
t
CSI Design Group Presents: t

0 0 a

Rssemb1 Langiuig Prcigr^rnrning Rid

En/7 nced ers/ofd - --

File Processing

Extended Basic Support

Snap "tart Preprocessor

Now it's euen easier to conuert your TI BRSIC or T1 EHt;ended
BASIC programs into assembly language using the

Use SnapStart to help convert existing programs, rams,
or start from scratch. Either way its much, easier

to pro ram assembly using 9QOOBAS1C.

99OOBASIC requires a T.I..99/4A with.
One or more disk. drives

2K Memory Expansion
Editor/Assembler Module

to t ^ the Sleri i riprocessor you vi11 also need TI Extended BASIC

Version 1.10
,9q'occeASic and Srocttart Q 1984 by CSI Design Group, St Louis Mo_

99000ASIC QUICK REFERENCE GUIDE

ACCEPT row,col,size,label
CHAR cher,>data,>data,>data,>data
CLEAR no param
CLRBUF labelisize
COIN I sprite number,tolerance,return variable
COLOR charsetiforeground col or,background color
DELSPR sprite number
D1SP$ row„column„labelisize
FCLOSE file number
FOPEN number,mode,logical record length, name length,variable(name)
FOR variable,beginning value,termination value,step

FREAD number,buffer,return variable
FWRITE number,buffer.character count
GCHAR row,column, return variable
GPOSIT sprite number,row return variable, column return variable

HCHAR row,columnicharacter,repetitions
IF variable;relation'yalue,labelftlabel

`JOYST key-unit,!;-returm-return

KEY key-uni t,key-return,status-return •
LOCATE sprite number,dotrow,dotcolumn
MAGNFY magnification factor
MOTION sprite number,y-velocity,x-velocity

NEXT variable
ONGOTO variable,label,label,label,
PATTER sprite number,pattern
POSIT sprite number„y-return,x-return
RETURN no parameters
RND tolerance,return variable
SCOLOR sprite number,color
SCORE row,columnyalue,destination variable (must be four bytes)
SCREEN color
SCRLDN no parameters
SCRLLT no parameters
SCRLRT no parameters
SCRLUP no parameters
STRLEN label,return variable
SOUND please see sound section

SPRITE number„char„col or,dot-row,dot-col,row-vel oci ty,col -velocity

VCHAR rdw,column,character,repetitions

9900BASIC AND SNAPSTART are trademarks of

the CSI Design Group and are copyright 19984

99000A IC V1.1 PAGE 0

NOTE TO USERS:

The routines comprising 9900BASIC are intended to simulate the Basic

language as closely as possible while simultaneously allowing the user the
inherent flexibility and speed of assembly language.

This set of routines was designed to be used on the Texas Instruments Home
Computer in conjunction with the Texas Instruments Editor-Assembler

Package although it will work in conjunction with any editor-assemble"

which supports all of the functions allowed in the Texas Instruments,

Package.

These routines may be used and resold as a part of any program providing
the following conditions are met: 1) they may be resold as a part of any
OBJECT code program for resale; 2) the source code is not supplied or
included with the program; 3.) it is stated on the packaging and
documentation of the program 'PARTIAL CONTENTS INCLUDE 9900BASIC
tm copyright 1984 CSI Design Group.

Because these routines are sold as source code as a programmer':- aid it is,

i mpossible for us to prevent piracy (THEFT !) of the source code. These
routines were written to help YOU, the programmer, so please treat them as
you would like your programs to be treated by the general public.

c'9 0BAsIC V 1.1 PAGE 1

ABOUT YOUR PROGRAM

It is the opinion of the author of these routines that the the easiest way to
develop a program using them is to write the said program in Basic using
structured programming techniques, source code as a disk file using
the default parameters through the command LIST "DSK LSOURCECODE" and
translate this into 9900BASIC coding one line at a time using your editor.
The last statement in your program should be an assembler copy directive
COPY "DSK1.9900BASIC'. Note that the 9900BASIC file must be available to

the assembler in order to assemble your program. See SNAP-START,
COMPRESSED and EQUATES sections.

All variables must be defined as labels (PX DATA 0 OR PX BSS 2) with the
exception of any variable to be used with the SCORE routine which requires
variables of 4 bytes(PLAYER1 DATA 0,0 or PLAYER 1 BSS 4). String variables
must be all octed the maximum amount of space that they will require with
either a BSS or TEXT directive. Arrays may not be directly addressed
through the routines but may be indirectly addressed by reference or
indirectly addressed by value in one of two ways. NOV @ARRAY(R2),@TEMP
will allow the use of the contents of the array element found by dividing the
contents of register 2 by 2 and adding one and will place the contents of
that array element in the variable TEMP. Using NOV @ARRAY+6„@TENP will
move the contents of the fourth element of the array ARRAY to temp (6/2+1)
Because the 9900BASIC routines are called with a BLWP instruction you
need not worry about them altering your workspace registers.

Always start your program with a LWPI instruction (32 bytes at >20BA are
reserved) followed by a BLWP @INIT which performs duties corresponding
to sprite usage and `,S DP access.

There is no error trapping in running programs so make sure that it is not
necessary or that you have provided it within your program. Absolute
parameters for use with 9900BAS IC may be in the range 0 to >24FF with

the exception of the parameters passed to SOUND and CHAR routines. Any
other values that you wish to use such as -1 must be defined in the program
as constants(NINLIS1 DATA -1). It is advisable to make sure that your
program terminates in some fashion.

The most common errors usually involve forgetting a parameter which has a
default value in basic i.e. a step or repetition parameter. Note that errors of
this type will not be caught by the assembler as it assumes that you know
how many parameters to pass. See SNAP-START section.

9900BASIC 511.1
M oc

All 9900HASIC functions are called with BL P instructions and passed
parameters in data statements following them.

As with all disk based programs it is advisable to use a work disk and leave
the master in a safe place, it may be advantageous from a time and space
standpoint for the user to delete some of the functions of 99OOBAS C off
of his work disk and leave only the ones he will use. It is important however
not to delete any of the subroutines or functions called by any of the other
functions the user is leaving on the disk. See SNAP-START and
COMPRESSED sections.

The mathematics of the the user's program are left to his own design and
the user is reminded that expression evaluation is not honored except as is
dictated by the assembler.

if any routines which requires interrupts to function properly are enabled
SIJUN[),MOTION) it is suggested that the KEY routine be used as part of the
main loop as it enables interrupts, if this is not practical it becomes a
burden on the user to enable interrupts for the system to avoid routine
failure or console lockup.

Also included with 9900BASIC are several routines normally enabled only
through a REF directive in your program. These routines are VSBW,VrIB'W.

'•: SLR,VMBR .,VWTR,KSCAN. and DSRLNK. These are included in the interest of
completeness and speed. If you want to use them do not include a REF
directive in your program, simply use then by name and the assembler will
resolve the references. See COMPRESSED and EQUATES sections_

99005A'31C V 1.1 PAGE

4********

ROUTINE NAME: ACCEPT

BASIC EQUIVALENT: ACCEPT AT

FORMAT: BLWP @ACCEPT
DATA ROW,COLUMN,SIZE,LABEL

DESCRIPTION: Accepts into a reserved area of memory which starts at
LABEL. The number of characters of data accepted into this area is specified
by SIZE. The data is accepted beginning at graphics row ROW and Graphics
column COLUMN . This routine does not blank the input area before beginning
. Data is accepted as a string. If numeric input is desired it must be
converted from string data (two examples of this are in the demonstration
program).

EXAMPLE:

9900BASIC: BLWP @ACCEPT
DATA 10,3,10,NANES

BASIC: ACCEPT AT(10,1)S I ZE(- 1 0):NAME$

This example will accept a string of up to ten characters at row 10 column
3 on the screen. Note the difference in the column argument and the
difference in the size argument. See CLRBUF as well as SNAP—START
section_

rt 1

J
n A rr

' , VUM t r MUG

^r#^"riFiF^F3E^F^F3F3FyE3F^EiFiF^f^FiEiEyEiF3F3EiFiEiF3F^U3FyFiFiiFiFiF3E3EiE3EiE^SEyG7FyeyhyFyFiE#^G-iE-Y.iF3F#ie#^i;

ROUTINE NAME: CHAR

BASIC E DIVALENT: CALL CHAR

FORMAT: BL R @CHAR

DATA CHARACTER PLUMBER,>DATA,>DATA,>DATA,>DATA

DESCRIPTION: Defines the specified character number with the 6 bytes of

hexadecimal data specified. This routine allows the use of a variable for

character number but not for the 8 bytes of data.

EXAMPLE:

99OOBASIC: BLWP @CHAR

DATA 42 ,>FFFF,;FFFF,;FFFF,>FFFF

BASIC_: CALL CHAR(42 FFFFFFFFFFFFFFFF")

This example will define the character 42 (normally an asterisk) as a solid

block.

9900BA I C 51 i. l P AL IF Ij

^r^riF#y6^lfr^^raF34iEiG^EiiiF^F3F-iF^r,Yr#3v#yFi43idiyF^riF;^F^lrdG#aF^r3Fdrdfr#^F^FaF,lF3Farr#iF3fr#XriF^r^ii#^i.1Fii^

ROUTINE NAME: CLEAR

BASIC EQUIVALENT: CALL CLEAR

FORMAT: @LWP @CLEAR

(NO PARAMETERS)

DESCRIPTION: Fills the screen with the ASCII character 32.

EXAMPLE:

99OOBASIC: 6LV ? P @CLEAR

BASIC: CALL CLEAR

This example will clear the screen.

Esc;{^c^f^ss^ss.k^a^^.##mss . ^^. fs^ sFx^s , ^c^. s^^ sac s^c x ar #}z s 3c sc s y# aic a^rac^:#^ssac^a^

I° r
ey `jVVLi - 'I!, qV I. I r!iVC V

***************** ***********************************

ROUTINE NAME: CLRBUF

BASIC EQUIVALENT: NONE

FORMAT BLWP @CLRBUF
DATA LABEL,COUNT

DESCRIPTION: LABEL is a a label which represents the beginning of a series

of memory locations that are to be initialized to zero COUNT is the number
of bytes to be initialized.

EXAMPLE:

9900BAS I C: BLWP @CLRBUF
DATA A$,COUNT

.BASIC : NONE

This example sets COUNT number of bytes beginning at A$ to zero.

**

9900BASIC V1.1 PAGE 7

sFiEiiiF3Pr^i^r3F#afeiE3EiEiF yG^Gi4iF yF :r 1FiF^EfdG^E#33^F3F3F^E3F3E^FyE3FyFyFyeiFiitikie3F3F3E3fr3E^GlE^^FyFiF3F3Fii

ROUTINE NAME: COIN1

BASIC EQUIVALENT: NO DIRECT EQUIVALENT

FORMAT: BLWP @COIN1

DATA SPRITE NUMBER,. TOLERANCE, RETURN VARIABLE

DESCRIPTION: Returns in RETURN VARIABLE the lowest numbered sprite

within TOLERANCE pixels of sprite SPRITE NUMBER or returns 0 if no

coincidence.

EXAMPLE:

99QOBASIC: BLWP @COIN1

EIASIC: 1,15,0

This example will place in variable C the sprite number of the lowest

numbered sprited within 16 pixels of sprite 1_

9900BASIC 'V 1.1 PAGE 8

ROUTINE NAME: COLOR

BASIC EQUIVALENT: CALL COLOR

FORMAT: BLWP @COLOR
DATA CHARACTER SET NUMBER,FORE COLOR,BACK COLOR

DESCRIPTION: Sets the foreground and background colors of the character
set specified according to the values FORE COLOR and BACK COLOR.

EXAMPLE:

99000ASIC: BLWP @COLOR
DATA 9,16,2

BASIC: CALL COLOR(9,16,2)

This example will set the characters of character set 9 to white foreground
and black background.

9900BASIC V1.1 PAGE 9

^F^E^F3EdF^E3E3FiFiFiFiFi^i4^4yF7F^'r3FiE3E3Eit3F3EtiF3FyF^ryE3FdE3E^yE^ryEyEyEyFiiEdE3E3EiE=4^lr3F^r^r^raf°7Flr^#^E-14iF

POUT1NE NAME: DELSPR

BASIC EQUEVALENT: CALL DELSPRITE

FORMAT: BLWP @DELLPP

DATA SPRITE NUMBER

DESCRIPTION: Moves sprite number SPRITE NUMBER out of the visible screen
and sets its motion attributes to 0.

EXAMPLE:

9900BASIC: BLWP @DELSPR
DATA 1

BASIC: CALL DELSPRITE(1)

This example will place sprite number I off the visible screen and stop its'
motion.

'9
;
0BAS€C, V' i. i FM t i V

*************************4***************4Y 444****

ROUTINE NAME: MPS

BASIC EQUIVALENT: DISPLAY AT

FORMAT: BLWP @DISP$
DATA ROW, COLUMN, LABEL, SIZE

DESCRIPTION: Displays SIZE number of characters at Graphics Row ROW and
Graphics Column COLUMN. The characters are written from CPU memory
marked beginning at LABEL.

EXAMPLE:

9900BASIC: BLWP @DISP$
DATA 1,3,TITLE$,20

- BASIC: DISPLAY AT(1, 1)S I ZE(20):TITLES

This example will print the 20 characters of TITLE$ on the screen beginnng
at Graphics Row I and Graphics Column 3. Note the difference in the column
arguments and the difference in argument lists. Note also that this is
essentially a VMBW using row and column parameters.

9900BASIC V1.1 PAGE 11

ROUTINE NAME: FCLOSE

BASIC EQUIVALENT: CLOSE

FORMAT bLWP @FCL 1SE
DATA FILE"

DESCRIPTION: FILE* is a value between 0 and 6. All errors are returned in

ER FLAG.

EXAMPLE:

9900BAS I C: DLWP @FCLOSE
DATA I

BASIC : CLOSE Si

This e ample closes the file number 1 that was previously open.

9900BASIC v1.1 PAGE 1

**

ROUTINE NAME: FOPEN

BASIC EQUIVALENT: OPEN

FORMAT BLWP @FOPEN
DATA FILE*,MODE,LOGICAL RECORD LENGTH,NAMELENGTH,LABEL

DESCRIPTION: FILE* is a value between 0 and 6,MODE is a value
corresponding to a mode taken from the file-mode table,LOGICAL RECORD
LENGTH is the length of record to be using during file access,NAMELENGTH
is the length of the file descriptor name, LABEL is a label which signifies
the beginning of the file descriptor. All errors are returned in ERFLAG.

EXAMPLE:

9900BASIC: BLWP @FOPEN
DATA 1,20,80,9,A$

BASIC: OPEN °1,A$,DISPLAY,VARIABLE 80,INPUT

This example assumes that A$ holds a filename e.g Dal.DATA and that
this file is indeed a dis-var 80 file. Under these conditions the file is
opened for input.

************************* ** *******************************

99006AS1C V I.1 PAGE 13

YYYYY^iYiiY34^.a:i+4YYY.i6dCYYiFdiiF ♦frii^r^rY#dGiFiFiiiii^eii#Y^'-iF#ii#iF#$E^Fti4#^EiF#^E3E^E#^ieiiE^1F

ROUTINE NAME: FOR

BASIC EQUIVALENT: FOR

FORMAT: BLWP @FOR
DATA YARIABLE,INITIAL,TERMINATE,STEP

DESCRIPTION: Initiates a closed loop setting VARIABLE to INITIAL . The loop

will be terminated when VARIABLE is greater than TERMINATE if STEP is

positive or when VARIABLE is less than TERMINATE is STEP is negative.

Refer to ABOUT YOUR PROGRAM for information concerning negative numbers

EXAMPLE:

9900BASIC: BLWP @FOR
DATA A,1,10,1

BASIC: FOR A=1 TO 14 STEP 1

This example initiates a for-next loop.

9900BA I B V 1.1 PAGE 14

444 %****a**m a a%%********** ** *

ROUTINE NAME: FREAD

BASIC EQUIVALENT: INPUT

FORMAT BLWP @FREAD

DATA FILE°,LABEL,COUNT

DESCRIPTION: FILE' is a file that has been opened for input, LABEL is a

label which signifies the beginning of a cpu input buff er,count is a return
variable whose value after the read will be the number of characters
actually read. All errors are returned in ERFLAG.

EXAMPLE:

990004510: BLWP t FREAD
DATA 1 „A$,COUNT

BASIC: INPUT* I ,A$

This example assumes that file number I has been opened for input. If this
is true then FREAD will read the next record from the file and place it in
memory beginning at A$ and place the number of bytes actually read in

count.

***************************** ** ********** *****************

9900BASIC V1.1 PAGE 15

ROUTINE NAME: FWRITE

BASIC EQUIVALENT: PRINT

FORMAT BL WP @FWRITE

DATA FILELABEL,COUNT

DESCRIPTION: FILE' is in file that has been opened for output, LABEL is

label which signifies the beginning of a cpu output buffer,count is the

number of characters to be written. All errors are returned in ERFLA .

EXAMPLE:

9900BASIC: SL P @+@FWR!TE

DATA 1 ,A$,CC'UNT

-BASIC : PRINT * 1,A$

This example assumes that file number I has been opened for output. If

this is true then FWR!TE will write the next record to the file_ The record

is read beginning st A$ and its length is COUNT.

990 BASIC V1.1 PAGE 16

**************]E*********** ***********************iii********

ROUTINE NAME: GCHAR

BASIC EQUIVALENT: GCHAR

FORMAT: BLWP @GCHAR
DATA ROW,COLUMN,RETURN VARIABLE

DESCRIPTION: Returns in RETURN VARIABLE the ASCII value of the character
at row ROW and column COLUMN.

EXAMPLE:

9900BASIC: BLWP @GCHAR
DATA 10,5,0

BASIC: CALL GCHAR(10,5,G)

This example will place in va ri able G the ASCII value of the character at
row 10 and column 5.

9900BASIC V1.1 PAGE 17

yFaFyFiEi6^E^F^lE3E3F3Eyrr3FyF3F3F^friF^FaF-iiti4#a43E3F^3E^#^iF^F^F^riFiFiFiFiFiFiiiFiFiFiF^Yrdi^^^4iE-f3F#^fr^rd6iF^4

ROUTINE NAME: GPOS IT

BASIC EQUIVALENT: NO DIRECT EQUIVALENT

FORMAT: BLWP @GPOSIT
DATA SPRITE NUMBER, /-RETURN,X-RETURN

DESCRIPTION- Returns in V-RETURN and -RETURN the graphics row and

column presently occupied by sprite number SPRITE NUMBER

EXAMPLE:

9900DASIC= 6LWP @GPOSIT
DATA 1,Y,X

BASIC: No direct equivalent

This excmple will place the row and column position of sprite number I in

variables V and X.

9900BASIC V 1.1 PAGE 1 u

ROUTINE NAME: HCHAR

BASIC EQUIVALENT: HCHAR

FORMAT: BLWP @GPOSIT
DATA ROW,COLUMN .,CHARACTER NUMBER,REPITITIONS

DESCRIPTION: Places character CHARACTER NUMBER in consecutive
horizontal screen positions beginning at row ROW and column COLUMN
repeating the character REP1TITIONS times.

EXAMPLE:

9900BASIC: SL WP @HCHAR
DATA 124.425

BASIC: CALL HCHAR(1,2,42,5)

This example will place 5 consecutive horizontal characters described as
character 42 (normally an asterisk) beginning at row I column 2 and ending
at row 1 column U.

9900BASIC V1.1 PAGE 19

afr3Gidid4 34 Siadiii riF#i aFaGiF^lFiFiFiF^F^Yr#iF^Yr^lF^liF+}F+Yr^FiF+YriFi4iF#iFiF^r^Fi3Gi Y^ Yidr3'.^i44 4*

ROUTINE NAME: IF

BASIC ECIL1IVALENT: IF THEN ELSE

FORMAT: BLWP @IF
DATA VALUE 1,'RELATION',VALUE2,LABEL 1,LAEEL2

DESCRIPTION: Conditionally branches to either LABEL 1 or LAbEL 2 depending
on whether "VALUE 1 RELATION VALUE" is true. Note that the relation must

be in single quotes and must be one of ';' '4' '-' . Note also that the else

parameter must be included.

EXAMPLE:

9900BASIC_ BLWP @1F

DATA A,'>B,LN I00,LN2O0

BASIL: IF A>U THEN 100 ELSE 200

This example will redirect program execution to the code beginning at

LN 100 if the contents of memory location(variable) A are arithmetically

greater than the contents of memory location (variable) B. Note that if A<=B

then program execution will continue at the coding marked with LN200.

' 9005Asic v1.1 PAGE 2'

YYYYYYY iYiiii ii1G-0iii+Y34ii4Y4i44*Y441***44*4***YY*Y*4 44

ROUTINE NAME: JOYST

BASIC EQUIVALENT: CALL JOYST

FORMAT: BLWP @JOYST
DATA KEY-UNIT,X-RETURN,Y-RETURN

DESCRIPTION: Inputs data into the variables X-RETURN and Y-RETURN
concerning the status of the remote handheld unit number KEY-UNIT.

EXAMPLE:

9900BASIC: BLWP @JOYST
DATA 1,JX,JV

BASIC: CALL JOYST(1,JX,JY)

This example will check the position of joystick number 1 and place its'
positions in JX and JY.

9900BASIC V1.1 PAGE 21

^^ 7FaF yF #dF^EiF^F^F yF #^SEie yFie yF^###iF#^4:rt^F^F3E^F3F3F3F 1F 3FyEyE^3Fi'r3F3E3F3'r=4^F3F3EiEiF3F^F^F^F^#16^F^4

ROUTINE NAME: KEV

BASIC EQUIVALENT: CALL KEY

FORMAT: BLIP @KEY
DATA KEY-UNIT,KEE!-RETURN,STATUS-RETURN

DESCRIPTION: inputs data into KEY-RETURN and STATUS-RETURN based on the

value in KEY-UNIT and the keyboard status when checked.

EXA lip LE.

9900BASIC: RLWP @KEY

DATA O,K S

BASIC: CALL KEY(OJK)S)

This example will check the entire keyboard and place the ASCII value of the

key depressed into variable K and place the status of the keyboard i"

variable S. See the Basic or Extended Basic user's manual for more

information concerning keyboard I/O.

9900BAS L C V 1.1 RAGE Li

4**4***

ROUTINE NAME: LOCATE

BASIC EQUIVALENT: CALL LOCATE

FORMAT: BLWP @LOCATE
DATA SPRITE NUMBER,Y-POSITIION,X-POSITION

DESCRIPTION: Moves SPRITE NUMBER to the given X and Y coordinates.

EXAMPLE:

9900BASIC: BLWP @LOCATE
DATA 1,50,45

BASIC: CALL LOCATE(1.54,45)

This example will place sprite number 1 at the coordinates y=50 and x=45.

9COOBAS1C V1.1 PAGE 23

******7iF4*4**4*4*)F****4*****4 r r r****** rits r4#43Eit *3E****4*4**4

ROUTINE NAME: MAGNFY

BASIC EQUIVALENT: CALL MAGNIFY

FORMAT: BLWP @MAGNFY

DATA MAGNIFICATION FACTOR

DESCRIPTION: Sets the sprite magnification the the value FACTOR.

EXAMPLE:

9900BASIG: BLWP @MAGNFY

DATA 3

BASIC: CALL MAGNIFY(3)

This example will set all sprites to double size unmagnified.

9gooBASIG Y1.1 PAGE 24

**3E *

ROUTINE NAME: MOTION

BASIC EQUIVALENT: CALL MOTION

FORMAT: BLWP @MOTION
DATA SPRITE-NUMBER,Y-VELOCITY,X-VELOCITY

DESCRIPTION: Sets the motion attributes of sprite SPRITE-NUMBER to
y=Y-VELOCITY, xzX-VELOC1r1.

EXAMPLE:

9900BASIC: BLWP @MOTION
DATA 1,15,20

BASIC: CALL MOTION(# 1,15,20)

This example will give sprite number 1 a y-velocity of 15 and a x velocity
of 20.

* * * * * * * * *** * * * * * * * * * * * * * * * * * ** ** * * * *

9900BASIC V 1.1 PAGE 25

43E3F#9EiFieiriFiF^fF yF yEcE^r^r^47F^E^F#^4^E-14^EiiF^F yE^E## ^ir^F yEiF^1F yFiE^E## yFiFiFiiF iF #^F3FiFi4^FiE3EiF3F3F^F

ROUTINE NAME: NEXT

BASIC E1 UIVALENT: NEXT

FORMAT: BLWP @NEXT

DATA VARIABLE

DESCRIPTION: Checks for termination of FOR loop by adding STEP to

VARIABLE and comparing the result to the TERMINATION value in matching

FOR statement.

EXAMPLE:

9900BASIC_ BLWP @NEXT

DATA A

BASIC: NEXT A

This example will add the step value of the snatching FOR statement to A

and conditionally returns to the statement following the FOR statement.

fTr#iF3frafr3E^frdfe^lE^E$E yE yEiF^i^Fafr3FifriFiF3FiF^F43F3F3FiF3f3E3E^F#iF yE3E7F7E^F 1F#^1F^F 3F#3F^Yr i4^friF#^F^F^^F3F^F

';9o05AsiC vu i PAGE 26

ROUTINE NAME: ONGOTO

BASIC EQUIVALENT: ON GOTO

FORMAT: BLWP @ONGNO
DATA VALUE,LABEL I ,LABEL2,

DESCRIPTION: Unconditonally branches to the YALUEth label in the list.
EXAMPLE:

9900BASIC: SLWP @ONGOTO
DATA A,L1,L2,L3,L4,L5

BASIC. ON A GOTO 100,200,300,400,500

This example will continue program execution at then Ath label (line
number) in the list. Note that 9900BAS1C uses labels instead of line
numbers.

**

5900BASIC 'V1.1 PAGE 27

^
y
6^dFlF^iF^F3F3FiF^r^r^iiF^r3E3E^raFii#3E#^F3F3iFiF3F3F^3EiFiFiF^4iF^i^'r^iE#

y
FaF3

4
]EdF^^E#EdEf^fF3F^r YryEyEyF^yF3E

ROUTINE NAME: PATTER

BASIC EQUIVALENT: CALL PATTERN

FORMAT: BLWP @FATTER

DATA NUMBER,PAT

DESCRIPTION: Changes the pattern descriptor number of sprite number

NUMBER to PAT.

EXAMPLE:

9900BASIC: BLWP @PATTER

DATA 1,115

ETAS I C: CALL PATTERN(# 1,1 16)

This e;:ample will change the pattern of sprite number one to the pattern

described by character number 1 16.

';900BASIC `v 1. i Pr^C ^$

44*************

ROUTINE NAME: POSIT

BASIC EQUIVALENT: CALL POSITION

FORMAT: BLWP @POSIT
DATA SPRITE NUMBER,Y-RETURN,X-RETURN

DESCRIPTION: Returns in V-RETURN end X-RETURN the current y and x
attributes (positions) of sprite number SPRITE NUMBER.

EXAMPLE:

9900BASIC: BLWP @POSIT
DATA I ,PV,PH

BASIC: CALL POSITION(1,PV,PX)

This example will place the y and x positions of sprite number I in variables
py and px.

9900BASIC V1.1 PAGE 29

$E 3E^E3E3F3F yE3F*3F yFiF^r3FiF^E3F Yr3F^E3F3F3fryE3fr3EdEaE343E3E8F^r^EiF34^4^F^4^F^FiE^F^E3EiEiEdEiFiFiEiF3E^FiFiF3F^F^'r

ROUTINE NAME: RETURN

BASIC EQUIVALENT: NO DIRECT EQUIVALENT

FORMAT: BLWP C RETURN

(NO PARAMETERS)

DESCRIPTION: Not to be mistaken for a return from a subroutine (RT or G

1 1) this routine branches unconditionally to the program it was called

from whether it was Ti BASIC, TI EXTENDED BASIC ; or the TI

EDITOR-ASSEMBLER.

EXAMPLE:

99000AS1C: BLWP @RETURN

(NO PARAMETERS

BASIC:

This example will return control to the RGM/GRGM program that called it.

i i 9
'

) JPrM J 1
I.

 L i F ^+GL

ROUTINE NAME: RND

BASIC EQUIVALENT: RND f. CONVERSION NOT DIRECT)

FORMAT: BLWP @RND
DATA TOLERANCE,RETURN-VARIABLE

DESCRIPTION: Places in return variable a randomly selected number between

Cr and TOLERANCE (inclusive)

EXAMPLE:

99000ASIC: BLWP @RND
DATA 10,A

BASIC: Az 1 1 *RND

This example will place a random number between 0 and 10 inclusive in the
variable A.

• **************************** ****************** ************

ggemAsic PAGE 31

^r ^6 ^6 ^lE ^F ^F iF ^3@ yE yE ^3F ^3F 8F iF yi tii iF 7e 3F # yE yE 3E 3E 3E ^r 3F yF yF i4 yF 3F aF iF 3F 3F aF,1F ^r # ^iiF yE Tr Mfr yE yF yE 3F ^F ^'r 3F;iE ti4 y4 3i 34 tiE 3F

ROUTINE NAME: SCOLOR

BASIC EQUIVALENT: CALL COLOR (#

FORMAT: 6L WP @SCOLOR

DATA SPRITE-NLIMBER,COLOP

DESCRIPTION: Sets sprite number SPRITE-NUMBER to the specified color.

EXAMPLE:

9900BASIC: BLWP @SCOLOR

DATA 1,16

BASIC: CALL COLOR (#1!6)

This example will set the color of sprite number 1 to white.

9900BAS1C v 1.1 PAGE 32

ROUTINE NAME: SCREEN

BASIC EQUIVALENT: CALL SCREEN

FORMAT: BLWP @SCREEN

DATA COLOR

DESCRIPTION: Sets the default background color to COLOR. NOTE: the

background colors of character set I are not automatically set to

transparent as in Basic so if you want anything besides the border color to

change you must set the background color of character set 1 to transparent.

EXAMPLE:

9900BASIC: BLWP @SCREEN

DATA 15

BASIC: CALL SCREW 15)

This example will set the default screen color es well es the border color to

gray.

** *************

99006ASIC '11.1 PAGE 33

3k^^'^6#7fr^F^F#^riEiEiE3F3EiF^r^r;$^F^riF7E3E#!r#^E^FiFiF^F^^E^F^F^F^F^'r^bF7Fi^F^F^'r^E#iG7Gf^'iF-iE-iF^EdtryE^EyF

ROUTINE NAME: SCORE

BASIC EQUIVALENT: NO DIRECT EQUIVALENT

FORMAT: BLWP @SCORE

DATA ROWJCOLUMN,INCREMENT,VARIABLE

DESCRIPTION: Adds INCREMENT to the 4 byte variable VARIABLE and di t,pl aye;

the result at Graphics raw ROW and Graphics column COLUMN . 5e1 ore it
displays the decimal value on the screen it blanks an 8 column area. Using

this routine either before row I column 4 or after row 24 column 26 will

cause problems for the VIDEO DISPLAY PROCESSOR. Remember to define a 4

byte variable for use with this routine.

EXAMPLE:

9900BASIC_ BLWP @SCORE

DATA 24,5,10 ,A

EASIC:

This example will add 100 to the contents of the four byte variable A and

display the result at row 24 column 5.

9900BA51C V 1.1 PAGE 34

**

ROUTINE NAME: SCRLDN

BASIC EQUIVALENT: NO EQUIVALENT

FORMAT: BLWP @SCRLDN
(NO PARAMETERS

DESCRIPTION: Scrolls the screen down 1 row and fills the vacated area with
ASCII character 32.

EXAMPLE:

9900BASIC: BLWP @SCRLDN

BASIC:

This example will scroll the screen 1 row down.

99008ASIC V1.1 PAGE 35

jF3F3F#3F AGiFiE3FyE3FiEyE3F3E7F^4tirr^F^riEiEiE^FiEii3FiF^FiF#iF^EdEiFi4iFiFiFiEaEy47FtiE347Fyf3F#iF3F^F^F^Ff^E^#iF

ROUTINE NAME: SCRLLT

BASIC EQUIVALENT: NO EQUIVALENT

FORMAT: BLWP @SCRLLT

(NO PARAMETERS)

DESCRIPTION: Scrolls the screen to the left 1 column and fills the vacated

area with ASCI I character 32.

EXAMPLE:

9900BAS1C= BL'"r/P @SCRLLT

BASIC:

This e mple will scroll the screen 1 row to the left.

9' 0BASIC V1.1 PAGE 36

ROUTINE NAME: SCRLRT

BASIC EQUIVALENT: NO EQUIVALENT

FORMAT: BLWP @SCRLRT
(NO PARAMETERS)

DESCRIPTION: Scrolls the screen to the right 1 column and fills the vacated
area with ASCII character 32.

EXAMPLE:

9900BASIC: BLWP @SCRLRT

BASIC:

This example will scroll the screen 1 column to the right.

'?900BASIC V1 1 PAGE 37

a4iE^1F-iE^3E3F3F^E^it^#3FiF#^FaF^iE34#^r3F^FiFiE
yG3E3EdE iEi'r3F3E^edFdF^rdE3'ealFyEiE3^FAFaFiF^FiFiF^riF7Eii3E3E^EiF^idfrx

ROUTINE NAME: SCRLUP

BASIC EQUIVALENT: PRINT (NOT A DIRECT EQUIVALENT)

FORMAT: BLWP @SCRLUP

{ NO PARAMETERS)

DESCRIPTION: Scrolls the screen up I row and fills the voc^ted area with
ASCI I character 32.

EXAMPLE:

9900BASIC: BLWP @SCRLUP

BASIC:

This example will scroll the screen up 1 row.

99OOBASIC '/1.1 PAGE 36

ROUTINE NAME: STRLEN

BASIC EQUIVALENT: LEN

FORMAT BLWP @STRLEN
DATA LABEL,RETURN VARIABLE

DESCRIPTION: LABEL is a a label which represents the beginning of a series
of memory locations that hold a zero terminated string. This routine
returns in RETURN VARIABLE the length of the string.

EXAMPLE:

9900BASIC: BLWP @STRLEN
DATA A$,COUNT

BASIC: COUNT=LEN(A$)

This example returns in count the number of characters beginning at label

A$ and terminated by a null.

**

99000ASIC V1.1
M Ar Luc

?4 i4 i4 it ME a^ aF i6 # 34 ^F 3F 3E 3F # ^E ?F ^ ^3E ^k 9E ^F ^E 3F ?F 3F ^F ^ iF 3F iF 34 3F 34 iE iE iF iF 3F iF iE;E iF yE f ;E iF ^3E yE •i^E tiE yE iF iiF tiF 3F yF;4 ^r

ROUTINE NAME: SOUND

BASIC EQUIVALENT: CALL SOUND

FORMAT: SLWP @SOUND

DATA DURAT1ON . FREQ 1,VOL 1,FREQ2,VOL2,FREQ3.VOL3,NOISE,VOL4

DESCRIPTION: Immediately updates the sound generator with the

specifications given. Any parameter except sound may be omitted with

DATA 0. Variables may not be used as sound data. Duration is limited to the

values 20 through 4000 and all values given must be positive numbers. To

halt . program execution until the sound is completely processed (i.e.

emulate positive duration sound processing in Basic) the following routine

is recommended and may be called with BL @SDWAIT:

SUWAIT BLWP @KEY

DATA 0,K,S

MOYB @> 83C3,@> 3CE

JNE SDWAIT

RT

Please see the Editor-Assembler manual for more information on sound

processing.

EXAMPLE:

9900BASIC: SLWP @SOUND

DATA 1 00, 1 1 0,5,1 1 1,5,1 1 ,5,5,30

BASIC: CALL SOUND(1 OQ 1 1 0,5,111,5,1 12,5-5,30)

This example will make a short deep tone.

'!900OASIC '/1.1 PAGE 40

ROUTINE NAME: SPRITE

BASIC EQUIVALENT: CALL SPRITE

FORMAT: BLWP @SPRITE
DATA NUMBER,CHARACTER,COLORY-POS,,X-POSY-VEL,X-VEL

DESCRIPTION: Creates a sprite with the attributes given. Please see the
Extended Basic and Editor-Assembler manuals for more information on
sprites.

EXAMPLE:

9900BAS1C: BLWP @SPRITE

DATA 1,42,7,50,45,0,10

BASIC: CALL SPRITE(' 1,42,7,50,45,0,10)

This example will create a sprite in the shape of a red asterisk at y=50,
x=45 moving to the right across the screen

9900BASIC V1.1 PAGE 41

^3F 34 iE ^ ^E yE ^ 3E yF ^}iF a4?^ 3E ?E ^ yE ^ 4 :r 4 ^ ?F ^F ^E ^3^E ^E i4 iE 7F ti4 tiE 3E ?E iE ?i ^E ^ 3E ?E ^3@ 7F iE ?4 ?E ?E yE 3F # # ^E ^ ?E 3E ?^E;F ?4 ^3iF ^iE 3E

ROUTINE NAME: VCHAR

BASIC EQUIVALENT: CALL YCHAP

FORMAT: BLWP @VCHAR

DATA ROW,COLUMN,CHARACTER,REPETITIONS

DESCRIPTION: Places REPETITIONS number of the character CHAR vertically

on the screen beginning at row ROW and column COLUMN.

EXAMPLE:

9900HASIC_ EL WP r@YCHAR

DATA 3,5,42,1

BASIC: CALL VCHAR 3,S,4L,1)

This example will place one character described as 42 (normally an

asterisk) at row 3 column 5.

9900BASIC Y1.1 PAGE 42

COMPRESSED 9900BASIC OBJECT CODE

Included on your program diskette is a file named COMPRESSED. It consists
of pre-assembled 9900BASIC code for use in development and with the
save utility. This code is in compressed dis-fix BO format and may not be
loaded through the T I Extended Basic Loader. When using this file (i.e.
during development) assemble your program with the assembler using the
EQUATES file. This may be done with the directive COPY "DSKLEQUATES"
and do not use the copy directive to copy the 9900BASIC source file. To
execute your program through the editor-assembler load and run use the
following steps: load the COMPRESSED file first, followed by your program
and then enter the program through your entry point (i.e. START).

EQUATES

Included on your program diskette is a file named EQUATES. This file is
for use in development and with the save utility. Instead of assembling
the 9900BASIC file on every assembly you may use the copy directive to
copy the equates instead. When doing this make sure that you load the
COMPRESSED file before your program file or your program will not
execute and the console will lock up. Please note that the EQUATES file
contains equates for more that just the 9900BASIC functions, it also
includes the VDP access utilities and DSRLNK as well as ERFLAG.

EXTENDED BASIC SUPPORT

Included on your program diskette are the following files pertaining to
support for TI Extended Basic: LOAD, LOADER, LOADS, SAVES, SAVEUT IL,
COMPRESSED, and EQUATES. Please see SAVEUTIL, COMPRESSED and
EQUATES sections for more information. LOAD is a boot program for use

with Extended Basic and the files created with the save utility. LOAD
loads the object file LOADER through the TI Extended Basic loader and
links to it (via a BL instruction). LOADS is the source code for LOADER.
LOADER sets up the character table in VDP ram and creates its own utility
DSRLNK in order to load the files created by the save utility. It then loads
the files P1 and P2 into the high memory expansion and branches to the
first instruction after the COMPRESSED file. Note that the COMPRESSED
file need not be on the diskette and that this is the reason for the loading
order in the save utility.

99006ASIC V1.1 PAGE 43

SAVEUTILITY

Included on your program diskette are two files named SAVEUTIL and
SAVES. SAVES is the source code for the save utility SAVEUTIL. The entry
point for SAVEUTIL is SAVE. To use the save utility (to create Extended
Basic executable code) first load the COMPRESSED file, then your program
file, and then the save utility. Do not load any files before the
COMPRESSED file. Insert the diskette that your wish the object files to be
written on into disk drive number one. Enter the program name as SAVE.
The save utility will create two mirror image files named P1 and P2 for
use with the loader on the diskette. Note that the save utility always
saves the first 16K bytes of the high area of the memory expansion. Note
also that the 99006ASIC COMPRESSED file is slightly less than 4K (leaving
12K of program space without modifying the save utility)_

DEMONSTRATION PROGRAM

Included on your program diskette is a demostration program. The source
file is named DEMO and the object file is named OBJECT. The program
demonstrates many of the 99006A5I C functions and is executable through
the editor-assembler load and run with the program name START. Note
that the demonstration program was assembled without some of the
9900BASIC functions (to save space on the diskette) and re-assembly of
it may produce a longer file.

ID900BAS1C V1.1 PAGE 44

SnapStart
A 9900BASIC Preprocessor

Introduction: SnapStart is a tool that makes it easier to convert an existing TI BASIC or Extended
BASIC program into code compatible with 9900BA5IC. SnapStart takes each statement of BASIC
code that has a 9900BAS1C equivalent and converts that line into source code that can be used
with 9900BIC. SnapStart also begins the job of placing variables in the required variable
table within your source code and defining the variable type. SnapStart cannot evaluate
arithmetic calculations, LET statements I including implied LET statements] or other assignment
statements.

Preparing Your Program for SnapStart: Before you can run SnopStart`on your program it must
be in the proper format. This is best accomplished by following these steps:

1) Load existing program from disk

2) Resequence program using a starting value of one hundred
(100) and an increment of ten (10).

3) Save your program to the disk as a list file for example by
typing LIST "DSK1.TEST"), remember this file name, it is the
input file used by SnapStart.

Using SnapStart: 5efore running SnapStart make sure you have space on the disk(s) for the
output file and debug file which SnapStart generates. To gether these two files will probably be
about three (3) times the size of the input file generated by listing your program to disk. If
SnapStart runs out of room on the disk processing will stop, however any source code generated
up to that point will not be lost. You will racieve an error message to indicate any I/O error. To
use SnapStart follow these steps:

1) Load SnapStart from disk on the original disk its file name
is SNAPSTART, but it may be renamed on your own disks.]

2) Type 'RUN' to start the program.

3) The cursor will appear next to INPUT FILE:. Type the name of
the file you created by listing your program and hit ENTER.

4) The cursor will now move to the °URI FILE. position. Type
the name of the output file to be used with 9900BA51C.

5) The cursor will now move to the DEBUG FILE: line. Type the
name of the Debug listing file. (Note: the debug file can tie
sent to a printer as well as a disk.}

6) SnapStart i3 now operating. It may take ten or more minutes
for a twelve kilobyte (12K) program to be processed, so be
patient.

g900BAS1C V1.1 PAGE 45

Editing your source code: After SnapStart has completed pros ssirig y our code, leave Extended
DA51C and go to the Editor/Assembler. Using the Load option from the Editor load your output
file. Now you can see the results of SnepStart at work on your program. Each line number has
been converted into a label by adding an 'L to the front. Each CALL, FOR-TO, NEXT,
IF-THEN-ELSE, DISPLAY AT, and ACCEPT AT have been converted into the format required by
9900BASIC. At the bottom of the file you will find a list of the variables that SnepStert found in
your program- divided into numeric variables and string variables. Your code ma y look ail most
finished, but its probably not. The fallowing are things to look for in your source code before
attempting to compile.

Uncompiled Lines: You'll find these lines in the source code tagged by an *. These
lines can also be found in the debug file. Usually this occurs because the statement
was unsupported by 9900BA3IC. In the debug file these lines are i ndicated by the
message ' ? STATEMENT'. {Note: REM s +pmpnts are also tagged with a *, this is
the correct way to indicate a remark to the Assembler. No changes need to be made
to these statments and they will not be found i n the debug tile}

Multi-Statement Lines: While Snepatart supports many of the commands of
Extended BASIC, it does not support multi-statement lines. The best way to handle
this is by eliminating multi-statement lines before saving the listing (input)
file.

Multi - Parameter Statements: SnapStart does not allow the use of more than one
set of parameters in a statement. For example:

1 00 CALL cOLOP(2,3,12,4,4,12) would not be processed correctly, but

1 00 CALL COLOR(2,3,12)
1 10 GALL COLORS 4,4,12) would be processed correctly.

Formulae Within Statements: may not be used, these must be eliminated before
compiling .

Repeated Variables: in the Variable table are not a fatal error, but should be
deleted to prevent confusing error messages at the time of compilation.

Using the Debug File: The debug file will prove to be a great aid in finding and
eliminating problems in the code. Uncompiled lines, and lines with anti type of
problem will be sent to the debug file in their original BASIC format along with an
error message to show what SnapStart didn't like about them. In some cases you
may find SnapStart overly cautious (such as throwi ng out an FOR-TO for lack of a
STEP). In many cases SnapStart will attempt to fix the problem for you by
inserting a default value, but it's still a good idea to look at the processed code and

make sure it says what you want.

Note to Users: This is the first version ofSnapStsrt and it obviously lacking in

several areas. SnapStart is being provided free with 9900BASIC in the hope that

you will find it a useful tool in the g 900BASIC System. Since SnapStart is

unprotected you can modify it to fit you needs. You will find the code to be in a

very loosely structured arrangement, but if you follow the examples of how CALL

and other statments are handled, you should be able to accomplish ghat you need.

Please let us know whether or not you've found a use for this program and

especially if you've made improvements that would be of value to others.

9900BAS IC v i .1 PAGE 46

INPUT AND OUTPUT MODES FOR USE WITH
9900BASIC FILE HANDLING ROUTINES

99000ASIC MODE FILE-TYPE E-A MODE TYPE OF FILE

0 DIS-FIX UPDATE SEQUENTIAL

1 DIS-FIX UPDATE RELATIVE

2 DIS-FIX WRITE SEQUENTIAL

3 DIS-FIX WRITE RELATIVE
4 DIS-FIX READ SEQUENTIAL

5 DIS-FIX READ RELATIVE

6 DIS-Fly; APPEND SEQUENTIAL

7 DIS-FIX APPEND RELATIVE
a INT-FIX UPDATE SEQUENTIAL

9 INT-FIX UPDATE RELATIVE
10 INT-FIX WRITE SEQUENTIAL

11 INT-FIX WRITE RELATIVE

12 INT-FIX READ SEQUENTIAL

13 . INT-FIX READ RELATIVE
. 14 INT-FIX APPEND SEQUENTIAL

15 INT-FIX APPEND RELATIVE

16 DIS-VAR UPDATE SEQUENTIAL

1 a D1S-VAR WRITE SEQUENTIAL

20 DIS-VAR READ SEQUENTIAL

22 DIS-VAR APPEND SEQUENTIAL

24 INT-VAR UPDATE SEQUENTIAL

26 INT-VAR WRITE SEQUENTIAL

28 INT-VAR READ SEQUENTIAL

30 INT-VAR APPEND SEQUENTIAL

The user should refer to the Texas Instruments Editor Assembler manual
for information pertaining to file i/o as well as i/o modes and error
information. Specifically sections 18.2xx .

99005AS1C V1.1 PAGE 47

I MPORTANT INFORMATION FOR THE USER

The CSI DESIGN GROUP does not warrant that the programs and data
included with this package are error free or will meet the requirements of
the consumer. The consumer assumes full responsibility for any decisions
made or actions taken based on information obtaining while using the
programs and/or documentation.

The CSI DESIGN GROUP makes no claims as to the suitability of this

product for any purpose.

MORE ABOUT THE PROGRAMS AND DATA

We have made every effort to provide complete and accurate information

and documentation, but errors do occur. In the event of a problem be it

programming, lock of i nformation, or misinformation the CSI DESIGN

GROUP will make a reasonable endeavor to aid the user.

As this is the first release of SNAP-START it more than likely will not be
as friendly as the documentation implies. It is i mportant that you

complete and return your warranty card so that updates will be made

available to you.

The 9900BASIC package is not a compi'er and is not to be sold or
otherwise implied to be such. The 9900BASIC package is an
assembly language program development aul

9900BASIC V1.1 PAGE 46

