CARRY BIT SET)
JUMP IF NO OVERFLOW
JUMP IF ODD PARITY

EQ=1
EQ=0
L>=1 & EQ=0
L>=0 & EQ=0
L>=1 or EQ=1
L>=0 or EQ=1
A>=1
A>=1 & EQ=0
C=0
C=1
OV=0
OP=1 -_____

*signed comparisons/all others use unsigned (logical) comparisons

The execute instruction allows you to utilize a source operand as
an instruction. The X instruction does not alter the Status
Register, but the inserted instruction affects status bits
normally. If a jump is executed (that is if the status test for a
jump is passed) the jump is executed from the location of the X
instruction. The X instruction can specify an instruction one,
two, or three words in length. Th .-. Program Counter Register is
then incremented the required one, two, or three words required by
the source operand. The X insLruction is mainly used when the
instruction needed is dependent upon a variable factor.

It is very useful to compare various values when computing. That
is the purpose of the compare instruction set. Compare
instructions have no effect other then to set or reset various
status bits. They are used in combination with conditional jump
instructions to help the program make decisions. The compare
instructions make simultaneous logical and arithmetic comparisons.

THE INSTRUCTION SET 	47

Arithmetic comparisons compare the two operands as two's

compliment values. A logical comparison compares them as unsigned
numbers. Table 4.6 outlines a summary of the compare instructions

and the status bits each affect:

TABLE 4.6 COMPARE INSTRUCTION SET

Status Register Bits

(x) indicates bits affected by instruction

Mnemonic 	Format 	 L> A> EQ C OV OP X 	INT MASK

C 	 G,G 	 x 	x 	x 	- - 	- 	- 	- - - -

CB 	 G,G 	 x x x - x - 	- - - -

CI 	 W,# 	 x x x - - - 	- - - -

CDC 	 G,W 	 - - x - - - - - -

CZC 	 G,W 	 - 	- 	x 	- - 	- 	- 	- - - -

(ir) 	c---.... co pit IF" Ink FC IE._ lAi 01 Ft: 11D 9

This instruction compares the source operand, which is a word of

memory, with the destination operand which is also a word of

memory. The result of this comparison is then reflected by the

Status Register. The arithmetic greater than and equal status

bits reflect a signed comparison while the logical status bit

reflects an unsigned (16 bit) comparison. The operands are

left unchanged.

The compare instructions act very much like the subtract (S)

instruction in that the compare instructions subtract a source
operand from a destination operand. The difference is then

compared with zero with the Status flags being set accordingly.

But unlike the Subtraction instruction, the compare instructions

do not save the result; the operands remain unchanged. The sole

function of the compare instructions is to set/reset status bits

in the Status Register for decision-making by conditional jump

instructions. An example of the compare word (C) instruction is

the statement:

C RO,R1

which compares RO with R1 (the contents of RO are subtracted from

the contents of R1; the difference being compared to zero). The

Status Register is then set/reset to reflect the result of the

comparison. Table 4.7 gives some examples of the compare words (C)

instruction:

48 	THE INSTRUCTION SET

TABLE 4.7 COMPARE WORDS INSTRUCTION

Status Register settings after 'C' instruction
Source-op 	Destination -op 	Logical (L>) Arithmetic (A>) Equal

>FFFF >0000 1 0 0
>7FFF >0000 1 1 0
>s000 >0000 1 0 0
>3FB2 >3FB2 0 0 1
>F214 >B345 1 0 0

>6000 >5FFF 0 0 0

The compare bytes instruction is very similar to the compare words
instruction we have just covered. The exception is that two bytes
are compared instead of two words. For example, the statement:

CB 	RO,R1

compares the left byte of RO with the left byte of Rl. The result
of this comparison will set or reset the appropriate status bits.
The operands are unaffected. In addition to the L>, A>, and EQ
status bits, the OP (Odd Parity) status bit is set when the result
of the CB operation (really a subtraction operation) contains an
odd number of logic one bits. Table 4.8 gives some examples of the
use of the CB instruction:

TABLE 4.8 COMPARE BYTES INSTRUCTION
•-•-•-••••••-•-•-•••-•••-•••-•••••-•--•-«,•.---.+-• -.

Source -op
Status Register settings after 	'CB'

Destination -op 	L> 	A> 	Equal
instruction
Odd Parity

>00 >FF 1 0 0 0
>00 >7F 1 1 0 1
>7F >BO 1 0 0 1
>7F >7F 0 0 1 0
>80 >7F 0 1 0 1

1

THE INSTRUCTION SET 	37

address >2232 contains >F411. Also R5 contains >2233, the
statement:

AB R4,*R5

then changes the memory word >2232 to .>F492 because >el (the value
of the left most byte in R4) plus >11 the (the value in memory
byte >2233) equals >92. The left byte in memory word >2232 is
unchanged. In this example the logical greater than, overflow,
carry and odd parity bits are set, while the arithmetic greater
than, and equal bits are reset.

dcrEle 	 e;

This instruction takes the absolute value of an operand. It first

checks the sign bit (bit 0) to see if it is equal to on 	It it
is then the two's compliment of the number is taken. If the sign

bit is equal to zero, then the number is already positive and the

source operand is unchanged. For instance, if RO contains the
value >FE00 then the statement:

ABS RO

changes the value of RO to >0020. In this case when the result is

compared to zero, the logical greater than and arithmetic greater
than status bits are set, while the overflow, and equal status
bits are reset.

Pk I) 	Ann I ri 1E2. ID I. ir'Al -11- E.::

This instruction adds an immediate value to a specified Workspace

Register and places the result in the Workspace Register. The sum

is then compared with zero and the Status Register bits are

set/reset accordingly. For example, the statement:

AI R2,8

adds the value 8 to the contents of R2 and places the result in

R2. Another example supposes that R5 contains >0006:

AI R5,>23

the value >0029 is placed in R5. In this case the logical greater

than and arithmetic greater than status bits are set, while the

equal, carry, and overflow bits are reset.

This instruction decrements the contents of a specified general
register (or a memory location specified in the address) by one
(1). The result then replaces the source operand. The result is

3e 	THE INSTRUCTION SET

compared with zero setting/resetting the Status Register

accordingly. For example, the statement:

DEC *R4

decrements by one, the word starting at the address given in R4.

The DEC instruction is very helpful in counting and indexing of
byte arrays. For example, if memory location TABLE contains the

value >0001, then the statement:

DEC @TABLE

places a value of zero in location TABLE (>0000). As a result of

this the equal and carry status bits are set, while the logical

greater than, and overflow status bits are reset.

(IDEE.C.L'T 3 	Di E:-.. C.:: FC. IFE: PI E: INI -11-- IB "N" -1- LN0 C3

This instruction decrements the source operand by two (2). The

result then replaces the operand. For example, the statement:

DECT @ADDR1

decrements the contents of ADDR1 by two. The result is compared

to zero with the results of this comparison setting or resetting
the status bits accordingly. The carry bit is set if there is a

carry of bit zero. The DECT instruction is very helpful in

counting and indexing word arrays. For instance, suppose memory

location TABLE contains the value >2AEO then the statement:

DECT @TABLE

places a value of >2ADE in TABLE. The logical greater than

arithmetic greater than and carry status bits are set, while the

equal and overflow status bits are reset.

This instruction divides the destination operand (which is a

consecutive two (2) word area of a Workspace Register) by a copy

of the source operand (one word from a general Register). For

example the instruction:

DIV R1,R2

divides the contents of Workspace Registers 2 and 3 by the
contents in Workspace Register 1. It should be remembered that
when the source operand is greater than the destination operand,
normal division occurs. However, if the source operand is less
than or equal to the first word in the destination operand, then
the quotient will be too large to be represented in a 16 bit word.

THE INSTRUCTION SET 	49

(I) 	4:11MF"AlF.0 	Immianiic4m

This instruction compares the contents of a Workspace Register to
some immediate value. For example, the statement:

CI R3,>21

and the statement:

CI R3,33

both compare the contents of R3 with the number 33. The
comparison is accomplished in the same manner as with the C
instruction. The Status Register bits are set/reset to reflect
the results of the comparison.

OC101) 	ICIE 	 101"41 	C-21011 104%.113I104 10

This instruction will set the EQ status bit if the bit positions
set to 1 in the destination operand correspond to the bit
positions set to one in the source operand. For example, the
statement:

COC @TEST,R3

compares the logic bits set to 1 in TEST with the bits set to 1 in
R3. In another example, suppose MASK contains the word >D012 and
R3 contains the value >F693, then the statement:

COC @MASK,R3

sets the equal status bit to 1 for we see that:

>D012 = 1101 0000 0001 0010 and
>F893 = 1111 1000 1001 0011

for each bit set to 1 in the source operand there is a 1 bit in
the corresponding bit position of the second operand. If R3 had
contained >F890, the equal status bit would have been reset.

((--.ZC:::) 	icril 	 zIEEF.copc_3 icoliFe cliNinIp4

This instruction will set the EQ status bit if the bits in the
source operand that are set to 1 correspond to the bits set to 0
in the destination operand. For example, the statement:

COC @MASK,R3

compares the bits set to 1 in MASK, with the bits set to zero (0)
in R3. In another example, suppose MASK contains the word >A632,
and R3 contains the value >44DF, the above instruction sets the

50 	THE INSTRUCTION SET

equal (EQ) status bit to 1 because:

>AB32 = 1010 1011 0011 0010 and
>44DF = 0100 0100 1101 1111

1 	I 	k 	\

for every logic bit set to 1 (one) in)the source operand (>AB32),

there is a logic bit set to (0) zero(In the corresponding bit

position of the destination operand (>44DF). However, if R3 had

contained the value >44DE the EQ bit would have been reset

because:

>AB32 = 1010 1011 0011
>44DE = 0100 0100 1101

0010 and
1110

in the destination operand (>44DE), in bit position 15 (least

significant bit) the bit is not set (not=1).

The COC and CZC instructions are used to compare a word with a

mask in order to see if either its one bits correspond or its zero

bits correspond. To sum up, the COC instruction is used to

determine if the word in a Workspace Register has l's that

correspond to the l's in a mask that you specify. Conversely, the

CZC instruction is used to determine of the word in a Workspace
Register has O's in the bit positions indicated by l's in a

specified mask.

-411- . -7 	IL.... ID 1G I C-.... itclk L. 	I NI E3 11-- IF4'. Li C-2.: -T. I C3 1",41 .,:c3

Logical instructions are so named because they operate according

to the rules of formal logic as opposed to the rules of

mathematics. When dealing with logical instructions it is helpful
to think in terms of bits set (=1) as "true" and bits reset (=0)

as "false." There are ten instructions that allow you to perform

various logical operations on memory locations and/or Workspace

Registers. These instructions are outlined along with the status

bits they affect in Table 4.9.

TABLE 4.9 LOGICAL INSTRUCTION SET __
Status Register Bits

(x) indicates bits affected by instruction

Mnemonic Format
	

L> A> EQ C OV OP X 	INT MASK

ANDI 	(W),# 	 x 	x 	x 	- 	- 	-

ORI 	 (W) ,# 	 x 	x 	x 	- 	- 	-

XOR 	 G,(W) 	 x 	x 	x 	- 	- 	-

INV 	 G 	 x 	x 	x 	- 	- 	-

CLR 	 G 	 - 	- 	- 	- 	- -

SETO 	G 	 - 	- 	- 	- 	- -

SOC 	 G,(G) 	 x 	x 	x 	- 	- 	-

SOCB 	G,(G) 	 x 	x 	x 	- 	- 	x

SZC 	 GOB) 	 x 	x 	x 	- 	- 	-

SZCB 	G,(G) 	 x 	x 	x 	- 	- 	x

THE INSTRUCTION SET 	51

(ink Ni r) 1) L.. a G I 10 ina IL. Pr NJ D.
(X COIR) 	X 'CLUB I 14,11 1—COS:

Logical instructions are primarily used to manipulate the

individual bits of an operand. This is opposed to manipulating an
entire group of bits as we will learn to do in later sections of

this chapter with "shift" instructions. The ANDI instruction

utilizes the rule of logic stated:

If A is true and B is true, then C is true.

Specifically the 16 bit value in a Workspace Register is

compared bit-by-bit (ANDed) with an immediate value that you

specify. If both bits are "true" (that is =1) than the resultant

bit is true (set). This procedure is repeated for each bit, with

the resultant value obtained being placed in the Workspace

Register. For example, if R2 contains a value of >A3D4, the

statement:

ANDI R2,>6C4E

then places the value >2044 in R2 because:

>A3D4 = 1010 0011 1101 0100 ANDed
>6C4E = 0100 1100 0100 1110 with this

>2044 = 0010 0000 0100 0100 results in this

Notice how if two "set bits" are compared it results in the
setting of the corresponding result bit, however, if the bits do

not match the corresponding bit is reset.

Table 4.10 is a "truth table" which gives the result of all

possible combinations of zeros and ones that can be "ANDed"

together:

TABLE 4.10 LOGICAL AND IMMEDIATE

Workspace Register bit 	Jmmediate operand bit ANDI result

0 	 0 	 0

1 	 0 	 (T)
0 	 1 	 0
1 	 I. 	 1

The logical-or immediate (ORI) instruction compares the 16 bit

value in a specified Workspace Register with some immediate value.

The logical "OR" utilizes a slightly different version of the
previously stated logic rule:

If A is true or B is true, then C is true.

THE INSTRUCTION SET

Specifically, the 16-bit value in a Workspace Register is
compared bit-by-bit (ORed) with some immediate value that you
specify. If either of the two bits being compared is "true"
(set to 1), then the resulting bit is also true (set=1). This
procedure is repeated for each successive bit with the resulting
value being finally placed into the Workspace Register. For
example, if R3 holds the value >A3D4, then the statement:

ORI R3,>6C4E

places the value >EFDE in R3 because:

>A3D4 = 1010
>6C4E = 0110
>EFDE = 1110

0011 1101 0100 ORed
1100 0109 .kilp with this
1111 1101 1110 results in this

Notice that if either bit being compared is set (=1), then the
resultant bit is also set. If neither bit being compared is set,
then the resultant bit is reset (=0).

Table 4.11 is a 'TRUTH' table listing the result of all
possible combinations of bits that can be ORed together.

TABLE 4.11 LOGICAL OR IMMEDIATE

Workspace Register Bit
	

Immediate Operand Bit 	ORI result

0 0 a
1 0 1
0 1 1
1 1 1

The logical exclusive-or [XOR] utilizes the rule of logic which
states:

If either A is true or B is true but not both, then C is true.

The format of the XOR instruction is slightly different then
for the ORI and ANDI instructions. The XOR instruction allows the
source operand to be specified by any of the general addressing
modes while the destination operand must be in a Workspace
Register. For example, the statement:

XOR @WORD,R5

exclusive-OR's the contents of memory location WORD with the value
in R5. The result of this exclusive-OR operation is then placed in
R5.

The instruction XOR takes the source operand and does an

THE INSTRUCTION SET 	53

exclusive-OR on a bit-by-bit basis with the destination operand.
The result of this operation replaces the destination operand. If
either of the two bits being compared is "TRUE" (that is =1), but
not both, then the resulting bit is also true (set =1). However,
if both bits are reset (=0), or both bits are set (=1) then the
resulting bit is reset (=0). For example, if R4 contains >A341 and
memory location WORD contains >C5F4, then the statement:

XOR @WORD,R5

places the value of >66B5 in R5 because:

>A341 = 1100 0101 1111 0100 XORed
>C5F4 = 1010 0011 0100 pool with this
>66B5 = 0110 0110 1011 0101 results in this

Notice that if either bit being compared, but not both, is set
(=1) then the resulting bit is also set. If neither bit being
compared is set then the resulting bit is reset (=0).

Table 4.12 is a 'TRUTH" table listing the result of all
possible combinations of bits that can be exclusive-ORed together:

TABLE 4.12 EXCLUSIVE-OR LOGIC TABLE

First Operand Bit

Workspace Register Bit 	 XOR Result

0 	 0 	 0
1 	 0 	 1
0 	 1 	 1
1 	 1 	 0

The value that results from the logical operations ANDI, ORI,
and XOR is compared with zero before being placed in the Workspace
Register. The results of this comparison then affect the first
three bits (L>, A>, EQ) of the Status Register accordingly. For
example, if R3 contains >A3D4 then the statement:

ORI R3,>6C4E

places the value >EFDE in R3, sets the logical greater than bit of
the Status Register while resetting the arithmetic greater than
and equal status bits.

The following chart combines all three 'TRUTH' tables. This
chart summarizes the effects of the three logical operations:

ANDI 	 ORI 	 XOR
0 AND 0 = 0 	0 OR 0 = 0 	0 XOR 0 = 0
0 AND 1 = 0 	0 OR 1 = 1 	0 XOR 1 = 1
1 AND 0 = 0 	1 OR 0 = 1 	1 XOR 0 = 1
1 AND 1 = 1 	1 OR 1 = 1 	1 XOR 1 = 0

1

54 	THE INSTRUCTION SET

This instruction takes the source operand and reverses all the

logic bits. It has the effect of changing each zero in the source

operand to one, and changing each one to zero. This is referred to

as "taking the one's compliment of a number'. The resulting value
is then compared with zero and sets/resets the Status Register
accordingly. The new value also replaces the source operand.
For example, if R3 contains >3EF4 and memory location >3EF4
contains >A6CC the statement:

INV R3

places >C10B in R3 and sets the logical greater than, as well as
resetting the equal and arithmetic greater than bits in the Status
Register because:

>3EF4 = 0011 1110 1111 0100 becomes

>C1OB = 1100 0001 0000 1011 on bit-by-bit reversal

CICIL_Fc) lEA__ETrAF: wollFcn

This instruction changes the source operand (16 bit) to zero. That

is, all bits are reset. For example, if R6 contains >3001 then the

statement:

CLR *R6+

clears the contents of memory locations >3000 and >3001 to zero.

R6 is then incremented by two (word instruction) so R6 now
contains the address >3003. Word operations such as CLR operate on
the next lower address when an odd address is specified as the
operand, since all memory words have to begin at an even address.

The CLR instruction does not affect the Status Register.

cls;E:moo $3E:T. wicuRn -rot DINE:

This instruction is the opposite of CLR in that it replaces the
source operand with a full 16-bit word of ones. It does not affect
any Status Register bits. For instance, the statement:

SETO 	@BUFF(R3)

THE INSTRUCTION SET = =

places the value >FFFF at the address found by adding R3 to the
contents of BUFF. The SETO instruction is useful to signify the
end of a file or in the setting up of flag words.

(EiC)C::) 	E3IEE -11- 	CIIINIFE.:Eis 	ICIDFRFRF-..7.:'.1:31F"CIPAID I 111,4113.• .„ 	IIAIIIIDIR.:13

This instruction compares two words (16 bits) together. The
source operand compares its bits set (1) against the destinaLion
operand. All corresponding bits are set in the destination
operand regardless of their previous condition. For example, if
R3 contains >A3E4 and R4 contains >IC33, then the statement:

SOC R3,R4

changes the contents of R4 to >CFF7 because:

>A3E4 = 1010 0011 1110
>1C33 = 1001 11 00 00 1 1
>OFF7 = 1011 1111 1111

0100 source operand
pou destination operand
0111 resulting destination

operand

This instruction will set the logical greater than bit of the
Status Register and reset the equal and arithmetic greater than
bits. Notice that the SOC instruction is really an OR operation
that can operate on two operands through any general addressing
mode.

(BOIC::1E.c) 	BEIT -11- 	CDIONIEE:E; 	C..":1DIR 1:::-.4'. 1E7.. E3 F " C:1 NI ID. :lc IN1C3 .„, 	Ery -.11- EI:

This instruction compares the source operand (byte) with the
destination operand (byte). It is an OR operation in that if a
bit is set in the source operand the corresponding bit is set in
the destination operand. The result of this bit-by-bit comparison
replaces the destination operand and is then compared with zero.
The Status Register bits are set/reset to reflect the results of
this comparison. If a word of memory is specified as one of the
operands, only the most significant byte (bits 0-7) are OR'ed
together. For example, if R3 contains >AA33 and memory location
BEST contains >F731, then the instruction:

SOCB R3,@BEST

places the value >FB31 at location BEST and sets the logical
greater than and odd parity status bits while resetting the
arithmetic and equal status bits because:

>AA33
>FC31
>FB31

= 1011 1010 0011
= 1111 1011 0011
= 1111 1011 0011

0011 source operand
0001 destination operand
000 resulting destination operand

1

56 THE INSTRUCTION SET

(e.- zic) edE:ir zuFRIDE3 (7ADI:F.c -Jmnir4c3, wpm)

This instruction compares the O's in a source operand (word) with
the 0's in a destination operand (word). If a zero bit

corresponds then it is not affected. If a zero bit in the source

operand corresponds with a one bit in the destination operand,

then that bit is reset to zero. The result of this operation is

placed in the destination operand. The result is compared with
zero and the status bits are set/reset accordingly. For example,

if R3 contains >2133 and R4 contains >3399, then the statement:

SZC R3,R4

places >2111 in R4 and sets the logical greater than, arithmetic

greater than status bits while resetting the equal status bit

because:

>2133 =
>3399 =
>2111 =

0010 0001 0011 0011 source operand
0011 0011 1001 1001 destination operand
ow gool pogl ppoA resulting destination operand

Notice that if the source operand bit is zero it resets the
corresponding destination operand bit. This is a logical OR

operation dealing with zeros instead of ones. The opposite of the

SOC instruction.

(ESZtOrii) BEECT" 2711EF;;A:09; ICADFRRAEEIF - CANIE), IMCJi, E-01(11-

This instruction compares the 0 bits in a source operand (byte)

with the 0 bits in a destination operand (byte). If a zero bit

corresponds then it is not affected. If a zero bit in the source

operand corresponds with a one bit in the destination operand, the

destination operand bit is reset to zero. The result of this

operation is placed in the destination operand. The resulting

binary number from this operation then replaces the destination

operand. It is compared with zero and the results of this

comparison set/reset the status bits accordingly. For example, if
R11 contains the value >2001, location >2001 contains >7D, and

location MASK contains >90, then the statement:

SZCB @MASK,*R11

results in the contents of memory location >2001 being changed to

>11 and the logical greater than, arithmetic greater than status
bits being set while the equal bit being reset because:

MASK = 1001 0000 source operand
>7D = 0111 1101 destination operand
>11 = 0001 0000 resulting destination operand

THE INSTRUCTION SET 	57

E3 	I-1 F-7 .1r. 	I NJ E3 	"T" 01 Ei;

Where as logical instructions allow you to manipulate individual
bits, Shift instructions allow you to manipulate entire groups of
bits. There are four instructions that allow you to shift the
contents of a Workspace Register one or more bit positions to the
left or right.

With all four shift instructions the carry status bit (C) holds
the value of the last bit shifted out of the register. For
example, if a Register is shifted to the right 6 bits, and the
sixth bit is a '1', the carry bit in the Status Register is set.

Shift instructions can be divided into two groups; Logical
shift instructions and arithmetic shift instructions. Logical
shift instructions displace an operand without regard for its
sign. They are used on unsigned numbers and non-numbers such as
masks. Arithmetic shift instructions preserve the sign bit. They
are used to operate on sinned numbers.

All four shift instructions require two operands; a Workspace
Register containing a sixteen bit word and a shift count. The
count may be any number from 1 to 16.

Table 4.13 outlines the shift instructions and indicates which
status bits are affected.

TABLE 4.13 SHIFT INSTRUCTIONS

Status Register Bits
(x) indicated bits affected by instruction

Mnemonic 	Format 	 L> A> EQ C OV X INT MASK

SRA 	(W),# 	 X 	X 	X 	X -
SLA 	(W),# 	 X 	X 	X 	X X
SRL 	(W),# 	 X 	X 	X 	X -
SRC 	(W),# 	 X 	X 	X 	X -

- - - - -

- - - - -

- - - - -

- - - - -

9Fc.(-4 	9fr-II 	I= 	1:71:. 	13 I-1 	AIR'. 	-11- 	 112:
IL_ (-4) 	A-1 	F.." 	L._ IE.. 	 IR: 	1-11101 	:I IC:

These two instructions shift signed numbers. The SRA instruction
preserves Lhe sign by replicating the sign bit throughout the
shift operation. The SLA instruction on the other hand does not
preserve the sign bit, but puts a 1 in the overflow bit of the
Status Register if the sign of the number changes after the shift
operation. With each bit position shift using SLA, the vacated
bit positions are replaced with zeros.

When using shift instructions the first operand is the word to
be shifted. The second is the number of bits to be shifted (shift
count) which ranges anywhere from 1 to 16. If the shift count in

58 	THE INSTRUCTION SET

the instruction is zero, the shift count is taken from

Workspace Register RO; bits 12 through 15. If bits 12 through 15
in RO are all zero then the shift count is 16 bit positions. If a

shift count is specified that is greater than 15, then the value

is placed in RO and the least significant four bits are taken as

the shift count (bits 12-15). If you specify 0 as the shift count

the shift count is 16 bit positions. For example, the statement:

SLA R2,4

shifts R2 left four bit positions, if the sign changes the

overflow (DV) bit of the Status Register is set.

After a shift takes place, the result is compared with zero and

the Status Register bits are set/reset to reflect this comparison.

The following are examples of arithmetic shift operations:

1. 	If R3 contains >12F3 then:

SLR R3,1

places a value of >25E6 in R3 and sets the logical greater

than and arithmetic greater than status bits while resetting the

equal, carry, and overflow status bits because:

>12F3 = 0001 0010 1111 0011 R3

>25E6 = 0010 0101 1110 0110 R3 result (all bits shifted
left 1 bit)

n If R4 contains >FA97 then:

SLA R4,5

places a value of >62E0 in R4 and sets the logical greater

than, carry, and overflow status bits while resetting the

equal status bit because:

>FA97 = 1111 1010 1001 0111 R4
•...• •- -^

>62E0 = 0101 0010 1110 0000 R4 shifted left 5 bits

Note sign change (hit 0), and that the fifth bit shifted out

is a one so the carry and overflow bits of the Status

Register are set.

3. 	If R5 contains >6CFD and RO contains :::F7FA then:

SLA R5,0

1101 R5

0000 R5 LEFT SHIFT >A BITS.

4. 	If R6 contains >B690 and RO contains >A3B0 then:

SRA R6,0

>6CFD = 0110 1100 1111

>F400 = 1111 0100 0000

THE INSTRUCTION SET 	59

places a value of >F400 in R5 and sets the logical greater
than, carry, and overflow bits of the Status Register, while
resetting the arithmetic greater than bit because:

places a value of >FFFF in R6 and sets the logical greater

than, and carry status bits while resetting the arithmetic
greater than and equal status bits because:

>B690 = 1011 0110 1001

>FFFF = 1111 1111 1111

0000 R6

1111 R6 right shift 16 bits
sign bit replicated

(*. B F.:) 	IF-1 I IF7 	I C5- I-1"T L.. C3 10 I C: le; L...

This instruction shifts unsigned numbers to the right. The
vacated bits are filled with zeros. The carry bit of the Status
Register holds the value of the last bit shifted out. The shift

count is specified in the same manner as with the SRA and SLA

instructions, that is if 0 is specified as the shift count, the

shift count is taken from bits 12-15 of RO. If these bits equal

0, then the shift count is 16. The result of the shift is placed

in the Workspace Register and compared with zero. The Status

Register is set/reset to reflect the results of this comparison.

The following are some examples of the SRL instructions usage:

1. If R3 contains >FFFF, then the statement:

SRL R3,6

places the value)03FF in >R3, sets the logical greater

than, arithmetic greater than, and carry status bits

while resetting the equal status bit because:

>FFFF = 1111 	1111 	1111 	1111 R3

>03FF = 0000 0011 1111 1111 R3 shifted right 5
bit positions

If R4 contains >731F, then the statement:

SRL R4,456

60 	THE INSTRUCTION SET

has a shift count of 8 because:

R0.= 456 = 0000 0001 1100 1000
---- last 4 bits = 8

The logical and arithmetic greater than status bits are set,

while the equal and carry bits are reset.

ir,:".%F.,.''.C.--) 	Ei; 1-11 I IF- -11- 	FR I C-3, 1-11 --IF 	C.: I F-R.' IC Li L._ At IR

This instruction shifts the contents of a Workspace Register to
the right a specified number of bit positions. The displaced bits

are then used to fill the vacated bit positions on the left. The

carry status bit contains the value of the bit shifted out of bit
position 0 (sign bit with signed numbers). The resulting value is
then placed in the Workspace Register. It is compared with zero
and the status bits are set/reset to reflect the results of this
comparison. For example, if R2 contains >EC62, then the
statement:

SRC R2,6

results in the value >BBE41 being placed in R2. The logical

greater than, and carry status bits are set while the equal and

arithmetic greater than bits are reset because:

>EC62 = 1110 1100 0110 0010 R2
---- ---- ---- ----

>8881 = 1000 1011 1011 0001 R2 shifted right 6 bits

Note that this instruction fills vacated bit positions with the

bits shifted out of position 15. In this example the bit shifted

out of bit 0 was one, so the carry bit in the Status Register is
set.

There is no "Shift Left Circular" instruction because the same

effect can be accomplished with SRC. To shift left a specified

count simple shift right a count equal to 16 minus the number.
For example, to shift left circular 9 bits use the statement:

SRC R2,16-9
or

SRC R2,7

The shift instructions also can be used as fast-executing
multiply and divide instructions. For instance, shifting the
operand one bit position to the left doubles its value (multiplies
by 2) and shifting the operand to the right one bit position
halves its value (divides by 2).

The following shift instructions show you how to multiply or

THE INSTRUCTION SET 	61

divide the contents of a Workspace Register by 4:

SRL 	R5,2
	

* DIVIDES UNSIGNED NUMBER BY 4.
SRC R5,16-2
	

* MULTIPLIES AN UNSIGNED NUMBER BY 4.
SRA R5,2
	

* DIVIDES A SIGNED NUMBER BY 4.
SLA R5,2 	 * MULTIPLIES A SIGNED NUMBER BY 4.

These shift procedures can save you considerable program

execution time when multiplying or dividing numbers. Each shift

operation takes a fraction of the time to complete then does a DIV
or MPY instruction.

Of course there are limitations, you can only multiply or

divide with the shift instructions using multiples of two. You

can get around this obstacle by juggling some registers. For

example, to multiply the contents of R3 by 10, use the following
sequence of instructions:

MOV 	R3,R4
SCR 	R4,16-2
A 	. R3,R4
SRC 	R4,16-1

This is the same as:

* Put a copy of R3 in R4.
* Shift R4 by 14 (multiply by 4).
* Add original R4 (multiply by 5).
* Shift R4 by 15 (multiply by 10).

E(R3*4)+(R3)3*2=R3*10

This instruction sequence involves four steps as opposed to the
simple instruction sequence:

LI
	

R4,10
MPY
	

R3,R4

which only requires two sLeps. However, the former sequence is

almost three times faster then the single MPY instruction!

41- - ic? 	11=" $.9; Ia. Li 1.3 	--- 	14,11 9 -Ir. FZ. 	C: "T. :I tEL1.1 	..F.3

As mentioned in earlier sections, pseudo-instructions are not
really machine language instructions, but rather provide some

direction to the assembler as to what to do under certain

circumstances. There are two pseudo-instructions that are
outlined below in Table 4.14:

TABLE 4.14 PSEUDO- INSTRUCTIONS

Mnemonic 	 Description

NOP 	 No operation

RT 	 Return

62 	THE INSTRUCTION SET

The NOP pseudo-instruction performs no operation when run. It
only serves to slow the execution time of the program. No

operands are specified and the Status Register is unaffected.

The NOP pseudo-instruction is most often used with the
minipemory assembler to allow you to leave "holes" in your code

that you may want to come back later and fill with some

additional instructions.

This instruction tells your computer to return back to a calling

program from a subroutine called up by a BL instruction. For

example, the instruction sequence:

line# 	Label 	OP-C Operands Comments

>0001 	MAIN 	.

-
.

>0200 	 BL 	@SUB1 	* Branch to location SUB1 and store
>0201 	START 	 * Return address of next

. * Instruction in R11.

.

.
>0800 	SUB1 	 * Beginning of subprogram SUB1.

.
>0E105 	 RT 	 * Go back to location START.

branches to location SUBP, carries out a sequence of instructions

and then returns via the RT to the point just after the BL

instruction (in this case we would return to location START).

When the RT instruction is specified the assembler supplies the

logic code for the following:

B *R11

Remember that when control is transferred by a BL instruction,

the link to the calling routine (the Program Counter setting just

after the BL instruction) is placed in R11. The RT pseudo-

instruction returns control of the program to the instruction

following the BL command. Do not alter R11 unless you first_ save

the address somewhere. Do not forget to reload the address in Rll

before RT or there is no telling where you will end up!

THE INSTRUCTION SET 63

CHAPTER 4 STUDY EXERCISES

1. Construction an instruction sequence that will multiply a
number by 12 using only shift instructions.

2. Where is the return address stored when a BL (Branch & Link)
instruction is called?

3. How far can a "jump" be specified in your program?

4. The sole purpose of the Status Register is to provide
information on which decisions are based to what group of
instructions?

5. What pseudo-instruction is used in combination with the
BL instruction?

6. Identify the addressing mode used in each of the following
examples:

(a) MOVB R1,*R2 	 (c) C @OA,@VALUE1

(b) A *R1+,R2 	 (d) MOV R6,@NUM1+S(R2)

5

ASSEMBLER

DIRECTIVES

As we have mentioned before, the purpose of the assembler is to

convert your source code into the appropriate object code. That

is, the assembler program takes your opcodes and their operands,

translates them into the appropriate binary numbers, and places

them in memory for you. This is the assembly process in its

simplest form. By providing some additional commands you can

"teach" the assembler program to assist you in creating your

assembly program. This is where Assembler Directives come in.
They are not part of the computers instruction set. They are

directions for the assembler to follow during the assembly

process. Sometimes they are referred to as "pseudo-instructions"

as are NOP & RT, but for now we will put them in a distinct
category and refer to them separatly as assembler directives.

There are 28 separate directives that are available, however
with the assebler and loader we are using only 22 directives are
useful. These will be the ones that we will discuss. The

directives can be divided into 5 separate groups based on their
functional similarities.

-65-

66 	ASSEMBLER DIRECTIVES

The assembler directives can be divided into the following 5
functional groups:

1. LOCATION COUNTER DIRECTIVES. These directives affect the
location counter in some way. The location counter is the
pointer that determines where the assembler is in the
assembly process. It keeps an orderly flow of where data
and/or instructions are stored in the memory.

2. INITIALIZE CONSTANT DIRECTIVES. These directives let you

define symbols. It allows you to assign a symbolic name
to an expression. You can also directly define words &
bytes.

3. PROGRAM LINKAGE DIRECTIVES. These directives allow you

to link different assembly program modules together into
one long program. This feature can greatly simplify
program development.

4. MISCELLANEOUS DIRECTIVES. These directives allow you to
define extended operations. They also allow you to define
the end of your program.

5. ASSEMBLER OUTPUT DIRECTIVES. These directives allow you to
change the assembler output in order to make it easier to
read, such as page lengths, page titles, program
idenLifiers, ect.

L..... C3 4:::::: e:41 -I* I Cli NI 	4:::: CD til INI1 - 11- E.::::: FR 	r..) 1: Fi.*". El: C::: -I- I "1/41 E:::: lEi;

The location counter is the pointer that determines where the
assembler stores instructions or data in memory. It sequentially

follows the steps in the source listing as it converts it into the
object listing. There are 6 useful directives for altering the
location counter.

Table 5.0 LOCATION COUNTER DIRECTIVES

Mnemonic
--- .

AORG
RORG

DORG

BSS
BES

EVEN

Directive

Absolute ORiOin

Relocatahle ORiGin
Dummy ORiGin
Block Starting with Symbol
Block Ending with Symbol
Move to a Word Boundary

Format

word(expression)

expression

expression

word(expression)

word(expression)

. . ---------------------------

---------- ---

ASSEMBLER DIRECTIVES 	67

(ADFCG) PhEiBOILMIEI (73F<IGIP4

When the assembler reaches a AORG directive, the location counter
is altered to store the object code for subsequent instructions

starting at the location specified by a word. For example if X=7,

then the source code statement:

LABEL AORG >D000+X

sets the location counter to >D007, and LABEL is assigned the

value >D007.

With the Editor/Assembler you normally let the computer make
the placement decisions but AORG gives you the option of making

these decisions yourself.

When using the Line-by-Line Assembler with the Mini Memory

Module you will use the AORG directive quite frequently to move

through various memory locations. See chapter 10 section 10.1 for

further details.

(F;:01FR -10) IFZIEFIVE: DIRIBINI

You may locate object code relative to the current active storage
location in memory. The RORG places a value in the location

counter which, if encountered in absolute code, also defines
succeeding locations as program re-locatable. The dollar sign ($)

symbol refers to the current value of the location counter. The

statement:

LABEL RORG $-40

overlays the last 20 words (40 bytes) by backing up the location

counter 20 words. LABEL is assigned the value that is placed in

the location counter.

You may never have occasion to use AORG and RORG in your own

programs (provided you are not using the MMM), but you'll

encounter them if you ever delve into listings of system programs.

For this reason you should know what AORG and RORG do.

(13101FZIGi) DUMM'Y DIF;cIBINI

This direct:lye places a value in the location counter and defines

the following address locations as a dummy block or section.

(F4E39) Eci_DCZA< CIF' MIFEMIL
F3IFIPIII 	WITAA e'VMEICJIL-

The BSS directive allows you to reserve an area of memory for

future use. If a Label is used it is assigned the location of the
first byte in the block. it does this by advancing the location

68 	ASSEMBLER DIRECTIVES

counter by the value specified in the expression. You reserve
memory for use to set up reference tables, arrays, ect. The
following code reserves a 32 byte area of memory for your 16
Workspace Registers:

MYREG BSS 32

If the AOR5 directive is to be used in your program, it must
precede come before you use any BSS directives.

(EKE3) 	 muEriciwy
EEtNinir4c3 	 8.ymEcc3L__ NM

This directive is similar to that of the BSS directive in that it

reserves a block of memory by advancing the location counter by

the value specified in the expression. The label is assigned the
location of the last byte in the block. For example, if the
location counter contains ';-2n0 when the assembler processes the

statement:

BUFF BES >30

BUFF is assigned the value >230 and a 48 byte area of memory is
reserved. The BES directive can be used to mark the end of a
block started with the BSS directive. For example, when the
assembler processes the statements:

BUFF1 BSS 10
BUFF2 BES 10

a 32-byte buffer (memory area) is set beginning at location BUFF1
and ending at location BUFF2.

icE.T.vrEiNto 	 lorA 	 wcwzr> ..ocluNinemR-sy

All words in memory begin at an even address. EVEN is a directive
that can force the location counter to point to an even address.
If the location counter is already at an even address then the
directive is ignored, but if the counter is at an odd address,
EVEN causes the assembler to jump to the next even address. For
example, if the location counter points to address >3001, an EVEN
directive makes it point to >3002.

The only time you wou)d need to use the EVEN directive would be
to ensure that a statement consisting of only a label is at an

in word boundary after a TEXT or BYTE directive.

TEXT 'HELLO'
EVEN
DATA >88AF

ASSEMBLER DIRECTIVES 	69

You do not need to use an EVEN directive after a machine

instruction or a DATA directive because the assembler

automatically advances the location counter to an even address
when it processes machine instructions or a DATA directive.

You can avoid much of the hassle of having to use the EVEN
directive by simply not specifying a statement consisting of only
a label after a TEXT or BYTE directive.

173 I Ft: FE.- IC 11- I "1/41 IE 9 -11- IHI inh 11" 	IrAI -T- I.AL.I2: E.- IC a INJI 9 -11- dcb rA -11- 9

These directives allow you to define the values of constants and

place the values in bytes or words of memory.

Table 5.1 outlines the directives that initialize constants
along with their mnemonics and formats:

TABLE 5.1 DIRECTIVES THAT INITIALIZE CONSTANTS

Mnemonic Directive Format

EQU
	

Define assembly-time constant (EQUate)
	

expression
DATA
	

Initialize BYTE
	

exp,exp...exp
BYTE
	

Initialize WORD
	

exp,exp...exp
TEXT
	

Initialize TEXT
	

'string'

IC IE. D. 1.11 3 	E:: Ca Li ir4 -T- IE. — 	 I:3 Faib. f 1. ini ea. 	f= 4=11 ir-■ •,. -I: .at. ini -t: ...

This directive assigns a value to some symbol. The label field

contains the symbol that you assign. Once you assign the symbol

you may use it anywhere you would normally use the expression.

The EQU directive can be used to define a symbol for a 16-bit

constant, or another symbolic name. Some examples of the EQU are:

JOYX
UP

EQU >8376 * Constant
EOU JOYX 	* Another symbolic name.

You can also specify an index reference through some juggling
of the EQU directive like so:

MYREG EQU >8300 * My own workspace area begins here.
R1HB EQU MYREG+2 * Value in high byte of R1 addr. 	>8302.
R1LB EQU MYREG+3 * Value in low byte of R1 addr. 	>8303.

Here we see the individual bytes of a Workspace Register

reference through the use of a symbolic equate directive.

70 	ASSEMBLER DIRECTIVES

) 	IN1 "T CAI_ Z IE: Ec"1/4fer*TEE)

This directive can place one or more values in successive bytes of
memory. When you specify a label it is assigned the location

which the first byte is places at. Each expression is evaluated

individually as a signed two's compliment 8-bit number. The

following statements show the allowable maximum and minimum values

for byte-size variables, in decimal:

BUMAX BYTE 255 	* Maximum byte constant, unsigned.
BSMAX BYTE 127 	* Maximum byte constant, signed.
BSMIN BYTE -128 * Minimum byte constant, signed.

You can also allow the assembler to calculate the value of a

constant as in the following example:

HERE BYTE >F+4, - 1, -34+>12,>10/8,'A'

which initialize five bytes of memory starting with the byte at

location HERE. The contents of five successive bytes are >13,

>FF, >F0, >02, and >41.

The EVEN directive is often used after the BYTE directive when

a DATA or TEXT directive is next in the source code. This is
to assure that the next directive begins at an even word boundary.

11 4:11) 	 I AIL_ I Z. EE 	011R. 13

This directive only differs from the BYTE directive in that it can

place one or more successive values in 16-bit word locations.
Each word is evaluated as a signed two's compliment 16-bit number

and, if necessary, places a value of >00 in any bytes not filled.

The followed statements outline the maximum and minimum values for
word-size variables, in decimal:

WUMAX DATA 65535 * Maximum word constant, unsigned.
WSMAX DATA 32767 * Maximum word constant, signed.
WSMIN DATA -32768 * Maximum word constant, signed.

Again, it is possible to let the assembler calculate some of

the values of the constant as in the following example:

HERE DATA 	1+>F3,3121+ C,'AB'

which initialize three words of memory beginning at location HERE.

The conLents of the three successive words are >00F4, >F01,

4142.

The BYTE and DATA directives can be used to set up a data table

in memory. To do this simply list the table elements and separate

them with a comma. The following sequences of source code set up
two 20-element tables, one comprised of bytes and Lhe other

ASSEMBLER DIRECTIVES 	71

comprised of words:

SOUND1 EQU
BTABLE BYTE

BYTE
BYTE

SOUND2 EQU
WTABLE DATA

DATA
DATA

>34
0,0,23,32,43,23,-12,45
36,-120,>3A,'AB',-'DX'
64,>A,45,0,3,7*5,SOUND1

(BYTE TABLE)

>35

>3025,>FFAB,-4356,0,23,-34

>4567,->35,'VC','G'-4,>5523 	(WORD TABLE)

>2332,>23,0,5*>34,36,1,34,SOUND2

The text directive allows you to define a character string as an

expression. The string characters are stored in successive bytes

of memory as their ASCII hexadecimal egivalents. The string may

be up to 52 characters in length. You may precede the string with

a urinary minus (-) sign in which case the last character of the
string is negated. When a label is used its location is the first

byte in the string. The string must be enclosed in single quotes

as shown here with two possible error messages outlined:

NICE TEXT 	THAT NUMBER IS TOO LARGE.
TEXT 'PLEASE RE-ENTER IT.'

RUDE TEXT 'TRY IT AGAIN, STUPID'

The bytes are filled sequentially by the assembler when
processing a TEXT directive. So if 4_he assembler is on an even

address when it starts to execute the following directive,

MESG TEXT 'HELLO'

the result is >4845, >4C4C, and >4F-- with (--) being determined

by the next source statement. For this reason the EVEN direcLive

usually follows a TEXT statement to insure that the next

instruction starts at an even word boundary.

IF" F:C.31 11.73 IR fr-211 11'1 	it_ I PA F.:: ff.:4 1E3 IEEE 	ID 1: IR E.: CT:: -1- I ".%)1 ET: 1:7-1

Program linkage directives allow you to Lreate programs as

separate modules which you later connect together to form one long

program. There are a total of five directives that are available

to allow you to link programs, however, only three of them can be

used with the loader provided with the assembler. These will be
the ones we will discuss in depth in the sections that follow.

72 	ASSEMBLER DIRECTIVES

Table 5.2 outlines the directives that allow you to link
programs along with their mnemonics and required formats:

TABLE 5.2 DIRECTIVES THAT LINK PROGRAMS

Mnemonic Directive 	 Format

DEF ' 	External DEFinition 	 symbol,symbol 	symbol

REF 	 External REFerence 	 symbol,symbol 	symbol

Copy 	 Copy 	 "File Name"

<) 	la X 7- EE F: IPA IA 	:11.) 	NI I *T"

The DEF directive allows you to makes one or more symbols
available to other programs for reference. The DEF directive can
be thought of as supplying "entry" points into the program for
other programs. The DEF directive must precede the object code
that contains the symbols to be defined. For this reason the DEF
directive is usually at the beginning of the source code. The
following statement shows an example of the usage of the DEF
directive:

LABEL, DEF START,SLOAD

This statement will cause the assembler to include the symbols
START and SLOAD in the object code so that these symbols are
available to other porgrams. If a label is specified, it is
assigned the current value of the location counter.

11=7 	E: X 11" E.7 F: 	 F: IE.: Fr: E.: F: E7.

The REF directive allows you to have access to one or more symbols

defined in other programs. The REF gives you the location of

where "entry" into another program is to take place. For

instance, the statement:

LABEL REF START,SLOAD

causes the assembler to include the symbols START and SLOAD in the
object code so that the corresponding address may be obtained from
other programs.

If a symbol is listed in a REF directive inside your program,

then the same symbol must be present in the DEF directive of the

program that you are trying to link with

This directive will fetch a file from a diskette during the

ASSEMBLER DIRECTIVES 	73

separate source file in the assembly process as if it were a

series of source statements in the program. The assembler

continues right on through. You can use as many COPY directives
in a program as you want but if an END directive is encountered

the assembly process ends. This happens no matter if the END

directive is in the file called up or part of the original

program. The following statement is an example of the COPY

directives use:

LABEL COPY "DSK1.8AME1"

COPY "DSK1.GAME2"

COPY "DSK2.GAME3"

END

This last example will first copy the file GAME1 from disk
drive 1 into the computer in order for the assembler to assemble

it. It then loads file GAME2 from disk drive one and keeps right

on assembling it. Finally, file GAME3 is loaded from disk drive
two and it is assembled. The assembler then reaches the END

directive and the assembly process stops.

The main use of the COPY directive is to allow you to write

programs as separate modules which can then be assembled together.

You may want to do this for writing convenience or because the

source program is too long to fit on one file.

:r 	 IS,' 	ID I. Fir.1E:C::11- 	'1/4./1E:E3

The two miscellaneous directives are the Define eXtended Operation
directive (XOP) and the END directive. The miscellaneous

directives are outlined in Table 5.3 below:

TABLE 5.3 MISCELLANEOUS DIRECTIVES

Mnemonic
	

Directive 	 Format

XOF 	 Define extended OPeration 	 symbol,term
END 	 Program END 	 symbol -,
--

C 	X DP*
	

EE F.:" I NI FE EL: X -11- t1/44 F.) 1E: n 	t,"- 1E: IR. onh I- (3 INJ

This directive can only be utilized on the TI-99/4A Home Computer.

The DXOP directive will assign a symbol to be used in the operator

field to specify an extended operation.

!NJ 11:3) 	E: I) IF" Fc. 13 R". 	ET. X 	If; "T" 3: C.)

The END directive causes the assembly proce ss to stop. The last
source statement you put into your program should be an END

statement to signify to the assembler that this is her you want

the program to end. lf you specify a label it is assigned the
current value in the location counter.

74 	ASSEMBLER DIRECTIVES

You can specify and entry point into the program by placing a

symbol in the operand field of an END directive. If this is done
the program will automatically begin running as soon as it is

loaded into the computer. For example, the statement:

END START

will cause the program to begin running immediately upon loading

starting at address START. If an operand is not specified in the

END directive, then you must define the entry point with a DEF

directive and type in this entry point in response to the 'PROGRAM

NAME' prompt you receive after loading the program using the

Editor/Assembler.

If you are using the Line-by-Line Assembler with the Mini

Memory Module to program in assembly language the END directive

will cause you to exit the assembler. See chapter 10 for more

detailed information.

..-.._^ niFiriviE.:s.- mencr .r),
pkE3BIE:myEt

There are are 5 different directives that you can use to affect

assembler output. You may on occasion want to alter the assembler

output in .order to make the object and/or source code more readily
readable.

Table 5.4 outlines the five directives that affect the output

of the assembler:

TABLE 5.4 ASSEMBLER OUTPUT DIRECTIVES

Mnemonic Directive 	 Format

UNL

LIST

PAGE

TITL
IDT

DoNot List Source

List Source

PAGe Eject
page TITLE

program IDenTifier
'string'
'string'

CIL_I9.-T3 L_IE3 -T 4,SCAJII
our4L_) nolv4ocr. L_IBm BIEDUF

These directives have no effect on the assembler unless you have

specified a listing to an output device with the L option of the
Editor/Assembler. If you have specified a list file option then

the UNL directive will halt the output to the file device such as

list file or printer. The UNL directive in not printed out and
any source statements following it are not printed.

ASSEMBLER DIRECTIVES 	75

The LIST directive may be used after a UNL directive to resume

printing to an output device such as a list file or printer. The
list statement is not printed, but the location counter is

incremented and the listing begins with the next source statement.

To summarize the UNL and LIST directives are used to stop and

start output by the assembler to a list file device such as a disk
drive or printer.

(F•IPkeiE:: > 	F" int IS IE: E..._:: a FE lc; -r

This directive causes the assembler to start printing the source

listing (provided the L option has been selected) on a new page.

If a label is specified it is assigned the current value of the
location counter.

The TITL directive will print a heading (provided the L option has
been selected) on each subsequent page of the source listing. For
example, the statement:

TITL 'PROGRAM FOR PRINTING AMORTIZATION SCHEDULE'

prints the heading: "PROGRAM FOR PRINTING AMORTIZATION SCHEDULE"
on the top of each page of the program listing. The title may be

up to 50 characters on length after which the message "OUT OF

RANGE" is printed and the title is truncated to the first 50
characters.

(I :DT- > 	F"F4'..' Di 1:3111R:. rql 1 .1 	1: :11DEEP1/411 -1- :r F.,.. I IE::::F-; ■:'

The IDT directive assigns a name to the program. It is printed in
the source listing but serves no other purpose during the assembly
process. The name is limited to 8 characters in length after
which a "TRUNCATION" error is displayed. 	If a label in specified
it is assigned the value of the current location counter.

76 	ASSEMBLER DIRECTIVES

CHAPTER 5 STUDY EXERCISES

1. If R1 contains >123A and R2 contains >456c, list the contents
of R1 after each of the following statements is executed:

(a) AND 	R2,R1
(b) OR 	R3,R1
(c) XOR 	R2,R1
(d) MOVB R2,R1
(e) SLA 	R1,2

2. What does this sequence do?

START MOV 40,R3
INC R6
DEC R3
JED OUT

3. Write some statements (two lines should suffice) that will
store the contents of R3 into a word location called SAVE.

4. What does this instruction do?

MPY >23FF

6

UTILITY

PROGRAMS
In your computer there exists two distinct areas of random access
memory (RAM). The first is termed CPU RAM (Central Processing Unit
RAM) and is readily manipulated by you. The second is VDP RAM
(Video Display Processor RAM) and is more difficult to manipulate
because it is memory mapped. When you are putting something on
the screen, describing sprites, or writing to the sound table you
are actually writing to the VDP RAM.

Normally it would be difficult to read and write to the VDP RAM
areas because in order to read data you would first have to write
a value to a specific address, wait while the data is obtained and
then read the data from another address. To write data to VDP RAM
the opposite process occurs, namely you place the data in a
specific address, write a value to another address to signify that
the date is to be written, and then wait while the data is
written. This requires an in-depth knowledge of the addresses to
use, as well as how to use them.

Fortunately, you have ready access to certain utility programs
that allow you to write and read easily to and from the VDP RAM.
The following is a listing of utility programs available to you.
All utility programs needed by your program must be referenced
in a REF statement at the beginning of the source code unless you
are using the Mini Memory Module with the line-by-line assembler
in which case you should refer to chapter 10.

-77-

78 	UTILITY PROGRAMS

Table 6.0 outlines the utility programs that are available to you
along with a description as to what they do:

TABLE 6.1 UTILITY PROGRAMS

Symbol
	

Name
	

Description

VSBW. 	VDP Single Byte Write

VMBW 	VDP Multiple Byte Write

VSBR 	VDP Single Byte Read

VMBR 	VDP Multiple Byte Read

VWTR 	Write to VDP Register

KSCAN 	Keyboard SCAN

GPLLINK Graphics Programming
Language Link.

DSRLNK Device Service Routine
Link

XMLLNK Extended Memory Language
Link

Copies a single byte from
CPU RAM into VDP RAM.

Copies Multiple bytes from
CPU RAM into VDP RAM.

Copies a single byte from
VDP RAM into CPU RAM.

Copies multiple bytes from
VDP RAM into CPU RAM.

Copies a single byte from
CPU RAM into a VDP register.

Scans the keyboard and joystick
for input and returns it.

Links your program to Graphic
subroutines that you can use.

Links your program to
peripheral devices.

Links your assembly program
to ROM and RAM routines.

vipp. 	 Ervir

This utility allows you to place a single byte in VDP RAM. You
place the VDP RAM address you want to write to in RO. You place a
copy of the byte you want to write in the most significant byte of
Rl. You then call the utility. For example, to place >05 at VDP
RAM address >0040, you would use the following source code:

REF VSBW

LI 	RO I >0400
LI 	R1,>0500 \
BLWP @VSBW

UTILITY PROGRAMS 	79

civr-ma44) NoPIDIF- mulL_ -riF 	Eiv -ria WFCITE

This utility program allows you to copy any number of bytes from
an area of CPU RAM into an area of VDP RAM. The Block Starting
with Symbol (BSS) instruction is usually used to reserve the CPU
RAM to hold bytes prior to transfer. To use the VMBW utility,
place the VDP RAM address you wish to start writing to in RO.
Place the starting address of the information in CPU RAM that you
wish to copy in Rl. R2 is then loaded with the number of bytes to
copy. The utility program is then called. For example, the
following source code:

REF VMBW

.
BUFFER BSS 32

.
LI 	R00.0300
LI 	R1,BUFFER
LI 	R2,32
BLWP @VMBW

copies the 32 bytes located in BUFFER into VDP RAM starting at VDP
address >0300.

(wBEtiFc) %/DR. 8'1.4 	E4V -Tla Fdapkup

This utility allows you to copy a single byte from an address in
VDP RAM into CPU RAM. You do this by placing the VDP address you
want a copy of in RO. Then when the utility is called, the value
at that address is placed in the most significant byte of Rl. For
example, if VDP address >0300 contains the value >FF, then the
following statements:

REF VSBR

.
LI 	R0,>0300
BLWP @VSBR

places a value of >FF in the most-significant byte of Rl.

cwriEcFR) wrw, mult_irIvq_la Ery—ria IRlischn

This utility allows you to copy any number of successive bytes
from VDP RAM into CPU RAM. Load RO with the starting address in
VDP RAM that you want to start copying from. Load R1 with the CPU
address that you want to copy into. You load R2 with the number of
bytes to be copied. You then call the VMBR utility.

BO 	UTILITY PROGRAMS

For example, if you want to copy 40 bytes from VDP RAM beginning
at address >0780 into CPU RAM beginning at address BUFFER, you
would use the following source code:

REF VMBW

BUFFER ;SS >28

.
LI 	RO,>0780
LI 	R1,@BUFFER
LI 	R2,>28
BLWP @VMBW

(vtArriR) wiFicure.. -Irca vnip sizzioie -r- IE:Fc

This utility allows you to change the contents of the VDP
Workspace Registers. You place the value you want the VDP
register to be in the least-significant byte of RO. The most
significant byte of RO is loaded with the VDP register you want to
change. For example, the code:

REF 	VWTR

.
LI 	RO,>02CE
BLWP @VWTR

places a value of >CE in VDP register 2.

NOTE: When changing VDP register 1, place a copy of what you
are changing it to at CPU RAM address >83D4. You have to
do this because the value at this address is loaded into
VDP register R1 when a key is pressed after the screen
has "blacked-out" which it does if no key is pressed for
a long period of time.

(KirAIA) KlavnipAIRD 	(4&./

This utility allows you to check the keyboard and joysticks for
input. It also returns the ASCII value of the key that was
pressed or the position of a specified joystick. On the next page
is Table 6.2 which presents the CPU RAM addresses used by the
KSCAN routine.

UTILITY PROGRAMS 	81

TABLE 6.2 ADDRESSES USED BY KSCAN UTILITY

Address Description

>8374 	Placing a value here selects the keyboard device to be
checked. The following values are allowed:

>00 -- Causes entire keyboard to be checked.
>01 -- Causes the left side of the keyboard and input

from joystick #1 to be checked.
>02 -- Causes the right side of the keyboard and input

from joystick #2 to be checked.

>8375 	This byte holds the ASCII value of the last key pressed.
If no key was pressed, then this address contains a value
of >FF.

>8376 	Holds (V) position of joystick input.

>8377 	Holds (X) position of joystick input.

>837C 	Status byte. If a key is pressed then bit 2 is set.

If your program contains a keyboard scanning loop and your program
needs to enable interrupts (to move sprites, create sound, ect.)
the key scanning loop is an excellent place to do so. The
following is an example of how to structure the key scanning loop
so that interrupts may be enabled:

* Enable interrupts
* Disable interrupts
* Call utility program to scan keyboard.

.

 .

A keyboard status byte is located at CPU address >837C. It
gives certain status information based on keyboard input. It can
be used in combination with a compare ones corresponding (COG)
instruction to determine if a key has been pressed. Bit 2 of the
status byte is set if a pressed key is detected during execution
of the KSCAN utility. The following source listing on the next
page can be used to detect a pressed key.

REF 	 * Reference needed utility program.
.
.

LOOP LIMI 2
LIMI 1
BLWP @KSCAN

82 	UTILITY PROGRAMS

REF

•

KSCAN * Reference needed utility.

SET DATA >2000 * Binary 0010 	0000 	0000 	0000.
EQU >837C *

*

GETKEY BLWP @KSCAN * Call up utility program.
MOV @STATUS,R3 * Move status word into R3.
COC @SET,R3 * Check and see if bit 2 is set.
JNE GETKEY * If no key pressed loop again.

An alternative method of checking to see if a key has been
pressed is to check address >8375 to see if it contains the value
>FF (no key pressed). 	The following source code performs this
check:

REF 	KSCAN

KEY EQU >8375
HEXFF BYTE >FF

GETKEY BLWP @KSCAN
CB OHEXFF,OKEY * See if a key was pressed.
JEQ GETKEY * If no key pressed, check again.

(OR'L_L_INK:) (3PcicbF"1-1 I C3 	C) t3 	r-1 Ni I 184 io
e U G 	L. I IN tc::

The following GPL routines can be used by your program to perform
some useful tasks such as loading character sets, producing tones,
allocating string space ect. All the GPL routines are accessed
through GPLLNK. The GPL routines covered in the following sections
return to your program after they have finished executing.

In order for you to use the GPLLNK utility you must include the
statement REF GPLLNK in your program source code. You must also
set the status byte located at address >837C equal to >00 before
branching to GPLLNK. The address of the desired GPL routine is put
in a DATA statement immediately following the BLWP @GPLLNK
instruction. The source code on the following page illustrates
these points.

UTILITY PROGRAMS 	83

REF GPLLNK

CLR R1
MOVB R1,@>837C
BLWP @GPLLNK
DATA >XXXX

* Reference GPLLNK routine.

* R1=0
* Set Status Register byte=0
* Call utility.
* Designate routine desired.

Table 6.3 lists all the subroutines available with the GPLLNK
utility.

TABLE 6.3 GPLLNK UTILITY ROUTINES

Description

Loads the standard character set into VDP RAM.
Loads small capitals character set into VDP RAM.
Executes the "power up" routine.
Generates the "accept tone".
Generates the "bad response tone".
Executes the "get string space" routine.
Bit reversal routine.
Cassette device service routine.
Loads lower case character set into VDP RAM.

Data

>0016
>0018
>0020
>0034
>0036
>0038
>003B
>003D
>004A

The following are complete descriptions of each GPLLNK routine
that is available.

DATA >0016 LOAD STANDARD CHARACTER SET

This GPL utility loads the standard set into a designated area
of VDP RAM. Before calling this routine, put in CPU RAM address
>034A the beginning address in VDP RAM where characters are to be
loaded. The following is an example of how to load the standard
character set into VDP RAM starting at VDP address >0400:

REF 	GPLLNK

LI 	R1,>0400
MOV 	R1,@>834A

CLR 	R1
MOVB R1,@>8376
BLWP @GPLLNK
DATA 	>0016

Reference needed utility.

Beginning address to load characters.
Place beginning address at >834A.

R1=0
Move 0 into >837C.
Call up utility.
Designate subroutine desired.

84 	UTILITY PROGRAMS

DATA >0018 LOAD SMALL CAPITALS CHARACTER SET

This GPL routine loads the small capitals character set into a
designed area of VDP RAM. Before calling this routine, place the
VDP address you want the characters to start loading at CPU RAM
address >834A. Use the same source listing as in the previous
example except the DATA directive to read DATA >0018.

DATA >0020 EXECUTE POWER-UP ROUTINE

This GPL routine initializes the system. It returns you to the
master title screen, clears the VDP circuits and places the

default values in the VDP registers, character set, status block,
and Color Table. Available VDP RAM size is stored at >8370.

DATA >0034 GENERATE ACCEPT TONE

This routine causes a tone to be generated. It is the same tone
that is generated in BASIC in association with a correct input.

DATA >0036 GENERATE BAD RESPONSE TONE

This routine causes a tone to be generated. It is the same tone
that is generated in BASIC in response to an incorrect input
(error message).

DATA >0038 GET STRING SPACE ROUTINE

This routine sets aside memory space in VDP RAM. CPU address
>830C and >830D are loaded with the number of bytes to be
reserved. After calling this routine, CPU address >831C points to
the beginning of the allocated string space and address >831A
points to the first free address in VDP RAM (byte following
string). This routine destroys bytes at addresses >8356 through
>8359. Addresses starting at 834A onward may also be destroyed in
some cases.

DATA >003B BIT REVERSAL ROUTINE

This routine provides a mirror image of a byte. It is most
commonly used to from a mirror image of a character or sprite
during execution of game programs. Prior to calling this routine,
CPU RAM address >834A is loaded with the address of the data in
VDP RAM that you want to reverse. Address >834C contains the
number of bytes to be reserved.

During execution of this routine, in each byte, bits 0 and 7 are
exchanged, bits 1 and 6 are exchanged, bits 2 and 5 are exchanged,
and bits 3 and 4 are exchanged. CPU RAM addresses >0830 through
>0840 are destroyed.

UTILITY PROGRAMS 	85

DATA >003D CASSETTE DSR ROUTINE

This routine allows you to access a cassette recorder. In order
for this routine to work a number of condition must be met:

1. The Peripheral Access Block (PAB) and data buffer must be
set up in VDP RAM prior to calling the routine.

2. The screen start address must be >00 for prompts issued
by the cassette DSR (Device Service Routine).

1 	
3. Address >834A is the beginning of the device name

(ie. "CS1").

4. Address >8356 points to the first character following
the name in PAB.

5. Address >8354 and >8355 are the length of the device
name (ie. >0003 for "CS1").

6. The word at address >83D0 should be set to >0000.

7. Address >836D must be set to >08 to indicate a
DSR call.

8. The status byte at CPU address >837C must be set to >00.

DATA >004A LOAD LOWER CASE CHARACTER SET

This routine is only available on the TI-99/4A. This routine
allows you to load the lower-case character set into a designated
area of VDP RAM. Before calling this routine, load CPU RAM
address >834A with the starting address in VDP RAM that you want
to begin loading the characters.

(ID B IRIL... Ni F.<) Er N.," I IC 	8 la Ft V I IC E.: Fc rol urr 1 r4 la L.. I IN.1 IF<

This utility allows you to link your assembly language programs
with peripheral devices such as printers, disk drives, cassette
recorders, ect. It also allows you to link to a subprogram in
ROM. Before calling this utility a number of conditions must be
set up:

1. A Peripheral Access Block (PAB) must be set up in
VDP RAM to describe the characteristics of the device
and file to be accessed.

2. The word at CPU RAM address >8356 must be loaded with the
value that represents the device or subprogram name
length.

86 	UTILITY PROGRAMS

3. A DATA directive after the BLWP @DSRLNK is >8 for
linkage to a Device Service Routine and >10 for

linkage to a ROM routine.

If after the DSRLNK utility is called and no error has
occurred, bit (EQ) of the Status Register is reset. If however,
and Input/Output error has occurred, the equal bit is set and the
error code is stored in the most-significant bit of RO of the
calling programs workspace. Appendix F outlines the Input/Output

error codes.

NOTE: You can not use this routine to access a cassette
because the cassette Device Service Routine
is located in GPL GROM and not normal DSR ROM. In
order to access a cassette you must use the statement:

BLWP @GPPLNK
DATA >003D

fS .. 1 	(IF* Pli Et) 	IF*EFeli I F'a I-I la IR A IL__ Pil IC 	B B

PABs are used by Device Service Routines to access peripheral
devices. The structure and format of a PAB is the same for every
peripheral. You must place the necessary information describing
the peripheral device into the PAB before attempting to open the

file.

The PAB is made up of 10 more bytes which provide information
to the DSR Utilities regarding the characteristics of the
peripheral device and file attributes that you want to access.

Table 6.4 describes the bytes that make up the PAB as well as a
description of the information each contains:

TABLE 6.4 PAB STRUCTURE

Byte* Bits Contains 	Description

0 	All 	I/0 code 	I/0 code describing current file
condition. See following sections for
complete description of all allowable
I/0 codes.

1 	-Status Byte- 	This byte contains all the information
the computer needs to describe the
file. It includes information regarding
file type, data type, and operation mode.
The contents of each bit is outlined
below:

Byte# 	Bits

UTILITY PROGRAMS

TABLE 6.4 PAB STRUCTURE (continued)

Contains 	Description

0-2 Error Code When an error is detected during an
operation the error code is returned
here. 	'00' 	indicates that no error
has been detected. 	The error codes
are further outlined in Table 6.6

3 Record
Style Place a value of 	'0' 	for "Fixed length

records" and a value of 	'I' for
"Variable length records".

4 Data
Format Place a value of 	'0' 	for "DISPLAY" and

'1' 	for 	"INTERNAL".

5-6 Operation "UPDATE"='00', 	"OUTPUT"='01'
Mode "INPUT"='10', 	"APPEND"-'11'

7 File Style Load 	'0' 	for "Sequential Files" and
'1' 	for 	"Relative Files".

All Data Buffer This is the address in VDP RAM that
Address

	

	you want to put data read from a
record or where you place data that
you want to write to a record.

4 All Record
Length

The length of each record for "fixed
length records" or the value of the
maximum length of a "variable length
record".

5 All Character
Count

This byte contains the number of
characters that you want to WRITE
onto a record or it contains the
number of characters that is to be
READ from a record.

6-7 ALL RECORD # This byte is only used with "relative
files". 	It gives the current record
number that the next I/O operation is

'") *tr
4- 	

87

88 	UTILITY PROGRAMS

TABLE 6.4 PAB STRUCTURE (continued)

Byte* Bits Contains Description

to be performed. But 0 is discarded so
that this number can range from a value
of 0 through 32767.

8 All

9 All

10 All

Screen 	This byte contains the offset of the
Offset 	screen characters with respect to their

normal ASCII values. This is only used
with a cassette interface, which requires
prompts to be placed on the screen.

Name 	 This byte contains the length of the File
Length 	Descriptor begins at byte 10.

Device/File Contains the device name and if necessary,
Descriptor the file name. The length of this des-

cription is given in byte 9.

For%Js ImFqirr'olurrFq_rr 	caiDiB

The following are complete descriptions of each Input/Output
code that can be used in Byte 0 of the PAB:

DIFNEM >00

Before you can do anything with a file or device you must open it.
The only exceptions to this are the SAVE and LOAD operations. You
cannot alter byte 1 (STATUS BYTE) when an OPEN operation has been
performed, the file remains open until a CLOSE operation takes
place.

If byte 4 of PAB is set to >0000 (Record Length), the record
length that is specified by the attached peripheral is returned in
byte 4. If the value for the record length is given by you is
greater than 0, then it is used only after being checked against
the peripheral in question.

ICILADBE >01

This operation will close a previously opened file. If the file
was originally opened in APPEND or OUTPUT mode, an END OF FILE
(EOF) record is written to the device or file before closing
occurs.

After a file is closed you can alter byte 2 (STATUS BYTE) to

UTILITY PROGRAMS 	89

change to a new mode of operation before going through the next
OPEN operation.

Ft E AD 	>C:1

This operation will READ a selected record from a designated
peripheral device. The obtained information is stored in VDP RAM
beginning at the address specified in bytes 2 & 3 (Data Buffer
Address) of the PAB. The size of the buffer is number of bytes
stored is given in byte 5 (Character Count) of PAB.

When a READ operation takes place, if the length of the
inputted record exceeds the buffer size, the remaining bytes are
discarded.

11,4 Ft I ir E 	>07,5

This operation will write to a record from the buffer specified in
PAB bytes 2 & 3. The number of bytes that will be written is
given in byte 5 of the PAB.

Ft E '11. C3FtEl. IR la 1.4 I r.4 Et 	> c) A-

This operation will reposition the file pointer to the beginning
of the file for sequential files. If the file is a relative file,
the pointer is set to the record specified in bytes 6 & 7 of PAB.

The RESTORE/REWIND operation can only be carried out if the
file was opened in UPDATE or INPUT mode. You can simulate a
RESTORE operation when you are using relative files by entering
the record at which the file is to be positioned in bytes 6 & 7
(Record #) of the PAB. This will then be the next record accessed
in the next operation.

L...1010;13 	>on

This operation code will allow you to load the memory image of a
file from a peripheral into an area of VDP RAM. You are allowed
to use LOAD without a previous OPEN operation.

The following information must be placed in the PAB before
instituting a LOAD operation:

1. Place >05 in byte 0 of PAB.
2. Place the starting address in VDP RAM that you want the

file to be copied into in bytes 2 & 3 (Data Buffer
Address) of the PAB.

3. Place the maximum number of bytes to be loaded in bytes
6 & 7 (Record #) of the PAB.

4. Place the name length in byte 9 of the PAB.

5. Place the file descriptor information in bytes 10 on.

90 	UTILITY PROGRAMS

Keep in mind that the LOAD operation will require as much memory
space in VDP RAM as the file occupied on a diskette or other

medium.

This operation code will allow you to write a copy of a file in
VDP RAM to a peripheral. You are allowed to use SAVE without a

previous OPEN operation.

The following information must be placed in the PAB before
instituting a SAVE operation.

1. Place >06 in byte 0 of PAB.

2. Place the starting address in VDP RAM from which the file
is to be copied in bytes 2 & 3 (Data Buffer Address) of
the PAB.

3. Place the number of bytes to be saved in bytes 6 & 7
(Record #) of the PAB.

4. Place the name length in byte 9 of the PAB.

5. Place the file descriptor information starting in byte 10
of PAB.

This operation code will delete the file specified from the
peripheral. A CLOSE operation will then be performed.

13 a L_ E 'T. E: IR a lc oi Fc o 	> ci a

This operation code will remove a specified record from a relative
record file. The number of records that you want to delete is
placed in bytes 6 & 7 (Record #) of the PAB. If this operation
code is specified with files opened as sequential, an error
occurs.

When the operation code is specified certain status information is
returned regarding the peripheral device and file. The status
information returned is placed in byte 8 (Screen Offset) of the
PAB. Bits 0 through 5 have meaning whether the file is opened or
closed, bits 6 & 7 only have meaning when the file is open;
otherwise they are reset.

1

UTILITY PROGRAMS 	91

Table 6.5 outlines bits of byte 8 (Screen Offset) and the in-
formation regarding status that each returns:

TABLE 6.5 PERIPHERAL STATUS BITS

Bit 	Status Information

0 	If this bit is set (=1), the file does not exist. If this
bit is reset (=0), the file does exist. With devices such as
printers this bit would never be set because any file can
conceivably exist.

1 	The file is write-protected if this bit is set. If resei,
this file is not protected and can be written to.

2 	Reserved, Always reset.

3 	If this bit is set it indicates that the Data Format is
INTERNAL. If this bit is reset it indicates that the Data
Format is DISPLAY or that the file is a program file.

4 	If this bit is set it indicates that the file is a program
file. If this bit is reset it indicates that the file is a
data file.

5 ,.) 	If this bit is set it indicates that the record length is
VARIABLE. If this bit is reset it indicates that the record
length is FIXED.

6 	If this bit is set, the file is at the actual physical end
of the peripheral and no more data can be written.

7 	If this bit is set, the file is at the end of its previously
entered data. You can write more data to the file but if you
attempt to read past this point an error will be generated.,

___________ __

Now that we have discussed the basic structure of the PAB it is
time we go through an example of creating one for your on program
so you can better understand how it is accomplished.

Suppose we wanted to OPEN a FIXED 80 file "DSK, FILE1",
DISPLAY, INPUT, SEQUENTIAL. To start, byte 0 of the PAB would
specify an OPEN operation like so:

0000 0000 	 (OPEN operation code)

Byte 1 would indicate FIXED, DISPLAY, INPUT & SEQUENTIAL like
SO:

0000 0100

92 	UTILITY PROGRAMS

Bytes 2 & 3 would indicate the address in VDP RAM where we will
place the data that we will later input to the file. In this case

we will put it starting at address >1000 like so:

0001 00000 0000 0000

Byte 4 would indicate our record length, which is 80 or >50:

0101 0000

Byte 5 is our character count which will be:

0000 0000

Bytes 6 & 7 are only used with relative files so we will

reset them both to 0 like so:

0000 0000 0000 0000

Byte 8 is our screen offset for a cassette inteface which we

are not using, so we reset it to o like so:

0000 0000

The remaining bytes, 10 and on, contain the Device and File

Description. Since these are given as ASCII values we will use a
TEXT directive to enter it

TEXT 	'DSK1.FILE1'

Thus, our PAB would look something like this:

PAB EQU >0004,>1000,>5000,>0000,>000A
TEXT 'DSK1.FILE!'

When accessing files some errors are bound to occur. Errors are

returned in bits 0 through 2 of the first byte of the PAB. Table

6.6 on the next page indicates all the possible error codes and
their respective meanings.

UTILITY PROGRAMS 	93

TABLE 6.6 FILE ACCESS ERROR CODES

Error code Bits Meaning

0 	 000 	Bad device name.
1 	 001 	Device is write protected.
2 	 010 	Incorrect file type, incorrect record length, ..

incorrect I/0 mode, no records in a relative
file.

3 ...) 	 011 	Illegal operation; a operation that is not

supported on the peripheral or a conflict with
the OPEN attribute.

4 	 100 	Out of Buffer space on the device.
5 	 101 	You have attempted to read past the end of the

file. The file is closed when this error
occurs.

6 	 110 	Device error, bad medium and other hardware
problems.

7 	 111 	File error such as data/program file mismatch,
non-existent file opened in INPUT mode ect.

NOTE: An error code of 0 indicates that no error has occurred.
unless bit 2 of the status byte at address >837C is set.
If bit two is set in the Status Register it indicates
a bad device name.

Your program should check bits 0 through 1 of byte 1 of the PAB
after every I/O operation to see if an error has occurred. You
should also clear these bits before every I/O operation.

There are some default values that the DSR will use if no
values are specified. The following chart outlines these defaults.

DEFAULT CONDITIONS

1. SEQUENTIAL
2. UPDATE
3. DISPLAY
4. FIXED if relative records, VARIABLE if sequential
5. Record length depends on the peripheral

You also need to construct a PAB in order to comunicate with
RS232 interfaces. The following source code illustrates how you
may output information to a printer or other peripheral attached
via a RS232 interface:

000 	 DEF START
001 	 REF VSBW,VMBW,KSCAN,DSRLNK
002 *
003 MYREG BSS >20
004 *

94

005
006
007
008
009
010
011
012
013
014

UTILITY PROGRAMS

PAB 	EQU 	>F80
STATUS EQU 	>837C
PNTR 	EQU 	>8356
PDATA 	BYTE 0

BYTE >10
DATA >0002
BYTE 80
BYTE 34
DATA 0
BYTE 0

*
*
*
*
*
*
*

OP-CODE
Flag status
VDP buffer
Record length
of characters to write

015 BYTE 12 * Name length
016 TEXT 'RS232.BA=300' * Device name
017 *
018 ERMSG TEXT 'ERROR DETECTE D= '
019 ERROR# TEXT '0123456789ABC DEF'
020 *
021 START LWPI MYREG
022 MOV R11,R10 * Save return address.
023 *
024 LOOP BLWP @KSCAN *
025 MOVB @STATUS,R0 * Key scanning loop
026 JEQ LOOP *
027 *
028 STEP1 LI RO,>0002 *
029 LI R1,MESS * Put message on screen
030 LI R2,34 *
031 BLWP @VMBW *
032 *
033 STEP2 LI RO,PAB *
034 LI R1,>0300 * Write PAB data to
035 LI R2,>29 * VDP RAM
036 BLWP @VMBW *
037 *
038 STEPS BL @STEP4 * Open file
039 LI R1,>0300 *
040 BLWP @VSBW *
041 BL @STEP4 * Write to file
042 LI R1,>0100 *
043 BLWP @VSBW *
044 BL @STEP4 * Close file
045 JMP LOOP *
046 *
047 STEP4 LI R3,PAB+9 * Set
048 MOV R3,@PNTR * PAB ponter
049 BLWP @DSRLNK *
050 DATA 8 *
051 JEO ERROR *
052 RT *
053 *

UTILITY PROGRAMS 	95

054 ERROR CLR R4 	 * Error handling routine
055 MOVB RO,R4 	 *
056 SWPB R4 	 *
057 MOVB @ERROR*(R4),R1 * Get error number
058 LI R0,79 	 *
059 BLWP @VSBW 	 * Print
060 LI R0,62 	 * 	error
061 LI R1,ERMSG 	* 	 number
062 LI R2,16 	 * 	 and
063 BLWP @VMBW 	 * 	 message
064 B *R10 	 * 	 on screen
065 *
066 MESS TEXT 'THIS SENTENCE WILL BE PRINTED OUT!'
067 *
068 END START

96 	UTILITY PROGRAMS

CHAPTER 6 STUDY EXERCISES

1. Write a short program that will place the value 34 at VDP
RAM address >1000.

j..)
.4... al If CPU RAM address >8375 contains >FF after calling the KSCAN

utility, what does that indicate?

3. Write a short program that will select the keyboard device
that checks input from the left side of the keyboard and
joystick #1.

7

GRAPHICS

Your TI home computer is a versatile machine in that it can
construct colorful graphics in a virtual infinite number of
different shapes. There are four basic screen modes you can use
to aid you in constructing graphics, they are as follows:

1. GRAPHICS MODE
2. MULTICOLOR MODE
,.. BIT-MAP MODE
4. TEXT MODE

Before we discuss each individual screen mode and how each can
be used, we must first discuss the VDP (Video Display Processor)
registers and how they affect what appears on the screen.

-97-

98 	GRAPHICS MADE EASY

-7.0 vpIP FreeiBm:RB

There are a total of 8 VDP registers labeled 0 through 7. Each
register contains a single byte. You can change the contents of a
VDP register by using the VWTR utility. The VDP registers contain
information that determines how the computer displays graphics on
the screen. The following is an example of using the VWTR utility
to put a value of >01 in VDP register 7:

REF 	VWTR 	* Reference needed utility program.

.
LI 	RO, >0701 	* VDP R7/value to load=>01
BLWP @VWTR 	* Call utility program

The following is a brief description of each VDP register. The
default values (values loaded in when the computer is turned on)
are also listed:

%/nip IFcez 	 c)

The default for VDP Register 0 is >00 for BASIC, xBASIC, and
Editor Assembler.

The following table outlines what each of the bits in VDP
Register 0 controls.

TABLE 7.0 VDP REGISTER 0 BITS

Bits 	Description

0 - 5 These bits are reserved. All these bits must be reset
(=000000).

6 If this bit is set, the screen is put in BIT-MAP MODE.

7 External video enable/disable. Setting this bit enables
video input and resetting this bit disables video input.

The default configuration of this register is:

0000 0000

vnif., FIS;MIR 1

The default for VDP Register 1 is >E0 for BASIC, xBASIC, and
Editor Assembler.

A copy of VDP Register 1 is located at CPU RAM address >83D4.
If no key has been pressed for a long time the computer
automatically "blanks" the screen. When subsequently a key is

GRAPHICS MADE EASY 	99

pressed, the computer reloads VDP register 1 with a copy of what
is in address >83D4. Therefore if you want to change VDP register

1, make sure you put a copy of its new value at address >83D4.

Table 7.1 outlines what the bits in VDP Register 1 controls.

TABLE 7.1 VDP REGISTER 1 BITS

Bit 	Description

0 	Selects 4K or 16K RAM operation. A value of 0 selects 4K
RAM operation, and a value of 1 selects 16K RAM operation.

1 	Blank enable/disable. Setting this bit (=1) causes the
screen to go blank. Resetting this bit (=0) causes the
screen to display normally. When the screen is blanked,
only the border color remains on it.

2 - 	Interrupt enable/disable. Setting this bit (=1) enables VDP
interrupt and a resetting this bit (=0) disables VDP
interrupts.

3 	If this bit is set, the display is in TEXT MODE.

4 	If this bit is set, the display is in MULTICOLOR MODE.

= ,i 	Reserved, must be O.

6 	Sprite size selection. Resetting this bit (=0) selects for
standard sized sprites. Setting this bit (=1) selects
double-sized sprites.

7 	Sprite magnification selection. Setting this bit (=1)
selects magnified sprites, and resetting this bit selects
unmagnified sprites.

The default configuration for this register is

e
1110 0000

VDP registers 2 through 6 define the beginnings of the Screen
Image Table, Color Table, Pattern Descriptor Table, Sprite
Attribute Table, and Sprite Descriptor Table. We will discuss
each of these tables in great depth in subsequent chapters. But
for now it is a good idea not to alter these registers from their
default values.

100 	GRAPHICS MADE EASY

iisi u• F... Fr 9 I B -"T" la 	:.....-,

The default for this register is >00 in BASIC, XBASIC and Editor
Assembler.

This register defines where the Screen Image Table begins The
beginning of the Screen Image Table is found by multiplying the
value in this register by >400.

The default value for this register is >0E in Editor/Assembler,
>0C in BASIC and >20 in xBASIC.

This register defines the beginning of the Color Table. The
beginning address is found by multiplying the value in this
register by >40.

'V ID IP Pc e I B li" IR:

The default default value for this register is >01 in the Editor/Assembler
and >00 in BASIC and xBASIC.

This register defines the beginning of the Pattern Descriptor
Table. The beginning address is found by multiplying the contents
of this register times >800.

ika ID F. Fr 1E: G I 1- PC ..1 31

The default value for this register is >06 in the
Editor/Assembler, BASIC and xBASIC.

This register defines the beginning of the Sprite Attribute
Table. The beginning address is found by multiplying the contents
of this register times >80.

ivinF. Fze I B -raF‹ e)

The default value for this register is >00 in the Editor/Assembler
BASIC and xBASIC.

This register defines the beginning of the Sprite Description
Table. The beginning address is found by multiplying the contents
of this register times >800.

The default value for this register is >F5 in the Editor/Assembler
and >17 in BASIC and xBASIC.

GRAPHICS MADE EASY 	101

Table 7.2 lists the bits in VDP Register 7 and what each
controls:

TABLE 7.2 VDP REGISTER 7 BITS

Bits 	Description

0 - 3 Holds the color code for the foreground color in TEXT
MODE.

4 - 7 Holds the code for the upper and lower screen border
color in all modes.

B u pi rsi icl. Ft 'V'

The following table summarizes the most important bits in the
various VDP registers. These are the bits that you should become
familiar with, as a working knowledge of them is necessary in
order to program properly.

TABLE 7.3 SUMMARY OF IMPORTANT VDP REGISTER BITS

VDP
Register Bit Controls

RO 6* If set, display is in BIT-MAP MODE.
R1 3* If 	set, display is in TEXT MODE.
R1 4* If 	set, display is in MULTICOLOR MODE.
R1 6 If 	set, sprites are double-sized.
R1 7 If 	set, sprites are magnified.

*Resetting these 3 bits puts the display in GRAPHICS MODE.

7' - 1 BIR Pk FAINII 	ri C31).

GRAPHICS MODE is the mode you probably will be programming in most
of the time. It allows you to use the standard ASCII characters
and define patterns of your own to display on the screen. You can
also define the foreground and background colors for any
characters. The ASCII character patterns are available to you.
You can use sprites and set them in motion in graphics mode.

Graphics consist of characters. Each character is made up by a
8 x 8 dot pattern. The character is defined by turning some dots
"on" and leaving others "off" in the pattern.

In order to display a graphic pattern on the screen you have to
first describe the shape of the character, then you describe its
foreground and background colors, and finally you describe where

102 	GRAPHICS MADE EASY

on the screen you want the character to be displayed. There are
three separate tables that contain the information needed to
produce graphics on the screen. The three tables and the
information they contain are as follows:

1. PATTERN DESCRIPTOR TABLE
a) Holds character pattern identifier

2. COLOR TABLE
a) Holds color code for foreground and background

color of character

3. SCREEN IMAGE TABLE
a) Refers to the screen location of the pattern.

To sum up, graphics are created by setting up information
about their shape, color and screen location in the tables. It is
recommended that your three graphics tables start at the following
VDP RAM addresses (These are the VDP Register default values):

TABLE 7.4 LOCATION OF GRAPHIC TABLES

Table 	 VDP RAM Table Location

PATTERN DESCRIPTOR TABLE 	 >0800
COLOR TABLE 	 >o3eo
SCREEN IMAGE TABLE 	 >0000

The Pattern Descriptor Table can hold up to 256 different patterns
or characters. Each character is defined by a "pattern
identifier" as outlined in your User's Reference Guide. Each
pattern takes up 8 bytes in the Pattern Descriptor Table. Thus
character 0 takes up addresses >0800 through >0807, character 1
takes up addresses >0808 through >080F, and character 256 occupies
addresses >OFFS through >OFFF.

In GRAPHICS MODE the standard ASCII character patterns are
automatically loaded into the Pattern Descriptor Table by the
system. So character 32 (space character) occupies bytes >0900
through >0907, and ASCII character 33 (exclamation point) occupies
addresses >0908 through >090F and so on with the other ASCII
characters. To find the Table address for any character simply
multiply its character number times 8 and add it to >0800. For
example to find the table address that starts defining ASCII
character 65 (Capital letter 'A'):

E (65) * (8) 	+ 2048 = 2568 = >0A08

GRAPHICS MADE EASY 	103

If you want to add additional character patterns of your own
but do not want to alter any of the ASCII character patterns
already present you can place your own character patterns
beginning with character number 128 and extending through 256. Of
course, you can alter any pattern in the Pattern Descriptor Table,
if you wish.

icolLADIFc iripluit__

The Color Table codes for the foreground and background color of
each character. Each color code takes up one byte in the Color
Table. Each byte codes for the foreground and background color of
eight successive characters. The four most-significant bits code
for the foreground color and the four least significant bits code
for the background color.

The Color Table begins at VDP RAM addresses >0380. The
following are the values for the 16 colors available on the TI
Home Computer. Note that the values are somewhat different in
assembly language then they are in BASIC:

TABLE 7.5 COLOR CODES

COLOR CODE BITS SET COLOR CODE BITS SET

Transparent >0 0000 Light yellow >8 1000

Black :>1 0001 Light red >9 1001
Medium green >3 0010 Dark yellow >A 1010
Light green >3 0011 Light yellow >B 1011
Dark blue >4 0100 Dark green >C 1100
Light blue >5 0101 Magneta >D 1101
Dark red :::.6 0110 Gray >E 1110
Cyan >7 0111 White >F 1111

The byte at address >0380 specifies the colors for characters 0
through 7, the byte at address >0381 specifies the colors for
characters El through 15, and the byte at address >039F specifies
the color of characters 248 through 255.

For example, if we place a value of >F1 at VDP address >0384,
characters 32 through 39 are displayed as white on black.

ICIIRIEIN4 IMIAB 	TiPirE

In the BASIC language the screen is divided into 24 rows of 32
columns. A screen location is designated by a row and column
number. For example the statement:

CALL HCHAR(4,5,65,1)

will place the capital letter 'A' in the 4th column row 5.

104 	GRAPHICS MADE EASY

The computer has no concept of a "screen"; it just views the
screen as a series of memory locations. There are no rows and no
columns, only 768 possible memory locations numbered 000 through
767. These memory locations begin at VDP address >0000 and extend
through address >02FF. These addresses make up the Screen Image
Table. Figure 7.6 shows how the consecutive memory locations
designate the consecutive screen locations:

FIGURE 7.6 SCREEN IMAGE TABLE/SCREEN POSITION

	

003 004 . . • 029 030 031
035 	. 	. 	• 	• 	a 	g 	• 	• 	• 	• 	. 	062 063

. 	. 	• 	• 	II 	• 	IV 	• 	• 	 0 	 • 	 095
. 	I/ 	 •St a 	 a 	 P a 	 V 	 II 	 * 	 *

O a 	 O 	 a

N 0 	 a 	 a

.

• "
• -
a 	 a

736 	a 	• 	- 	• 	• 	P 	a 	•//I 	 N 	 * 	
" 	

. 	767

If you place the ASCII value of a character in the Screen Image
Table, the character will appear in the designated place on the
screen. For example, if you place the value 65 in VDP RAM address
>23 then the character 'A' will appear in screen position 035. To
convert a row and column location into a Screen Image Table
address simply use the -Following -Formula:

C C + (R * 32) 3 =P

where C is the column number, R is the row number, and P is the
resulting Screen Image Table address.

Now that we know how graphics are put together we can construct
a small assembly language program to illustrate how it all goes
together. Consider the BASIC program:

10 CALL COLOR(1,16,2)
20 CALL HCHAR(4,10,65,1)
30 GOTO 30

This short program prints character 65, which is the "A"
character, on the screen at row 4 column 10. The character is
printed white on a black background. To convert this to an
assembly language program we have to load the needed information
into the proper tables as demonstrated on the next page.

000 001 002
032 033 034
064 965 066

GRAPHICS MADE EASY 	105

001 DEF START * Define program entry point.
002 REF VSBW * Reference needed utilities.

003 *
004 MYREG BSS >20 * Reserve memory for my registers.
005 *
006 START LWPI MYREG * Pointer to beginning of my
007 * workspace.
008 LI R0,>0384 * Color Table address.
009 LI R1,>1F00 * Byte to write (white on black).
010 BLWP @VSBW *
011 *
012 LI R0,138 * Screen Image Table address.
013 LI R1,>4100 * Load character 	'A' ASCII 65.
014 BLWP @VSBW * Character is displayed in screen
015 * position 138.
016 HERE JMP HERE * This holds display on screen.
017 END START * Program runs when loaded.

Now suppose we want to define a character of our own. In BASIC
we would add a CALL CHAR statement to our previous program. We
will now define a ball pattern as character 128 and color it red.
We will then display it on the screen:

10 CALL CHAR(128,"3C7EFFFFFFFF7E3C")
20 CALL COLOR(13,9,1)
30 CALL HCHAR(4,10,128,1)
40 GOTO 40

To translate we simply add some additional code to load the new
pattern into the Pattern Descriptor Table, and change the color
values in the Color Table:

001 	 DEF 	START 	* Define program entry point.
002 	 REF 	VSBW,VMBW 	* Reference needed utilities.
003 *
004 MYREG BSS >20
005 BALL DATA >3C7E,>FFFF,>FFFF,>7E3C 	* Pattern
006 *
007 START LWPI MYREG * Pointer to beginning.
009 LI RO,>0390 * Load
010 LI R1,>8000 * 	Color
011 BLWP @VSBW * 	 Table (red)
012 *
013 LI RO,>0C00 * Load ball
014 LI R1,BALL * pattern into
015 LI R2,8 * Pattern Descriptor Table
016 BLWP @VMBW *
017 *
018 LI R0,138 * Screen position
019 LI R1,>8000 * Character 	(ball) 	to write.
020 BLWP @VSBW * Place ball on screen.
021 HERE JMP HERE * Hold it on screen.
022 END START * Program runs when loaded

IN SCREEN IMAGE TABLE

VDP
ADDRESSES

>oleo TO >019F
>01A0 TO >01BF
>01C0 TO >01DF
>01E0 TO >01FF
>0200 TO >021F
>0220 TO >023F
>0240 TO >025F
>0260 TO >027F
>02e0 TO >029F
>02A0 TO >02BF
>02C0 TO >02DF
>02E0 TO >02FF

VALUES
TO LOAD

>60 TO >7F
>60 TO >7F
>60 TO >7F
>60 TO >7F
>BO TO >9F
>BO TO >9F
>eo TO >9F
>80 TO >9F
>A0 TO >BF
>AO TO >BF
>AO TO >BF
>AO TO >BF

106 	GRAPHICS MADE EASY

-7_.-7. mull_irIlcolL_DF;: imoin

MULTICOLOR MODE divides the screen into a series of "boxes". Each
box is a 4 x 4 pixels in size. You can define the color of each
individual box. There are 64 boxes in a row and there are a total
of 48 rows. You are not allowed to define characters or use ASCII
characters when in MULTICOLOR MODE. You are allowed to use sprites
in MULTICOLOR mode.

To place the screen in MULTICOLOR MODE you must set bit 4 in
VDP register 1.

You must place the following values in the Screen Image Table
when using MULTICOLOR MODE:

TABLE 7.7

VDP
ADDRESSES

VALUES TO LOAD

VALUES
TO LOAD

>0000 TO >001F >00 TO >1F
>0020 TO >003F >00 TO >1F
>0040 TO >005F >00 TO >1F
>0060 TO >007F >00 TO >1F
>0080 TO >009F >20 TO >2F
>00A0 TO >00BF >20 TO >2F
>0000 TO >00DF >20 TO >2F
>00F0 TO >00FF >20 TO >2F
>0100 TO >011F >40 TO >3F
>0120 TO >013F >40 TO >3F
>0140 TO >015F >40 TO >3F
>0160 TO >017F >40 TO >3F

Once you have loaded the Screen Image Table with the above
values you can start describing the colors of the boxes on the
screen. This is done by placing values in the Pattern Descriptor
Table. The Pattern Descriptor Table thus describes colors in
MULTICOLOR MODE instead of patterns as it did in GRAPHICS MODE.

The Pattern Descriptor Table should begin at address >0800 in
VDP RAM. The first byte in the Pattern Descriptor Table describes
the color of the first two adjacent boxes on the first row. The
color codes are given on page 103. The left four bits of the byte
describe the color of the first box and the right four bits
describe the next box on the same row.

The next byte in the table defines the colors of the first two
boxes in the second row. The third byte describes the first two
boxes in the third row. This continues until the first two boxes

GRAPHICS MADE EASY 	107

in all 48 rows have been defined. Thus, the first eight bytes in
the Pattern Descriptor Table describe the color of the first two
columns of boxes. The second group of eight bytes in the table
define the colors of the third and fourth columns of boxes. This
continues until the last eight bytes in the Pattern Descriptor
Table are reached OODF8 to >ODFF) which in their turn define the
colors of the last two columns of boxes.

-7__...s mx -117- mania

In TEXT MODE the screen is 40 columns by 24 rows. You are not
allowed to use sprites. Each character is 6 x 8 pixels in size.
There are 960 possible screen positions instead of 768. Thus the
Screen Image Table is longer. TEXT MODE is most often used in
word processing programs.

To place the screen in TEXT MODE you must set bit 3 in VDP
register 1. Two colors are available in TEXT MODE, the pixels
that are turned off are the color defined in bits 4 through 7 of
VDP register 7. The bits that are turned on are the color defined
in bits 0 through 3 of VDP register 7.

The tables used in TEXT MODE are set up the same way as the
Screen Image Table and Pattern Descriptor Tables are in GRAPHICS
MODE except that the Screen Image Table is longer, and in the
Pattern Descriptor Table the last two bits of each entry are
ignored because each character is only 6 x 8 pixels instead of
8 x 8 pixels as they are in GRAPHICS MODE.

-7_44. EcIir micliv- mcon

BIT-MAP MODE is available only on the TI-99/4A Home computer due
to its use of an advanced microprocessor chip. BIT-MAP MODE
allows you to define independently each of the 768 screen
positions. You can also independently set the color of each pixel
in a character. You can use sprites in BIT-MAP MODE but you
cannot move them using automatic motion.

In BIT-MAP MODE the Pattern Identifier Codes are stored in the
Pattern Descriptor Table. The color codes that describe the
colors of these patterns are stored in the Color Table. The
Screen Image Table contains the number referencing a given pattern
from the Pattern Descriptor Table. The reference numbers range
from >00 to >FF each referencing a successive pattern in the
Pattern Descriptor Table.

In BIT-MAP MODE you should start the Screen Image Table at VDP
RAM address >1800. You do this by setting VDP Register 2 equal to
>06. Add the following code to your program to accomplish this:

LI 	RO,>0206 	 * (SEE PAGE 80 FOR A REVIEW
BLWP 	@VWTR 	 * 	OF THIS UTILITY)

108 	GRAPHICS MADE EASY

The Pattern Descriptor Table begins at VDP RAM address >0000
and is >1800 bytes long. In order to start the table at address
>0000 you must load VDP Register 2 with >00 as in the last
example. Each pattern identifier code (pattern) takes up 8 bytes
in the Pattern Descriptor Table, thus there are 768 possible
patterns. See your User's Reference Guide, subprogram CHAR, for
further discussion of pattern identifier codes.

The Color Table should begin at VDP RAM address >2000. You can
do this by loading a value of >04 into VDP Register 3. The Color
Table is >1800 bytes long. Each color code is 8 bytes long. The
color codes are described on page 103. The first four bits of
each byte code for the color of the pixels that are 'on' in one
row of 8 pixels, and the last four bits of each byte code for the
color of the pixels that are 'off' in the same row of 8 pixels.
For example, the pattern identifier for our ball,
"3C7EFFE7E7FF7E3C," which starts at address >0000 of the Pattern
Descriptor Table would have >00 as its reference code. You can
display the ball anywhere on the screen by entering its reference
code in the appropriate place of the Screen Image Table. Other
patterns in the table are referenced in the same way. For
example, the second group of 8 bytes in the Pattern Descriptor
Table (second pattern) are referred to in reference code >01 and
so on for all other patterns. The 8 bytes in the Color Table
beginning at address >2000 hold the color codes for the ball, the
next 8 bytes code for the colors of the next pattern and so on.

Now lets look at an example to illustrate these last points.
Say we want the ball to be red with a black background. We also
want the ball to have a white square in its center. Our ball
pattern would be constructed as follows:

HEX CODE

	

1 1 lx1x1x1x1 1 1 	 >3C

	

lx1x1x1x1x1x1 1 	 >7E

	

lx1x1x1x1x1x1x1x1 	 >FF
lx1x1x1 	'

	

, lx1x1x1 	 >E7

	

lx1x1x1 1 lx1x1x1 	 >E7

	

lx1x1x1x1x1x1x1x1 	 >FF

	

1 lx1x1x1x1x1x1 : 	 >7E
1 1 lx1x1x1x1 	1 	 >3C

The following code would load this pattern into the Pattern
Descriptor Table beginning at VDP address >0000. Don't forget to
change the value of VDP Register 4 to >00 first.

.
PATTAB EOU 	>0000
PAT 	DATA 	>3C7E,>FFFF,>FFFF,>3C7E

.
LI 	RO,PATTAB
LI 	R1,PAT
LI 	R2,8
BLWP @VMBW

GRAPHICS MADE EASY 	109

Now that the pattern is loaded we need to define its colors.
First lets draw a map outlinning the colors we want. Black=8,
Red=R, and White=W:

COLOR CODE

IBIBIRIRIRIRIBIB1 >81
IBIRIRIRIRIRIRIBI >81
IRIRIRIRIRIRIRIR1 >81
IRIRIRIWIWIRIRIRI >8F
IRIRIRIWIWIRIRIR1 >8F
IBIRIRIRIRIRIRIR1 >81
IBIRIRIRIRIRIRIBI >81
IBIBIRIRIRIRIBIBI >81

*Each row of 8 pixels is coded for
*with one byte. The first 4 bits
*code for the pixels that are 'ON'
*in the row, in this case the code
*i s red (8). The second group of
*bits code for the color of pixels
*that are 'OFF' in the row, in
*this case black (1) or white (F).

We can use the following code to load these values into the
Color Table beginning at address >2000. Remember to load VDP
Register 3 with >04 prior to reaching this segment:

COLTAB EQU >2000
COLORS DATA >8181,>818F,>8F81,>8181

LI R0,COLTAB
LI 	R1,COLORS
LI 	R2,8
BLWP @VMBW

When programming there will be instances when you will want to
change which pixels are 'on' and which pixels are 'off' in a
character. To do this it will be necessary to calculate the byte
and bit position that needs to be changed in the Pattern
Descriptor Table. You may also on occasion wish to change the
foreground and background colors of a group of eight pixels. To do
this it will be necessary to calculate the byte in the Color Table
that should be changed.

If you know the X-position and Y-position of a pixel, you can
use the following source code to calculate the bit offset and byte
that refers to the pixel in the Pattern Descriptor Table. This
source listing also provides the byte to change in the Color
Table. See page 115 for a description of how how to determine
pixel X and Y coordinates.

110 	GRAPHICS MADE EASY

In this example RO contains the X--position and R1 contains the
Y--position of the pixel:

.
MOV R1,R6
SLA R6,5
SOC R1,R6
ANDI R6,65287
MOV RO,R7
ANDI R7,7
A 	RO,R6 	* R6 is the byte offset
S 	R7,R6 	* R7 is the bit offset

R6 is the address in the Pattern Descriptor Table that you must
change. R7 is the bit that must be altered. The address of the
Color Table byte that you will need to change is found by adding
>2000 to R6.

The following source code segment can be used to alter the VDP
Register values so that the Pattern Descriptor Table, Screen Image
Table and the Color Table all begin at the proper addresses
required for BIT-MAP MODE:

.
LI 	RO,2
	

* Put screen
BLWP @VWTR
	

* 	 in BIT-MAP MODE.
LI 	R0,>0206 * Screen Image Table
BLWP @VWTR
	

* 	 begins at address >1800
LI 	R0,>0403 * Pattern Descriptor Table
BLWP @VWTR
	

* 	 begins at address >0000
LI 	RO,>03FF * Color Table
BLWP @VWTR
	

* 	 begins at address >2000
.

.

This next source code segment can be used to initialize the
Screen Image Table. The values >00 through >FF are loaded three
times in succession:

.
LI 	R0,>1800 *
CLR R1 	*
LI 	R2,3 	*

LOOP BLWP @VSBW 	*
INC RO
AI 	R1,>100
	

* When FF+1 is reached, (>00)
JNE LOOP
	

* no jump is made
CLR R1
	

*
DEC R2
	

* Repeat loading >00 to >FF
JNE LOOP
	

* 	three times

GRAPHICS MADE EASY 	111

This final segment can be used to initialize the Color Table.
Here we will color all pixels that are "on" black and all pixels
that are "off" white. We do this by loading successive values of
>F1 into the Color Table:

.

.
LI 	RO,>2000
LI 	R1,>F100

LOOP BLWP @VSBW
INC RO
CI 	RO,>3801
JNE LOOP

.

.

The following subprograms illustrate how BIT-MAP MODE can be
used. Subprogram INITBM will initialize all tables and place the
screen in BIT-MAP MODE. Subprogram TURNON will 'turn-on' a single
pixel whose X and Y coordinates have been placed into R3 and R4
respectively. If you are using the Editor/Assembler, you need not
type in these subroutines directly into your program. This is
because they are all DEF'd. All you need to do is include the
subprogram names in a REF statement in your program and follow
these steps:

1. Type in the subroutine coding for INITBM and TURNON
and save it to disk. Assemble it into an object file
named BITMAP.

2. Write your own program which places the X and Y
location of the pixel you want to turn-on in R3 and
R4 respectively.

3. Include in your program a REF INITBM,TURNON
statement. Assemble your program into a file named
DEMO (or whatever).

4. Select the LOAD & RUN option and when prompted for
the file name type DSK1.DEMO and press ENTER.

5. When prompted for the next file name type
DSK1.BITMAP and press ENTER.

6. Press ENTER again.

7. When prompted for a program name, type START and
press enter. Program should now execute.

If you are using the Line-by-Line assembler you will have to
type in the source code as part of every program that uses BIT-MAP
MODE.

112 	GRAPHICS MADE EASY

This program will draw a rectangle when given the two points of
one of its diagonals.

001 	 DEF 	START
002 	 REF 	INITBM,TURNON
003 *
004 HIGHX EQU 65 * Diagonal
005 HIGHY EQU 50 * end
006 LOWX EQU 50 * points
007 LOWY EQU 150 *
008 *
009 START BLWP @INIT * Initialize & enter BIT-MAP MODE
010 *
011 LI R3,HIGHX
012 LI R4,HIGHY
013 PLOT BLWP @TURNON
014 DEC R3
015 CI R3,LOWX
016 JNE PLOT
017 LI R3,HIGHX
018 INC R4
019 CI R4,LOWY
020 JNE PLOT
021 *
022 LIMI 2
023 JMP $
024 END

The following are the INITBM and TURNON routines:

001 	 DEF 	INITBM,TURNON
002 	 REF 	VWTR,VSBW
003 *
004 MYREG BSS >20
005 INITBM DATA MYREG,$+2
006 LI R0,2
007 BLWP @VWTR * Enter BIT-MAP MODE
008 LI RO,>0206
009 BLWP @VWTR * Screen Image Table = >1800
010 LI RO,>0403
011 BLWP @VWTR * Pattern Descrp. Table = >0000
012 LI RO,>03FF
013 BLWP @VWTR * Color Table = >2000
014 *
015 LI RO,>1800
016 CLR R1
017 LI R2,3
018 LOOP BLWP @VSBW
019 INC RO
020 AI R10100
021 JNE LOOP

022
023
024

CLR
DEC
JNE

GRAPHICS MADE EASY

R1
R2
LOOP

025 *
026 LI RO,>2000
027 LI R1,>F100
028 LOOP1 BLWP @VSBW
029 INC RO
030 CI RO,>3801
031 JNE LOOP1
032 *
033 LI R0,>1800
034 CLR R1
035 LOOP2 BLWP @VSBW
036 DEC RO
037 JNE LOOP2
038 RTWP
039 *
049 TURNON DATA MYREG,$+2
050 MOV @6(R13),R3
051 MOV @8(R13),R4
052 MOV R4,R5
053 ANDI R5,7
054 SZC R5,R4
055 SLA R4,R5
056 A R5,R4
057 MOV R3,R0
058 ANDI RO,>FFF8
059 S RO,R3
060 A R4,R0
061 SWPB RO
062 MOVB RO,@>8CO2
063 SWPB RO
064 MOVB RO,@>8CO2
065 NOP
066 MOVB @>8808,R1
067 SOCB @GET(R3),R1
068 ORI RO,>4000
069 SWPB RO
070 MOVB RO,@>8CO2
071 SWPB RO
072 MOVB RO,@>8CO2
073 NOP
074 MOVB R1,@>8C00
075 RTWP
076 GET DATA >8040,>2010,>0804,>0001
077 END

113

114 	GRAPHICS MADE EASY

CHAPTER 7 STUDY EXERCISES

1. Write a few lines of source code that could be used to put
the screen in MULTICOLOR MODE.

2. Write a few lines of source code that could be used to
display sprites as double-sized and magnified.

3. What will the following source code statements do?

REF 	VWTR

LI 	RO,>0701
BLWP @VWTR

4. Write a complete short program that will display a medium
green colored ball-shaped sprite in the center of the
screen.

5. How does the computer view the screen?

6. How do you make a program start running immediately upon
loading it with the LOAD AND RUN option of the Editor/
Assembler?

8

THOSE

SPIRITED

SPRITES

Sprites are the mainstay of the game programmer. They can be any
shape and color and can occupy screen positions independent of any
characters already present. Once set into motion, a sprite can
move independently of direct program control. You can magnify or
make sprites double-sized. From these characteristics you can see
that sprites are a very powerful asset to the programmer intent on
designing fast-executing arcade games.

You are allowed to define up to 32 separate sprites on the
screen at any given time. You can use sprites in GRAPHICS and
MULTICOLOR MODES. You can also use sprites in BIT MAP MODE but you
cannot use their automatic motion feature. You cannot use sprites
at all in TEXT MODE.

-115-

116 	THOSE SPIRITED SPRITES

In your computer there are three different tables that
collectively contain all the information needed to define sprites.
You simply load the desired information into the tables and change
it as needed to redefine the characteristics of your sprites. The
three tables and the information they contain are as follows:

1. SPRITE ATTRIBUTE TABLE

a) Sprite position
b) Sprite color

2. SPRITE DESCRIPTOR TABLE

a) Sprite pattern identifier
b) Specify magnified or double-sized sprites

3. SPRITE MOTION TABLE

a) Define X and Y velocities of sprite

To sum up, sprites are created by setting up information in the
three tables that define their position, pattern, color, direction
of motion, speed, and their size.

It is recommended that your three sprite tables begin at the
following memory locations (default values):

TABLE 8.0 DEFAULT LOCATIONS OF SPRITE TABLES

Table 	 Table Begins at This VDP Address

SPRITE ATTRIBUTE TABLE 	 >0300
SPRITE DESCRIPTOR TABLE 	 >0400
SPRITE MOTION TABLE 	 >0780

As mentioned before you can have up to 32 separates sprites
completely defined and operating at one time. These sprites are
numbered from 0 (first sprite) to 31 (last sprite).

Before we discuss the three sprite tables in greater detail we
must first understand how the computer defines the screen for
sprites. For sprites the computer divides the screen into a
series of rows and columns. The columns are labeled starting on
the left from 0 to 256 (>00 to >BE). The rows are numbered
somewhat differently, starting from the top left, the first row
is numbered 256 (>100), followed by the numbers 0 through 255 (>00
to >FF). Each screen location defined by a row and column in this
manner is referred to as a pixel. A pixel is the smallest area of
the screen that can be turned on or off. Most of the time you

. 	. 	.

.

p2 I
II

1

II

I

THOSE SPIRITED SPRITES 	117

will probably enter the sprite screen position as hexadecimal
values, so table 8.1 outlines the rows and columns of all pixel
locations in HEX code:

TABLE 8.1 ROW AND COLUMN PIXEL LOCATIONS

PIXEL COLUMN

I P
II
I X
1E
IL

1 R
10
I W

. 	•

>00 >01 >02 .

	

>100 1 	. 	p1 	.

	

>00 1

	

>01 I 	. 	. 	p3 .

	

>02 1 	. 	. 	.

	

. • . • 	. >FC >FD >FE >FFI
	 I

• • 	• 	.

.

•

>BB 	I 	. 	.

>BD 	1 	. 	. 	.

>BE I 	. 	p4 	.

Looking at Table 8.2 it can be seen that pixel p1 is in row
>100 and column •02, p2 is in row >100 column >FF, p3 is in row
>01 column •02, and p4 is in row >BE column >01.

There are some formulas available for converting a graphic row
and column location into pixel locations and vice-versa. These
formulas are as follows:

TABLE 8.2 GRAPHIC-TO PIXEL INTERCONVERSIONS

GRAPHIC ROW TO PIXEL ROW
	

GR*8-7=PR
GRAPHIC COLUMN TO PIXEL COLUMN
	

GC*8-7=PC

PIXEL ROW TO GRAPHIC ROW
	

INTE(PR+7)/83=GR
PIXEL COLUMN TO GRAPHIC COLUMN
	

INTE(PC-1-7)/83=GC

GR=graphic row, GC=graphic column, PR=pixel row, PC=pixel column

118 	THOSE SPIRITED SPRITES

8- 0 BP- FicI M dc%T TIRI BUTE TintEcLE

You should begin the Sprite Attribute Table at VDP address >0300.
The Sprite Attribute Table holds the information regarding the
present screen position of all sprites as well as their colors.
The entries in the Sprite Attribute Table change constantly as the
position of moving sprites changes.

There are 32 possible sprites numbered 0 through 31. Each
sprite takes up four bytes in the Sprite Attribute Table. The
first byte is the row or "Y" position of the sprite. The second
byte is the column or "X" position of the sprite. The (Y)
position starts with >FF then continues with >00, >01, >02 and so
on until >BE. The (X) position extends from >00 through >FF. The
third byte references the pattern of the sprite as to where it is
located in the Sprite Descriptor Table. It can contain any value
from >00 to >FF. The fourth byte is the early clock attribute and
also codes for the color of the sprite.

When your computer moves sprites it updates the entries in the
Sprite Attribute Table. The more sprites it has to update the
longer it takes to execute the program. To shorten the time and

increase program efficiency you can place a value of >DO as the Y-
location of the lowest numbered non-moving sprite in the Sprite
Attribute Table. This indicates that all subsequent sprites are
undefined. For example, if you have 10 sprites in motion you
should place a value of >DO at address >0328. If you have no
sprites defined, you should place a value of >DO at address >0300.
To sum up, it is recommended that you always let the final unused
sprite be undefined by specifying a Y-location of >DO.

The third byte references a pattern in the Sprite Descriptor
Table. The pattern reference number can range from >00 to >FF.
The value of this byte corresponds to a character defined in the
Sprite Descriptor Table. For example, if the third byte contained
a value of >80 it would represent the character defined by address
>0400 through >0407 in the Sprite Descriptor Table.

The fourth byte controls the early clock of the sprite and its
color. The four most significant bits (bits 1-4) control the
early clock. If the last bit (bit 4) is reset to zero the early
clock is off and the location of the sprite is said to be its
upper left-hand corner. This means that the sprite will fade in
and out on the right hand side of the screen. If the fourth bit
is set to one the early clock is on and the sprites location is
shifted 32 pixels to the left. The sprite can then fade in and
out on the left side of the screen.

The color of the sprite is determined by the contents of the
four least significant bits of the fourth byte in the Sprite
Attribute Table. The values are given on the next page.

TABLE 8.3 COLOR CODES

COLOR
	

CODE BITS SET 	COLOR

Transparent
Black
Medium green
Light green
Dark blue
Light blue
Dark red
Cyan ■.

1
IT

 U
l

42
,
A

 t.•.
,1

 II"
'
 0

0000
0001
00 10
0011
0100
0101
0110
0111

Medium red
Light red
Dark yellow
Light yellow
Dark green
Magenta
Gray
White

THOSE SPIRITED SPRITES 	119

CODE

8

BITS SET

1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

You should take note that the color codes differ slightly in
assembly language from their counterparts in BASIC.

The following diagram illustrates how an entry into the Sprite
Attribute Table might be constructed. Two sprites are specified.

	

Sprite 0 	Sprite 1

SALIST DATA >33560.8001,>A8280.810F,>D0 -- third sprite
/ / 	/ / 	 undefined

Y X 	/ color
pattern

E3... 1 	'RIR I11- EE n la is IFt I Fm -TC:11Fc -TAtEsi_la

The Sprite Descriptor Table describes the patterns of sprites in
the same way that the Pattern Descriptor Table describes
characters. You will usually begin the Sprite Descriptor Table at
address >0400. You can start it at a lower address, but these are
usually reserved for the Screen Image Table, Color Table, and
Sprite Attribute List. Addresses >0400 through >0407 are defined
as sprite pattern >80, sprite pattern >81 occupies addresses >0480
through >040F and so on through sprite pattern >EF which occupies
addresses >0778 through >077F.

You can make sprites magnified double-sized or both by writing
a value to the two least significant bits of VDP register 1.
Table 8.4 which begins on the next page, explains the different
sizes and magnifications possible as well as the correct values to
write to VDP Register 1.

/20 	THOSE SPIRITED SPRITES

TABLE 8.4 MAGNIFIED & DOUBLE-SIZED SPRITES

BITS Description

00 	Standard size sprites: Each sprite is 8 x 8 pixels which
is the same size as a standard character. HEX (>00)

01 	Magnified sprites: sprites is 16 x 16 pixels in size, equal
to four standard characters on the screen. Note that the
pattern displayed is exactly the same as that for standard
size sprites except the sprite is 4x as big. HEX (>01)

10 	Double-sized: Each sprite is 16 x 16 pixels on the screen.
Each sprite is defined by four consecutive patterns from
the Sprite Descriptor Table. For example, if the last two
bits (bits 14 & 15) are 01, then if character >80 is
referenced the sprite will be formed by characters >80,
>81, >82, and >83. The first character, character >80,
makes up the upper left hand portion of the sprite, the
second character, character >81, makes up the lower left
hand portion of the sprite, the third character, character
>82, makes up the upper right portion of the sprite, and
finally the last character, character >83, makes up the
lower right portion of the sprite. HEX (>02)

11 	Double-sized magnified sprites: Each sprite is 32 x 32
pixels in size. This is equal to the space occupied by 16
standard size characters on the screen. Sprites are
defined in the same way that double-sized sprites are
except that each of the four characters is in turn four
standard characters in size. HEX (>03)

8-:-.22 SF>IFCITIa MOITIDINJ -T- 04

The Sprite Motion Table specifies the X and Y velocity of each
sprite. The Sprite Motion Table begins at address >0780. Before
a sprite can be put into motion, several conditions must be met.
The first thing that must occur is that your program must allow
interrupts. You can enable interrupts with the LIMI 2 instruction
however, before your program accesses VDP RAM you will have to
disable the interrupts with a LIMI 0 instruction in order that the
interrupt handling routine does not alter the VDP write address.

You must also indicate in your program how many sprites will be
in motion. This is done by placing a value at address >837A in CPU
memory. For example if sprites 2, 5, and 7 are in motion, the
number 8 be put in address >837A in order to allow motion of
sprites 0, 1, 2, 3, 4, 5, 6, and 7.

THOSE SPIRITED SPRITES 	121

A description of the motion of each sprite must be placed in
the Sprite Motion Table. Each sprite takes up four bytes in the
table. The first byte specifies the (Y) velocity of the sprite,
the second byte specifies the (X) velocity of the sprite. The
third and fourth bytes are used by the interrupt routine so all
you have to do is remember to leave space for them in the table.

The following are allowed as values for (X) and (Y) velocities,
also shown are direction of travel:

TABLE 8.5 ALLOWED VALUES FOR X AND Y SPRITE VELOCITIES

Decimal 	Hex 	 Motion 	Description

0 to 127 	>00 to >7F Down (Y) 	Positive velocities. Down or

	

Right (X) 	right motion.

-1 to -128 >FF to >80 Up 	(Y) 	Negative velocities. Up or

	

Left (X) 	left motion.

A value of 1 (>01) will cause the sprite to move one pixel
every 16 VDP interrupts. This is approximately once every
16/60ths of a second.

To summarize, in order to put sprites into motion you must:

1. Enable interrupts to occur with the LIMI 2 instruction.

2. The number of sprites in motion must be placed in CPU RAM
address >837A.

3. Place descriptions of motion in the Sprite Motion Table
which begins at VDP address >0780.

We will now create some programs to illustrate the points
covered in this chapter. The first program will place a standard
sized sprite in the center of the screen, but we will not put it
in motion just yet:

001 	**
002 * 	 *
003 	* 	Program to place a red ball-shaped sprite 	 *
004 	* 	in the center of the screen. 	 *
005 * 	 *
006 **
007 	 DEF 	START
008 	 REF 	VMBW
009 *
010 SATAB EQU 	>0300 *SPRITE ATTRIBUTE TABLE.

122 THOSE SPIRITED SPRITES

011 SDTAB EQU >0400 * SPRITE DESCRIPTOR TABLE.
012 *
013 BALL DATA >3C7E,>FFFF,>FFFF,>7E3C 	* PATTERN CODE.
014 SPAT DATA >70D0,>8008 	 * SPRITE ATTRIBUTES.
015 DATA >D000 * UNDEFINED SPRITE.
016 *
017 MYREG BSS >20
019 START LWPI MYREG
020 LI RO,SDTAB * LOAD BALL PATTERN INTO
021 LI R1,BALL * SPRITE DESCRIPTOR TABLE.
022 LI R2,8 *
023 BLWP @VMBW *
024 *
025 LI RO,SATAB
026 LI R1,SPAT
027 LI R2,8
028 BLWP @VMBW
029 LOOP JMP LOOP * HOLD DISPLAY ON SCREEN.
030 END START

Most programmers think of sprites when referring to moving
graphics. Sometimes other methods of imparting motion to
characters on the screen are better suited for certain situations.
The following program will place six red ball-shaped characters on
the screen and scroll the screen upwards moving the characters
with it. If you run this program you will notice that the motion
of the characters is somewhat jerky, this is because sprites are
not used:

001
002
003
004
005
006
007

* 	 *
* 	Place 6 ball-shaped characters on the screen & scroll 	*
* 	the screen upwards. 	This is an example of how to 	*
* 	put graphics into motion without using sprites. 	 *
* 	 *

008 DEF GRAPH
009 REF VSBW,VMBW,VMBR
010 *
011 BALL DATA >3C7E,>FFFF,>FFFF,>7E3C
012 COLOR DATA >8100
013 *
014 COLTAB EQU >0384 	* COLOR TABLE
015 PATTAB EQU >0908 	* PATTERN DESCRIPTOR TABLE
016 *
017 MYREG BSS >20
018 *
019 GRAPH LWPI MYREG 	*
020 LI RO,COLTAB 	* LOAD FOREGROUND & BACKGROUND
021 MOV @COLOR,R1 	* COLORS OF BALL CHARACTER INTO
022 BLWP @VSBW 	* COLOR TABLE

023 *

THOSE SPIRITED SPRITES 	123

024 LI RO,PATTAB *
025 LI R1,BALL * LOAD THE BALL PATTERN INTO
026 LI R2,8 * THE PATTERN DESCRIPTOR TABLE
027 BLWP @VMBW *
028 *
029 LI R0,325 *
030 LI R1,>2100 * PLACE 6 BALL SHAPED CHARACTERS ON
031 LI R2,6 * THE SCREEN ONE AT A TIME IN
032 LOOP BLWP @VSBW * DIFFERENT SCREEN POSITIONS
033 AI R0,33 *
034 DEC R2 *
035 JGT LOOP * ARE ALL SIX ON SCREEN YET?
036 *
037 LINE1 BSS >20 * RESERVE MEMORY TO HOLD SCROLLED
038 LINEX BSS >20 * LINES OF SCREEN
039 *
040 SCROLL CLR RO * SAVE TOP SCREEN ROW (BEGINNING
041 LI R1,LINE1 * WITH POSITION >000) 	IN LINE1
042 LI R2,>20 *
043 BLWP @VMBW *
044 *
045 LI RO,>20 * SAVE SECOND SCREEN ROW IN LINEX
046 LI R1,LINEX *
047 LI R2,>20 *
048 BLWP @VMBR *
049 *
050 CLR RO *
051 LOOP1 BLWP @VMBW * EACH SCREEN ROW IS SUCCESSIVELY
052 AI R0,>40 * READ INTO LINEX AND THEN PRINTED
053 CI R0,>300 * IN THE ROW POSITION JUST ABOVE IN
054 JHE OUT * ORDER TO SCROLL THE SCREEN "UP"
055 BLWP @VMBR * WHEN THE LAST ROW IS REACHED
056 AI RO,>FFE0 * THE PROGRAM JUMPS TO "OUT"
057 JMP LOOP1 *
058 *
059 OUT LI RO,>2E0 * PRINT FIRST LINE IN LAST ROW
060 LI R1,LINE1 *
061 BLWP @VMBW *
062 *
063 JMP SCROLL * JUMP BACK TO SCROLL AND REPEAT
064 END GRAPH *

The source code Jisting on the next page places our red ball on
the screen as a sprite instead of as a graphic. It also places the
sprite in motion from left to right across the screen. By
pressing any key you can change the magnification of the sprite.
The sprite is moved by successively changing its X-location on

124 	THOSE SPIRITED SPRITES

the screen. 	Automatic motion is not used.

00 1 	***
002 	* 	 *
003 	* 	 CALL 	SPRITE 	 *
005 	* 	THIS PROGRAM PLACES A RED BALL-SHAPED SPRITE IN 	 *
006 	* 	MOTION ACROSS THE SCREEN BY SUCCESSIVELY ALTERING ITS 	*
007 	* 	X--LOCATION. PRESSING ANY KEY ALTERS THE MAGNIFICATION 	*
008 	* 	 *
009 ***
010 DEF MOTION
011 REF VSBW,VMBW,VSBR,VWTR,KSCAN
013 KBOARD EQU >8375
014 SKEY EQU >8374
015 SATAB EQU >0300
016 SDTAB EQU >0400
017 *
018 BALL DATA >3C7E,>FFFF,>FFFF,>7E3C
019 SDATA DATA >7080,>8008
020 DATA >D000
021 *
022 STATUS EQU >837C
023 SET DATA >2000
024 MYREG BSS >20
025 *
026 SPRITE LWPI MYREG *
027 CLR @KEYBOARD * 	KEYBOARD DEVICE=0; SCAN ALL KEYS
028 LI RO,SDTAB * 	LOAD
029 LI R1,BALL * 	SPRITE
030 LI R2,8 * 	 DESCRIPTOR
031 BLWP @VMBW * 	 TABLE
035 *
036 LI RO,SATAB * 	LOAD
037 LI R1,SDATA * 	SPRITE
038 LI R2,6 * 	 ATTRIBUTE
039 BLWP @VMBW * 	 TABLE
040 *
041 LOOP LI RO,SATAB+1 *
042 READ BLWP @VSBR * 	GET X POSITION OF SPRITE AND
043 SRL R1,8 * 	SUBTRACT 1 FROM X 	(X-1)
044 DEC R1 *
045 JNE MOVE * 	IF X=0 THEN
046 LI R1,>00FF * 	LET X=>FF
047 *
048 MOVE SLA R1,8 * 	WRITE NEW X POSITION
049 BLWP @VSBW *
050 CLR R8 * 	THIS IS A SHORT DELAY TO
051 DELAY INC R8 * 	SLOW DOWN THE SPEED OF THE
052 CI R8,800 * 	SPRITE 	(FOR I=1 TO 800)
053 JNE DELAY *
054 *

THOSE SPIRITED SPRITES 	125

056 OUT
057
058
059
060 *

BLWP @KSCAN
MOV @STATUS,R3
COC @SET,R3
JNE LOOP

*
* CHECK TO SEE IF A KEY HAS
* BEEN PRESSED
*

061 CHECK INC R6
	 * R6 IS USED AS A COUNTER TO KEEP

062 	 CI
	

R6,4
	 * TRACK OF WHICH MAGNIFICATION

063 	 JLT GO
	

* LEVEL (1 TO 4) WE ARE ON.
064 	 CLR R6
	 *

065 *
066 GO 	CI
	

R6,1
	

* SELECT
067 	 JEQ MAG
	

* 	NEXT
068 	 CI
	

R6,2
	 * 	 MAGNIFICATION

069 	 JEQ DSIZE
	

* 	 LEVEL
070 	 CI
	

R6,3
	 *

071 	 JEQ DSIZEM
	 *

072 *
073 SMALL LI
	

RO,>01E0
	

* LOAD RO WITH THE PROPER VALUE
074 	 JMP WRITE
	

* TO LOAD INTO VDP REGISTER 1 IN
075 MAG 	LI
	

RO I >01E1
	

* ORDER TO CHANGE THE
076 	 JMP WRITE
	

* MAGNIFICATION
077 DSIZE LI
	

RO,>01E2
	

*
078 	 JMP WRITE
	

*
079 DSIZEM LI
	

RO,>01E3
	

*
080 *
081 ***
082 * ACTUALLY LINES 066 THROUGH 079 TAKE UP A GREAT DEAL 	*
083 * OF MEMORY. CAN YOU SUM UP THESE LINES OF CODE INTO 	*
084 * A SIMPLE TWO LINE STATEMENT THAT WOULD WORK AS WELL? 	*
085 ***
086 *
087 WRITE BLWP @VWTR
	

* CHANGE THE VDP REGISTER
088 	 B 	@LOOP
089 	 END MOTION

This next source code listing again places our red ball on the
screen as a sprite. The ball is magnified and is moved using
automatic sprite motion. The LIMI 2 instruction is present to
allow interrupts to occur. Keep in mind that automatic sprite
motion cannot occur without interrupts.

001 **
003 * 	 CALL SPRITE 	 *
004 * THIS PROGRAM PLACES A MAGNIFIED SPRITE ON THE SCREEN AND *
005 * PUTS IT IN MOTION USING AUTOMATIC SPRITE MOTION 	 *
006 **
007 	DEF START
009 	REF VMBW,VWTR
010 *
011 NUMB EQU >837A
012 SATAB EQU >0300

126 THOSE SPIRITED SPRITES

013 SDTAB EQU >0400
014 SMTAB EQU >0780
015 BALL DATA >3C7E,>FFFF,>FFFF,>7E3C
016 SDATA DATA >70D0
017 DATA >8008
018 DATA >D000
019 SPEED DATA >0505,>0000
020 *
021 MYREG BSS >20
022 START LWPI MYREG
023 LI RO,SDTAB 	* 	LOAD
024 LI R1,BALL 	* 	SPRITE
025 LI R2,8 	 * 	 DESCRIPTOR
026 BLWP @VMBW 	* 	 TABLE
027 *
028 LI RO,SATAB 	* 	LOAD
029 LI R1,SDATA 	* 	SPRITE
030 LI R2,8 	 * 	 ATTRIBUTE
031 BLWP @VMBW 	* 	 TABLE
032 *
033 LI RO,SMTAB 	* 	LOAD
034 LI R1,SPEED 	* 	SPRITE
035 LI R2,4 	 * 	 MOTION
036 BLWP @VMBW 	* 	 TABLE
037 *
038 LI R1,1 	 * 	INDICATE NUMBER OF SPRITES IN
039 SLA R1,8 	 * 	MOTION (1) IN ADDRESS >837A
040 MOVE R1,@NUMB 	*
041 *
042 LIMI 2 	 * 	ENABLE INTERRUPTS
043 JMP $ 	 * 	ENDLESS LOOP TO HOLD DISPLAY ON
044 END START 	* 	THE SCREEN

9

LET
THERE
BE SOUND
Both versions of BASIC; BASIC and Extended BASIC- provide a
statement that lets you generate sound through the internal
console speaker. This statement, CALL SOUND, requires that you
specify the duration, frequency and volume of a desired sound:

The frequency can range from 110 Hertz (cycles/sec) to 44,733
Hertz. If you want "noise" instead of a tone to be produced you
can specify a negative frequency value of from -1 to -8 depending
on the exact noise desired. The duration of a tone or noise can
vary from 1 to 4250 milliseconds (.001 to 4.25 seconds). The
volume can range from 0 (loudest) to 30 (quietest).

The TI Home Computer is capable of generating up to three tones
and one noise simultaneously. Sound is generated using the TMS9919
sound generator controller chip.

In order to produce sound in your assembly language programs a
number of conditions must be met. First, you must load the Sound
Table with a description of the tone or noise you wish to produce.
Secondly, you must set the least significant bit of the byte at
CPU address >83FD. This indicates that the Sound Table is in VDP
RAM to the computer. Thirdly you must enable interrupts with the
LIMI 2 instruction so that sound processing can occur.

-127-

128 	LET THERE BE SOUND

The following steps summarize what must be done in order for
your program to produce sound:

1. Load the Sound Table which begins at VDP
address >83CC with sound data.

2. Set the least significant bit of the
byte located at CPU address)83FD to
indicate to the computer that the Sound
Table is in VDP RAM.

3. Enable interrupts by using the LIMI 2
instruction.

Once all the above conditions are met, you can start the sound
generator by placing a value of •01 at CPU address >83CE. This
address is used by the interrupt routine as a count-down timer
during sound generation.

NOTE: You will have to disable interrupts if you are
going to read or write to VDP RAM because the
interrupt routine may alter the read/write
address. If your program has a key scanning
loop this may be a good place to enable/disable
your interrupts. See page 81 for an example.

(?_(14 THE BoluNin -Irdc■ Eci__

In order to produce sound you must construct a Sound Table that
describes the characteristics of the sound you wish to produce.
The TI Home Computer has the ability to produce up to three
separate tones simultaneously. It can also produce a number of
different "noise" sounds. Up to three tones and one noise can be
produced simultaneously.

The computer has three tone generators labeled 1, 2, and 3.
Noise is produced by a separate noise generator. In order to
produce a tone you must enter the following information into the
Sound Table:

1. Specify which TONE GENERATOR is to produce the tone.
2. Specify the FREQUENCY of the tone.
3. Specify the VOLUME of the tone.
4. Specify the DURATION of the tone.

To produce noise you must enter this information into the Sound
Table:

1. Specify WHITE or PERIODIC noise.
2. Specify SHIFT RATE (type of noise).
3. Specify VOLUME of noise.
4. Specify the DURATION of the noise.

LET THERE BE SOUND 	129

All the bytes that describe the characteristics of a tone or
noise except one are referred to as specification bytes. The
exception is the DURATION byte which is not considered a
specification byte.

It takes a total of three specification bytes to hold the
generator number, volume and frequency of a tone. Table 9.0
outlines the contents of each of the three bytes. It should be
noted now that the frequency is not entered as such (that would be
to easy). Instead it is entered as a "frequency code" which we
will have more on later.

TABLE 9.0 SPECIFICATION BYTES FOR TONES

Byte Bit# Holds The following Information:

/ 	0 	This bit is always set (=1).
ONE 	1-2 	Specifies the Sound Generator.

\ 	3 	This bit is reset (=0).

	

4-7 	Contains the 4 least significant frequency code bits.

TWO 	0-1 	These bits are always reset (=00).

	

\ 2-7 	Contains the 6 most significant frequency code bits.

	

/ 0 	This bit is always set (=1).

	

THREE 1-2 	Indicates Sound Generator used.

	

\ 3 	This bit is set (=1).

	

4-7 	Volume level.

All the noise information requires only two specification
bytes. They are structured as outlined in Table 9.1:

TABLE 9.1 SPECIFICATION BYTES FOR NOISE

Byte 	Bit# 	Holds The Following Information:

0 	 This bit is always set (=1).

/ 1-2 	Specify noise generator (both set =11).

ONE 	3 	This bit is reset (=0).

\ 	4 	 This bit is reset (=0).
5 	 Specify WHITE (1) or PERIODIC (0) noise.

	

6-7 	Indicate TYPE of noise.

/ 	0 	 This bit is always set (=1).

TWO 	1-2 	Indicates Sound Generator used.

\ 	3 	 This bit is set (=1).

	

4-7 	Volume Level.

130 	LET THERE BE SOUND

Bits 1 and 2 in all bytes refer to one of the three tone
generators or the noise generator. A bit configuration of 00
selects tone generator #1. A bit configuration of 01 selects tone
generator #2. A bit configuration of 10 selects tone generator #3.
Finally, a bit configuration of 11 selects the noise generator.

Table 9.2 illustrates several examples of the structure of tone
and noise bytes. An X in a bit position is for frequency or volume
information that we will cover later.

TABLE 9.2 EXAMPLES OF TONE AND NOISE SPECIFICATION BYTES

Bit configuration Byte # Description HEX

1000 XXXX 1 Toe Lenerator # 1 >8-
00XX XXXX --) .,_ >--
1001 XXXX 3 >9-

1010 XXXX 1 Tone Generator # 2 >A-
00XX XXXX 2 .,_ >—
1011 XXXX 3 >B-

1100 XXXX 1 Tone Generator # 3 >C-
00XX XXXX 2 >--
1101 XXXX 3 >D-

1110 XXXX 1 Noise generator >E-
OOXX XXXX 2 >--
1111 XXXX 3 >F-

IF- FRIaQUEMICV %wPB. P- Ftactli v (7.1711rE

You may think that plugging in the desired frequency into the
Sound Table is all there is to it. However, it is not that easy.
First of all the frequency must be converted into a frequency code
which is then loaded into the table. The frequency code is defined
as half the period of the specified frequency. To save you a lot
of time trying to figure out what this means you can use the
following formula:

111860.8
= Frequency Code

Frequency

Suppose we want to find the frequency code for "middle C" which
has a frequency of 523.25 . We simply plug this value into our
formula as follows:

111860.8
= 213.8

523.25

LET THERE BE SOUND 	131

We easily find that the proper frequency code equals 213.8, a

value that rounds up to 214 OOD6).

The most significant 6 bits (bits 0-5) of the frequency code
are placed in bits 2 through 7 of our second specification byte.
The four least significant bits of the frequency code are placed

in bits 4 through 7 of our first specification byte. If this
sounds a bit confusing don't worry, actually its quite simple.
For example, suppose we wanted to define the first two
specification bytes of a tone with a frequency of 392 HZ.
Further, we want to produce this tone on generator #1. We find
from our formula the frequency code which equals 285 or >11D.

1000 XXXX 	00XX XXXX 	= >8---

Here we have selected generator #1. Now we will take our
frequency code >11D and place its 4 least significant bits (>D) in
bit positions 4 through 7 of our first specification byte:

1000 1101 	00XX XXXX 	= >8D--

Finally, we take the most significant 6 bits of our frequency
code (>11) and place them into bit positions 2 through 7 of our
second specification byte:

1000 1101 	0001 0001 	= >8D11

We now have created the first two specification bytes required
to produce a tone of 392 HZ on tone generator # 1. The following
are some additional examples:

1000 0110 0000 1101 C>860D] Gen #1 freq = 523.25
1010 1110 0000 1011 C>AEOB] Gen 412 freq = 587.33
1101 1001 0011 1111 C>C93F3 Gen #3 freq = 110.00

"...#01L_Lilm IE: 	IF" 	I IF- I 'CIA -T. I CLIIINJ Et 'Y'.-1- 1

The third specification byte required for tones holds the volume
of the tone. It also holds the value of the generator number you
are referring to as did the first specification byte.

The volume is held in bit positions 4 through 7 of the third
specification byte for tones. Its value can range from 0 (loudest)
to 30 (no sound). When determining the volume level these four
bits may be thought of as having a binary zero following them. In
this way a volume level of 0001 may be considered as 00010. The
following are some examples of the third specification byte:

1001 1111
1011 0000
1111 0011
1101 1110

[>9F] 	TURNS OFF GENERATOR #1 VOLUME LEVEL = 30
E>B03 	GENERATOR #2, VOLUME LEVEL = 0
[>F3] 	NOISE GENERATOR, VOLUME LEVEL = 6
E>DE3 	GENERATOR #3, VOLUME LEVEL = 28

132 	LET THERE BE SOUND

INDIBla BF-1IF- IICPC1rICHNI EilNirT

To produce a noise requires only two specification bytes to be
loaded into the Sound Table. Referring to Table 9.3 gives the bit
values to be loaded into the first specification byte for the
desired noise. The second specification byte holds the volume
level and is constructed the same way the third specification byte
for a tone is constructed except that you specify the noise
generator instead of a tone generator.

TABLE 9.3 ALLOWABLE NOISE BIT CONFIGURATIONS

Bit 5 	Bits 6 & 7 	Description

0 00 "Periodic Noise" Type 1
0 01 "Periodic Noise" Type 2
0 10 "Periodic Noise" Type 3
0 11 "Periodic Noise" varies with the frequency

data in tone generator #3
1 00 "White Noise" Type 1
1 01 "White Noise" Type 2
1 10 "White Noise" Type 3
1 11 "White Noise" varies with the frequency

data in tone generator #3

Suppose we wanted to construct the two required noise
specification bytes for a Type 3 Periodic Noise with a volume
level of 6. From Tables 9.1 and 9.3 we put together the first
byte like so:

1111 0010 	E>F23

The second specification byte containing the volume information
would look like this:

1111 0011 	C>F3]

EI.L Icim DIF- lroliNua oliFe: rsIolIB

The DURATION byte is not considered a specification byte. It
informs the tone or noise generator how long the tone or noise
will last. It is measured in sixtieths (1/60) of a second.
Possible values range from 0 (>00) no sound, which stops the
generator, to 256 (>FF) which is approximately 4.25 seconds.

LADAinilmoi imila 	(DiultNin -iric

One last thing to note before we begin constructing a Sound Table
is that when you are setting up a byte table you must indicate the
number of specification bytes that you are going to feed to the

LET THERE BE SOUND 	133

sound generator. For example, if you wanted to specify a tone with
a frequency of 110 HZ, a volume of 2 and a duration of 0.5 seconds
on generator #1, the specification and duration bytes needed are:

>03,>89 1 >3F,>91,30

The first byte (>03) indicates that there are 3 specification
bytes to load into the sound generator. The second and third bytes
(>893F) tells us that on generator #1 (>8---) a tone of 110 HZ
(>-93F) is desired. The fourth byte (>91) sets the volume level of
generator #1 at 2. The last byte (30) specifies a duration of
30/60ths of a second for the tone.

The following are some additional examples of values to load
into the Sound Table:

-3 specification bytes to load
1 	-Tone Generator #1

tone -Frequency = 392.00 FC = >11D
-Volume level = 2
-Duration = 20/60ths second

2. 	>3,>A6,>0D,>85,244

-3 specification bytes to load
1 	-Tone Generator #2

tone -Frequency = 523.25 FC = >0D6
-Volume level = 10 	(0101 0)
-Duration = 244/60ths second

-9 specification bytes to load
3 	-Tone Generators #1, #2, & #3

tones -Frequencies = 329.63, 523.25 and 739.99
-Volume levels G1=2, G2=10, G3=20
-Duration = 10/60ths second

4. >2,>E5 1 >FE,119

-2 specification bytes to load
1 	-Noise Generator (>E0)

noise 	-White Noise, Type 2 (>05)
-Volume level = 28
-Duration = 119/60ths second

5. >1,>9F,0

-This data will terminate the sound in Generator #1.

134 	LET THERE BE SOUND

6. 	>0B,>8E,>OF,>AD,>17,>CC,>1F,>E3,>90,>B6,>D3,>F6,249

-11 specification bytes to load
-Tone Generators #1, #2, #3 and noise generator
-Frequency = 440.00, 293.66, 220.00
-Periodic Noise of the type that varies with the
frequency data loaded into tone generator #3.

-Volume levels G1=0, G2=12, G3=6, NG=12
-Duration = 249/60ths seconds.

The following source code can be used to access the sound
controller and start sound processing.

SOUNDT EQU >1000 	* Begin Sound Table at VDP Address >1000
ONE 	BYTE >01

.
START LI 	R10,SOUNDT *

. 	 * Put VDP address that Sound Table
MOV R10,@>83CC * begins at in CPU address `-83CC
SOCB @ONE,@83FD * Sound Table is in VDP RAM.
MOVES @ONE,@>83CE * Start sound processing.
LIMI 2

The following program plays "HOME ON THE RANGE" on your computer.
Note how all three tone generators are used together to produce
multiply notes.

001 ***
002 * 	 *
003 * 	Program plays "HOME ON THE RANGE" on your computer. 	*
004 * 	 *
005 ***
006 DEF START
007 REF VMBW
008 *
009 MYREG BSS >20
010 SOUNDT EQU >1000
011 ONE BYTE >01
012 EVEN
013 *
014 START LWPI MYREG
015 LI RO,SOUNDT *
016 LI R1,SDATA *
017 LI R2,274 *
018 BLWP @VMBW *
019 *
020 LOOP1 LIMI 0
021 LI R10,SOUNDT *
022 MOV R10,@>83CC *

LET THERE BE SOUND 	135

023 SOCB @ONE,@83FD
024 MOVB @ONE,@>83CE
027 LIMI 2
029 LOOP2 MOVB @>83CE,@>83CE 	* When CPU address >83CE = 0
030 JEQ LOOP1 	 * sound processing is
031 JMP LOOP2 	 * finished & program repeats
032 *
033 SDATA BYTE >03,>8D0.110.91,40
034 BYTE >04 1 >AD I >110.9F,>B1,40
035 BYTE >03,>A6,>ODOS1 1 40
036 BYTE >06,>8E0.0B,›AD,>11,>95,>B5,40
037 BYTE >090.8A0.0A,>A6,›OD,›CD,>11,>95,›B5 1 >D5,60
038 BYTE >05,>86,>OD,>91,>BF,>DF,20
039 BYTE >030.8200E 9).91,40
040 BYTE >030.8E,›OF0.91,40
041 BYTE >03,>800.0A,>91,40
042 BYTE >04 1 >A0,>0A,>9F,>B1 1 40
043 *
044 BYTE >09,>80,>0A 1 >A6,>ODO.CD,>100.950.B50.D5,60
045 BYTE >050.80,>0A,>91,›BF,›DF,20
046 BYTE >03,>80,>0A,>91,20
047 BYTE >03,>817 0.08,>91,40
048 BYTE >09,>8A,>0A,>A60.0DO.CD,>110.95,›B5 I D5,40
049 BYTE >05,>860.0D0,9102F,›DF,20
050 BYTE >04,>A6 1 >OD0.9F021,40
051 BYTE >05 1 >C6,›OD,>9F 1 >BFO.D1,40
052 BYTE >03,>C2,>OE,>D1,40
053 BYTE >03,>C6,>OD,>D1,40
054 BYTE >03,›CE,›OB,>D1 1 80
055 *
056 BYTE >03 1 >CD,>11,D1,40
057 BYTE >04,>8D,>110.91,>DF,40
058 BYTE >03,>86,›OD,>91,40
059 BYTE >06,>8E,>OB,>AD,>11,>93,>B3,40
060 BYTE >09,>8A,>0A,>A6,›ODOCD,>110.950250.D5,60
061 BYTE >05,>860.0D,>91,›BF,›DF,20
062 BYTE >03,>82,>OE,>91,40
063 BYTE >03,>8E0.0F I >91,40
064 BYTE >03,>80,>0A,>91,40
065 BYTE >04,>A00.0A0.9F,>B1,40
066 *
067 BYTE >06, >80, >OA, >AD, >10, >93, >B3, >60
068 BYTE >04,>80,>0A,>91,›BF,20
069 BYTE >04,>A000A,>9F021,40
070 BYTE >09 1 >8A,>0A 1 >A6,>OD I >CD,>11,>950.B5,>D5,50
071 BYTE >05,>8E,>OB,>91,>BF,>DF,>30
072 BYTE >030.86,>0D,>91,40
073 BYTE >090.820.0E,›AD I >11,›CD,>17 1 >95,›B5,›D5,40
074 BYTE >05,>86,›OD0.91,>BFODF,40
075 BYTE >030.8E 9 M:30'91,40
076 BYTE >03 1 >86,›ODO.91,100
077 BYTE >01,>FF,0
078 END

136 	LET THERE BE SOUND

The following table gives you a quick reference guide for
frequency specification bytes (specification bytes #1 & #2).
Simply look up the desired note or frequency and follow it over to
the DATA column to get the first two specification bytes.

The DATA in Table 9.4 always refers to tone generator #1. If
you want to produce the tone on generator #2 change the first
nybble of the DATA to >A. To produce the tone on generator #3
change the first nybble of the DATA to >C. For example, to produce
a tone with a frequency of 5587.65 on generator #2 the DATA would
be >A401.

NOTE

TABLE

OCTAVE

9.4 TONE DATA REFERENCE TABLE

FREQUENCY 	FREQUENCY CODE DATA

F 6 5587.65 >014 >8401
E 6 5274.04 >015 >8501
D# 6 4978.03 >016 >8601
D 6 4698.64 >018 >8801
C# 6 4434.92 >019 >8901
C 6 4186.01 >01B >BB01
B 5 3951.07 >01C >8C01
A# 5 3729.31 >01E >8E01
A 5 3520.00 >020 >8002
G# 5 3322.44 >022 >8202
G 5 3135.96 >024 >8802
F# 5 2959.96 >026 >8602
F 5 2793.83 >028 >8802
E 5 2637.02 >02A >8A02
D# 5 2489.02 >02D >8D02
D 5 2349.32 >030 >8003
C# 5 2217.46 >032 >8203
C 5 2093.00

=
>8503

B 4 1975.53 >8903
A# 4 1864.66 >03C >8CO3
A 4 1760.00 >040 >8004
G# 4 1661.22 >043 >8304
G 4 1567.98 >047 >8704
F# 4 1479.98 >04C >8C04
F 4 1396.91 >050 >8005
E 4 1318.51 >055 >8505
D# 4 1244.51 >05A >8A05
D 4 1174.66 >05F >8F05
C# 4 1108.73 >065 >8506
C 4 1046.50 >06B >8806
B 3 987.77 >071 >8107
A# , ..) 972-33 >078 >8807
A 3 880.00 >07F >8F07
G# 3 ,:, 830.61 >087 >8708
G 3 783.99 >08F >8F08

LET THERE BE SOUND

TABLE 9.4 TONE DATA REFERENCE TABLE 	(Continued)

137

NOTE OCTAVE FREQUENCY FREQUENCY CODE DATA

F# 3 739.99 >097 >8709
F 3 698.46 >0A0 >800A
E 3 659.26 >OAA >840A
D# 3 622.25 >0B4 >840B
D 3 587.33 >OBE >BEOB
C# 3 554.37 >OCA >BAOC
C 3 523.25 >0D6 >860D
B 2 493.88 >0E2
A#

 >820E
2 466.16 >OF° >800F

A 2 440.00 >OFE >8EOF
G# 2 415.30 >10D >8D10
G 2 392.00 >11D >8D11
F# 2 369.99 >12E >8E12
F 2 349.23 >140 >8014
E 2 329.63 >153
D#

 >8315
2 311.13 >168 >8816

D 2 293.66 >17D
C#

 :::.8D17
2 277.18 >194 >8419

C 2 261.63 >1AC >8C1A
B 1 246.94 >105 >851C
A# 1 233.08 >1E0 >801E
A 1 220.00 >1FC >8C1F
G# 1 207.65 >21B Anal
G 1 196.00 >23B >8B23
F# 1 185.00 >25D >8D25
F 1 174.61 >281 >8128
E 1 164.81 >2A7 >872A
D# 1 155.56 :::.2CF >8F2C
D 1 146.83 >2FA >8A2F
C# 1 138.59 >327 >8732
C 1 130.81 >357 >8735
B 0 123.47 >38A >8A38
A# 0 116.54 >3C0 >803C
A 0 110.00 >3F9 >893F

NOTE: If you need to find a note that is a half-step higher
than a given note, you can use the following formula:

(Old Frequency) * 1.059463094 = New Frequency

For example, to find the frequency of a note a half-step
higher then Middle 'C':

(523.25) * 1.059463094 = 554.37

1 0

THE
LINE-BY-LINE
ASSEMBLER
Although the disc based Editor/Assembler is the most commonly
associated package for programming in assembly language, you can
also program using the cassette based Line-by-Line assembler in
conjunction with the Mini Memory Module. This chapter will attempt

to explain the differences in each, as well as how programs
written for the Editor/Assembler may be modified for the
Line-by-Line assembler.

The first major difference encountered is the fact that the
Line-by-Line assembler assembles each line of code as soon as it
is entered. This is opposed to the disc based Editor/Assembler
which assembles the entire source listing at one time after it has
been written.

The Line-by-Line assembler provides a 9-page text buffer which
allows you to scan previously entered lines of code. You can
scroll through the pages of the text buffer by using the up and
down arrow keys.

One advantage of learning assembly language on the Line-by-Line
assembler is that you get to see what values are placed into
memory as soon as a line of source code is entered. This gives
you much greater insight into the workings of the computer and how
the instructions affect it.

-139-

140 	THE LINE-BY-LINE ASSEMBLER

ic."_c" -T- IHI 	ecia_wc 	oppla e -renimlaml-

As with the Editor/Assembler each source code statement is made up
of four fields. These fields are named and arranged as follows:

LABEL OPCODE OPERAND COMMENT

If you do not specify a LABEL then you must leave a space
before typing in the OPCODE. If you use a LABEL the first
character must be alphabetic. The second may be any alphanumeric
character. The LABEL field when using the Line-by-Line assembler
is limited to 2 characters in length. This is our first major
difference over the Editor/Assembler which can have LABELS up to 6
characters in length.

The OPCODE, OPERAND and COMMENT fields are all constructed as
outlined in section 3.3 of Chapter 3.

10-1 irNBlarlEgt. 	EllI T- I",,, e

There are 7 assembler directives that are recognized by the
Line-by-Line assembler. They are:

AORG 	Absolute ORigiN
BSS 	Block of memory Starting with Symbol
DATA 	Word definition (initialization)
END 	END program
EQU 	Let a LABEL represent a constant
TEXT 	String constant definition (initialization)
SYM 	Call up SYMbol table

The Directives BSS, DATA, EQU and TEXT are used exactly as
outlined in Chapter 5 entitled 'ASSEMBLER DIRECTIVES'. The
functions of the remaining directives are outlined in the
following sections.

CIACJORG) PrEcOOL_JUM DIRIIBIINI

You will not need to use this directive much when programming with
the Editor/Assembler. However, you will find it indispensable if
you attempt to program using the Line-by-Line assembler.

The AORG directive is used to change the value of the Location
Counter (which is always an even address). In this way you can
jump to any memory location you want in order to alter or review
its contents. For example, if you type:

AORG >7D00

the Location Counter will now be set to location >7D00 and the
contents of this location will be displayed. If you were to

THE LINE-BY-LINE ASSEMBLER 	141

type in a new source statement and press enter memory location
>7D00 would now contain the new value and the Location Counter
would advance to address >7D02.

There are basically two main uses for the AORG directive. The
first is to point to where you begin entering your program. The
second use is to correct errors in the code after you have entered
them. To illustrate these two points consider that we are entering
the following program where #### represents whatever number
happens to be held in a paticular address:

Location &
Contents Instruction Comments

MOMS *CM AORG >7D00 * Go to this address to load program.
7D00 0000 MW BSS 32 * Reserve my workspace area. Mw 	'! -5

7D20 0201 LWPI MW * Put pointer to workspace. tAt,-)

7D22 7D00
7D24 0201 LI R1,30 * Load a value into R1. 41 4s 	o

7D26 001E R t

7D28 0202 LI R2,64 * Load a value into R2.
7D2A 0040
7D2C 0203 LI R3,96 * Load a value into R3.
7D2E 0060
7D30 06A0 BL 0S1 * Branch & Link with subprogram S1.
7D32R0000
7D34

Lets say we have reached this point on entering our program and
found that we have made a mistake; instead of loading a value of
30 into R1 we wanted instead to load a value of 32. To get back to
address :>7D24 and change the value we use the AORG directive as
illustrated below:

7D34 0000 AORG >7D24 * Return to address of mistake.
7D24 0201 LI R1,32 * Insert corrected code.
7D26 0020
7D28 0202 AORG >7D34 * Go back to where we left off.
7D34 *C. * Continue entering program.

) ID I 3F " IAN 	B Ise MEI 01 L.. "1". Pt El L.. IE

When programming with the Line-by-Line assembler you will specify
symbols for operands that have not yet been defined. For example,
you may write the instruction JMP S1 where S1 is a destination
further along in the program (a point you have not reached to type
in yet). The Line-by-Line assembler must keep track of these
references somewhere until they are defined by you. These
references are kept in a SYMBOL TABLE until you resolve them.

142 	THE LINE-BY-LINE ASSEMBLER

By typing in SYM you can call up the Symbol Table to review
references which are unresolved. There are 3 categories within the
Symbol Table. These categories and their contents are outlined in
Table 10.0.

TABLE 10.0 CATEGORIES OF THE SYMBOL TABLE

Category 	 Contents

RESOLVED REFERENCES 	 These are any symbols that have
already been defined.

UNRESOLVED REFERENCES (WORD) 	These are any symbols that are
undefined and are not referenced
by a jump instruction.

UNRESOLVED REFERENCES (JUMP)
	

These are any symbols referenced by
a jump instruction.

To see how the SYM directive works lets consider the following
example:

Location &
Contents Instruction

AORG 	>7D00

Comments

* Starting address of program.
7D00 0000 MW BSS 32 * Reserves workspace area.
7D20 0201 LWPI MW * Load pointer to workspace area.
7D22 7D00
7D24 0201 LI R1,A1 * Load R1 with undefined data.
R0000
7D28 0202 AI EQU >0400 * Define Al.
7D26 *0400
7D28 06A0 BL @S1 * Branch & Link to undefined point.
7DRCR 1OFF JMP S7 * Jump to undefined destination.
7D2E #### SYM * Now call up Symbol Table.

RESOLVED REFERENCES
MW-7D00 A1-0400

UNRESOLVED REFERENCES (WORD)
S1-7D2A

UNRESOLVED REFERENCES (JUMP)
97-7D2C

7D2E **WI
	

* Ready for next instruction.

If a category has no symbols associated with it, that category
is not printed on the screen. If all three categories are empty,
the SYM directive is erased and the assembler waits for you to

THE LINE-BY-LINE ASSEMBLER 	143

enter the next instruction. A maximum of 32 unresolved references
can be displayed by the Symbol Table.

camp) amp P.Frole2bm & am ANBaamwc

The END directive signifies to the computer that this is the point
that your program will end. If you press ENTER after using the
END directive you will exit from the assembler. If you press any
other key, the END directive is erased and you can keep on
entering source code.

After you enter the END directive the statement:

UNRESOLVED REFERENCES

will be displayed on the screen where #### is the number of
references that you have not yet resolved. You must go back and
figure out which ones they are (by using the SYM directive) and
resolve them before attempting to exit from the assembler.

10-12 laniirime

The assembler retains some of the source code in a nine-page
buffer which you can review by using the up and down keys to
scroll the screen. When the buffer is filled the assembler
scrolls back onto the screen to indicate that the buffer is full.
Any additional instruction that are entered will overwrite

previously written lines in the buffer. Because of this it is a
good idea for you to keep a written copy of your source code so
that you can refer to it when programming.

Once you start typing a line you cannot "back-up" with the
arrow keys to correct a typing error. If you have not pressed
"ENTER" you can delete the whole line by pressing "ERASE" and then
retyping the entire line correctly. If you have already pressed
ENTER then you have to return to that address by way of the AORG
directive to change it. If you do not use the label field you can
move right to the OPCODE field by simply pressing the SPACE BAR
once. You can then move to subsequent fields by pressing the
SPACE BAR again.

144 	THE LINE-BY-LINE ASSEMBLER

1 C), ... 7.7.= 	I a Ft: Fc C II FC 	IHI IA NI ID L_. I NI ID

When entering source statements, the Line-by-Line assembler will
display an ERROR message under one of three conditions:

1. If you attempt to redefine a previously defined
label. For example:

AORB >7D00
7D00 0200 MW BSS 32
7D20 02E0 LWPI MW
7D22 7D00
7D24 0200 MW *ERROR*

2. If you attempt to enter an undefined opcode or
directive. For example:

7D00 0200 MW BSS 32
7D20 02E0 	LWPP *ERROR*

3. If you attempt to exceed the reach (256 bytes) of a
jump instruction. For example:

7D00 #### 	JO] JI

.
7E02 #### JI CLR R1
7D00 *R-ERROR*

NOTE: If you even suspect that a jump instruction to an as yet
undefined label might possibly be out of range (that is
more than 256 bytes away) you would be better off
using a B (branch) instruction. If you did not you
couldn't go back later because a Branch requires 4 bytes
of memory while a jump instruction requires only 2. The
following illustrates these points:

THIS WAY 	 NOT THIS WAY

7D00 #### JNE$+6 	 7D00 #### JEQ JI
7D02 0460 B @JI 	 .
7D04 7E02 	 .
7D06 COB1 MOV R1,R6 	.

• 	 •
7E02 #### JI CLR R1 	7E02 #### JI CLR R1

1 0 - -41- -T. El 	IR: la IF' la IR la N11 IC la ./ .13 la F-- I INII I -1- I C3 INI "T ink 1E4 It_ la

Once you have finished entering your program you must also enter
the program name and location of its starting point in the REF/DEF
table so that mini memory module can find it.

THE LINE-BY-LINE ASSEMBLER 	145

The following is a short program that will print a message on
the screen. We will then demonstrate how to use assembler
directives to enter its name and starting point in the REF/DEF
table:

AORG >7D00
7D00 #### WS BSS 32
7D20 #### MW EQU >6028 	 * EQUATE VMBW UTILITY.
7D20 484F Al TEXT 'HOW ARE YOU?' * MESSAGE TO DISPLAY.
7D22 5720
7D24 4152
7D26 4520
7D28 594F
7D2A 5535
7D2C 02E0 ST LWPI WS 	 * POINTER TO WORKSPACE AREA.
7D2E 6028
7D30 0200 	LI 	R0,138 	 * SCREEN TABLE LOCATION.
7D32 008A
7D34 0201 	LI 	R1,A1 	 * BEGINNING OF MESSAGE.
7D36 7D20
7D38 0202 	LI 	R2,12 	 * # OF BYTES TO WRITE.
7D3A 000C
7D3C 0420 	BLWP @MW 	 * BRANCH TO VMBW UTILITY.
7D3E 6028
7D4OR1OFF 	JMP $ 	 * HOLD DISPLAY ON SCREEN.
7D40*1OFF
7D42 	 END

Assuming that you have just entered the preceding program
exactly as written and have not exited from the assembler, the
screen will appear as follows:

7D42 #### END
0000 UNDEFINED REFERENCES

Do not press ENTER at this point (if you do you will exit from
the assembler). Instead you should enter the following code to
place the program name and starting location in the REF/DEF table
so that you may run the program:

7D42 #### AORG >701C >7D42 is the first address that is
not used in your program. That is,
it is the First Free Address in the
Module (FFAM). #### represents
whatever value happens to be contained
in address >7D42. Address >701C holds
the FFAM.

701C ####
	

represents the address of the old
FFAM. We need to put the new FFAM
(>7D42) here.

146 THE LINE-BY-LINE ASSEMBLER

701C 7D42 DATA >7D42 Remember, FFAM is the First Free
Address that follows your program,
in this case >7D42.

701E 7FE8 Address >701E holds the Last Free
Address in the Module (LFAM).
Subtract this value from the FFAM; 	if
the difference is 7 bytes or more, you
have enough room to insert your
program name.

701E 7FE0 DATA >7FE0 Subtract 8 bytes from the old LFAM and
place the result at address >701E like
we have done here by using the DATA
directive.

7020 #### Location counter advances to here
displaying any data located at this
address. 	We now need to jump to the
REF/DEF table and enter our program
name.

7020 #### AORG >7FE0 Jump to new entry point in REF/DEF
table. 	>7FE0 #### Data at this
address is displayed.

7FE0 5052 TEXT 'PRINT1' Enter the program name as PRINT1.
7FE2 494E The program name must be exactly 6
7FE4 5431 characters long. 	The characters

making up the name are stored in six
bytes beginning at location >7FEO.

7FE6 #### Location counter advances to this
next location, where we will define
the 2-character entry point into our
program.

7FE6 7D2E DATA ST Entry point at where we want program
to start running.

7FE8 #### END Enter the END directive and press
ENTER to leave the assembler.

We can now run this last program by selecting the RUN option
from the MINI MEMORY selection list and typing in PRINT1 for the
PROGRAM NAME? prompt and pressing ENTER.

THE LINE-BY-LINE ASSEMBLER 	147

To summarize, in order to run your assembly program you must:

1. Place new FFAM at address >701C.

2. Compare new FFAM with LFAM to see if there is a difference
of 7 bytes or more. If there is then you can proceed.

3. Subtract 8 bytes from old LFAM and place the resulting
value at address <701E with a DATA directive,

4. Jump to new LFAM and by using a TEXT directive enter your
program name which must be exactly 6 characters in length.

5. Define the entry label into your program with a DATA
directive at address LFAM+6.

If you have a disk memory system, you can use the LOAD AND RUN
option of the MINI MEMORY module to execute assembly programs that
were written using the Editor/Assembler system. When the mini-
memory comes across a BLWP @VMBW instruction while it is loading
from a disk system, it will look up the address it needs in order
to use the required utility. It will do this with all subsequent
utilities it encounters.

Thus, even though you can not create a program with the line-
by-line assembler using the instruction BLWP @VMBW you can RUN
programs that contain these symbols with the mini-memory module
when the LOAD AND RUN option is used. All predefined symbols in
the Editor/Assembler will load correctly into the Mini-Memory
Module because they are all predefined in an internal table used
by the loader.

1 0 .. 'ffi 	Pt 'V I INI e IF* Fc C3 B IR 4:=11 FIB

You can save your assembly language program on cassette tape in
the following manner:

1. Select EASY BUG option from the selection menu.

2. Use the S command.

3. You can enter the actual starting and ending address of
your program, but it is recommended that you enter a
starting address of >7000 and an ending address of >7FFF
in order to include the REF/DEF table and pointers. If
you do not do this you will have to re-enter the program
name in the REF/DEF table every time you load the program.

148 	THE LINE-BY-LINE ASSEMBLER

i (7.) - e. ul -r 1 L. x ir "Yr IF"Fc Dia IR ens Pi'l

All the utility programs discussed in chapter 6 are available when
using the Line-by-Line assembler. However the Line-by-Line
assembler does not recognize the predefined symbols that the
Editor/Assembler package does. With the Line-by-line assembler you
simply cannot reference the needed utilities, you have to branch
directly to the address the utility is located at. The following
routine is an example of how utility programs are accessed when
programming with the Line-by-Line assembler.

Location
& Contents Instruction

AORG >7D00

Comments

7D00 *Mt* MW BSS 	32 *
7D20 02E0 LWPI MW *
7D22 7D00
7D24 41#404) GP EQU 	>6018 * GPLLNK begins @>6018
7D24 04C1 CLR 	R1 * Set status byte=0
7D26 D801 MOVB R1,@>837C *
7D28 837C *
7D2A 042A BLWP @GP * BL with GPLLNK
7D2C 6018
7D2E 0034 DATA >0034 * Accept tone routine
7D30 #### END * Exit assembler

This short program uses an equate directive to create a symbol
(GP) for the GPLLNK utility which begins at address >6018. Of
course, the program could have just as easily referenced the
address directly. The following table lists the available ROM
utilities and their respective addresses.

TABLE 10.1 ROM UTILITY LOCATIONS

Address
>6018
>601C
>6020
>6024
>6028
>602C
>6030
>6034
>6038
>603C
>6040
>6044
>6048
>604C
>6050
>6FOE
>6FFF

E/A Symbol Utility
GPLLNK 	Link to GROM routine
XMLLNK 	Link to ROM routine
KSCAN
	

Keyboard scan routine
VSBW
	

VDP single byte write
VMBW
	

VDP multiple byte write
VSBR
	

VDP single byte read
VMBR
	

VDP multiple byte read
VWTR
	

Write to VDP Register
DSRLNK
	

Device service routine link
LOADER
	

Link to tagged object loader
NUMASG
	

Numeric assignment routine
NUMREF
	

Get numeric parameter
STRASG
	

String assignment routine
STRREF
	

Get string parameter
ERR
	

Error reporting routine
Beginning of REF/DEF Table
End of REF/DEF Table

11

CONVERTING
BASIC TO ASSEMBLY
LANGUAGE
Using a high level language such as BASIC or xBASIC to create a
program is relatively easy. The sprite capabilities and the clear
straight-forward instruction set give you a great deal of control
during program construction.

In fact, in most applications BASIC is ideally suited over most
other languages for programming. However, when fast-executing
arcade style games or other similarly designed programs are
needed, BASIC can be intolerable slow. To overcome this speed
barrier, we must deal on a level much closer to the level the
computer actually communicates on. That is why we write this type
of program in assembly language. Assembly language executes at
many times the speed of BASIC. Unfortunately, assembly language
for many people is much more difficult to work with. One way to
circumvent this difficulty is to first write the program in BASIC
or xBASIC and then translate that working program into the much
faster assembly language.

This chapter covers some of the more common BASIC and xBASIC
commands, arranged alphabetically. Each command is followed by the
source code which duplicates its function. Often, because assembly
language is so much freer then BASIC, there will be several ways
to accomplish the same task. Of these choices one might be faster,
one may take up less memory, and one might be easier to program
and understand. When presented with these alternatives, I have
selected the example routines which are easiest to program and
understand.

-149-

150 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

Pk L_ L__ cLE fnt Fc

The CALL CLEAR BASIC routine clears the screen by placing a space
character in all screen positions.

To understand how assembly language accomplishes this we must
first understand how the compute creates a 'screen'. The computer
has no concept of a screen; it views the screen as one continuous
series of memory locations. There are no rows and columns, only
768 possible character locations numbered beginning at the upper
left of the screen at 000 and continuing to the bottom right hand
corner 767. These memory locations are in VDP RAM beginning at
address >0000. Figure 11.0 illustrates this below:

NUMBERED SCREEN LOCATIONS

. 	. 	• 	• 	• 	. 	. 029 030 031 1

. 	. 	. 	• 	. 	. 	. 	062 063 1
• • 	• 	• 	. 	• 	. 	095 1

.
. 	 .

1 	. 	 .

1 	. 	 .
1 	 , s 	. 	 . 	.
s 	 ■ i 	. 	 •

1 	. 	 .
1 	. 	 .
s 	 .
1 	. 	 . 	1
i 	. 	 .

1 	. 	 .

1 736 . 	. 	. 	• 	. 	• 	• 	• 	• 	• 	• 	• 	• 	. 	• 	• 	• 	. 	767 1

To convert a BASIC row and column position into a assembly
language graphic screen position we use the following algebraic
expression:

C C + (R*32) 3 = SP

Where 'C' is the column number, 'R' is the row number and 'SP'
is the resulting screen position. For example, to find the screen
position of (5,7) we simply plug in the values:

FIGURE 11.0

1 	000 001 002 003 004 005
1 	032 033 034 035 	. .
1 	064 065 066 . 	. •
1 096 . .

E 5 + (7*32) 3 = 229

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	151

Clearing an entire screen is accomplished by placing a space
character (32 or >20) in all successive screen locations as
demonstrated in the following routine:

001 ***
002 * 	 *

003 * 	 CALL CLEAR 	 *
004 * This module will place a space character in all 	 *
005 * screen positions. 	 *
006 * 	 *
007 ***
008 	 DEF BEGIN
009 	REF VSBW
010 MYREG BSS 32 	* Reserve memory for my workspace.
011 *
012 BEGIN
013
014
015
016 LOOP
017
018
019
020 *
021

LWPI MYREG
LI 	R0,0
LI 	R1,>2000
LI 	R2,767
BLWP @VSBW
INC RO
DEC R2
JGT LOOP

END BEGIN

* Set pointer to workspace area.
* First screen position to print to.
* Load space character.
* Load our count register.
* Place character on screen.
* Increment screen position by 1.
* Decrement our count register.
* See if whole screen filled.

* End program.

Lines 008-012 reserve memory for the Workspace Registers, set
the workspace pointer at the beginning of this work area and
reference all needed utility programs. Line 013 is the beginning
of the working part of the program. It loads RO with the first
screen position to receive a blank character (position 000). Line
014 loads character 32 (the blank space character) into the left
byte of R1 as this is the byte that VSBW will utilize. Line 015
sets up R2 as a count register that will reach 0 when all screen
positions are filled. Line 016 places the character on the screen
and is the beginning of our loop.

The first time this program runs through the 'LOOP' a blank
space character will be written to VDP RAM address •0000. Lines
017 and 018 will increase RO by one and decrease the count
register by one. The program will then jump back and write a space
character in the next screen location. This will continue until
the count register has been decremented to zero. When this happens
the program will end. The loop in this program will execute a
total of 768 times; filling VDP RAM memory locations 000 through
767 with the value for the space character.

c slchL__L__ BFc Ilat..4

The source code used to color the screen in BASIC is the
'CALL SCREEN' statement. It is quite similar to the source code

1

152 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

we used to mimic the CALL CLEAR routine. The difference is that
the foreground and background color of the space character has to
be redefined before we fill the screen with it. For example, if we
make the foreground and background color of the space character
black, then fill the screen with it, it will leave the screen
appear black.

The foreground and background color of a character is altered
by changing the values of addresses in the Color Table. The Color
Table begins at VDP RAM address >0380 and extends to address
>039F. Each byte in the Color Table codes for the foreground and
background of a group of eight characters. For example, VDP
address >0380 holds the byte that codes for the foreground and
background colors of character codes 0 through 7. Address >0381
holds the byte that codes for characters 8 through 15. Address
>0382 holds the byte that codes for characters 16 through 23.
This continues on until address >039F is reached which holds the
byte that codes for the final character codes 248 through 255.

Table 11.1 lists the Color Table addresses and character codes
each byte holds the color of.

TABLE 11.1 COLOR TABLE ADDRESSES

Table
Address

Char.
Codes

Table
Address

Char.
Codes

Table
Address

Char.
Codes

Table
Address

Char.
Codes

>0380 0-7 >0384 32-39 >0388 64-71 >038C 96-103
>0381 8-15 >0385 40-47 >0389 72-79 >038D 104-111
>0382 16-23 >0386 48-55 >0390 80-87 >038E 112-119
>0383 24-31 >0387 56-63 >0391 88-95 >038F 120-127

>0390 128-135 >0394 160-167 >0398 192-199 >039C 224-231
>0391 136-143 >0395 168-175 >0399 200-207 >039D 23 ,-219
>0392 144-151 >0396 176-183 >0400 208-215 >039E 240-247
>0393 152-159 >0397 184-191 >0401 216-223 >039F 248-255

The space character is character 32 (HEX >20). Looking at the
Color Table outlined in Table 11.1 we see that address >0384 holds
the byte that contains the color code for character 32. As we
already know there are eight bits in a byte. In the case of a
color byte the left most four bits (4 most significant bits) code
for the foreground color, while the right four bits (4 least
significant bits) code for the background color. From this
information we know that if we place a value of >Fl at address
>0386 it will set characters 48 through 55 white on black.

The following source code can be used to load a value into a
color table address. In this case characters 32 through 39 are
set black on black.

001
003
004
005
006

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	153

**
* CALL SCREEN(2) 	 *
* PROGRAM MODULE TO LOAD VALUE (BYTE) INTO THE COLOR 	*
* TABLE, THEREBY SETTING THE FOREGROUND AND BACKGROUND 	*
* COLOR OF A DESIGNATED CHARACTER SET. 	 *

008 **
009 REF VSBW
010 MYREG BSS 32
011 COLTAB EQU >0384
012 COLOR DATA >1100
016 BEGIN LWPI MYREG
017 LI RO,COLTAB
018 MOV @COLOROR1
019 BLWP @VSBW
020 *
021 LI R0,0
022 LI R1,>2000
023 LI R2,767
024 LOOP BLWP @VSBW
025 INC RO
026 DEC R2
027 JGT LOOP

Line 010 sets up the Workspace Register area. Line 011 sets
COLTAB equal to •0384, the address in the table we want to write
to. Line 012 defines the byte we will use, in this case >11, or
black on black. Line 016 starts the program proper. Here we load
the address of the Color Table into RO. Line 018 moves the byte
we are going to write (>11) into the most significant byte of R1.
Line 019 calls the utility program that executes the write. At
this point address >0384 now contains the byte >11. Characters
32-39 are now set to black on black.

Lines 021 through 027 are just the CLEAR SCREEN program that
prints the space character in all screen positions, but now that
character is set to black on black. The screen is now totally
black except for the upper and lower border which can be changed
by writing a value to VDP Register 7.

I) 1 e IF" L.. ink "Ne enCir

To display a message somewhere on the screen in xBASIC you use the
simple command:

100 DISPLAY AT(4,5):"HIGH"

which will put "HIGH" on the screen with the first letter
beginning in column 4 row 5 of the screen. As already mentioned,
the computer regards the screen as a series of memory locations

154 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

numbered 000 to 767. To convert a row and column location into
its memory location equivalent use the algebraic expression:

C C + (R*32) 3 = P

where C is the column, R is the row, and P is the assembly
language memory location. Thus location (4,5) becomes:

C4+(5*32)]=164

Now that we know the location on the screen where we want to
put the message, we need to know how to store the message in the
program until we print it out. This is done through the use of a

"TEXT" directive. The following source code outlines the
procedure to print something on the screen:

001 **
003 * 	DISPLAY AT(6,3):"HOW ARE YOU?" 	 *
004 * PROGRAM MODULE TO PRINT A STATEMENT IN A 	*
005 * DESIGNATED SCREEN POSITION. 	 *
007 **
008 	 REF VMBW
009 MYREG BSS >20
010 ADDR1 TEXT 'HOW ARE YOU?' * Message to print.
011 *
012 BEGIN LWPI MYREG
013 	 LI 	R0,102 	* E6+(3*32)3 Screen location.
014 	 LI 	R1,ADDR1 * Load message.
015 	 LI 	R2,12 	* # of characters to write.
016 	 BLWP @VMBW
017 	 JMP $ 	* Hold display on screen.

'CALL CAAAIR

This BASIC statement redefines a specified character using a 16
character HEXadecimal coded string. For example character 33
C>213 is the ASCII value for the exclamation point (!). If we
enter the statement:

100 CALL CHAR(33,"FFFFFFFFFFFFFFFF")

then character 33 is redefined as solid square (all areas shaded).
If we wanted to redefine a character into a ball shape, we could
use the procedure on the following page which outlines a grid to
help us create our pattern.

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	155

HEX CODE

1 1 IXIXIXIX1 1
	

>3C
1 IX:XIXIXIXIX1 I
	

>7E
IXIXIXIXIXIXIXIX1

	
>FF

IXIXIXIXIXIX:XIX1
	

>FF
:XIXIXIX:XIXIX;X:

	
>FF

IXIXIXIXIXIXIXIX1
	

>FF
1XIXIX:XIXIX: 1

	
>7E

1 IXIX:XIX1 1
	

>3C

From the figure above it can be seen that the pattern
identifier for the 'BALL' is "3C7EFFFFFFFF7E3C". We now construct
the following statement:

100 CALL CHAR (128,"3C7EFFFFFFFF7E3C")

Which defines character 128 as our "ball". We can then place
the ball anywhere on the screen with a CALL HCHAR statement. The
complete code is thus:

100 CALL CHAR(128,"3C7EFFFFFFFF7E3C")
110 CALL HCHAR(4,10,128,1)

To understand how assembly language accomplishes the same task
we must know where the computer stores patterns. It holds them in
a Pattern Descriptor Table. This table begins at address >0800
and extends through to address >OFFF in VDP RAM.

Each pattern requires eight bytes to define one character. The
pattern of character 0 occupies addresses >0800 through >0807,
character 1 occupies addresses >0808 through >080F, character 3
occupies addresses >0810 through >0817 and this continues until
the last character, character 256, is reached which occupies
addresses >0FF8 through >OFFF.

To quickly find which address begins the code for which
character, you can use the following formula:

E 2048 + (C*8) 3 = A

Where 'C' is the decimal value of the character and 'A' is the
decimal value of the desired address. Using this formula we can
find that the address that begins the description of character 128
E>803 is :

E 2048 + (128 * 8) 3 = 3072

which is VDP address >OCOO.

156 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

Now that we know the pattern identifier for a ball and the
address of where that pattern belongs for character 128, we can
write a translation of the following BASIC code:

001
002
003
004
005

**
* 	 *
* 	100 CALL CHAR(128,"3C7EFFFFFFFF7E3C") 	 *
* 	110 CALL HCHAR(4,10,128,1) 	 *
* 	 *

006 **
007 REF VMBW,VSBW
008 MYREG BSS 32 	 *
009 PATTAB EQU >0000 	 * E20484-(C*8((3=0000
010 PAT DATA >3C7E,>FFFF,>FFFF,>3C7E 	* "BALL" pattern
011 *
012 START LWPI MYREG 	* Loads the pattern for the balll
013 LI RO,PATTAB 	* into the Pattern Descriptor
014 LI R1,PAT 	* Table.
015 LI R2,8 	* 	.
016 BLWP @VMBW 	* 	.
017 *
018 LI R0,138 	* Places the "ball" 	(character 128)
019 LI R1,>8000 	* on the screen in position 	(4,10)
020 BLWP @VSBW 	*
021 ' JMP $ 	 * Hold display on screen.

By adding a few additional lines of code we can repeat the
pattern any number of times in the horizontal direction. The
following additional lines of source code when placed in the
program above will simulate the BASIC statement:

CALL HCHAR(4,10,128,8)

Replace lines 018 through 025 with the following code:

.

018 	LI 	R0,138
019 	LI 	R108000
020 	LI 	R2,8 	* Count register: loop 8 times.
021 LOOP BLWP @VSBW * Put character on screen.
022 	INC 	RO 	* Next position to place character.
023 	DEC R2 	* Decrease count register.
024 	JGT LOOP 	* Check if all 8 characters are on
025 * 	 screen, if not loop again.

To translate the VCHAR statement requires only a slight
modification of the code for the HCHAR statement as illustrated on
the next page (note only line 022 was altered):

• •

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	157

.

018 LI R0,138
019 LI R10.8000
020 LI R2,8
021 LOOP BLWP @VSBW
022 AI R0,32 * Increment to screen position
023 DEC R2 * below last one written to.
024 JOT LOOP
025 *

You will notice that line 022 adds 32 to the current screen
position that you are writing to. In this way the next screen
location specified is the one directly under the previous one.

This source code, when added to the program lines previously
mentioned, is a direct translation of the BASIC statement:

CALL VCHAR(4,10,128,8)

In fact, by altering the amount that yoU increase *or decrease
RO in your program you can make the patterns print up, down,
diagonally or virtually any way by altering this one line of
source code.

This BASIC command sets the keyboard to be tested and returns two
variables based on input from the keyboard. The first variable
tells you whether or not a key has been pressed, while the second
variable returned gives you the value of the key pressed. There
is a utility program in assembly language that you can use to
return keyboard input. This utility is referred to as KSCAN.

In order to use the KSCAN utility, you have to first determine
where you want the input to come from. You can input from the
whole keyboard, right side of the keyboard, left side of the
keyboard or input from the joysticks.

Address >8374 contains the byte that determines which keyboard
device you want to select. The following values select for
desired keyboard devices:

>00 Checks the entire keyboard.
>01 	Checks left side of keyboard and joystick #1.
>02 	Checks right side of keyboard and joystick 0@2°

From the above table we see that if a value of >01 is placed at
address >8374 the KSCAN routine will check for input from the left
side of the keyboard as well as input from joystick #1.

When a key is pressed its ASCII value is placed at address
>8375. If no key was pressed this address will contain >FF. Lets

158 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

consider a program where input from the keyboard is used to
perform some task. The following BASIC program will print a
message on the screen based on which arrow key has been pressed.

100 CALL KEY (1,KEY,STATUS)
110 IF STATUS=0 THEN 100
120 IF KEY=5 THEN A$="UP KEY PRESSED"
140 IF KEY=3 THEN A$="RIGHT KEY PRESSED"
160 IF KEY=0 THEN A$="DOWN KEY PRESSED"
180 IF KEY=2 THEN A$="LEFT KEY PRESSED"
190 DISPLAY AT (4,10):A$
200 GOTO 100

This program will display the "UP KEY PRESSED" message if the
up 'E' key is pressed. If the 'D' key is pressed the "RIGHT KEY
PRESSED' message appears. This continues on for the other two keys
(X & S). 	The assembly language translation of this program
illustrating the CALL KEY function is as follows:

001 ***
002 * 	 CALL KEY (1,KEY,STATUS) 	 *
003 * This module will input from the arrow keys (E,D,X,S) 	*
004 * and display a message indicating the pressed key. 	*
005 ***
008 DEF BEGIN * Reference needed utilities.
009 REF KSCAN,VMBW * Address to select keyboard
010 KBOARD EQU >8374 * Holds ASCII # of pressed key
011 KEY EQU >8375 *
012 *
013 KEYUP BYTE 5 * 	 ASCII values
014 KEYRT BYTE 3 * 	 of E, D, 	X and S
015 KEYDN BYTE 0 * 	 keys
016 KEYLT BYTE 2 *
017 HEXFF BYTE >FF * No key pressed value
018 ONE BYTE 1 *
019 *
020 UP TEXT 'UP KEY PRESSED '
021 RIGHT TEXT 'RIGHT KEY PRESSED'
022 DOWN TEXT 'DOWN KEY PRESSED '
023 LEFT TEXT 'LEFT KEY PRESSED '
024 EVEN
025 *
026 MYREG BSS >20
027 *
028 BEGIN LWPI MYREG
029 MOVB @ONE,@KEYBOARD * Check left side of keyboard.
030 LOOP BLWP @KSCAN * Check for keyboard input.
031 CB @HEXFF,@KEY * Was a key pressed?
032 JEQ LOOP *
033 CB @KEYUP,@KEY * Compare to see which
034 JEQ PUP * 	arrow key was pressed.

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	159

035 CB @KEYRT,OKEY *
036 JEQ PRIGHT *
037 CB @KEYDN,@KEY *
038 JEQ PDOWN *
039 CB @KEYLT,@KEY *
040 JEQ PLEFT *
041 B @LOOP * If key not found, LOOP again.
042 PUP LI R1,UP * Load
043 B @PRINT * correct
044 PRIGHT LI R1,RIGHT * message
045 B @PRINT * into
046 PDOWN LI R1,DOWN * Ri
047 B @PRINT *

048 PLEFT LI R1,LEFT *

049 B @PRINT *

050 *
051 PRINT LI R0,138 * Print
052 LI R2,17 * message on
053 BLWP @VMBW * screen
054 B @LOOP * Repeat program

* End program.

Pt L_. L_. Jr DV

If you place a value of >01 at address >8374 the KSCAN routine
will check for input from joystick #1 (as well as from the left
side of the keyboard). If you place a value of >02 at address
>8374 the KSCAN utility will check for input from joystick #2 (as
well as from the right side of the keyboard). Input from joysticks
is placed into CPU addresses >8376 (Y-position) and >8377
(X-position). Table 11.2 lists the possible values that may be
returned.

TABLE 11.2 JOYSTICK INPUT Y POSITION

Value Returned Address

>00 >8376

>04 >8376

>FC >8376

Joystick Y Position

CENTER

UP

DOWN

160 	CONVERTING BASIC INTO ASSEMBLY LANGUAGE

TABLE 11.3 JOYSTICK INPUT X POSITION

Joystick X Position 	 Value Returned 	 Address

CENTER 	 :>00 	 >8377

RIGHT 	 >04 	 >8377

LEFT 	 >FC)3377

Lets assume that a value of >01 is at address >8374. Lets also
assume that joystick #1 is in the DOWN-RIGHT position. When the
KSCAN routine is called a value of -4 (:>FC) is placed at address
>8376 and a value of 4 (>04) is placed at address >8377.

The following xBASIC program will print out a message on the
screen reporting on the current position of joystick #1. It is
very similar to the CALL KEY program that was presented earlier.

100 CALL JOYST(1,JOYX,JOYY)
110 IF JOYY=0 AND JOYX=0 THEN A$="CENTER"
120 IF JOYY=4 AND JOYX=0 THEN A$="UP"
130 IF JOYY=4 AND JOYX=4 THEN A$="UP-RIGHT"
140 IF JOYY=0 AND JOYX=4 THEN A$="RIGHT"
150 IF JOYY=-4 AND JOYX=4 THEN A$="DOWN-RIGHT"
160 IF JOYY=-4 AND JOYX=0 THEN A$="DOWN"
170 IF JOYY=-4 AND JOYX=-4 THEN A$="DOWN-LEFT"
180 IF JOYY=0 AND JOYX=-4 THEN A$="LEFT"
190 IF JOYY=4 AND JOYX=-4 THEN A$="UP-LEFT"
200 DISPLAY AT(4,10):A$
210 GOTO 100

The above program will display a message on the screen
reporting on the current position of joystick #1. The source code
that follows is a direct translation of the previous xBASIC
program. You may wish to study it in great detail as most game
programs utilize a joystick input of one type or another.

001 ***

003 * CALL JOYST(1,JOYx,JOYY) *
004 * This module will input from joystick #1 and display its *
005 * current position on the screen. *
007 ***

008 DEF 	START
009 REF 	KSCAN,VMBW
010 *

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	161

011 KBOARD EQU >8374 	* Address of keyboard device select.
012 JOYY EQU >8376 	* Joystick input "Y" value.
013 *
014 JOYUP BYTE 4,0 	*
015 JOYUR BYTE 4,4 	*
016 JOYRT BYTE 0,4 	*
017 JOYDR BYTE -4,4 	*
018 JOYDN BYTE -4,0 	*
019 JOYDL BYTE -4,-4 	*
020 JOYLT BYTE 0,-4 	*
021 JOYUL BYTE 4,-4 	*
022 JOYCT BYTE 0,0 	*
023 HEXFF BYTE :OFF 	*
024 ONE BYTE 1 	 *
025 *
026 UP TEXT 'UP 	 *
027 UPRT TEXT 'UP-RT 	 * 	JOYSTICK
028 RT TEXT 'RIGHT 	 *
029 DNRT TEXT 'DOWN-RIGHT 	 .* 	POSITION
030 DN TEXT 'DOWN 	 *
031 DNLT TEXT 'DOWN-LEFT 	 * 	 MESSAGES
032 LT TEXT 'LEFT 	 *
033 UPLT TEXT 'UP-LEFT 	 *
034 CENTER TEXT 'CENTER
035 EVEN
036 *
037 MYREG BSS 32 	* Reserve space for Workspace
038 * Registers.
039 BEGIN LWPI MYREG 	 * Load pointer.
040 MOVB @ONE,@KBOARD 	* Select keyboard device.
041 *
042 START BLWP @KSCAN 	 * Scan joystick..
043 C @JOYY,@JOYUP
044 JEQ P1
045 C @JOYY,@JOYUR
046 JEQ P2 	 * Compare to see what
047 C @JOYY,@JOYRT
048 JEQ P3 	 * the X and Y position
049 C @JOYY,@JOYDR
050 JEQ P4 	 * of the joystick is.
051 C @JOYY,@JOYDN 	*
052 JEQ P5 	 *
053 C @JOYY,@JOYDL 	*
054 JEQ P6 	 *
055 C @JOYY,@JOYLT 	*
056 JEQ P7 	 *
057 C @JOYY,@JOYUL 	*
058 JEQ P8 	 *
059 *
060 LI R1,CENTER 	 *
061 B @PRINT 	 *

162 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

P1 LI R1,UP *
B @PRINT *

P2 LI R1,UPRT *

B @PRINT *
P3 LI R1,RT *

B @PRINT *
P4 LI R1,DNRT *

B @PRINT *
P5 LI R1,DN *

B @PRINT *
P6 LI R1,DNLT *

B @PRINT *
P7 LI R1,LT *

B @PRINT *
P8 LI R1,UPLT *
*
PRINT LI R0,138 *

LI R2,10 *
BLWP @VMBW *
B @START *
END BEGIN

062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082

ID I MI

Load

appropriate

message

Display
message on

screen.
Return and check again.

BASIC is a powerful language when it comes to automatic string
manipulation, array handling and specific error messages letting
you know exactly where you went wrong. The price you pay for
these luxuries is that the BASIC program will run very slowly when
compared with assembly language. Because array management is not
directly handled by the computer when using assembly language, you
will have to set memory aside for that purpose. The best way to
do this is through the use of the BSS and BES directives, either
of these directives will set aside any amount of memory. Handling
these 'chunks' is not too difficult, but it may help to use a pen
and paper to keep track of your own arrays as you set them up in
memory.

IF- C.) Ft — INI IE X "T .

The FOR-NEXT statement in BASIC can be used to create a delay loop
or a counting loop. For example, if you want to put something on
the screen for someone to read you might incorporate a "delay
loop" to hold the message on the screen for a period of time.

In game programming with assembly language these delays become
much more important because the program executes so quickly that
an object on the screen could move so quickly that it would de
visible only as a blur. The source code on the next page outlines
a simple delay loop.

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	163

001 ***

003 * 	FOR DELAY=1 TO 1000 :: NEXT DELAY 	 *

005 ***

006 	 .
007 	 .
008 	 LI 	R1,1 	* For 1

009 	 LI 	R2,1000 	* To 1000
010 DELAY DEC R2
011 	 C 	R1,R2
012 	 JNE DELAY 	* Next Delay
013 	 .

Of course this delay loop will execute much more quickly then
its BASIC counterpart. In fact, unless you were looking for it
you would probably not even notice this small of a delay!

The maximum value we can use in a single delay loop like the
one in the previous example is 32767. To loop with larger numbers
we can create two registers working together to keep count. In
the next example, the first register counts down from 32767 and
then R2 clicks in to repeat the count for a total delay of 98301
"loops".

001 ***

003 * 	 FOR DELAY-1 TO 98301 :: NEXT DELAY 	 *
005 ***

006 	 .
007
008 	 LI R2,3
009 LOOP1 LI R1,32767 * Load a count register.
010 LOOP2 DEC R1 	 * Load maximum delay.
011 	 JNE LOOP2
012 	 DEC R2
013 	 JEQ OUT
014 	 JMP LOOP1
015 OUT 	.

Here we use R2 as our "second count" register and we use R1 as
our "primary count" register. Line 009 is the beginning of our
loop, R1 is loaded with the maximum signed value it can hold.
The next line (010) decrements R1 by one and line 011 tests to see
if R1 is zero yet. If not, the program jumps to LOOP2
and decrements R1 again. This continues until R1 is equal to
zero, then R2 is decremented. If R2 has been decremented to zero
program control jumps to OUT, otherwise the program jumps to LOOP1
and R1 is reloaded and the delay continues.

164 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

F- C3Fc-- NI E X lr — 9 -T PI

For this instruction you just increment your counter register the
amount of the step as demonstrated in the following source code:

001 ***
003 * 	FOR DELAY=0 TO 75 STEP 3 :: NEXT DELAY 	*
005 ***
006 	 -
007 	 •
008 	 LI 	R1,0
009 DELAY INCT R1
010 	 INC 	R1
011 	 CI 	R1,75
012 	 JNE DELAY

Notice that lines 009 and 010 of the last example increment our
count register (R1) a total of three for each pass of the DELAY
loop. Take note that this source code could also be written:

0 	 0 	 M

008 	 LI R1,0
009 DELAY Al R1,3
010 	 CI R1,75
011 	 JNE DELAY

Either version would work equally as well.

For very large numbers we can again use two counter registers
to keep track of things. Following our first example above we
could translate the xBASIC statement FOR 1=10000 TO 0 STEP -1
into the source code:

001 **
003 * 	FOR 1=10000 TO 0 STEP -2 :: NEXT I 	 *
005 **
006 	 .
007 	 .
008 	 LI 	R2,10
009 LOOP 1 	LI 	R1,1000
010 LOOP2 DECT R1
011 	 JNE LOOP2
012 	 DEC R2
013 	 JNE 	LOOP1

Here we see R1 decremented by two after each loop. If you were
using the value of "I" for some other procedure in the program you
could get it simply by multiplying R1 and R2 together at any point
during execution of these loops.

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	165

Conditional jumps and compare instructions constitute the primary
computing structure in assembly language. It is fairly straight
forward and can be easily demonstrated with a translation of the
following:

001 	***
003 	* 	 IF DAMAGE=100 THEN SHIP=10 	 *
005 	***

.
008 DAMAGE DATA >0000
009 SHIP 	DATA >0000

. . 	.
200 SUB1 	MOV @DAMAGE,R1 *
201 CI R1,100 * If DAMAGE=100
202 JNE OUT1 * Then... .
203 LI R1,10 *
204 MOV R1,@SHIP * ..SHIP=10
205 OUT1 	RT

To add an ELSE to the statement you simply add three additional
lines of source code as follows:

001 	***
003 	* 	 IF DAMAGE=100 THEN SHIP=10 ELSE SHIP=5 	*
005 	***

.
006 DAMAGE DATA >0000
009 SHIP DATA >0000

. .
200 MOV @DAMAGE,R1
201 CI R1,>64
202 JNE ELSE1
203 LI R1,>A
204 MOV R1,@SHIP
205 JMP OUT1
206 ELSE1 LI R1,>5
207 MOV R1,@SHIP
206 OUT1 RT

DIN GC) B Ul Et

In BASIC, you are limited with the GOSUB instruction to test very
specific values before proceeding. For example:

100 ON Y GOSUB 200,230,240

In this example Y must be 1 or 2 or 3. Only one branch test is

166 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

performed with control returning to the statement just after the
GOSUB after that one branch is finished. Also, if Y was not equal
to any of the branches (ie: not=1, 2, or 3) an error message
would be returned by the computer.

Assembly language permits you much greater freedom in
programming in that it permits multiply branch testing. In this
situation, one, two or all the branches might be executed. Or
alternatively, none of the branches may be branched to under
certain conditions. The source code on the following page could
be found in a game program where some value, perhaps inputed from
the keyboard, determines which subprogram is branched to

001 ***
003 * 	 ON VALUE GOSUB 100,200,300 	 *
004 * Program module to perform a multiple branch test 	*
006 ***
007 .
008 .
009 MOV @VALUE,R0
010 CI R0,100 * See if VALUE=100
011 JNE NEXT1 * If not, then jump to NEXT1
012 BL MISS * Branch & Link w/ MISS routine
013 NEXT1 CI R0,200 * See if VALUE=200
014 JNE NEXT2 * If not, then jump to NEXT2
015 BL HIT * Branch & Link w/ HIT routine
016 NEXT2 CI R0,300 * See if VALUE=300
017 JNE OUT * If not, jump to OUT
018 BL KILLED * Branch & Link with KILLED

You will be BLing out of the program and RTing back to within
the multiple branch test above to continue until all the branches
have been tested. You will have to be careful that your
subprograms MISS, HIT and KILLED do not change the value in RO or
an accidental triggering of another branch may occur.

C3 INI B C) 11- C)

This is another version of the GOSUB structure we have just
covered. The difference is that after one branch meets with a
successful test, control jumps back to the point following all the
branch tests.

001 **
002 * 	 ON GOTO 	 *
003 * This program module allows you to test branches one at *
004 * a time. Program control transfers to a point following *
005 * all branch tests after completion of a subroutine. 	*
007 **
010 	 .
011 	 .

CONVERTING BASIC TO ASSEMBLY LANGUAGE 	167

012 MOV @VALUE,R0
013 CI R0,100
014 JNE NEXT1
015 JMP SUBR1 *
016 NEXT1 CI R0,200
017 JNE NEXT2
018 JMP SUBR2 *
019 NEXT2 CI R0,300
020 JNE OUT *
021 JMP SUBR3 *
022 OUT Call subroutines "JMP" to location OUT when finished]

Instead of RT, each subroutine in the last example will JMP
back to location OUT, which lets the program continue without
running through any more tests of the branches. In this way no
branch is accidentally triggered if the subroutine were to change
the contents of RO.

REIM

You can make notes directly inside program by preceding them with
an asterisk (*). An entire line in a source program may be
reserved in this way for comments or notes about your program.
Comments also can be made after the operand field in most
instructions by spacing once and typing in an asterisk (*)
followed by your note or comment. The asterisk serves as a signal
to the assembler to ignore the information you have typed. Your
remarks remain part of the source code only and are omitted
during the assembly process.

FZIE -FL.IFP4

There are two return instructions in assembly language. They
operate very similar to the way RETURN does in BASIC. THE RTWP
takes you back from a subprogram to just after the BL (GOSUB)
instruction that sent you to a subroutine.

When a BL or BLWP instruction is reached, the address which
immediately follows the BL or BLWP instruction itself is placed
in R11. That address then stays in RII until a RT or RTWP is
encountered. When this occurs, the address is taken from RII and
placed into the Program Counter. This transfers program control
back to the instruction just after the BL or BLWP line.

FZ Ul IN

If you are not going from BASIC to an assembly program, but are
only running an assembly program by itself, there are basically
two ways to run the program using the Editor/Assembler. The first
way is to define an entry point with the DEF statement at the

168 	CONVERTING BASIC TO ASSEMBLY LANGUAGE

beginning of the program. Using this method you load the object
code into the computer using the LOAD and RUN option of the
Editor/Assembler module. After the program is loaded you press
ENTER and the PROGRAM NAME? prompt appears. You then type in the
starting point of program. This entry must match a entry in the
DEF statement at the beginning of the program.

The second way to run a assembly language program is to place
the entry point of the program in the operand field of an END
directive. When this program is loaded it will start running
automatically as soon as the file is loaded. The following
illustrates these two methods of starting assembly programs:

001 	 DEF START
. 	 . 	.
. 	 .
020 START . 	.

Using this procedure you must load the file that contains the
object code with the LOAD and RUN option of the Editor/Assembler.
When the file is loaded hit ENTER and the PROGRAM NAME? prompt
appears. You then type in the entry point in your program which
also must be found in a DEF statement at the beginning of the
program.

020 START . 	.
. 	 •
	.

.
800
	

END START

Placing the entry point to your program in the operand field of
a END statement causes the program to start running automatically
as soon as it is loaded with the LOAD and RUN option of the
Editor/Assembler.

12

LINKING

WITH

BASIC

Many times in programming you will want to add an assembly
language module to a BASIC program. This has the effect of
allowing you to create your "own" BASIC commands which you can use
as needed. You can also add fast-executing modules at specific
points to speed up program execution. This chapter will discuss
in detail the ways in which you can link your BASIC programs with
assembly language programs.

-169-

170 	LINKING WITH BASIC

Both the Editor/Assembler module and the Mini Memory module
provide you with several additional BASIC commands. These
commands are designed to aid you in the task of interfacing your
assembly language programs with BASIC. Table 12.0 outlines these
commands.

TABLE 12.0 BASIC ASSEMBLY LANGUAGE SUPPORT COMMANDS

Command 	 Description

CALL INIT 	Initializes CPU memory for AL subroutines
CALL LOAD 	Load data or AL program into CPU RAM memory.
CALL LINK 	Link BASIC program with AL program.
CALL PEEK 	Look at data in a CPU RAM address.
CALL PEEKV 	Look at data in a VDP RAM address.
CALL POKEV 	Load data into VDP RAM.
CALL CHARPAT 	Return the value of a character pattern.

Each preceding BASIC command is discussed in detail in the
sections that follow in this chapter.

This command command must be called before any assembly language programs
are loaded through the BASIC program. This command should not be
called once the assembly language program is loaded or the program
will be rendered inaccessible. The CALL INIT command goes through
the following procedures when called:

1. Check to see if memory expansion is connected
to the console.

2. Loads utility routines from the Editor/Assembler
module into the memory expansion starting at
address >2000.

3. Loads the REF/DEF tables into the memory expansion
at addresses >3F38 through >3FFF.

If you use the command CALL INIT 'with the mini memory module,
all programs and data are erased. CALL INIT also initializes CPU
RAM for assembly language subroutines and re-initializes the
internal tables of the mini memory module. If memory expansion is
attached, access is enabled to both the module and memory
expansion. If the memory expansion is not connected or turned
off, the memory expansion is not recognized. You do not need to
use CALL INIT each time you use the module, since it has its own
internal power supply. Remember that all data and programs on the
module are lost when you use the CALL INIT command!

LINKING WITH BASIC 	171

IcAPILA..... LAD/ND

There are two ways in which the CALL LOAD command can be used.
The first is to load an assembly language object code file, and
the second is to load or "poke" data directly into CPU RAM.

LADicippItNilB plEcalcir. 	car>

To load an assembly language program (object code) you would
use the following format of the CALL LOAD statement:

CALL LOAD("device.filename")

where the device.filename is a string expression such as
DSK1.FILE1. This file must be object code. You can load more
than one object file at a time by separating the files you want by
commas as in the following example:

CALL LOAD("DSK1.FILE1","DSK1.FILE2")

which loads the two files FILE1 and FILE2 from disk drive 1.

Relocatable object code is loaded at the first available
address. With no files loaded and memory expansion attached this
address is >A000. When using the mini memory module without the
memory expansion unit attached this address is >7118, the lowest
available address in the module's RAM. Subsequent programs are
loaded in a sequential manner, with the next program loaded in
memory immediately following the previous program. Absolute code
is loaded at the absolute address specified by the object code.
Your program should not use absolute code unless extreme care is
taken, as loading data into an area of memory used by the TI BASIC
interpreter can cause the computer to "crash".

-1PolKINie- EtplcrIA

To load or "poke" data into an area of CPU RAM you would use
the following format of the CAll LOAD command:

CALL LOADtaddress,value)

where the address is a decimal number which can be any value from
-32768 through 32767. Values 0 through 32767 represent addresses
0000 through 7FFF, while the values -32768 through -1 represent
8000 through FFFF expressed as two's compliment form. In order to
find an address above 32767 you must subtract 65536 from it. You
can load any number of bytes beginning at an address by specifying
the values to load. For example, the statement:

CALL LOAD(-36864,24,13,90)

172 	LINKING WITH BASIC

loads the values >18, >OD and >5A into the respective bytes at
locations >7000, >7001 and >7002.

You can specify more than one poke list by separating the last
byte of one poke list and the starting address of the next poke
list with a pair of quotes as in the next example

CALL LOAD(-36864,24,13,",53248,19)

which loads the same values as the preceding example and also
loads the value >13 into address >D000.

You could also load an assembly language program byte-by-byte
in this manner by poking in the various instructions. However to
run a machine language program loaded in this manner you would
have to enter the program name and starting point into the REF/DEF
table so that the computer could find it. You do not need to worry
about these steps if your program was loaded by the
Editor/Assembler loader since that is done for you. If you are
using the Mini Memory Module you should use the procedure outlined
on page 144. If you use xBASIC to run your assembly language
program you must first perform the following steps:

1. Read the First Free Address in the Module
with the CALL PEEK command. The FFAM can
be found at address >2028.

2. Read the Last Free Address in the Module.
This address can be found at address >202A.

3. Subtract the FFAM from the LFAM. If they
differ by at least 8 bytes, there is room
to add your program name and address.

4. Use the CALL LOAD command to change the LFAM
to a value 8 bytes less then its old value.

5. Use the CALL LOAD command to load the
program name (6 bytes in length) starting
at the new LFAM followed by two bytes which
give the program starting address.

For example, suppose the LFAM is >8000, your program name is
FILE. The program begins at addess >8300. You would then load the
following information:

CALL LOAD(28700,127,251)
CALL LOAD(32763,70,73,76,69,32,32,131,00)

/ /
NAME PADDED TO 6 CHARACTERS

LINKING WITH BASIC 	173

IC ALL L_. I INA 1-c:::

The CALL LINK command lets you pass control from a BASIC program
to an already loaded assembly language program. It also lets you
optionally pass a list of parameters from the BASIC program to the
assembly language program.

The format for the CALL LINK command is as follows:

CALL LINK("program-name","parameters...")

The program-name is a 1 to 6 character string that defines the
entry point into the program. It must appear in the REF/DEF Table
of the assembly language program that you are trying to link with.
The assembly language program must already be in memory (loaded
via the CALL LOAD command).

The parameters are optional. They allow you to pass string
variables, numeric variables, or expressions between your BASIC
and assembly language programs. For example, the statement:

CALL LINK("BEGIN",A,D$)

passes control from a BASIC program to the assembly language
program BEGIN, with the numeric variable 'A' and the string
variable 'D$' passed to it.

The CALL LINK command goes through the following operations when
called:

1. Check to see if AL program name is 1 to 6
characters in length.

1.)
I... ■ If name is right length, the name is looked up

in the REF/DEF Table, beginning at the lowest
address. The program name is then pushed onto
the value stack.

note: An error is generated if there are duplicate
names in DEF instructions.

3. If parameters are to be passed the utility will
build an argument list. This list identifies
the type of arguments and builds a stack entry for
each argument.

4. Program control is transferred to the assembly
language program through a direct AL "branch"
instruction.

174 	LINKING WITH BASIC

note: In order to return to your BASIC program,
your AL program must preserve and restore
the values in Workspace Registers R11, R13,
R14, and R15 before ending.

5. At the end of the assembly language program,
control will return to the calling BASIC program
unless an error has occurred. If an error has occurred,
the program branches to an error routine.

note: Address >8310 contains the value stack pointer
in use by BASIC interpreter.

IRAFcrtnkrITEIR IPIABBING WITH 	iALL... LIINK

Up to 16 arguments can be passed between a BASIC program and
an assembly language program. If the parameter is an expression,
it is passed by its value, if it is a variable it is passed by
name. Any variable except an expression can have its value
changed by the assembly language program. This value, in turn,
can be passed back to the BASIC program.

You can pass entire arrays by enclosing them in parentheses.
Arrays with more than one dimension are indicated by placing
commas between the parentheses to indicate the number of
dimensions. The following is an example outlining several simple
variables (simple variables do not include expressions):

CALL LINK("BEGIN",A,B$,SCORE,F$0,0$(0)
A = numeric variable
B$ = string variable

SCORE = numeric variable
F$() = one-dimensional array
G$(,) = 	two-dimensional array

If you need to pass variables to your assembly language program
but do not need to change their values, surround the variable with
parentheses. Arrays however, can not be passed in this manner.
For instance, all but the last two in the last example can be
passed without having their value changed on return to the calling
BASIC program as outlined below:

CALL LINKOBEGIN",(A),(B$),(SCORE))

Also, constants such as SCORE-3, do not have their values
changed by the assembly language program on return to BASIC.

Arguments are passed to an assembly language through an
identifier list in CPU RAM. It is not necessary for you to have a
knowledge of how arguments are passed if you use the utilities
described in section 13.1 If you want to delve deeper and

LINKING WITH BASIC 	175

construct your own utilities, see pages 278-280 of your
Editor/Assembler manual.

Pt L_. L_. IR la la Il<

The CALL PEEK command allows you to read bytes of CPU RAM directly
into BASIC variables. The following statement is an example of
the format of the CALL PEEK command:

CALL PEEK(address,variable....)

where the address is a decimal number which can be any value from
-32768 through 32767. Values 0 through 32767 represent addresses
>0000 through >7FFF, while the values -32768 through -1 represent
>8000 through >FFFF expressed as two's compliment form. In order
to find an address above 32767 you must subtract 65360 from it.
You can peek into any number of successive bytes of CPU RAM by
simply specifying the variables.

The following example illustrates how data can be read from CPU
RAM:

CALL PEEK(-36864,A,B,C,D)

This statement lets 'A' represent the value held at address
>7000, 'B' the value at address >7001, 'C' the value at address
>7002 and 'C' the value at address >7003.

You can read from more then one address in a single PEEK
statement by separating the last variable of one PEEK list and the
Beginning PEEK address of the next list with a pair of quotes.
This is illustrated as follows:

CALL PEEK(53248,A,B(3),"" 9 -36864,C)

This statement lets 'A' and the third element in the array
designated 'B' represent the values at addresses >D000 (53248) and
>D001 (53248) respectively.

The CALL PEEKV command is used to read bytes of data from VDP RAM.
It works in exactly the same manner as the CALL PEEK command
except that CALL PEEKV will read from VDP RAM. The format of
the CALL PEEKV is the following:

CALL PEEKV(address,variable,var...)

The address is a decimal number which can range in value from
0 through 16383. The values 0 through 16383 represent addresses
>0000 through >3FFF in VDP RAM. If you try to access a higher

176 	LINKING WITH BASIC

address then >3FFF the system will crash requiring you to turn the
power off and back on again in order to continue.

The following example illustrates the use of the CALL PEEKV
command:

CALL PEEKV(768,A,B(2),w' ,
n 10,C)

This statement will read a value from VDP RAM address >0300
into 'A' and a value from VDP RAM addres >0301 into the second
element of the numeric array designated 'B'. A value will also be
read from VDP RAM address >000A into 'C'.

Po L_ L_ Pa' CII K la V

The CALL POKEV command allows you to read bytes of VDP RAM
directly into BASIC variables. It works in exactly the same
manner as the CALL POKE command, except that CALLPOKEV will poke
data into VDP RAM instead of CPU RAM. The format of the CALL
POKEY command is as follows:

CALL POKEV(address,variable...)

where the address is a decimal number which can be any value from
0 through 16383. Values 0 through 16383 represent addresses >0000
through >3FFF. Keep in mind that VDP RAM only has 16K of memory.
If you try to poke a value into an address higher than >3FFF, the
system will crash requiring you to turn the console off and back
on in order to continue.

The following example:

CALL POKEV(300,32,32,32,"",5,SCORE)

places the value 32 (>20) in VDP RAM addresses 300 (>012C), 301
(>012D), and 302 (>012E). It also places the value of SCORE in
VDP RAM address 5 (>0005).

IC ink L.. L_ IC HI Ink Fc Fs Pp 1-

The CALL CHARPAT command returns a 16-character pattern identifier
that codes for the character specified by the character-code. The
format of the CALL CHARPART command is as follows:

CALL CHARPAT(character-code,string-variable)

where the character-code is any character number from 32 to 159.
The pattern identifier codes for the ASCII character set normally
occupy character codes 32 through 95, although you can redefine
and can be defined through the use of the CALL CHAR command.

LINKING WITH BASIC 	177

1p4=%Ftem-IIR F-ABBINie

Besides the additional BASIC commands provided, the
Editor/Assembler and Mini Memory module also provide several
assembly language utility programs that greatly simplify passing
arguments between AL and BASIC. You can also return errors that
occurred during execution of an assembly language module. Table
12.1 outlines these utilities.

TABLE 12.1 BASIC INTERFACE UTILITIES

UTILITY 	DESCRIPTION

NUMSAG 	Number Assignment.
STRASG 	String Assignment.
NUMREF 	Number Reference.
STRREF 	String Reference.
ERR 	 Error reporting,routine.

If you are using the Editor/Assembler these utility programs
can be found on the disk labeled 'A' in the file named BSCSUP.
They are in relocatable code and are about 900 bytes long. To use
them you must include them in a REF statement at the beginning of
your program. In order to load them you must place the statement:

CALL LOAD("DSK1.BSCSUP")

in your BASIC program.

If you are using the Mini Memory module, the addresses of these
utilities can be found on page 148.

Fcinlinix lioc) INic Iolm

The values of variables passed from BASIC to assembly language
programs are stored in the Floating Point Accumulator which begins
at VDP RAM Address >834A. Before we progress to the utility
programs proper, we must explain radix 100 notation.

In radix 100 notation all numbers range from 1.000000000000

through 99.000000000000 multiplied by 100 raised to a power
ranging from -64 to 64.

Each number is coded for in an 8 byte "value stack" located in
VDP RAM. The first byte in the value stack indicates the exponent
of the numerical value. If the exponent is positive, the byte

178 	LINKING WITH BASIC

value is 64 more than the exponent. If the exponent is negative,
the byte value is gotten by subtracting 64 from the exponent. For
example, if the exponent is 3, the byte is 67 or >43. If the
exponent is -2, the byte is 62 or >3E. If the exponent is
negative, the first two bytes are entered in two's-compliment

form.

After the exponent byte, the remaining seven bytes in the value
stack contain the value of the number. No regard is given to the
decimal point when transforming numbers into their hexadecimal
equivalents. The second through eighth byte for a radix 100 value
of:

3
100 x 23.456

is constructed as follows:

3
100 x 23 	45 60 00 00 00 00
>43 >17 >2D >3C >00 >00 >00 >00

The following examples illustrates how several different
numbers would be written in radix 100 notation and how the value
stack would be structures in each case.

TABLE 13.2 EXAMPLES OF CONVERSION TO RADIX 100 NOTATION

Decimal
Value

Radix 	100
Notation

o

Value Stack

6 6 x 100 >40 >06 >00 >00 >00 >00 >00 >00

o
60 60 x 100 >40 >3C >00 >00 >00 >00 >00 >00

1,234,560 1.23456 x 100 >43 >01 >17 >2D >3C >00 >00 >00

3
12,345,600 12.3456 x 100 >43 >0C >22 >38 >00 >00 >00 >00

o
0* 0 x 100 >00 >00 >XX >XX >XX >XX >XX >XX

o
-6 -6 x 100 >BF >FA >00 >00 >00 >00 >00 >00

o
-6C) -60 x 100 >BF >C4 >00 >00 >00 >00 >00 >00

'7
...)

-1,234,560 -1.23456 x 100 >BC >FF >17 >2D >3C >00 >00 >00

*Zero is expressed by >00 in the first two bytes & undefined in
the remaining 6 bytes.

LINKING WITH BASIC 	179

c tNi u rii IA B e) tNi u ri r3 a Ft ALB I e h4 hi la h4 ir

This utility allows you to assign a value to a variable passed as
an arguement via the CALL LINK command of BASIC.

Follow the steps outlined below in order to use this utility.

1. Place a value of 0 in RO if the variable is a simple
variable. If the variable is an element in an array,
place the element number in RO.

Note: With OPTION BASE 0 (BASIC default) the array
elements are numbered starting at O. If OPTION
BASE 1 is selected the array elements are
numbered starting at 1.
Element numbers for multiple dimension arrays
are found by counting through the first level,
then the second level and so on. For example,
an array defined as X(6,6 1 6) with an OPTION
BASE of 0; element number X(3,2,1) is found:

2 	 1 	 0
(3 * 7) + (2 * 7) + (1 * 7) = 162 = element #

2. Place the arguement number as a full word in Rl. The
arguement number is at it appears in the arguement
list of the CALL LINK statement.

Note: The arguement number is the order in which the
arguement appears in the parameter list of the CALL
LINK statement. For example, in the statement:

CALL LINK("BEGIN",X,Y,Z)

'X' is arguement #1, 'Y' is arguement #2, and 'Z' is
arguement #3

3. Enter the value you want to assign into the Floating
Point Accumulator which begins at address >834A. The
number must be in Radix 100 notation.

4. Access the utility by BLWP @NUMASG using the
Editor/Assembler or BLWP @6040 if you are using the
Mini Memory Module.

For example, the statement CALL LINK("FILE1",X,Y,Z) when
encountered in BASIC would pass control to the assembly language
program FILE1. If the Floating Point Accumulator beginning at
address >834A contains >43 >02 >22 >38 >00 >00 >00 >00, RO
contains >00 and R1 contains >02, then BLWP @NUMASG assigns
4.. 1.7 ,- -'4,5, 600 to 'Y'.

180 	LINKING WITH BASIC

The following source code can be used to load a value into the
FAC area:

.

.
FAC 	EQU >834A
VALUE BYTE >XX,>XX,>XX v >XX,>XX v >XX,>XX,>XX
.

LI
LI
LI

LOOP MOV
DEC
JNE

.

R1,FAC
R2 1 VALUE
R3,4
*R2+,*R1+
R3
LOOP

C B ir FC Pr B CB) B -11- FC I h4 	Po 	I 10 h4 Ili h4 ir

This utility allows you to assign a string' to a string variable
passed via BASIC command CALL LINK. Before using this utility you
must:

1. Create the string in CPU RAM with the first byte in
the string indicating the length of the string.

2. For simple string variables, place a value of 0 in
RO. If you are assigning a string to an array; place
the array element number in RO.

3. Place the address of the string in R2.

4. Place the arguement number as a full word in Rl.

5. Access the utility with BLWP @STRASG if using the
Editor/Assembler or BLWP @>6048 if you are using the
Mini Memory Module.

The example outlined below demonstrates the usage of the STRASG
utility. The string "HELLO" is assigned to the string variable A*
which is displayed on return to BASIC.

001
002
003 MESS
004
005 START
006
007
008
009
010

DEF START
REF STRASG
BYTE >05
TEXT 'HELLO'
CLR
LI
LI
BLWP @STRASG
RT
END

LINKING WITH BASIC 	181

The following is the BASIC program that is needed. If you are
using the Mini Memory module, omit line 20 as the program is
already in memory. You would also need to change line 010 of the
source code and omit lines 001 and 002.

10 CALL INIT
20 CALL LOAD("DSK1.BSCSUP","DSK1.START")
30 CALL LINWSTART",A$)
40 PRINT A$

EINUMIRF- 3 INIUMEgIR FCEIF-EIRIeMIC

This utility allows you to get the value of a variable passed into
your assembly language program through CALL LINK. In order to do
this you need to follow the following steps:

1. If it is a simple variable, place 0 in RO. If
it is an array element, place the element number
in RO.

2. Place the arguement number as a full word in R1.

3. Call the utility via BLWP @NUMREF or BLWP @>6044.

The value of the variable will be returned in the Floating
Point Accumulator area starting at address >834A. The number will
be in Radix 100 notation.

CBMIREIF- 31 B -IFFRIMB FeEP- P<EMICE

This utility allows you to get a string that was passed via CALL
LINK command from BASIC. You must reserve an area of memory to
hold the string before calling this utility. The following steps
outline how this accomplished:

1. Reserve a buffer area in memory to hold the
string. The first byte of the buffer area
should hold the length of the string. If the
the string length actually exceeds this value,
an error is generated. Otherwise the actual
length is placed in the first byte.

2. Place 0 in RO if it is a simple string variable.
Place the element number if the string is in an
array.

3. Load the starting address of the buffer in R2.

4. Call the utility.

182 	LINKING WITH BASIC

la IR Fc C) Fc Pc la IF- C3 Fc -r I rq e

This utility allows you to transfer control to the error reporting
routine in BASIC. To use this utility all you have to do is load
the error code into the most significant byte of RO and call the
utility via BLWP @ERR or BLWP @6050.

The error codes that can be listed by your program are found in
Table 13.3 on the adjacent page.

TABLE 12.3 BASIC ERROR CODES

CODE 	ERROR MESSAGE
	

CODE ERROR MESSAGE

I/O error 	(bad name) 14
I/0 error 	(write protected) 15
I/0 error 	(bad attribute) 16
I/O error 	(illegal 	operation) 17
I/0 error 	(buffer full) 18
I/0 error 	(read past EOF) 19
I/0 error 	(device error) 1A
I/0 error 	(file error) 1B
Memory full 	(closes file) 1C
N/A 1D
Bad tag 1E
Checksum error 1F
Duplicate definition 20
Unresolved references 21
N/A
Program not found
Incorrect statement

22 4,...,_
-.7..., .,....)

Bad name 24
Can't continue 25 .,-)
Bad value 26-FF

00
01
02
03
04
05
06
07
08
09
OA
OB
OC

OD
OE
OF
10
11
12
13

Number too big
String-number mismatch
Bad argument
Bad subscript
Name conflict
Can't do that
Name conflict
For-Next error
I/O error
File error
Input error
Data error
Line too long
Memory full (file not

closed)
Syntax error
Numeric overflow
Unrecognized character
String truncated
Unknown error

13

HIGH

PRECISION

MATHEMATICS
'TT

Along with the many utilities discussed in Chapter 6, there are
many additional utility programs related to mathematics that
literally save you hours (or days) in programming time.

The first section of this chapter outlines mathematical GPL
routines that can be accessed through GPLLNK. The second section
of this chapter discusses ROM console routines that can be
accessed through XMLLNK.

-183-

184 	HIGH PRECISION MATHEMATICS

All of the following routines involve floating point numbers. If
an error occurs during execution of the routine, the error is
indicated in byte >8345. Table 13.0 gives all the possible error
codes that can be returned.

TABLE 13.0 FLOATING POINT ROUTINE ERROR CODES

CODE 	ERROR TYPE

>01 	Overflow.
>02 	Syntax error.
>03 	Integer overflow on conversion.
>04 	Square root of a negative number.
>05 	Negative number to non-integer power.
>06 	Logarithm of a non-positive number.
>07 	Invalid argument in trigonometric fxn.

Table 13.1 outlines the mathematical routines that can be
accessed through GPLLNK.

TABLE 13.1 XML ROUTINE CODES

ROUTINE CODE 	DESCRIPTION

>0014 	 Convert number to string.
>0022 	 Greatest integer function.
>0024 	 Involution routine.
>0026 	 Square root routine.
>0028 	 Exponent routine.
>002A 	 Natural logarithm routine.
>002C 	 Cosine routine.
>002E 	 Sine routine
>0030 	 Tangent routine.
>0032 	 Arctangent.

The sections that follow in this chapter describe the GPL
mathematical routines. The address of the Floating Point
Accumulator is >834A. The Floating Point Accumulator is
abbreviated FAC in the following sections.

Parentheses indicates the BASIC statement which would call the
routine from a BASIC program.

HIGH PRECISION MATHEMATICS 	185

DATA >0014 [STU CONVERT NUMBER TO STRING

This routine allows you to convert a floating point number into
a ASCII string. The following are the necessary steps:

1. The eight bytes defining the number are located
beginning at FAC.

2. If you set FAC+11 (>8355) equal to zero, it
indicates that the output string is to be in BASIC
format. Otherwise the output is in FIX mode, which
requires data in FAC+12 and FAC+13 (>8356 & >8357).

FAC+12 is the number of significant bytes. If 1, it
expresses overflow from the calculation range.

FAC+13 indicates the number of digits to the right
of the decimal point. A negative value disables the
FIX mode.

3. After the execution of the STR routine, FAC is
modified. FAC+11 (>8355) contains the least
significant byte of the address where the string is
located. This byte must be added to >8300 to find
the actual address of the string;
address=(FAC+11)+>8300. FAC+12 (>8356) contains the
length of the string (in bytes).

DATA >0022 [INT] GREATEST INTEGER FUNCTION

This routine allows you to compute the greatest integer contained
in a value.

1. FAC contains the floating point value.

2. After calling this routine, FAC contains the result.
For positive numbers, the integer is the truncated
value. For negative numbers, the integer is the
truncated value plus one.

3. The GPL status byte (>837C) is set according to
the result.

DATA >0024 INVOLUTION ROUTINE

This routine allows you to raise a number to a specified power.

1. FAC contains the exponent value.

2. Address >836E (STACK) contains the address in
VDP RAM that holds the eight byte number.

186 	HIGH PRECISION MATHEMATICS

3. The result is placed in FAC in floating-point
format. This is computed as exp*LOGEABS(base)3.

4. After completion of this routine, the data at
addresses >8375 and >8376 is destroyed. The word
at address >836E is decremented by 8.

DATA >0026 ESQR3 SQUARE ROOT ROUTINE

This routine allows you to find the square root of a number.

1. FAC contains the input value.

2. After the routine, FAC contains the square root
of the input value.

3. The GPL status byte is affected.

4. Addresses >8375 and >8376 are destroyed by this
routine.

DATA >0028 [EXP3 EXPONENT ROUTINE

This routine will compute the inverse natural logarithm of a
number.

1. FAC contains the input value.

2. After the routine, FAC contains the resulting
value.

3. The GPL status byte is affected.

4. Addresses >8375 and >8376 are destroyed by this
routine.

DATA >002A CLOG] NATURAL LOGARITHM ROUTINE

This routine will compute the natural logarithm of a number.

1. FAC contains the input value.

2. After the routine, FAC contains the resulting value.

3. The GPL status byte is affected.

4. Addresses >8375 and >8376 are destroyed by this
routine.

HIGH PRECISION MATHEMATICS 	187

DATA >002C MOS] COSINE ROUTINE

This routine will compute the cosine of a number that is expressed
in radians.

1. FAC contains the input value.

2. After the routine, FAC contains the cosine of the
input value.

3. The GPL status byte is affected.

4. Addresses >8375 and >8376 are destroyed by this
routine.

DATA >002E [SIN] SINE ROUTINE

This routine will compute the sine of a number expressed in
radians.

1. FAC contains the input value.

2. After the routine, FAC contains the sine of the
input value.

3. The GPL status byte is affected.

4. Addresses >8375 and >8376 are destroyed by this
routine.

DATA >0030 (TAW TANGENT ROUTINE

This routine Oill compute the tangent of a number expressed in
radians.

1. FAC contains the input value.

2. After the routine, FAC contains the tangent
of the input value.

3. The GPL status byte is affected.

4. Addresses >8375 and >8376 are destroyed by this
routine.

DATA >0032 [ARM ARCTANGENT ROUTINE

This routine will compute the arctangent of a number expressed in
radians.

1. FAC contains the input value.

188 	HIGH PRECISION MATHEMATICS

2. After the routine, FAC contains the arctangent off
the input value.

3. The GPL status byte is affected.

4. Addresses >8375 and >8376 are destroyed by this
routine.

To review how to call up GPL routines through the use of the
GPLLNK utility, refer to page 82 of chapter 6. Remember that you
must reset the GPL status byte at address >837C, or a meaningless
error message will be returned. Also make sure that any of the
CPU RAM areas that are affected by a GPL routine are not being
used by your program to store information. The addresses that you
need to use these utilities with the mini memory module can be
found in table 10.1 on page 148.

Routines that are located in ROM can be accessed through the use
of the XMLLNK command.

There are two ways to access a routine in console ROM. The
first is to specify the routine's code in a DATA statement. For
example,

BLWP @XMLLNK
DATA >0800

branches to the floating-point multiplication routine in the
console.

The second way to access a routine in console ROM is to specify
its addresses in the DATA statement. You should take note that
when using this method, the most significant bit of the DATA word
must be set to indicate to the system that this is an address
instead of a routine code. For example,

BLWP @XMLLNK * 8 D 3 A 	(note MSB set to indicate
DATA >8D3A 	* 1000 1101 0011 1010 	an address)

branches to console ROM address >0D3A which is the floating point
compare routine.

Unless absolutely unavoidable, you should not use direct memory
addresses of console ROM routines as they can vary from one
console to another. Table 13.2 outlines the console routine codes
that can be used with XMLLNK.

HIGH PRECISION MATHEMATICS 	189

TABLE 14.2 XML ROUTINES

Routine Code 	 Description

>0600 	 Floating-Point Addition
>0700 	 Floating-Point Subtraction
>0800 	 Floating-Point Multiplication
>0900 	 Floating-Point Division
>0A00 	 Floating-Point Compare Operation
>0800 	 Floating-Point Stack Addition
>0000 	 Floating-Point Stack Subtraction
>0D00 	 Floating-Point Stack Multiplication
>0E00 	 Floating-Point Stack Division
>0F00 	 Floating-Point Stack Comparison
>1000 	 Convert String to Number
>1200 	 Convert Floating-Point to Integer
>1700 	 Push a value onto Value Stack
>1800 	 Pop a Value for the Value Stack
>1230 	 Convert Integer to Floating-Point

In the routines that follow, FAC starts at address >834A, ARG
(which stands for arguments) starts at address >835C. STACK is at
address >836E.

All overflow errors, except in convert floating point to
integer, return >01 at address >8354.

DATA >0600 FLOATING POINT ADDITION

This routine adds two values.

1. FAC contains the first value..

2. ARG contains the second value.

3. FAC holds the result after calling the routine.

DATA >0700 FLOATING POINT SUBTRACTION

This routine subtracts two values.

1. FAC contains the value to be subtracted.

2. ARG contains the value from which FAC is
subtracted.

3. FAC holds the result of the subtraction after
calling the routine.

190 	HIGH PRECISION MATHEMATIC

DATA >0800 FLOATING POINT MULTIPLICATION

This routine multiplies two numbers together.

1. FAC holds the value of the multiplier.

2. ARG holds the value of the multiplicand.

3. FAC holds the result after the routine is called.

DATA >0900 FLOATING POINT DIVISION

This routine divides two values.

1. FAC holds the divisor.

2. ARG holds the dividend.

3. FAC holds the result of the operation after
calling the utility.

DATA >0A00 FLOATING POINT COMPARE

This routine compares two floating point numbers.

1. FAC holds the first number while ARG holds
the second.

2. The GPL status byte (>837C) is affected. The high
bit is set if ARG is logically higher than FAC.
The greater than bit is set if ARG is arithmetically
higher than FAC. The equal bit is set if ARG and
FAC are equal.

DATA >0B00 VALUE STACK ADDITION

This routine will add using a stack in VDP RAM.

1. STACK contains the VDP RAM address where the
left-hand term is located.

2. FAC holds the right-hand term.

3. FAC holds the result of the addition after the
addition after the routine is called.

HIGH PRECISION MATHEMATICS 	191

DATA >0000 VALUE STACK SUBTRACTION

This routine will subtract using a stack in VDP RAM.

1. STACK contains the VDP RAN address of the
multiplicand.

2. FAC contains the multiplier.

3. FAC holds the result of the multiplication after
calling the routine.

DATA >0D00 VALUE STACK MULTIPLICATION

This routine will multiply using a stack in VDP RAM.

1. Stack contains the VDP RAM address of the
multiplicand.

2. FAC contains the multiplier.

3. FAC holds the result of the multiplication after the
routine has been called.

DATA >0E00 VALUE STACK DIVISION

This routine will divide using a stack in VDP RAM

1. STACK contains the VDP RAM address holds the
dividend.

2. FAC holds the divisor value.

-.4.
%a. * FAC holds the result of the division after the

routine has been called.

,

DATA >0F00 VALUE STACK COMPARE

This routine will compare a value in the VDP RAM stack to the
value in FAC.

1. STACK holds the VDP RAM address of the value to be
compared.

2. FAC holds the other value to be compared.

192 	HIGH PRECISION MATHEMATICS

3. The GPL status byte (>837C) is affected. The high
bit is set if STACK is logically higher than FAC.
The greater than bit is set if STACK is
arithmetically higher than FAC. The equal bit is
set if STACK and FAC are equal.

DATA >1000 CONVERT STRING TO NUMBER

This routine will convert an ASCII string into a floating-point
number.

1. FAC+12 (>8356) is the address of the starting in
VDP RAM.

2. FAC holds the result of the conversion in floating-
point format.

DATA >1200 CONVERT FLOATING POINT TO INTEGER

This routine will convert a floating-point number into an
integer.

1. FAC contains the floating-point number to be
converted.

2. FAC will contain integer value as one word. The
maximum value of this word is >FFFF. If there is
an overflow, FAC+10 (>8354) is set to the overflow
error code, >03.

DATA >1700 PUSH VALUE ONTO VALUE STACK

This routine will push a value you have loaded in FAC onto the
value stack.

DATA >1800 POP VALUE FROM VALUE STACK

This routine will pop a value from the value stack and place it
in FAC.

HIGH PRECISION MATHEMATICS 	193

1. FAC contains the one-word integer that is to be

converted.

2. FAC will contain the floating-point result after the

routine is called.

NOTE: This routine is only available with the
Editor/Assembler and is not supported in Extended
Basic or by the Line-by-Line assembler. It has
also been found that the correct code for this
routine may be >7200 in some consoles.

I NDEX
A 	(add words) 	 Branch & link 	 43
AB 	(add bytes) 	 36 Branch & load Workspace
ABS 	(absolute value) 	 37 pointer 	 43
Absolute value 	 37 Branch instruction 	 43
Absolute code 	 66,140 BSCSUP 	 169
Absolute origin 	 66 BSS 	 67
Accept tone 	 84 BYTE 	 70
Add bytes 	 36 Byte structure 	 6
Add immediate 	 37
Add words 	 36
Addressing modes 	
Addressing

immediate 	 26
indexed memory 	 28
program counter relative 	 29
symbolic memory 	 28
Workspace Register 	 26
Workspace Register indirect
auto-increment 	

Add immediate 	 37
ANDI 	 51
AORG 	 66,140
Arctangent routine 	 187
Arguement passing 	 174
Arithmetic instructions .. 29,35
Assembler directives 	 65
Assembler output 	 74

B 	 43
Bad response tone 	 84
BASIC linkage 	 169
BASIC support utilities 	 169
BES 	 68
Binary numbering system 	 6
Bit reversal routine 	 84
BIT-MAP MODE 	 107
BIT-MAP MODE example 	 110
BL 	 43
Block ending with symbol 	 68
Block starting with symbol 	 67
BLWP 	 43

C 	 47
CALL CHARPAT 	 176
CALL INIT 	 170
CALL LINK 	 173
CALL LOAD 	 171
CALL PEEK 	 175
CALL PEEKV 	 175
CALL POKEV 	 176

Cassette DSR routine 	 85
CB 	 48
CI 	 49
Clear instruction 	 54
CLOSE PAB opcode 	 89
CLR 	 54
COC 	 49
Color codes 	 103,119
Color table

BIT-MAP MODE 	 107
GRAPHICS MODE 	 101

Comment field 	 23
Compare bytes 	 48
Compare immediate 	 49
Compare instructions 	 46
Compare ones corresponding

instruction 	 49
Compare words 	 47
Compare zeros corresponding

instruction 	 49
Constant initialization 	 21
Constants

assembly-time 	 21,69
character 	 21

C3
74 	General addressing modes 	

Get string space 	
66 	GPL routines 	

GPLLNK 	
69 	Graphics 	

GRAPHICS MODE 	

25
84
83
82
97

101

196 	INDEX

decimal 	 21
hexadecimal 	 21

Controller access, sound ... 127
Covert floating to integer 192
Convert integer to floating

point 	 192
Convert number to string 	 184
Convert string to number 	 191
Copy command 	 72
COPY 	 72
Cosine routine 	 186
CZC 	 49

DATA 	 70
Data initialization 	 70
DEC 	
Decimal to Hexadecimal

interconversions 	 12
Decrement by two 	
Decrement 	 37
DECT 	 38
DEF 	 72
DEF/REF table 	 72
Define assembly time

constant 	 21,69
Define extended operation ... 73
DELETE PAB opcode 89
Device service

routine 	 85
Directives that affect

assembler output 	
Directives that affect

location counter 	
Directives that initialize

constants 	
Directives that link

programs 	 71
Directives, assembler 	 65
Directives, miscellaneous . 	73
DISPLAY, file type 	 87
DIV 	 38
DORG 	 67
DSR 	 85
DSRLNK 	 85
Dummy origin directive 	 67
Duration control, sound 132
DXOP 	 73

EE

Editor

END 	 73
Entry points 	 72
EQU 	 21,69
Equates 	 21,69
ERR reporting utility 	93
Error codes that can be

returned 	182,184
EVEN 	 68
External definition 	 72
External reference 	 72

F7
Field

comment 	 23
label 	 22
operand 	
operation code 	 27

File characteristics 	 86
File defaults 	 93
File specification 	 86
File type 	 86
Floating point addition . 189
Floating point compare .. 190
Floating point division 190
Floating point

multiplication 	 189
Floating point

subtraction 	 189
Frequencies, sound 	 130

EA
Hexadecimal system 	5,11
Hexadecimal to decimal

conversions 	 12

IDT 	 75
Immediate addressing 	 26
INC 	 29
Increment by two 	 40
Increment 	
INCT 	 40

20 	Indexed memory addressing 	 28

1") I:::"
.e......1
...T.,

.1 	 s

"7 —7
'II)

INDEX 	197

INIT 	
Initialize byte 	
Initialize text 	
Initialize word 	
INPUT PAB opcode 	
Instructions by group
arithmetic 	

170

70
71
70
87

-7=
,:, ..J

branch 	 42

compare 	 46
control 	 42
jump 	 42
load and move 	 -.V?

logical 	 50
shift 	 57

Interrupt handling 	 34
INV 	 54
Involution routine 	 185

0
JED 	 42
JGT 	 42
JH 	 42
JHE 	 42
JL 	 42
JLE 	 42
JLT 	 42
JMP 	 44
JNC 	 42
JNE 	 42
JNO 	 42
JOC 	 42
JOP 	 42
Joystick use 	 159
Jump if equal 	 42
Jump if greater than 	 42
Jump if high or equal 	 42
Jump if less than 	 42
Jump if logical high 	 42
Jump if logical low 	 42
Jump if low or equal 	 42
Jump if no carry 	 42
Jump if no overflow 	 42
Jump if not equal 	 42
Jump if odd parity 	 42
Jump instructions 	 42
Jump on carry 	 42

li<
KSCAN

80

IL_
Label field 	 22
LI 	 33
LIMI 	 34
LINK subroutine 	 173
Load immediate value 	 33
Load interrupt mask 	 34
Load lower case character

set 	 85
LOAD PAB op-code 	 89
Load small captitals

character set 	 84
Load standard character

set 	 83
Load Workspace pointer

immediate 	 74
Location counter

directives 	 66
Logical instructions 	 50
LWPI 	 "1.4

Ni
Maginfication of sprites 120
Mathematical routines ... 183
Memory-mapped devices 	77
Miscellaneous directives 	 73
Mnemonic codes 	 23
Modes, addressing 	
MOV 	
MOVES
Move command 	 33

MPY 	 40
MULTICOLOR MODE 	 106
Multiply instruction 	 40

P4
Natural logarithm routine

routine 	 186
NEG 	 41
Negative numbers 	 8
No operation
	

61
No source list
	

75

Noise specification byte
for sound 	

NOF' 	
NUMASG 	
Numbering systems 	
NUMREF

129
61
179

181

D
Object code 	 15
OPEN PAB op-code 	 87

198 	INDEX

Operand field 	 27 	RTWP 	 44
ORI 	 51 	Run option 	 146
OUTPUT PAB op-code 	 87

F.:"

PAB 	
PAGE directive 	
Page title directive 	
Pattern descriptor table

86
75

75

BIT-MAP MODE 	 107
GRAPHICS MODE 	 102
MULTICOLOR MODE 	 106

PEEK subroutine 	 175
PEEKV subroutine 	 175
Periodic noise 	 132
Peripheral 	access block 86
POKEV subroutine 	 176
Predefined symbols 	 77
Program counter register 	 17
Program counter relative

addressing 	 29
Program organization 	 20
Pseudo-instructions 	 20

ca
Quit key, interrupts 	 34

FR

READ PAB op-code 	 89
REF (external reference) 	 72
REF/DEF 	 72,144
Registers 	 16
Registers, VDP 	 98
Relocatable object code 	 67
RESTORE/REWIND PAB op-code 	 89
Return pseudo-instruction 	 62
Return Workspace pointer 	 44
Returning 	 62
Roll-up 	 143
Roll-down 	 143
ROM 	 16
ROM routines 	 82,183
RORG 	 67
Routines

GPL 	 82
mathematical 	 183
ROM 	 183

RT 	 62

E3
SAVE PAB op-code 	 90
SB 	 41
Screen image table

BIT-MAP MODE 	 107
GRAPHICS MODE 	 102
MULTICOLOR MODE 	 106
TEXT MODE 	 107

Set ones corresponding 	 m......- . 	,J,..)

Set to one 	 54
Set zeros corresponding 	 „ ic.J„.,...

Set zeros corresponding
byte 	 == ,J,J

Shift
SETO 	

instructions 	
54
57

Shift left arithmetic 	 57

Shift right arithmetic 	 57
Shift right circular 	 60
Shift right logical 	 59
Sine routine 	 187
Size of sprites 	 120
SLA 57
SOC 55
SOCB 	 == ,J,J
Sound 	 127
Sound, duration control . 	128
Sound, frequency 	 130
Sound, noise 	 132
Sound, table 	 128
Source listing 	 20
Source statement 	 20,22
Sprites 	 115
Sprite attribute list 	... 116
Sprite descriptor table . 	116
Sprite magnification 120
Sprite motion table 	 116
Sprite size 	 120
Square root routine 	 186
SRA 	 57
SRC 	 60
SRL 	 59
STATUS byte 	 17
STATUS PAB op-code 	 90
Status Register 	 17
Status Register bits

affected 	 18

INDEX 	199

Store status 	 34
Store Workspace pointer 	 34
STRASG 	 180
STRREF 	 181
STST 	 34
STWP 	
Subtract bytes 	 41
Swap bytes 	 34
SWPB 	 34
Symbolic memory

addressing 	 28
SZC 	 56
SZCB 	 56

ir
Tangent routine 	 187
Terms 	 21
TEXT 	 71
TEXT MODE 	 107
TITL directive 	 75
Two's compliment notation . 8

Li
Unconditional jumps 	 44
UNL 	 75
UPDATE PAB op-code 	 87
Utilities 	 77

Value stack addition 	190
Value stack compare 	 191
Value stack division 	191
Value stack multiplica 	 191
Value stack subtraction 	 190
VDP access 	 97
VDP write only Registers 	 98
VMBR 	 79
VMBW 	 79
VSBR 	 79
VSBW 	 78
VWTR 	 80

White noise 	 132
Word boundry 	 10
Word organization 	 10
Workspace 	 16
Workspace pointer Register 17
Workspace Register

addressing 	 26

Workspace Register indirect
addressing 	 27

Workspace Register indirect
autoincrement addressing 	 27

Workspace Register shift
instructions 	 57

WRITE PAB op-code 	 89

x
X 	 46
XMLLNK 	 188
XOP 	 31
XOR 	 51

4 	!

DEC 	!H X !

3 	! 	2

DEC 	!HX!

! 	1 	!

!

DEC!HX!DEC!

0!0 0!0 0!0 0!

4,096!1 256!1 16!1 1!

8,192!2 512!2 32!2 2!

12,288!3 768!3 48!3 3!

16,384!4 1,024!4 64!4 4!

20,480!5 1,280!5 80!5 5!

24,576!6 1,536!6 96!6 6!

28,672!7 1,792!7 112!7 7!

32,768!8 2,048!8 128!8 8!

36,864!9 2,304!9 144!9 9!

40,960!A 2,560!A 160!A 10!

45,056!B 2,816!B 176!B 11!

49,152!C 3,072!C 192!C 12!

53,248!D 3,328!0 208!D 13!

57,344!E 3,584!E 224!E 14!

61,440!F 3,840!F 240!F 15!

6 	 !
	

5 	!

DEC 	!HX!

HEXADECIMAL/DECIMAL INTERCONVERSIONS

DEC !HX!

! 	

!O 0!0 0!0

!1 1,048,576!1 65,536!1

!2 2,097,152!2 131,072!2

!3 3,145,728!3 196,608!3

!4 4,194,304!4 262,144!4

15 5,242,880!5 327,680!5

!6 6,291,456!6 393,216!6

!7 7,340,032!7 458,752!7

!8 8,388,608!8 524,288!8

!9 9,437,184!9 589,824!9

!A 10,485,760!A 655,360!A

!B 11,534,336!B 720,896!B
!C 12,582,912!C 786,432!C
!O 13,631,488!D 851,968!D

!E 14,680,064!E 917,504!E

!F 15,728,640!F 983,040!F

APPENDIX A 	201

IA IF• Fft Nap I x ink

HX=hexadecimal
	

DEC=decimal

POWERS OF 16

x

16 x

1 0
16 1

256 2

4,096 3

65,536 4

1,048,576 5
16,777,216 6

268,435,456 7

4,294,967,296 8

68,719,476,736 9

1,099,511,627,776 10

17,592,186,044,416 11

281,474,976,710,656 12

4,503,599,627,370,496 13

72,057,594,037,927,936 14

1,152,921,504,606,846,976 15

POWERS OF 2

x

2
	

x

	

1
	

0

	

2
	

1

	

4
	

2

	

8
	

3

	

16
	

4

	

32
	

5

	

64
	

6

	

128
	

7

	

256
	a

	

512
	

9

	

1024
	

10

	

2048
	

11

	

4096
	

12

	

8192
	

13

	

16,384
	

14

	

32,768
	

15

	

65,536
	

16

	

131,072
	

17 	.

0
-C 4-3

m 	CO
O ,C 3-4
Hi 3 0)
11 W
a)T1a/
,Q C 344

IC
Q. 41i 0.4
H>4
It E

3-4 to

4-4

•

0-4 344

$4 JO
4:0 CO-1

C E
O CV 01

- I-10)01
44-4 03 1-0

rd ID4

S-1.-111)
ro .0 •

W Ei
C a) 	a)
-rt C • ,Q

0 01 4)
O %--'0
col/ 	to

.0 TS 0)
4.1 	TI

Z 	4-)
• N N ca

3 0•-1
a) 0 4-)

C
4P

•

 CO LI 0
0 Hi

W •••4
0)
N X

1-10 	4-/
V to

C E

•

U 4:-)

N 5-4 01W
4-4 .4C

411 N 144 43-4
4-4
.0 -H
40 	CU 0
4-1 :/-10

4,4
ra

C O1 u) a.)
04 	CD rC
• as 4-7
o o
-i ww C

•H1
0

• 	

•I0
4-1 /4

4-1)-1
O 7.) M 41)
,C ♦ 4-)
El 0 CO 3

T
M
S
9
9
0
0
 I
N
S
T
R
U
C
T
I
O
N
 S
E
T
 S
U
M
M
A
R
Y

T
H
E

T
M
S
9
9
0
0
 I
N
S
T
R
U
C
T
I
O
N

202 	APPENDIX

se% IF" Fa E. IN/I ID I X Ec

11 111111 111

11 111111 III

11 111111 111

11 111111 111

II 111111 III

11 IX1111 111

11 111111 XXX

II 111111 XXI

a

	

X X X X X 	I I I 	X X X I X X 	X X I

	

X X X X X 	I 1 1 	X X X 1 I 1 	X X I

	

X X X X X 	1 1 i 	X X X i 1 1 	X X i

CO CO N N 0 (7(1m NW0)acDC1 N 0

	

01 01 01 II LI 	Matz: 	aaaln CC 'Cr 	rri CI

(i
	 •-••

■—• (J r,
	

000 001t1033 00—

LO O
	

0 0 3: 0 O 	C7

	

H 	 a_ 	 F-

	

N ❑ 	3 	 000 00>

	

CO CO 0-4 Z 	JJ 	COHJON WWI-
<<<<< 070703 000000 ❑❑❑

A

07
a.

co
E
L
a

1J-

U
44-4

0
E

X

11111

11111

C 11111

x 	1 	1 	1 	11 	1

0-
C 	 !XIII 	1

>
O XXXX I 	1

O XXIX! 	1

(
c
o
n
t
i
n
u
e
d

)

I-

cn

T
M
S
9
9
0
0
 I
N
S
T
R
U
C
T
I
O
N

I
I-

4J
(U
E
L
0
Ii

0
•

0
E
II)

I

tn

4-3

X

O

O

A
-J

Ill
0)

a..

APPE:ND I X B 	203

A F' F' la IN ID I X Ec

I 	1 	1 	1 	1 	1 	1 	1 	1 	I 	I 	1 	1 	1 	1 	l 	1 	x 	I 	1 	1 	1 	i 	I 	i

I 	I 	1 	1 1 	I 	1 	1 	1 	1 	I 	1 	I 	I 	I 	I 	1 	X 	1 	1 	I 	1 	i 	1 	1

III 	1 	I 	1 	I 	1 	I 	I 	1 	1 	I 	I 	I 	1 	i 	X 	I 	1 	1 	1 	i 	1 	i

I 	1 	1 	1 	1 	1 	1 	1 	I 	I 	I 	I 	I 	I 	1 	1 	1 	x 	I 	1 	I 	I 	1 	1 	I

1 	1 	1 	 1 	1 	1 	I 	I 	I 	I 	I 	I 	I 	I 	1 	1 	 I 	i

Ill 	i 	1 	1 	1111114-3 	11 	1 	X 	I 	I 	1

X 	X 	1 	1111 	11114J1 	1 	11 	1 	1 	X 	I 	I

X 	X 	I 	1111 	1 	1 	4-3 	1 	1 	4 	1 	1 	I 	1 	I 	I 	1

X X X 	4-3 1 4-3 4-3 4-3 4-3 4-3 1 	1 4-3 1 	1 	X 	1 	X X i 	x i 	X

xxx 	14-311114-311 	1 	1i 	x I 	xx I 	x I 	X

xxx 	1144441111 1 I 	x I 	xx I 	x I 	x

01 0 	LD 113 W 	LO 	W U3 113 LO 	(r) Cr Cr 	el 0 	0 	0
(r) Cr Li) 	Cr Cr Cr Cr 'Cr 'Cr Cr Cr C Cr Cr Cr Cr 	(r) 	(r) (r) Cr 	Cr LD

E EEEEEEEEEEEE
O 000000000000

-r-i•r-i •r.•1 •r-i • r-1 -r-i • r-i • r-i 	•r-i •r-i
(11 	(11 	(11 	(1) 	(11 	111 	(11 	(11 	(11 	(1) 	(11 	(11 	111 	••••

0 0 0 	(1) (1) (11 (1) (1) (1) (1) (1) 111 (1) (1) (1) 	 #
CU CU CU CU CU CU CU CU CU CU CU CD CU 	3
L LLLLLLLLLLLL
CL O. CL CL CL CL CL CL 0_ CL CL CL 0_
X X X X X X X X X X X X X
Ill CD U) U) U) U) U) U) U) U) U) U) U)

1-7 0 3
f-,

3
ID CD CD

1- 	 1.--i 1.--i 	03
DU> 	0' 1- 	W 	1111-1:LOWOUIL 	I a. 	> > >- 	0 IL 	1.--1
ZZZ WOMI_J-J_JZZZZOO 1-'1-'3 0011 WO CC
)--11-11-1 	 _J_J_J 	:EXM 	ZZ 	0

(
c
o
n
t
i
n
u
e
d
)

I-
uJ
cn

T
M
S
9
9
0
0
 I
N
S
T
R
U
C
T
I
O
N

N
0)
co

-4
w

Ill
3
4J
CO
4-3
U)

IA
CO

M

4-3
 C

H

X

a.
o

>
o

LJ

w

A
<

A
-J

4J
CO
E
L
0
IL

0
•,-i
C
0
E
CD
C
X

204 	APPENDIX B

ink Fii FA AID I X Et

X 	I 	I 	1 	I 	I 	I 	I 	1 	I 	I 	1 	I 	I 	I 	X 	I 	I

x 	I 	I 	V 	I 	I 	I 	1 	I 	I 	1 	1 	1 	I 	X 	I 	I

X 	I 	I 	l 	I 	I 	I 	V 	I 	I 	1 	l 	I 	I 	X 	1 	1

X 	1 	I 	1 	I 	I 	I 	I 	1 	1 	I 	1 	1 	I 	I 	X 	I 	I

X 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	X 	I 	I

X 	1 	X 	1 	I 	1 	X 	I 	1 	1 	1 	1 	1 	I 	X 	X 	I 	1

X 	X X I X I 	I 	I 	I 	 I 	I 	X I 	I

X 	X X i X I 	I X X X I 	I 	I I 	I 	X I 	I

X 	X X I XXX X X X 1 I I XX 	X I X

X 	X X i XXX X X X 1 I I XX 	X I X

X 	X X I X X X X X X I I I XX 	X I X

CU 'Ct 	N— n- 'Ct N cl* ID N Cr) Cr) q '1 in in LO 	LO N— 0
CO 'Ct 	'Ct 'Ct LI) 1.f) in in in cn in PI PI PI lf) lf) 	'Ct PI LI)

uJ
I
I-

CD CD - L7 — 	CDO 	33

	

t....... %....., co ,---, co %....., ,---, ,---, ,---, 3 3 0 t--, t....... 	0 ,....., ,.......
— 	3 	- 3 3 3 	

co Lo 	t....., 	0 t...... t....... t....... 	 CD 0 	0 ID

	

a. 	o 	 1- EL CO

	

3 	 I— < U
co
LJ < _1 U CO 3 0_ 0

GO
 C.) 	CL CC

	

I— I-- 	CO li.1 _J 0 0 CC CC CC I— I— 3 N N 	0 0

	

CC CC 	U) Ul Ul U) Cf) Cf) (1) C11 CO U) C11 U) Cf) Cf) 	X X X

APPENDIX B 	205

IPi F" F" E IN ID I X

THE ASSEMBLER DIRECTIVE COMMAND SET

The following table summarizes the Editor/Assembler director
set. These directives are in alphabetical order. For each
directive is shown the general assembler format. The page number
given refers to where in the book the directive is described,
parentheses indicate where the directive is described when
referring to source code created using the mini memory module.

DIRECTIVE COMMAND SET

Mnemonic Format 	 Page #

AORG 	word[expression] 	67(138)

BES 	word[expression] 	 68
BSS 	word[expression] 	67(138)
BYTE 	exp,exp...expression 	70

COPY 	"File-name" 	 72

DATA 	exp,exp...expression 	70(138)
DEF 	symbol,symbol...symbol 	72
DORG 	expression 	 67

END 	Symbol 	 73(141)
EQU 	expression 	 69(138)
EVEN 	 68

IDT 	 74

LIST 	 74

PAGE 	 75

REF 	symbol,symbol...symbol 	72
FIORG 	expression 	 67

SYM 	 (139)

TEXT 	'string' 	 71(138)
TITL 	'string' 	 75

UNL 	 74

XOP 	Symbol,term 	 73

APPENDIX D 	207

in■ IF* IFP NI ID I X ID

This appendix contains a few source code listings that may be of
interest. These examples are of short game program modules that
you can incorporate into your programs. Where possible, The BASIC
version of the program is presented for comparison purposes.

The first program module sets a red ball-shaped sprite in motion
only when the joystick is moved. The border color is black but the
main screen is left uncolored (light green is the default color).

10 CALL CLEAR
20 CALL CHAR(80,n3C7EFFFFFFFF7E3C")
30 CALL SPRITE(#1,80,9,100,100)
40 CALL JOYST(1,X,Y)
50 CALL MOTION(#1,-Y*4,X*4)
60 GOTO 40

Notice that the source code listing for the same program is much
longer. This allows you much greater flexability, but the price is
much more time spent programming.

DEF 	SPRITE
REF 	VMBW,VWTR,KSCAN

*
JOY1 	BYTE 4,0
JOY2 	BYTE 4,4
JOY3 	BYTE 0,4
JOY4 	BYTE -4,4
JOY5 	BYTE -4,0
JOY6 	BYTE -4,-4
JOY7 	BYTE 0,-4
JOYS 	BYTE 4,-4
ONE 	BYTE 1

EVEN
*
JOYY 	EQU 	>8376
KBOARD EQU >8374
NUMB EQU >837A
SATAB EQU >0300
SDTAB EQU >0400
SMTAB EQU >0780
*
BALL 	DATA >3C7E,>FFFF,>FFFF,>7E3C
SDATA DATA >70D0,>8008

DATA >D000

DATA >0000,'>0000

*

SPO

*

208 	APPEND I X D

MYREG BSS 	>20
SPRITE LWP I MYREG

LI 	RO , SDTAB
LI 	R1 , BALL
LI 	R2 , 8
BLWP @VMBW

*
LI 	RO , SATAB
LI 	R1 , SDATA
LI 	R2 , 8
BLWP @VMBW

LI 	R1 , 1
SLA 	R1 , 8
MOVB R1 , @NUMB

LI 	RO , >0701
BLWP @VWTR

MOVB @ONE , @KBOARD
*
LOOP 	LI 	RO , SMTAB

LI 	R1 ,SPO
LI 	R2 , 4
BLWP @VMBW

*
LOOP1 	LIMI 2

LIMI 0
BLWP @K SCAN
MOV 	@JOYY , @JOYY
JEQ LOOP

*
C 	@JOYY , @JOY1
JEQ 	M1
C 	@JOYY , @JOY2
JEQ M2
C 	@jOYY , @JOY3
JEQ M3
C 	@JOYY , @JOY4
JEQ M4
C 	@JOYY , @JOY5
JEQ 	115
C 	@JOYY , @JOY6
JEQ M6
C 	@JOYY , @JOY7
JED M7

*

*

*

*

APPENDIX D 	209

	

LI 	R1,JOY6
B @CHANGE

M1 	LI 	R1,JOY5
B @CHANGE

M2 	LI 	R1,JOY4
B @CHANGE

M3 	LI 	R1,JOY3
B @CHANGE

M4 	LI 	R1,JOY2
B @CHANGE

M5 	LI 	R1,JOY1
B @CHANGE

M6 	LI 	R1,JOY8
B @CHANGE

M7 	LI 	R1,JOY7
*

	

CHANGE LI 	RO,SMTAB

	

LI 	R2,2
BLWP @VMBW

*
B @LOOP1
END

The last program worked well enough but it went about it the
long way around. Using a little ingenuity we can considerably
shorthen the above program. The source listing that follows
accomplishes the same task as the last program, only it has been
shortened with some programming tricks.

DEF SPRITE
REF 	VMBW,VWTR,KSCAN

*
ONE 	BYTE 1
ZERO 	BYTE 2
*
JOYY 	EQU 	>8376
KBOARD EQU 	>8374
NUMB 	EQU >837A
SATAB EQU 	>0300
SDTAB EQU 	>0400
SMTAB EQU >0780
*
BALL 	DATA >3C7E,>FFFF,>FFFF,>7E3C
SDATA DATA >70D0,>8008

DATA >0000
*
SPO 	DATA >0000,>0000
*

210 	APPEND I D

MYREG BSS 	>20
SPRITE LWP I MYREG

LI 	RO SDTAB
LI 	R1 , BALL
LI 	R2 , 8
BLWP @VMBW

*
 RC) , SATAB

LI 	R1 SDATA
LI 	R2 ,
BLWP @VMBW

*

LI

*

LI 	R , 1
SLA 	R ,
MOVB R1 , @NUMB

*
LOOP 	LI 	R0,SMTAB

LI 	R1 ,SF'0
LI 	R2 , 4
BLWP @VMBW

*
LOOP 1 LIMI

LIMI 0
BLWP
MOV @JOYY @JOYY
JEO LOOP
CB 	@JOYY , @ZERO
JEO GO
MOVB @J 0Y+ 1 , @R5
NEG @JOYY
MOVB R5 @JOYY+ 1
LI 	R1 , JOYY
JMF' 	CHANGE

*
GO 	LI 	R1 JOYY

	

CHANGE LI 	RO SMTAB

	

L I 	R2 ,2
BLWP @VMBW

B 	@LOOP 1
END

APPENDIX D 	211

The last two programs can be loaded via the LOAD AND RUN option
of the Editor/Assembler and run by typing in SPRITE in response to
the PROGRAM NAME? prompt. In order to run these programs using the
Mini Memory module you must:

1. Alter the length of all LABEL fields to two
characters.

2. Use appropriate address instead of symbols for the
utility programs.

3. Enter the program name and starting point into the
REF/DEF table (refer to page 145).

The third program in this series illustrates additive motion.
The longer you hold the joystick in one direction, the faster your
sprite will move (here a red ball again!) To stop the sprite you
will have to cancel out the motion by holding the joystick in the
opposite direction to "brake" the sprite. This module lends itself
well to incorporation of "space games" where you have to simulate
the abscence of gravity.

10 CALL CLEAR
20 CALL SCREEN(2)
30 CALL CHAR(128,"3C7EFFFFFFFF7E3C")
40 CALL SPRITE(#1,128,9,100,100)
50 CALL JOYST(1,C,R)
60 X=(X+C)*-(ABS(X)<124)
70 Y=(1-R)*-(ABS(Y)<124)
80 CALL MOTION(#1,Y,X)

NOTE: A direct translation of line 60 is:

IF THE ABSOLUTE VALUE OF X<124 THEN X=X+C ELSE X=0

The following program is the assembly language version of the
above program. Note how the "CALL SCREEN" code was added.

DEF SPRITE
REF 	VMBW,VWTR,KSCAN,VSBW

*
JOY1 	BYTE 4,0
JOY2 	BYTE 4,4
JOYS 	BYTE 0,4
J0Y4 	BYTE -4,4
J0Y5 	BYTE -4,0
JOY6 	BYTE -4,-4
JOY7 	BYTE 0,-4
JOYS 	BYTE 4,-4
ONE 	BYTE 1

EVEN
*

212 	APPENDIX D

JOYY 	EQU 	>8376
KBOARD EQU 	>8374
NUMB 	EQU 	>837A
COLTAB EQU 	>0384
SATAB EQU 	>0300
SDTAB EQU 	>0400
SMTAB EQU 	>0780
*
BALL 	DATA >3C7E
SDATA DATA >70D008008

DATA >D000
SPEED 	DATA >0000,>0000
COLOR DATA >1000

SPRITE LWPI MYREG
LI 	RO,COLTAB
MOV 	@COLOR,R1
BLWP @VSBW

CLR RO
LI 	5102000
LI 	52,767

LOOP 	BLWP @VSBW
INC RO
DEC 52
JGT LOOP

*
LI 	5000701
BLWP @VWTR

LI 	RO,SATAB
LI 	R1,SDATA
LI 	R2,8
BLWP @VMBW

LI 	RO,SDTAB
LI 	R1,BALL
LI 	R2,8
BLWP @VMBW

LI 	51,1
SLA 	R1,8
MOVB R1,@NUMB

*
MOVB @ONE,@KBOARD
LI 	RO,SMTAB
LI 	R1,SPEED
LI 	Rd, 4

`,

BLWP @VMBW
*

APPED I X D 	213

LOOP1 	LIMI 2
LIMI 0
BLWP @KSCAN
MOV @JOYY , @JOYY
JEQ 	LOOP1

*
C 	@JOYY ,@JOY1
JEQ UP
C 	@JOYY , @JOY3
JEQ 	RIGHT
C 	@JOYY , @JOY5
JEQ DOWN
C 	@JOYY , @JOY7
JEQ LEFT
C 	@JOYY , @JOY2
JEQ UPRT
C 	@JOYY , @JOY4
JEQ DNRT
C 	@JOYY , @JOY6
JEQ DNLT
C 	@JOYY , @JOYS
JEQ UPLT
JMP 	LOOP1

UP 	DECT R5
B @ADJUST

UPRT 	DECT R5
INCT R6
B @ADJUST

RIGHT 	I NCT R6
B @ADJUST

DNRT 	INCT R5
INCT R6
B @ADJUST

DOWN 	INCT R5
B 	@ADJUST

DNLT 	INCT R5
DECT R6
B @ADJUST

LEFT 	DECT R6
B @ADJUST

UPLT 	DECT R5
DECT R6

*
ADJUST LI 	RO , SMTAB

MOVB R5 , R1
BLWP @VSBW

*
L I 	RCS , SMTAB+ 1
MOVB R6 , R 1
BLWP @VSBW
B 	LOOP
END

214 	APPENDIX D

This next program will illustrate the double-size and
m,agnified sprite concept. When the program is run the sprite (a
red ball) is standard sized and in motion across the screen. When
any key is pressed the sprite is doublesized. When a key is
pressed again the sprite is magnified. Finally, a third press of a
key will make the sprite double-sized and magnified. Subsequent
pressings of a key will repeat the cycle.

DEF 	SPRITE
REF 	VMBW,VSBR,VSBW,KSCAN,VWTR

*
KBOARD EQU >8375
SKEY 	EQU 	>8374
SATAB EQU >0300
SDATA EQU >0400
*
BALL 	DATA >3C7E,>FFFF,>FFFF,>7E3C
SDATA 	DATA >7080,>8008
*
STATUS EQU 	>837C
SET 	DATA >2000
MYREG BSS 	>20
*
SPRITE LWPI MYREG

LI 	R3,4
LI 	RO,SDTAB

START 	LI 	R1,BALL
LI R2,8
BLWP @VMBW
AI R0,8
DEC R3
JNE START

*
LI 	RO,SATAB
LI 	R1,SDATA
LI 	R2,6
BLWP @VMBW

*
LOOP 	LI 	RO,SATAB+1
READ 	BLWP @VSBR

SRL 	R1,8
DEC R1
JNE MOVE
LI 	R1,>00FF

*
MOVE 	SLA 	R1,8

BLWP @VSBW
CLR R8

DELAY 	INC R8
CI 	R8,800
JNE DELAY

APPENDIX D 	215

*
OUT 	CLR @KBOARD

BLWP @KSCAN
MOV @STATUS,R3
COC 	@SET,R3
JNE LOOP

*
CHECK 	INC R6

CI 	R6,4
JLT GO
CLR R6

*
GO 	CI 	R6,1

JEQ MAG
CI 	R6,2
JEQ 	DSIZE
CI 	R6,3
JED 	DSIZEM

*
SMALL 	LI 	RO,>01E0 	 Can you sum

JMP 	WRITE 	 all this code
MAG 	LI 	R0,>01E1 	 into a two

JMP 	WRITE 	 line
LI 	RO,>01E2 	 statement?
JMP 	WRITE

DSIZEM LI 	R0001E3
JMP 	WRITE

*
WRITE BLWP @VWTR

B @LOOP
END

The next program places six red ball-shaped characters (not
sprites) on the screen in a diagonal pattern. The screen is then
scrolled upwards. This type of motion is familiar to anybody who
has played the Alpiner game from TI. In oreder to run this program
you must type GRAPH in response to the PROGRAM NAME? prompt.

DEF GRAPH
REF 	VSBW,VMBW,VMBR

*
BALL 	DATA >3C7E,>FFFF,>FFFF,>7E3C
COLOR DATA >8100
*
COLTAB EQU >0384
PATTAB EQU >0908
*
MYREG BSS >20
*
GRAPH LWPI MYREG

LI 	RO,COLTAB

216 	APPENDIX D

MOV 	@COLOR,R1
BLWP @VMBW

LI 	RO,PATTAB
LI 	R1,BALL
LI 	R2,8
BLWP @VMBW

LI 	R0,325
LI 	R1,>2100
LI 	R2,6

LOOP 	BLWP @VMBW
AI 	R0,33
DEC R2
JGT LOOP

LINE1 	BSS 	32
LINEX 	BSS 	32
*
SCROLL CLR RO

LI 	R1,LINE1
LI 	R2,>20
BLWP @VMBR

LI 	R00,20
LI 	R1,LINEX
LI 	R2,>20
BLWP @VMBR

*
LI 	R0,0

LOOP1 	BLWP @VMBW
AI 	RO,>40
CI 	RO,>300
JHE OUT
BLWP @VMBR
AI 	R0,>FFE0
JMP 	LOOP1

*
OUT 	LI 	R0,>2E0

LI 	R1,LINE1
BLWP @VMBW
JMP SCROLL
END

*
OUT 	CB 	@KEYUP,@KEY

JED PUP
CB 	@KEYDN,@KEY
JED PDOWN
CB 	@KEYRT,@KEY
JED 	PRIGHT
CB 	@KEYLT,@KEY

APPENDIX D 	217

JEQ 	PLEFT
JMP START

PUP 	LI 	R1,UP
JMP 	PRINT

PDOWN 	LI 	R1,DOWN
JMP 	PRINT

PRIGHT LI 	R1,RIGHT
JMP 	PRINT

PLEFT 	LI 	R1,LEFT
JMP 	PRINT

*
PRINT 	LI 	R0,325

LI 	R2,17
BLWP @VMBW
JMP 	START
END 	BEGIN

APPENDIX E 	219

AlP1FlaMOIX e.

INJF-u -rxclourimurr IIRFccilFc 	c:Nois

Error code 	Meaning

0 	 Bad device name.

1 	 Device is write protected.

2 4. 	 Bad open attribute.
1. incorrect file type.
2. incorrect record length
3. incorrect I/O mode
4. no records in relative record file

3 	 Illegal operation.
1. conflict with OPEN attributes
2. peripheral does not support operation

4 	 Out of buffer space on device.

5 	 Attempt to read past end of file. File is closed.

6 	 Device error. Mechanical or medium failure.

7 File error.
1. program/data mismatch
2. openning non-existing file in INPUT

220 	APPENDIX F

A F" IR INI ID I X F

E X la Ul "T I 01 NI ---- ir I IMI la la FC F C3F E

This table lists errors that may be generated when you attempt
to run your program.

Error code 	Meaning

00-07 	 Input/Output error
08 	 MEMORY FULL
09 	 INCORRECT STATEMENT
OA 	 ILLEGAL TAG
OB 	 CHECKSUM ERROR 	.
OC 	 DUPLICATE DEFINITION
OD 	 UNRESOLVED REFERENCE
OE 	 INCORRECT STATEMENT
OF 	 PROGRAM NOT FOUND
10 	 INCORRECT STATEMENT
11 	 BAD NAME
12 	 CAN'T CONTINUE
13 	 BAD VALUE
14 	 NUMBER TOO BIG
15 	 STRING-NUMBER MISMATCH
16 	 BAD ARGUEMENT
17 	 BAD SUBSCRIPT
18 	 NAME CONFLICT
19 	 CAN'T DO THAT
1A 	 BAD LINE NUMBER
IB 	 FOR-NEXT ERROR
1C 	 Input/Output error
ID 	 FILE ERROR
1E 	 INPUT ERROR
1F 	 DATA ERROR
20 	 LINE TOO LONG
21 	 MEMORY FULL

22-FF 	 Unknown error code

STUDY EXERCISES 221

02,111,1 	 TAD ICHIAIF" -T 	ICIUBTICOMB

1-11i.MFc

1. a) 1111
b) 0001 1000
c) 0111 0101 1010 1001
d) 1101 0111 1111 0110

2. a) 4
b) 9453

3. a) >F
b) >18
c) >75A9
d) >D7F6

4. a) 7220
b) 7220

ICIFA IPIP* -TIR =3,

1. Assembler program

2. Sixteen

3. Overflow bit (OF)

4. a) Label field, Comment field, Operand field
b) (*) asterisk
c) Op-code field (operation code)

5. Assembler directives give instructions to the assembler
program as to what to do with program instructions while
the program instructions make up the actual object code.

6. NO (G is not a HEX character)

7. Op-code field (operation code)

IC4-111PCFNT IFZ 41-

1. * R3 CONTAINS VALUE
MOV R3,R4
SLA R3,2
SLA R4,3
A R3,R4

2. Workspace Register 11 (R11)

\

222 	STUDY EXERCISES

=. 256 bytes (>100) ,.

4. Conditional jump instructions

5. Return (RT)

6. a) WR,WR-indirect
b) WR-autoincrement,WR
c) Symbolic,Symbolic
d) WR,Indexed

I--II Al IF* -11. 	FC 	ffi

1. a) No such instruction as 	'AND'
b)
c)
d)
e)

No such
>5756
>126C
>48E8

instruction as 	'OR'

2. It is an endless loop because R3 is constantly re-loaded
and never will be equal to zero.

3. SAVE 	DATA >0000
MOV R3,@SAVE

4. Nothing, MPY requires two operands.

IC /-1114 F' -1- la Fc 	,63.

1. LI ROI- 1000
LI R1,>2200
BLWP @VSBW

2.''" No key has been pressed.

MOVB >01,>8374

IC II-1 IA IF" -II- la R.' 7'

REF 	VWTR

LI 	R0,>01E8
BLWP @VWTR

REF 	VWTR

LI 	R0,>01EB
BLWP @VWTR

1.

1-7. .L. •

\

STUDY EXERCISES 	223

3. Change the value of VDP register 1 to >01.

4. Review pages 117 to 125.

5. The computer views the screen as a series of memory
locations in VDP RAM numbered >000 through >767.

6. Place the entry point of the program in a END directive.
The program will begin running as soon as it is entered.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219

