CHAPTER V
REFERENCE SECTION

This chapter is an alphabetical list of the CC-40 BASIC
command, statement, and function keywords. Each keyword is
explained in the following sections.

The Format 'section gives the complete syntax of the keyword,
using the following conventions.

o KEYWORDS are capitalized.
e Variables are in italics.

¢ All parentheses are mandatory. Parentheses included with

an optional element must be included when the optional
element is used.

e Optional elements are enclosed in [brackets].
» [tems that may be repeated are indicated by ellipses (...).

s [tems representing alternative forms are presented one
above the other and are enclosed in {braces}.

The Description gives the keyword’s use or function and
includes the options that the keyword can use.

The Cross Reference section refers to similar and
complementary keywords, where appropriate.

The Example section gives examples of the keyword’s use,
where appropriate.

51

CHAPTER V

__REFERENCE SECTION
Format

ABS(numeric-expression)

Description

The ABS function gives the absolute value of numeric-
expression. \f numeric-expression is positive or zero, ABS
returns the value of numeric-expression. \f numeric-expression
is negative, ABS returns the negative of the value. The result of

ABS is always positive or zero.

Examples

370 PRINT ABS(42.3):PAUSE
Prints 42.3.

140 VV=ABS(-6.124)
Sets VV equal t0 6.124.

5-2

CHAPTER V
REFERENCE SECTION

ACCEPT

Format

ACCEPT [[AT(column)| [SIZE(numeric-expression)] [BEEP]
[ERASE ALL} [VALIDATE(data-type, ...)] [INULL(expression)] ,]
variable

Description

The ACCEPT statement suspends program execution until data
is entered from the keyboard. The options available with
ACCEPT make it more versatile for keyboard entry than the
INPUT statement. ACCEPT can accept data at any dispilay
position, sound an audible tone (beep), erase all or part of the
display, limit the number and type of characters accepted, and
provide a default value for the input variable.

AT{column) positions the cursor and the beginning of the input
fieild at the specified column, which must be from 1 to 31. if AT
is omitted, input begins in column one unless a previous
input/output statement left the cursor positioned in columns 2
through 31, in which case input is accepted at the cursor
location.

SIZE(numeric-expression) allows up to the absolute value of
numeric-expression characters to be input. It numeric-
expression is positive, the input field is cleared before input is
accepted. If numeric-expression is negative, the input field is
not cleared, thus allowing a default value previously placed into
the field by a DISPLAY or PRINT statement to be entered. if
SIZE is omitted, the ACCEPT statement clears the display from
the current cursor position to the end of the 80-column line. If
SIZE is used, the cursor is left in the first position following the
input field for subsequent input/output statements.

BEEP sounds a short tone for each BEEP in the statement, to
indicate that the computer is ready to accept input.

ERASE ALL clears the entire display before accepting input,
and positions the cursor to column one. If AT is used, the data

is accepted starting at the position specified by column.
{continued)

CHAPTER V
__ REFERENCE SECTION

ACCEPT

{continued)

CHAPTER V
REFERENCE SECTION

ACCEPT

{continued)

Cross Reference
INPUT, LINPUT

VALIDATE(data-type) allows only certain characters to be
entered from the keyboard. Note that default values are not
validated. Data-type specifies which characters are acceptable.

Examples

100 ACCEPT AT(3) ERASE ALL,T

Clears the display, accepts data starting in column 3, and
places the data into variable T.

320 ACCEPT VALIDATE("yn") SIZE(1},A$

Data-type can be a string expression which specifies the
characters that are permitted. Only one string expression may
be specified for data-type. The following can also be used as
data-types. If more than one data-type is specified, a character
from any of the types specified is acceptable.

ALPHA permits all alphabetic characters. Accepts a one character field consisting of either y or n
UALPHA permits only uppercase alphabetic into the variable A$.

characters. 430 ACCEPT AT(3) SIZE(-5) BEEP VALIDATE(DIGIT,"+-"),X
DIGIT permits O through 9. Beeps, then accepts up to 5 characters for the variable X,
NUMERIGC permits 0 through 9, “.”, “+, “=", and “E". starting at column 3. The input characters must consist of
ALPHANUM permits all alphabetic characters and 0 digits or the characters + or ~. Because the SIZE

through 9. specification is negative, the input field is not erased prior

to accepting input.

570 ACCEPT NULL(PI),C

Accepts data for C. If no data has been entered when

[ENTER] is pressed, the value of Pl is stored in the
variable C.

UALPHANUM permits only uppercase alphabetic
characters and 0 through 9.

NULL(expression) provides a default value to be assigned to the
variable if [ENTER] is pressed with a blank (or null) input field.

X

During the execution of an ACCEPT statement, the following
types of entries are also permitted.

» The [FN] key can be used to input keywords and user-
assigned strings from the keyboard.

e A numeric expression can be entered if variable is numeric.
The expression is evaluated and the result is assigned to
variable.

e [SHIFT] [ENTER] can be pressed to cause the input data to
be ignored, the value of variable to remain unchanged, and
the program to proceed to the next statement. If NULL is
included, it is also ignored. - '

Note: When an ACCEPT statement is waiting for data, [CLR] *
clears only the input field, [CTL] 1 (home) and [CTL] € (batk tab)
move the cursor to the beginning of the input field, and [CTL]-»

(right arrow) has no effect.
(continued)

54 95

CHAPTER V

__ REFERENCE SECTION

ACS |

Format
ACS{numeric-expression)

Description
The ACS (arccosine) function calculates the angle whose
cosine is numeric-expression. The result is calculated accord-
ing to the angle units (RAD, DEG, or GRAD) selected prior to

using this function. The range of values given by the ACS func-

tion for the three angle settings is shown below.

Range of
Units Calculated Angles
Degrees 0 < ACS(X) =180
Radians 0 < ACS(X) =PI
Grads 0 < ACS(X) = 200
Examples
100 DEG

Selects DEG angle setting.
110 PRINT ACS(1) : PAUSE
Prints 0.

220 RAD
Selects RAD angle setting.
230 T=ACS(0.75)
Sets T equal to .72273424781339.

CHAPTER V

- REFEFIE_NQE SECTION
SUBPROGRAM AD_D I\/I E I\/I
Format

CALL ADDMEM
Description

The ADDMEM subprogram allows the Random Access Memory
(RAM) contained in an installed Memory Expansion cartridge to
be appended to the useable resident memory. The amount of
memory added is described in appendix J.

CALL ADDMEM cannot be used in a program. The error message
No RAM in cartridge is displayed it no Memory Expansion
cartridge is installed when CALL ADDMEM |s executed.

When the memory in a Memory Expansion cartridge has been
appended to resident memory, the system is initialized if a loss
of memory is detected (i.e. power Is lost or the cartridge is
removed) or the reset key is pressed.

The memory in a Memory Expansion cartridge remains
appended to the resident memory until a NEW ALL command is
executed, the computer is turned on without the cartridge
installed, the batteries are removed, or the system is initialized.

Example

CALL ADDMEM
Allows the use of memory supplied by the installed
Memory Expansion cartridge. See chapter 3 or appendix J
for more information.

57

CHAPTER V

__REI_’ERENSE_SEOTIOI[I -
AL T
Format

ASC(string-expression)

Description

The ASC function returns the ASCII character code of the first
character of string-expression. The message Bad argument is
displayed if string-expression is a null string. A list of the ASCII
codes is given in appendix D. The ASC function is the inverse

" of the CHR$ function.

Cross Reference
CHR$

Examples
100 PRINT ASC(™A"):PAUSE
Prints 65.

130 B=ASC("1")
Sets B equal to 49.

700 DISPLAY ASC{"HELLO"):PAUSE
Displays 72.

CHAPTER V
REFERENCE SECTION

AN

Format)
ASN(numeric-expression)

Description

The ASN (arcsine) function calculates the angle whose sine is
numeric-expression. The result is calculated according to the
angle units (RAD, DEG, or GRAD) selected prior to using this
function. The range of values given by the ASN function for the
three angle settings is shown below.

Range of
Units Calculated Angles
Degrees -90 = ASN(X)=90
Radians -~ P12 = ASN(X) < PI/2
Grads - 100 = ASN(X} = 100
Examples
140 DEG

Selects DEG angle setting.
150 PRINT ASN(1):PAUSE
Prints 90.

240 RAD
Selects RAD angle setting.
250 B=ASN(.9)
Sets B equal to 1.119769514999.

59

CHAPTER V
REFERENCE SECTION

Format
ATN(numeric-expression)

Description
The ATN (arctangent) function calculates the angle whose
tangent is numeric-expression. The result is calculated
according to the angle units (RAD, DEG, or GRAD) selected
prior to using this function. The range of values given by the
ATN function for the three angle settings is shown below.

Range of
Units Calculated Angles
Degrees —90 < ATN(X) <90
Radians — PYi2 < ATN(X) <PI/2
Grads —100 < ATN(X) <100
Examples
130 GRAD

Selects GRAD angle setting.
140 PRINT ATN(30):PAUSE
Prints 97.87871952.

810 RAD
Selects RAD angle setting.

820 Q=ATN(2.5)
Sets Q equal to 1.190289949683.

5-10

CHAPTER V
REFERENCE SECTION

ATIACH

Format

ATTACH sub-namet [, sub-name2 ._]

Description

The ATTACH statement is used to preserve the values of
variables used in subprogram(s) between calls to the
subprogram(s). When the ATTACH statement is executed,
memory space is atlocated for the variables and the values are
initialized. The variables are not initialized when the
subprogram is called and are not destroyed when the
subprogram terminates.

An ATTACH statement may appear in the main program or in
any subprogram. A subprogram can ATTACH itself. The
message Program not found is displayed if a specified sub-
name cannot be found. If a specified sub-name is an assembly
language subprogram, the message Bad program type is
displayed.

Attaching a repeatedly used subprogram reduces execution
time. However, while the subprogram remains attached, the
memory space for the variables remains allocated. ATTACH
should be used only when sufficient memory space is available.
(Refer 1o FRE for more information.)

The RELEASE statement is used to release an attached
subprogram.

Cross Reference

FRE, RELEASE

(continued)

5-11

CHAPTER V
REFERENCE SECTION

(continued)

Example

The following program illustrates how to attach a subprogram.

100 FOR J=1TO 5
110 CALL X

120 NEXT J ‘
Prints 0 0 0 0 O because the variable values in

subprogram X are initialized each time it is called.
130 ATTACH X:PRINT

Attaches subprogram X and clears the display.
140 FOR J=1 T0 5
150 CALL X

160 NEXT J ‘
Prints 0 1 2 3 4 because the variable values are not

initialized when X is called and are not destroyed when X
is terminated. |

170 SUB X

180 PRINT J;:PAUSE 2

190 J=J+1

200 SUBEND

5-12

CHAPTER V
REFERENCE SECTION

BREAK

Format

BREAK [/ine-number-lisf]

Description

The BREAK statement is used to suspend program execution at
specific points, called breakpoints, in a program. Breakpoints
can be specified in two ways. If line-number-list is not given
with the BREAK statement, a breakpoint occurs when the
BREAK statement is executed. If line-number-list is given with
the BREAK statement, breakpoint(s) are set immediately before
the line{s) listed in /ine-number-list. The [BREAK] key also
causes the program to stop as if a BREAK statement had been
executed. -

When a breakpoint occurs, the message BREAK is displayed.

A breakpoint set immediately before a program line remains in
the program until the UNBREAK statement is used to remove it
or until the line is edited or deleted.

BREAK is useful in debugging a program. When program
execution halts at a breakpoint, variables can be printed and
calculations can be performed to determine why a program is
not executing correctly. The CONTINUE command can be used
to resume program execution.

Cross Reference

CONTINUE, ON BREAK, UNBREAK

Examples

150 BREAK
Causes a breakpoint when the BREAK statement is

executed.

100 BREAK 120,130
Causes breakpoints before execution of lines 120 and 130.

BREAK 10,400,130
Causes breakpoints before execution of lines 10, 400, and
130.

513

CHAPTER V

o EEFEHENEE SECTION .
CALL " o
Format

CALL subprogram-name [(argument-list)]

Description

The CALL statement transfers control to a subprogram. The
first subprogram found with the given subprogram-name IS
executed. After the subprogram is executed, program control
returns to the first statement following the CALL statement.
The valid types of subprograms are listed below in the order in
which the search for the subprogram is performed.

1. Built-in subprograms

2 Assembly language subprograms which are loaded with

CALL LOAD
3.BASIC subprograms defined using SUB
4.Subprograms located in Solid State Software cartridges

Argument-list is used to pass data to the subgmgram. The
number and types of arguments in argument-/ist must match
the parameters in the parameter-list of the subprogram or an

error QCCurs.

Each built-in subprogram is discussed under its own entry in
this manual. Assembly language subprograms are discussed in
the Editor/Assembler manual. BASIC subprograms are
discussed in chapter 4 and in this chapter under SUB.

Cross Reference
SUB

Examples

CALL CLEANUP
Deletes unused variable names from the system.

100 CALL SETLANG(1) .
Changes the language setting to German. This
subprogram requires a language number parameter.

2

614

CHAPTER V
REFERENCE SECTION

SUBPROGRAM CHAI?

Format |
CALL CHAR(character-code, pattern-identifier)

Description

The CHAR subprogram defines special display characters. The
characters are defined in a 5-by-8 grid by specifying which dots
are “on” and which are “oft.” Up to seven special characters
can be defined at one time. The characters can be displayed by
using CHR$ in a DISPLAY or PRINT statement. If a special
character is in the display when the pattern definition is
changed, the displayed character changes immediately.

Note: Characters defined with the CHAR subprogram are not
retained when the computer is turned off. |

Character-code specifies which special display character is to
be detined. Character-code must be a value from O through 6.

Pattern-identifier is a string expression whose value defines the
pattern for one or more special display characters.

* The first 16 characters of pattern-identifier define the
specified character-code. |f pattern-identifier is less than

16 characters, the remaining characters are considered to
be zeros.

¢ [f pattern-identifier is greater than 16 characters, the extra
characters define the next sequential character-code, until

all the pattern-identifier characters have been assigned to
a character-code.

¢ |f pattern-identifier has enough characters to define past
character-code 6, the extra characters are ignored.

e If pattern-identifier is a null string, an error occurs.

Each pair of characters in pattern-identifier describes the
pattern in one row of the grid. The left characteris 1 or 0,
indicating that the left block is “on” or “off,” respectively. The
right character is a hexadecimal digit (0 through F) whose
binary equivalent is used to determine which dots are on and
off, as described above. The rows are described from top {o.
bottom. Note that there is a slight break in the display between
the top seven rows and the eighth row.

{continued)

815

CHAPTER V

(continued)

SUBPROGRAM

CHAPTER V
REFERENCE SECTION

__ CHAR

SUBPROGRAM

The following table shows all possible on/off conditions for
each row, and the binary and hexadecimal codes for each
condition.

5-16

Dot Pattern

—
|
X%
*h
x| X
HEEEIN
L * | % | %
¥ *l
% *
x| x|
| *;l
% | %
x| k| %
x| k| %
E3ESEIEL
X|
| X
* X
% X |
EZE:
I EINEY
ad B EJE:
AIREIEIES
% | % |
* | %k %
Kok |*
x| k] [k|[%
* [k[%
EIEIE:
dE3ERE:
AEIEIESE:

Binary Code
(0 =Off: 1=0n)

Hexadecimal
Code

00000
00001
00010
00011
00100
00101
00110
00111
01000

01001

01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

fcontinued)

{continued)

Cross Reference

CHR$

Examples

To define the dot pattern pictured below, type the following line.
CALL CHAR(0,*04150E04040E1504")

Left { Right Hex
Block | Blocks Codes

Row1 [| [x 04
Row2 D 1 X 15
ROW3 [[x[x[x OE
ROW 4 X 04
ROW 5 X 04
ROW 6 X OE
Row7 [k [x 15
ROW 8] 04

To display the special character, enter PRINT CHR$(0). Note that
the underline cursor also appears in the display in this case.

To define the dot pattern pictured below, type the following line.
CALL CHAR(4,0A110B12”)

Left | Right Hex
Block | Blocks Codes

ROW 1 dME: 0A
ROW 2 |x x| 11
ROW 3 x| [*|*] oB
ROW4 [x| | [* 12
ROW 5 i 00
ROW 6 00
ROW 7 ‘ | | oo
ROW 8 [TTT1] oo

Since rows 5 through 8 are not specified, they are assumed to
be zeros.

To display the special character, enter PRINT CHR$(4). Note that
the underline cursor alsc appears in the display in this case.

517

CHAPTER V
REFERENCE SECTION

CHRS

Format
CHRS$(numeric-expression)

Description
The CHR$ function returns the character corresponding to the
ASCII character code specified by numeric-expression. The
CHRS$ function is the inverse of the ASC function. A list of the
ASCIl character codes for each character in the standard
character set is given in appendix D.

CHRS is used in PRINT and DISPLAY statements to display
special characters defined with the CHAR subprogram or the
extended character set not available on the keyboard (see
appendix D). With peripherals, CHR$ can be used for control
operations such as advancing a printer to a new page.

Cross Reference
ASC, CHAR

Examples

840 PRINT CHR$(72):PAUSE
Prints H.

900 X$=CHR$(33)
Sets X$ equal to L.

5-18

CHAPTER V

) REFERENCE SECTION
SUBPROGRAM CI_EAN U E
Format

CALL CLEANUP
Description

The CLEANUP subprogram deletes unused variable names from
the system. When CALL CLEANUP is executed, all variable
names which are not used in the program currently in memory
are removed and all open files are closed. If CALI. CLEANUP is
executed when a program is stopped at a breakpoint, the

CONTINUE command cannot be used to resume program
execution.

CALL CLEANUP cannot be used in a program.

5-19

CHAPTER V
__REFERENCE SECTION

CIOSE

Format
CLOSE #file-number [, DELETE]

Sl e—

Description

The CLOSE statement terminates the association between a
file and its current file-number. The file or device cannot be
accessed by the program unless it is reopened. After a file s
closed, file-number can be assigned to another file or device. If
an attempt is made to CLOSE a file that is not open, an error

QCCUrS.

Any of the following actions close all open files.
¢ Editing the program or subprogram.

¢ Entering a NEW, RENUMBER, RUN, OLD, SAVE, or VERIFY
command.

e Listing the program to a peripheral device.
e Calling the ADDMEM or CLEANUP subprogram.
e Turning the system off or pressing the reset key.

Normal program termination also closes all open files.

Some peripheral devices allow a file to be deleted at the time it
is closed by adding DELETE to the statement. The manual for
each peripheral device describes the use of DELETE.

Cross Reference
OPEN

Example

790 CLOSE #6
Closes file #6.

5-20

CHAPTER V
REFERENCE SECTION

CONTINUE

Format |
CONTINUE [fline-number]

Description

The CONTINUE {(or CON) command is used to resume
execution after a breakpoint occurs. A program or subprogram
may be continued at the line specified by line-number. Line-
number must refer to a line number in the main program if the
main program is stopped. H a subprogram is stopped, line-
number must refer to a line number in that subprogram. Using
an improper line-number produces unpredictable results.

The following actions do not allow a CONTINUE to resume
execution after a breakpoint:

e Editing the program or subprogram.

e Entering a NEW, OLD, RENUMBER, RUN, SAVE, or
VERIFY command.

¢ Listing the program to a peripheral device.

e Calling the ADDMEM or CLEANUP subprogram.

e Turning the system off or pressing the reset key.

Cross Reference
BREAK

921

CHAPTER V
REFERENCE SECTION.

05

Format

COS(numeric-expression)

Description

The COS function calculates the trigonometric cosine of
numeric-expression. The result is calculated according to the
angle units (RAD, DEG, or GRAD) selected prior to using this
function. See appendix E for a description of the limits of
numeric-expression.

Examples

140 GRAD
Selects GRAD angle setting.

150 PRINT COS(30):PAUSE
Prints .8%10065242.

240 RAD |
Selects RAD angle setting.

300 T=COS(PI)
Sets T equal to - 1.

5-22

CHAPTER V
REFERENCE SECTION

DAIA

Format

DATA data-list

Description

The DATA statement is used with the READ statement to
assign values to variables. When a READ statement is
executed, the values in data-list are assigned to the variables
specified in the variable-list of the READ statement. Data-list
consists of numeric or string constants, separated by commas.
Leading and trailing spaces are ignored. A string constant that
contains commas or leading or trailing spaces must be
enclosed in quotes. A quotation mark within a quoted string is
represented by two quotation marks. A null string is
represented by two adjacent commas.

A DATA statement must be the only statement on a line. It may
be located anywhere in a program or subprogram. If a program
has more than one DATA statement, the DATA statements are
read in sequential order beginning with the lowest numbered
line.

The RESTORE statement can be used to reread DATA
statements or to alter the order in which DATA statements are
read.

Cross Reference

READ, RESTORE

(continued)

5-23

CHAPTER V

CHAPTER V L

REFERENCE SECTION -- REFERENCE SECTION
DATA | DEBUG
D o ~ SUBPROGRAM

(continued) .: Format

' CALL DEBUG

Example | __

The program below reads and prints several numeric and string Description

constants. ? The DEBUG subprogram is used to test assembly language

100 FOR A=1 TO 5 i subprograms. CALL DEBUG allows access to the assembly

110 READ B,C - __ language debugger, which is briefly described in appendix I.

120 PRINT B;C:PAUSE 1.1 Refer to the Editor/Assembler manual for more information.

130 NEXT A

Lines 100 through 130 read five sets of data and print
their values, two to a line.

140 DATA 2,4,6,7,8

150 DATA 1,2,3,4,5

160 DATA """THIS HAS QUOTES""™

170 DATA "NO QUOTES HERE"

180 DATA NO QUOTES HERE EITHER

190 FOR A=1 TQ 7 |

200 READ B3

210 PRINT B$:PAUSE 1.1

220 NEXT A
Lines 190 through 220 read seven data elements and print
each on its own line.

230 DATA 1, NUMBER, ,TI

5-24 _ 5-25

CHAPTER V

i REFERENOE SECTION
Format

DEG
Description

The DEG statement sets the units for angle calculations to
degrees. After the DEG angle setting is selected, all entered and
calculated angles are measured in degrees. This setting is
changed to RAD when NEW ALL is entered or the system is

initialized.

Cross Reference
GRAD, RAD

5-26

CHAPTER V
REFERENCE SECTION

~ DELETE

Format
DELETE {””&Qf' oup [, line-group ...]

“device.filename”

Description
The DELETE {or DEL) statement is used to remove lines froma
program in memory or to remove a file from external storage.
Line-group specifies program lines to be deleted and may
consist of the following.

Line-group Effect _

a single line number Deletes that line.

line number — Deletes that line and all following lines.

— line number Deletes that line and all preceding
lines.

line number— line
number Deletes that inclusive range of lines.

DELETE line-group cannot be used in a program line.

If line-group specifies a single line number that does not exist,
the message Line not found is displayed. However, any
remaining /ine-groups are deleted when the [ENTER] or [CLR] key
is pressed. If the initial line of a range does not exist, the next
higher numbered line is used as the initial line. If the final line
does not exist, the next lower numbered line is used as the
final line.

Device.filename is used to delete a file from an external storage
device. Device is the number associated with the physical
device and can be from 1 through 255. Filename identifies the
particular file. Device.filename may be a string expression.
Refer to the peripheral manuals for the device number for each
peripheral device and for specific information about the form of
filename.

You may also delete data files on some peripheral devices by
using DELETE in the CLOSE statement. Refer to the ap-

propriate peripheral manual for more information.
(continued)

8-27

CHAPTER V
__ REFERENCE SECTION _

SHEE:

{continued)

Cross Reference
CLOSE

Examples

DELETE 10-50,90,110-220
Deletes lines 10 through 50, 90, and 110 through 220.

DELETE 900~
Deletes lines 900 through the end of the program.

DELETE =500, 750
Deletes all lines through 500 and line 750.

DELETE "1.file"
Deletes “file” from device 1.

5-28

CHAPTER V
REFERENCE SECTION

DIV

Format |

DIM array—n'amé(inregeﬂ [, integer?] |, integer3]) [....]

Description

The DIM statement specifies the characteristics of an array and
reserves the necessary memory space for it. Array-name is a
string or numeric variable name. The number of values in paren-
theses following array-name determines the number of dimen-
sions in the array. Arrays with up to three dimensions are atlow-
ed. The values in parentheses represent the maximum values of
the subscripts in each dimension of the array.

The lowest value of a subscript is zero. Therefore, the number
of elements in each dimension is one more than the maximum
subscript. For example, an array defined by DIM A(6) is a one
dimensional array with seven elements, A(0) through A(6). If an
array is not defined in a DIM statement, the maximum value of
each subscript is 10.

When execution of a program begins, each element of a
numeric array is set 1o zero, and each element of a string array
is set to the null string.

An array can be dimensioned only once. A DIM statement must
appear in the program at a lower numbered line than any other
reference to its array. Remarks (REM) and tail remarks (!) are
the only statements which may appear after a DIM statement
on a multiple statement line. A DIM statement cannot appear in
an IF THEN ELSE statement.

Examples

120 DIM X$(30)
Reserves space in the computer's memory for 31 elements
of the array called X$. Each element is initialized to the

null string.

430 DIM D{(100},B(10,9)
Reserves space in the computer’s memory for 101
elements of the array called D and 110 (11 times 10}
elements of the array called B. Each element of each ar-
ray is initialized to zero.

5-29

CHAPTER V
REFERENCE SECTION

DISPLAY

Format
DISPLAY [[AT(column)] [BEEP] [ERASE ALL)

: line-number
[SIZE(numeric-expression)] [USING string-expression]

[print-list]

Description
The DISPLAY statement formats and displays the value(s) in-
cluded in print-fist. The options available with DISPLAY can be
used to display data starting at any column position, sound an
audible tone (beep), erase all or part of the display, limit the
total number of characters displayed, and specify the format of
the display.

AT(column) positions the cursor and the beginning of the
display field at the specified column position from 1 through
80.

The evaluation of the TAB function and comma separators is
relative to the specified starting position. However, if SIZE is
not specified and the evaluation of print-list continues on a new
line, the new line begins in column 1, not in the column
specified by AT.

When AT is omitted, output starts at the current cursor position
as left by previous input/output statements. If the current posi-
tion is greater than 80, the cursor is reset to column 1. When
AT is omitted, the TAB function and comma separators are
always relative to column 1.

BEEP sounds a short tone for each BEEP in the statement.

ERASE ALL clears the entire 80-column line. If AT is omitted,
the cursor position is set to column 1.

SIZE(numeric-expression) limits thre total number of characters
to the absolute value of numeric-expression. |f numeric-
expression is larger than the number of remaining positions,
the display field extends from the current cursor position to the
end of the 80-column line. The length of the display field,

defined by SIZE becomes the new record length for purposes of
- (continued)

5-30

CHAPTER V
____ REFERENCE SECTION

DISPLAY

evaluating the TAB function and comma separators in print-list.
The specified field is always cleared prior to displaying data.
Termination of the DISPLAY statement leaves the cursor in the
first position following the display field. If SIZE is omitted and
there is no trailing separator after print-list, termination of the
DISPLAY statement clears the display from the last item
displayed to the end of the 80-column line.

(continued)

USING may be used to specify an exact format for the output.
If USING is specified, it must appear last in the option list.
Refer to IMAGE and USING for a description of format

definition and its effect upon the output of the DISPLAY
statement.

Print-list consists of numeric and string expressions, separated
by commas or semlicolons. For more details, see PRINT.

Cross Reference
IMAGE, PAUSE, PRINT, TAB, USING

Examples

120 DISPLAY AT(7),Y : PAUSE

Displays the value of Y starting at column 7 and clears
everything following the number. The value actually
appears in column 8 since the sign precedes the number.

150 DISPLAY N :PAUSE

Displays the value of N in column 1 of the display and
clears the rest of the display.

190 DISPLAY ERASE ALL,B :PAUSE
Clears the entire display before displaying the value of B.

370 DISPLAY AT(C) SIZE(19) BEEP,X:PAUSE
Clears 19 characters starting at position C, beeps, and
displays the value of X starting at position C.

5-31

CHAPTER YV | | | | CHAPTER V
REFERENCE SECTION] REFERENCE SECTION
—— _— _. -_— —— —
END - : FOF

Format -' Format
END) | EOF{file-nuniber)

Description - Description
The END statement terminates a program and may be used | The EOF function is used to test whether there is another
interchangeably with the STOP statement. Although the END record to be read from a file. The value of fife-number indicates
statement may appear anywhere, it is usually placed as the last j the file to be tested and must correspond to the number of an
line in a program. The END statement is not required. A - open file. EOF returns a value which indicates the current
program automatically stops when the highest numbered line is position in the file as follows.
executed. | Value Position
The END statement closes all open files. :5 0 Not end-of-file

—1 Logical end-of-file

Cross Reference | The logical end-of-file occurs when all records on the file have
STOP ; been input.

When using pending INPUT (see chapter 4), EOF does not
Indicate whether pending input data remains in memory.

Cross Reference
INPUT (with files)

Examples

140 PRINT EQOF(3):PAUSE
Prints -1 if file #3 has reach the end-of-file and 0 if it has
not reached the end-of-file.

710 IF EOF(27) THEN 1150
Transfers control to line 1150 if the end-of-file has been
reached for file #27.

532 | 5-33

CHAPTERV
REFERENCE SECTION

Format '

o

CALL ERR{error-code, error-type |, file-number, line-number])

Description

The ERR subprogram returns the error code, error type and,
optionally, the file number and line number of the last
uncleared error. When an error occurs, a subroutine can be
called (see ON ERROR) that contains CALL ERR. The error Is
cleared when this error-processing subroutine terminates. with a
RETURN.

Error-codes range from 0 through 127. The meaning of each
error code is listed in appendix K.

Error-type is always 0 unless error-code is 0, which is an
input/output (/O) error. For an |/O error, error-type is an |/O error
code specified by each O device. The range for /O error codes
is 1 through 255. -

File-number is 0 unless the error is an /O error. For an VO error,
file-number is the file number used in the I/O statement_that
caused the error.

Line-number is the number of the line being executed when the
error occurred. it is not always the line that is the source of the
problem since an error may occur because of values generated
or actions taken elsewhere in a program.

If no error has occured, CALL ERR returns all values as zeros.

Cross Reference

ON ERROR, RETURN (with ON ERROR)

Examples

170 CALL ERR(A,B)
Sets A equal to the error-code and B equal to the error-
type of the most recent uncleared error.

390 CALL ERR(W,X,Y,Z) | 2

Sets W equal to the error-code, X equal to the error-type, Y

equal to the file-number, and Z equal to the line-number of
the most recent uncleared efror.

5-34

CHAPTER V
REFERENCE SECTION

SUBPROGRAM

SUBPROGRAM E><EC

Format

CALL E)(EC(exécuﬁan—address [, argument-iist])

Description

The EXEC subprogram is used to execute assembly language
subprograms located at specific memory addresses. Normally,
the POKE statement has been used to store these subprograms
in memory that has been reserved by a CALL GETMEM
statement. Execution-address is the memory address at which
subprogram execution is to begin and must be a numeric
expression from 0 through 65535. |

Argument-list is used to pass values to and from the.
subprogram being executed.

Details on writing assembly language subprograms are
provided in the Editor/Assembler manual.

Cross Retference

GETMEM, PEEK, POKE, RELMEM

5-35

CHAPTER V

g:éEL'iEHN\(/:E_S_EQT! oN REFERENCE SECTION
Format) rormat

' ' FOR control-vatiable = initial-value TO limit [STEP increment]
EXP{numeric-expression)

Description

The FOR TO STEP statement is used with the NEXT statement
to form a loop, which is a series of statements performed a
specific number of times. Control-variable is an unsubscripted
numeric variable that acts as a counter for the loop. Initial-

Description | |
The EXP function returns the result of ¢*, where x Is numeric-
expression. The vatue of e is 2.71 828182846.

Exan;glfsxp (7) value, limit, and increment are numeric expressions.
1 =F .
Sets Y equal to the value of e raised to the seventh | When the FOR statement is executed, initial-value is assigned
power, which is 1096.633158429. ; to control-variable. \f initial-value exceeds limit, the loop is skip-
_RYP(4. L7 . ped and execution continues with the statement after the NEXT
‘e Ls"é}i(f :5:;6?0 th.)g value of e raised to the 4.394960467 - statement. Otherwise, the statements following the FOR state-

ment are executed until the corresponding NEXT statement is
executed. Increment is then added to control-variable. If control-
variable is not greater than /imit, execution returns to the state-
ment following the FOR statement.

power, which is 81.04142688867.

When control-variable becomes greater than limit, contro!
transfers to the statement following the NEXT statement.
Control-variable then equals the value it had the last pass
through the loop plus the value of increment.

A loop that is contained entirely within another loop is called a
nested loop. Nested loops must use different control variables.
Program execution can be transferred out of a loop using
GOTO, GOSUB, or IF THEN ELSE and then returned back into
the loop.

If a NEXT statement is executed before its corresponding FOR
statement, an error occurs.

STEP specifies the increment that is added to control-variable
each time the loop is executed. If STEP is omitted, the incre-
ment is one. If the increment is negative, control-variable is
decreased each time through the loop and /imit should be less
than initial-value. The loop is skipped if initial-value is less than
s '_ fimit. Otherwise, the loop is executed until control-variable is

less than limit.
fcontinued)

5-37
5-36

CHAPTER V

CHAPTER YV .
REFERENCE SECTION - i i o ~ REFERENCE SECTION
(continued) | Format
' FORMAT device
Cross Reference _ ’
NEXT Description
Examples | | | The FORMAT statement initializes the current medium on an
- :' external storage device. Formatting a storage medium destroys

::L4O FOR A=1 TO 5 STE i all previously stored data.

190 NEXT A | _- Device is the number associated with each physical device and
Executes the statements between FOR and NEXT AI threeiz can be from 1 through 255. Refer to the peripheral manuals 1o
times, with A having values of 1, 3, and 5. After the loop Is | obtain the device code for each peripheral device.
finished, A has a value of 7. |

250 FOR J=7 TO -5 STEP -.5 Example

550 ; ~ 140 FORMAT 1

NEXT ' Initializes the tape currently in the Wafertape drive. All
Executes the statements between FOR and NEXT J 25 i data previously stored on the tape is destroyed.

times, with J having values of 7,65, 6, ..., —4, —4.5, and
_ 5. After the loop is finished, J has a value of —5..

700 FOR X=1 TO 2 STEP -1
780 NEXT X | | |

Does not execute the loop because increment ig negative
and the initial-value is already less than the /imit.

939

CHAPTER V

a HEFERENQE SEOTION
He -0
Format

FRE(numeric-expression)

Description
The FRE function returns information about the current use of
memory in the computer. Memory space is divided into four
types as follows.

¢ Space reserved for operation of the system.

¢ Space occupied by the current program in memory.
e Space temporarily reserved by a running program.
» Space currently available (free space).

The value of numeric-expression specifies the type of
information desired as follows.

Value Meaning

0 Total memory space not reserved for system
operation.

1 Total space occupied by the program currently in
memory. The value returned includes 11 bytes for
program overhead.

2 Total amount of free space and temporarily reserved
space.
3 Size of the largest block of free memory space.
4 Total amount of free memory space.
5 Number of individual blocks of free memory space.
Example
300 A=FRE(3)

Sets A equal to the number of bytes available in the
largest contiguous block of free memory. This statement
is useful for determining how much memeory can be
reserved by the GETMEM subprogram.

5-40

CHAPTER V
REFERENCE SECTION

gJ_BPROGF;I;__ G EI—I_AN G

Format |
CALL GETLANG(numeric-variable)

Description

The GETLANG subprogram places the code of the international
language being used to display system messages and errors
into numeric-variable. The language identification code is set
using the SETLANG subprogram. The language is set to
Engiish when the system is initialized.

The following are the assigned language codes.

0=English

1 =German

2= French

3 = |talian

4 = Dutch

5 = Swedish

6 = Spanish

Cross Reference
SETLANG

Example

120 CALL GETLANG(A)
Places the code of the current language setting into A.

541

CHAPTER V CHAPTER V
REFERENCESECTION _ _ ___ REFERENCE SECTION
GEIMEM awroceav | suProcRAw GEIMEM]

FGITI'I a t {continued)
CALL GETMEM{numeric-expression, numeric-variable)) | Cross Reference

Description EXEC, FRE, PEEK, POKE, RELMEM
The GETMEM subprogram is used to reserve memory space for | ! Example
storing data and assembly language programs. Numeric- ’ | 140 CALL GETMEM(100, ADDRESS)

expression specifies the number of bytes to reserve and must Resery
es a biock of 100 bytes of memory and
places the

be a value from 1 through 32765. The error message Memory | |
full is displayed if the number of bytes specified is not ._ :gg;tEgcédress of the reserved memory area into

available.

The lowest address of the reserved memory space is stored in
numeric-variable. This value must be retained if RELMEM is to
be used to release the memory for other uses. The highest
address of the reserved memory space can be calculated as
follows.

highest memory address = numeric-variable + numetric-
expression -1

When space has been reserved, CALL POKE and CALL PEEK
can be used to access the memory directly. Data may be
placed in the reserved area one byte at a time with the CALL
POKE subprogram and read with the CALL PEEK subprogram.
If an assembly language subprogram is loaded into reserved
memory using CALL POKE, CALL EXEC may be used to
execute it. The assembly language program must not use
memory space outside of the reserved area.

In addition to the requested amount of memory, GETMEM
requires four bytes of memory for its own operation. Thus, if
the FRE function is used to obtain the size of the largest
available block of memory, that value must be reduced by four
to obtain the largest block which can be ailocated by GETMEM.

The largest block of memory allocated by GETMEM should be
significantly less than the largest block available. Sufficient
memory space must remain available for statements that

require additional temporary memory. P
{continued)

5-42 _ 543

CHAPTER V CHAPTER YV
REFERENCE SECTION | | REFERENCE SECTION
GOSUB - SOIO

— — S _————-——"—'—_‘_‘_—__-_ e e s &l S
Format Format
GOSUB line-number _ | GOTO ﬁﬂE‘ﬂﬂ'ﬂ?ﬁ&'r
Description . Description
The GOSUB statement transfers control to the subroutine that | The GOTO statement transfers control unconditionally to
begins at /ine-number. The statements of the subroutine are another line within a program. When a GOTO statement is
executed until a RETURN statement is encountered. A RETURN executed, control is passed to the first statement on the line
statement returns control to the statement immediately _ specified by line-number.

following the GOSUB statement. |
The GOTO statement cannot be used to transfer control into or

Subroutines may be called any number of times in a program out of a subprogram.
and may call themselves or other subroutines. The GOSUB 3

statement cannot be used to transfer control into or out of a ; Example

subprogram. | 100 GOTO 300

Cross Reference Transfers control to line 300.

ON GOSUB, RETURN

Example
100 GOSUB 200
Transfers contro! to ine 200. The statement at line 200
and all the statements that follow are performed until
RETURN is encountered. RETURN transfers control to the
statement following the GOSUB statement.

CHAPTER V
' REFERENCE SECTION

Format
GRAD

-

Description

The GRAD statement sets the units for angle calculations to
grads. After the GRAD angle setting is selected, all entered and

calculated angles are measured in grads. This setting is
changed to RAD when NEW ALL is entered or the system is

initialized.

Cross Reference
DEG, RAD

CHAPTER V
_ REFERENCE SECTION

F THEN ELSE

IF condition THEN actionT [ELSE action2]

Format

Description

The [F THEN ELSE statement performs one of two specified
actions based on a specified condition. If condition is true,
action1 is performed. If condition is false, action2 is performed.
If ELSE is omitted and condition is false, control is transferred
to the next line.

Condition can be either a relational expression or a numeric
expression. When a relational expression is evaluated, the
result is 0 if it is false and —1 if it is true. When a numeric
expression is evaluated, a zero value is considered to be false
and a nonzero value is considered to be true.

Actiont and action2 may be line numbers, statements, or
groups of statements separated by colons. If a line number is
used, control is transferred to that line. If statements are used,
those statements are performed.

The IF THEN ELSE statement must be contained on one line and
is terminated by the end of the line. IF THEN ELSE statements
can be nested by including an IF THEN ELSE statement in
action! or action2. If a nested IF THEN ELSE statement does not
contain the same number of THEN and ELSE clauses, each
ELSE is matched with the closest unmatched THEN.

IF THEN ELSE statements cannot contain DIM, IMAGE, SUB, or
SUBEND statements.

Examples

100 IF Y<5 THEN 150 :
If the value of Y is less than 5, statement 150 is executed.
If Y is greater than or equal to 5, the next statement is
executed.

(continued)

547

CHAPTER V . CHAPTER V
~_ REFERENCE SECTION B REFERENCE SECTION

F THEN ELSE VIAGE

(continued) ' Format

140 IF MBB=0 THEN 200

150 PRINT "NON-ZERO":PAUSE 2 -
If MBB is zero, control passes to line 200. If MBB is not
zero, NON-ZERO is displayed and program execution halts
for 2 seconds before executing the next statement.

230 IF X >5 THEN GOSUB 300 ELSE X=X+5
If the value of X is greater than 5, GOSUB 300 is
executed. When the subroutine is completed, control
returns to the line following the IF THEN ELSE statement.

If X is b or less, X is set equal to X+ 5 and control passes
to the next line.

250 IF Q THEN C=C+1:GOTO 500 ELSE L=L/C:GOTO 300
If Q is not zero (true), C is set equal to C+ 1 and control is
transferred to line 500. If Q is zero (false), L is set equal to
L/C and control is transferred to line 300.

290 IF A$="Y" THEN COUNT=COUNT+1:DISPLAY AT(4), "HERE WE
GO AGAIN!™:PAUSE 1.5:G0T0 400
if A$ is equal to “Y"”, COUNT is incremented by 1, a
message is displayed, and control is transferred to line
400. If A3 is not equal to “Y”, control passes to the next

line.

350 IF HRS <=40 THEN PAY=HRS*WAGE ELSE
PAY=HRS*WAGE+.5*WAGE ¥(HRS-40) :0T=1
If HRS is less than or equal to 40, PAY is set equal to
HRS*WAGE and control passes to the next line. If HRS is
greater than 40, PAY is set equal to
HRS*WAGE + .5*WAGE*{HRS — 40), OT is set equal to 1,
and control passes to the next line.

700 IF A=1 THEN IF B=2 THEN C=3 ELSE D=4
If A is equal to 1 and B is equal to 2, C is set equal to 3
and control passes to the next line. If A is equal to 1 and
B is not equal to 2, D is set equatl to 4 and control passes.
to the next line. If A is not egual to 1, control passe§ to .

the next line.

9-48

IMAGE string-constant

Description

The IMAGE statement is used to define an output format. The
format is used by placing the line number of the IMAGE
statement in the USING option of DISPLAY or PRINT (see
USING in this chapter). String-constant may be enclosed in
quotation marks. If string-constant is not enclosed in quotation
marks, leading and trailing blanks are ignored.

The IMAGE statement must be the only statement on a
program line and must appear in the program or subprogram
which uses it. When an IMAGE statement is encountered,
execution immediately continues with the next line of the
program.

A format definition is divided into format fields and litera!
fields. When a PRINT or DISPLAY statement uses a format
definition, the format fields are replaced by the values of the
print items and the literal fields are printed as they appear in
the format definition. An explanation of a format definition is
given below.

Format Definition

The three characters which may be used to define a format

field are the number sign (#), the decimal point (), and the
exponentiation symbol (A). The number sign defines a character
position in the format field. It is replaced by one of the
characters from the ASCII representation of the value of the
print item. The decimal point is used in a decimal format field

to specify the position of the decimal point. The exponentiation
symbol (A) is used in an exponential format field to specify the
number of positions in which to print the exponent value. All
other characters are literal and thus form literal fields.

The five types of fields in a format definition are integer,
decimal, exponential, string, and literal. The rules which apply

to each type are listed below.
{continued)

5-49

CHAPTER V
REFERENCE SECTION

(continued)

Integer Field

¢ Up to 14 significant digits may be specified.

* An integer field is composed of number signs.

* When the number does not fill the field, the number is right-
justified.

e When the number is longer than the field, asterisks (*) are
printed in place of the value.

* Non-integer values are rounded to the nearest integer.

e \When the number is negative, one number sign is used for
the minus sign.

Decimal Field

¢ Up to 14 significant digits may be specified.

* A decimal field is composed of number signs and a single
decimal point. The decimal point may appear anywhere in the
format field. |

* The number is placed with the decimal point in the specified
position.

¢ When the integer part of the value is longer than the integer
part of the format, asterisks {*) are printed instead of the
value. -

* The number is rounded to the number of places specified to
the right of the decimal point.

* When the number is negative, at least one number sign must
precede the decimal point to be used for the minus sign.

Exponential Field

e Up to 14 significant digits may be specified.

e An exponential field consists of a decimal or integer field,
which defines the mantissa, followed by 4 or 5 exponentiation
symbols which define the exponent. When fewer than 4 are
used, they are treated as literal characters. When more than 5
are used, the first 5 are used to define the exponential field,
and the remainder are considered to be literal characters.

¢ The number is rounded according to the mantissa definitién,
(continued)

5-50

CHAPTER V
REFERENCE SECTION

IMAGE

* When the mantissa definition specifies positions to the left of
the decimal point, one of these positions is always used for
the sign, which is a minus sign if negative and a space if
positive. -

{continued)

String Field

* The size of the field is limited only by the size of the string
which defines the format.

* A string field is an integer, decimal, or exponential field. In
addition to the number signs, the decimal point and the
exponentiation symbols define character positions.

* When the string is shorter than the field, it is left-justified.

* When the string is longer than the field, asterisks(+) are
printed instead of the value.

Literal Field

* The size of the field is limited only by the size of the string
which defines the format.

* A literal field is composed of characters which are not format
characters. However, decimal points and exponentiation
symbols may also appear in literal fields.

* Literal fields appear in the printed output exactly as they
appear in the format definition.

Cross Reference

DISPLAY, PRINT, USING

{continued)

5-51

CHAPTER V
EFERENCE SECTION -

MAGE™

fcontinued)

Examples

The following program prints two numbers per line using the
IMAGE statement.

100 FOR COUNT=1 TO 6

110 READ A,B

120 PRINT USING 150;A,B:PAUSE

130 NEXT COUNT

140 DATA -99,-9.99,-7,-3.459,0,0,14.8,12.75,795,852,
-984,64.7

150 IMAGE THE ANSWERS ARE ### AND ## .##

The following show the results with the given values.
Values Appearance

—99 -999 THE ANSWERS ARE -99 AND -9.99
-7 —3.459 THE ANSWERS ARE ~7 AND -3.46

0 0 THE ANSWERS ARE 0 AND .00
148 1275 THE ANSWERS ARE 15 AND 12.75
795 852 THE ANSWERS ARE 795 AND ¥¥¥%¥¥

-~ 984 64.7 THE ANSWERS ARE %% AND 64.70

A program similar to the one above allows the use of
characters with IMAGE DEAR #####, The following show the
results with certain values.

Value Appearance

JOHN DEAR JOHN ,
NANCY DEAR NANCY,
KENNETH DEAR ¥¥¥%¥¥,

(continued)

5-52

CHAPTER YV
REFERENCE SECTION

_ IMAGE

The progran; below illustrates a use of IMAGE. It reads and
prints seven numbers and their total. The amounts are printed
with the decimal points lined up.

100 TMAGE P#### . ##

110 IMAGE " #### . ##"
Lines 100 and 110 set up the images. They are the same
except for the dollar sign. To keep the blank space where
the dollar sign was, the string-constant in line 110 is
enclosed in quotation marks.

120 DATA 233.45,-147.95,8.4, 37.263,-51.299,85.2,464

130 TOTAL=0

140 FOR A=1 TO 7

150 READ AMOUNT

160 TOTAL=TOTAL+AMOUNT

170 IF A=1 THEN PRINT USING 100, AMOUNT:PAUSE ELSE PRINT

USING 110, AMOUNT:PAUSE

Prints the values using the IMAGE statements.

180 NEXT A

190 PRINT USING "$####.##", TOTAL: PAUSE
Uses the format directly in the PRINT statement.

(continued)

5-53

__REFERENCE SECTION

CHAPTER V :

NDIC

~ SUBPROGRAM

Format

CALL INDIC{indicator-number |, indicator-state])

Description

The INDIC subprogram turns the display indicators on or off.
Indicator-number identifies a specific indicator and must be a
numeric expression which rounds to an integer value from O

through 17.

Indicator-state is used to turn the indicator on or off. A non-zero
value turns the indicator on and a zero value turns it off. If
indicator-state is omitted, the indicator is turned on.

Indicator-numbers 1 through 6 are available for definition in a
program. They are turned off when a new program is run or the
computer is reset.

The other indicators are used by the system. Changing the
status of a system indicator can cause erroneous results.

The numbers assigned to the display indicators are listed below.

Value Indicator

0 ERROR
1-6 User indicators
7 LOW
8 4
9 SHIFT
10 CTL
11 FN
12 DEG
13 RAD
14 GRAD
15 /O
16 UCL
17)

.
1l
I L]
-
.
5
i
=
L
1
r
B
T
H
5
'
-
-
¥ -
) 1
A
'
) 1]
e
.I
i
'
T
.I
.
i
L.
!I: .
L
f
'

CHAPTER V
REFERENCE SECTION

L . . il
T

INPUT

INPUT Ifnput—brampt;] variable-list [, input-prompt, variable-list)
[--]

Description

The INPUT statement is used to enter data from the keyboard.
When INPUT is executed, program execution is suspended until
data is entered.

WITH KEYBOARD

Input-prompt is a string expression that must be followed by a
semicolon. If a string constant is used, it must be enclosed in
quotes. Input-prompt is displayed beginning at the current
cursor position as left by previous input/output statements. If
input-prompt is omitted, a question mark followed by a space is
used for the prompt.

Following the prompt, the flashing cursor is displayed. If the
resultant cursor position is greater than 31, the display is
cleared and the cursor position is set to column 1 prior to
displaying the prompt. When input-prompt is greater than 30
characters, it is truncated to 30 characters.

Variable-list is a list of variables separated by commas. The
variables may be numeric or string, subscripted or
unsubscripted. When more than one variable follows input-
prompt, the prompt is displayed for the first variable only.
Thereafter, the question mark prompt is used until another
input-prompt is encountered. Each value is assigned to the
corresponding variable name before the computer prompts for
the next vaiue.

When entering numeric variables, a numeric expression can be
entered instead of a numeric constant. The expression is
evaluated and the result is assigned to the variable. When
entering string variables, leading and trailing spaces are
ignored. Thus, if a string value includes commas, leading
Spaces, or trailing spaces, it must be enclosed in quotes. A
quotation mark within a quoted string is represented by two

quotation marks.
{continued)

5-55

CHAPTER V
REFERENOE;?SEOTION _

|N PUT | , WITH KEYBOARD
fcontinued)

if [SHIFT] JENTER] is pressed during data entry, the input is
ignored and the value of the variable remains unchanged.
Execution proceeds to the next prompt or variable or to the
next statement if the INPUT statement is completed.

If an error occurs during data entry, a descriptive error message
is displayed. After the {ENTER] or {CLR] key is pressed, the
INPUT statement reprompts and the data can be entered in the
correct form.

When data is entered, the following validations are made.

¢ If more than one value at a time is entered, the message
T1legal syntax is displayed and the data must be reentered
one at a time.

e |f a string constant is entered for a numeric variable, the

message String-number mismatch is displayed and a numeric
value must be entered.

¢ If 2 number whose absolute value is greater than
9.9999999999999E + 127 is entered, the message Overflow is
displayed and the value must be reentered.

e |f a number whose absolute value is less than 1tE—-128 is
entered, the value is replaced with 0 and no message is
displayed.

Note: When an INPUT statement is waiting for data, [CLR]
clears only the input field, [CTL] 4 (home)} and [CTL] € (back tab)
move the cursor to the beginning of the input field, and [CTL] =

(right arrow) has no effect.
{continued)

5-56

CHAPTER YV
REFERENCE SECTION

WITH KEYBOARD o ‘N__I?_u_—[

{continued)

Cross Reference
ACCEPT, INPUT (with files), LINPUT

Examples

100 INPUT X
Causes the computer to display the guestion-mark prompt
and wait for aninput value. When [ENTER] is pressed, the
entered value is stored in the variable X.

100 INPUT X$,Y,"ENTER Z";Z(A)
Causes the computer to display the question-mark prompt
and wait for an input value for X3. When [ENTER] is
pressed, the entered value is assigned to X$. The
guestion-mark prompt is again displayed and the
computer waits for a value to be entered for Y. Then
ENTER Z is displayed and the computer waits for an input
value for Z(A). The subscript is evaluated for Z(A) before
the data value is stored.

=

857

CHAPTER V
REFERENCE SECTION

NPUI i FLES

-ormat

INPUT #file-number [, REC numeric-expression], variable-list

Jescription

The INPUT statement is used to read data from files that have
been opened in INPUT or UPDATE mode. Each variable in
variable-list is assigned a value from the file.

File-number ts a number from 0 through 255 that refers to an
open file or device. File number 0 refers to the keyboard and
display and is always open. See INPUT (with keyboard). File-
number is rounded to the nearest integer.

Variable-list |s a list of variables separated by commas. The
variables may be numeric or string, subscripted or
unsubscripted. The data values in the current record are
assigned to the variables In the list. if the current record does
not contain enough data, another record is read. Successive
records are read until each of the variables is assigned a value
or the end-of-file is encountered.

The computer interprets data differently when reading DISPLAY
and INTERNAL type data. See “Using External Devices” in
chapter 4.

Display-type data has the same form as data entered from the
keyboard. The values in each record are separated by commas.
Leading and trailing spaces are ignored unless they are part of
a string value enclosed in quotation marks. A quotation mark
within a quoted string is represented by two quotation marks.
When the INPUT statement encounters two adjacent commas,
a null string is assigned to the variable. Each item is checked
to ensure that numeric values are placed in numeric variables
and string values in string variables.

Internal-type data is in binary format, the format used internally

during execution. Each value is preceded by its length. The

INPUT statement uses the lengths to separate and assign the
values to the variables. The only validation performed by the ?
INPUT statement is to ensure that numeric data is from2 to 8

bytes long.

rcbntfnued}

5-58

CHAPTER V|
REFERENCE SECTION

WITH FILES —NDUT

(continued)

When an INPUT statement terminates, any remaining data
values in the current record are ignored. The next INPUT
statement which accesses the file reads another record. |
However, when variable-list ends with a comma, the input is left
pending. That is, the remaining values in the current record are
maintained. The next INPUT statement which accesses the file
assigns the next available data value.

If pending input data exists when a PRINT, RESTORE, or
CLOSE statement accesses the file, the pending data is
discarded. If pending output data exists when an INPUT
statement is encountered, the pending data is output before the
INPUT statement is executed.

REC numeric-expression is used when file-number refers to a
relative record file. Numeric-expression specifies the record to
be read from the file. The first record of a file is record zero.
See “Using External Devices” in chapter 4 and refer to
individual peripheral manuals for information about relative
record files and the use of the REC clause.

Cross Reference

CLOSE, INPUT, OPEN, PRINT, RESTORE
{continued)

559

CHAPTER V

REFERENCE SECTION -
ND _UT_ _ _ WITH FILES
(continued)
Examples

100 INPUT #1,X$
Stores in X$ the next value available in the file that was

opened as #1.

250 INPUT #23,%,A,LL3
Stores in X, A, and LL$ the next three values from the file
that was opened as #23.

320 INPUT #3,4,B,C,
Stores in A, B, and C the next three values from the file
that was opened as #3. The comma after C creates a
pending input condition.

The following program formats the tape in the Wafertape
peripheral (thereby destroying any data that was previously on
the tape), opens it in update mode, and prints five values to the
fite MYFILE on the tape. The values are then reread and
displayed.

100 FORMAT 1

110 OPEN #1,"1.MYFILE", INTERNAL, UPDATE

120 FOR A=1TO 5

130 READ DATAQUT

140 PRINT #1,DATAQOUT
Lines 120 through 140 read five records from the DATA
statement and write them to file #1.

150 PRINT DATAQUT;"IS WRITIE TO FILE #1.":PAUSE 1.5

160 NEXT A

170 RESTORE #1

180 FORB=1TO 5

190 INPUT #1,DATAIN

200 PRINT DATAIN;"IS RECORD #":B:PAUSE 1.5

210 NEXT B
Lines 180 through 210 read the five records that were
written on file #1 and then display their values.

220 CLOSE #1, DELETE I
Deletes the file. | .

230 DATA 15,30,72,36,94

5

560

CHAPTER V
REFERENCE SECTION

N

Format |
INT(numeric-expression)

Description

The INT function returns the largest integer less than or equal
to numeric-expression.

Examples

250 P=INT(3.999999999)
_ Sets P equal to 3.

470 DISPLAY AT(7),INT(4.0) : PAUSE
Displays 4 in column 8.

610 K=INT(-3.0000001)
Sets K equal to —4.

5-61

CHAPTER V L CHAPTER V

REFERENCE SECTION) _ __ REFERENCE SECTION
' i} .;-_ e - A —————————
INTRND O
Format Format o
INTRND(numeric-expression) CALL 10 (dexfr'ce, cqmmand [, starus—}rarfab!e])
{string-variable [, status-variable] }
Description Description

The INTRND function returns an integer raqdom numper
between 1 and the rounded value of numeric-expression. The

message Bad argument is displayed if numeric-expression
rounds to a value less than one.

This function is equivalent to the expression
INT(RND*INT(X + .5))+ 1.

The 1Q subprogram performs special control operations which
are not available in CC-40 BASIC, but may be supported by
some peripherals. Proper use of this subprogram requires
knowledge of input/output (I/0) data structures and specific
peripheral capabilities. Refer to the peripheral manuals for
examples on the use of the |O subprogram and the Editor/
£ amples Assembler manual for more information.

X

170 A=INTRND{5*EXP(2)})
Sets A equal to a random integer value between 1 and 37.

Device is the number associated with the peripheral device and
can be from 1 through 255.

Command is a numeric code that specifies the operation to be

330 PRINT INTRND(53) : PAUSE performed by the device.

Prints & random integer value between 1 and 53.
String-variable contains from 2 through 12 characters which

represent the data required for the IO operation. The data
passed to the O subprogram are interpreted as binary values.
The string-variable is always returned with 12 characters. The
data iength and status may be modified. The format ot the

string is shown below,

Field Field

Name Length Description

device 1 peripheral device code
command operation command code

1
file number 1 file number as assigned in BASIC
record number 2 record number within a file
2

buffer length size of the buffer for data received
from the peripheral

| data length 2 number of characters to be sent to
’ the peripheral
’ status - 1 status code returned by the device
] buffer pointer 2 highest address of the buffer
{continued)
563

562

CHAPTER V
REFERENCE SECTION

lO - SUBPROGRAM

—— ﬂ I

{continued)

Specific requirements for this data are given in the peripherals
manuals and the Editor/Assembler manual.

Status-variable is a numeric variable in which information
regarding the result of the operation is stored. If no /O error
occurred, status-variable is zero. If an /O error occurred, status-
variable contains the corresponding error code. The inclusion of
a status-variable affects the computer's response to the
occurrence of an O error. |f an l/O error occurs when status-
variable is given, no error message is displayed and the error
cannot be handled by ON ERROR. If an error occurs when
status-variable is omitted, the message is displayed or the error

can be handled by ON ERROR.

Cross Reference

ON ERROR

Example

140 CALL I0(1,1)
Closes device 1. (A command code of 1 is a CLOSE

operation.)

5-64

CHAPTER YV
REFERENCE SECTION

SUBPROGRAM

Vg A AL E e e E el T R TR L. e : I .. ey, oy - , . -
ML -j'a""' R L - = X o g b, e o an e ol Lkl Mt , b nabile ! .
e B P r IE. AT s A A L i il Lo bl ST -
R Tt AIC T § STy, e A, e
. FEI aib T s R T A el BT I R X S ¥ 1 BUR. W POUP e . - .
=4 Ea b o ! P ETEE . s L oy s rae TLH N TN At e .

KEY

Format

-

CALL KEY(return-variable, status-variabile)

Description

The KEY subprogram assigns the ASCIl code of a key pressed
from the keyboard to return-variable. If no key is pressed,

return-variable is set equal to 255. See appendix D f i
the ASCII codes. , PP or a list of

Status-variable is used to store a value which represents the
status of the key pressed. A value of 1 means a new key was
pressed since the last CALL KEY was executed. A value of -1
means the same key was pressed as was returned in the
previous CALL KEY. A value of 0 means no key was pressed.

Example

340 CALL KEY(K,S)

350 IF S=0 THEN 340

360 PRINT K;CHR$(K)

370 PAUSE
Returns in K the ASCII code of any key pressed and in S a
value indicating the status of the key pressed.

CHAPTER V

REFERENCE SEQ'I_'ION -
Format

KEY$
Description

The KEY$ function halts program execution until a single key IS
pressed. When a key IS pressed, execution of the program
continues immediately and KEY$ returns a one charapter string
that corresponds to the key pressed. Refer to appendix D for a
list of the ASCII character codes.

If [BREAK] is pressed while KEY$ is waiting for a response, the
break occurs as usual. . -

Example | .
The following program continues if Y is pressed and stops |
Is pressed.

100 PRINT "Press Y to continue, N to stop"
110 A$=KEY$

120 IF A$="Y" OR A$="y" THE 140

130 IF A$="N" OR A§="n" T EN 150 ELSE 110
120 PRINT "Continue":PAUSE 1.5 :GOTO 100
150 PRINT "Stop'":PAUSE

5-66

iF
N5
Y.
Y.
o --
‘A
i - .
L)
A
xt
H.~-
.II
3 --
.
R -
i
.
a1l
1,3
-
N -
' -
1
A LH
|. -
4,
i
'.':'\-
I
.ji
i
"
i
"
-

CHAPTER V
_____ REFERENCE SECTION

AN

LEN(strfng-éxpfessfon)

Description

The LEN function returns the number of characters in string-
expression. A space counts as a character.
Examples

170 PRINT LEN("ABCDE"):PAUSE
Prints 5.

230 X=LEN("THIS IS A SENTENCE.")
Sets X equal to 19.

010 DISPLAY LEN(""):PAUSE
Displays 0.

567

CHAPTER V

REFERENCE ESEC_TION I
SR
Format

numeric-variable {, numeric-variable ...] =

[LET] numeric-expression |
string-variable [, string-variable ...} = string-expression

Description
The LET statement assigns the value of an expression to.the
specified variable(s). The computer evaluates the expression on
the right and places the result into the variable(s) on the left. If
more than one variable is specified, they must be §eparated
with commas. The LET is optional, and is omitted in the
examples in this manual. All subscripts on the left are

evaluated before any assignments are made.

Examples

110 LET T=4
Sets T equal to 4.

170 X,Y,Z2=12.4
Sets X, Y, and Z equal to 124.

200 A=3 <5 .
Sets A equal to — 1 since it is true that 3 is less than D.

350 L$,D$,B3="B" i}
Sets L$, D9, and B$ equal to “B".

K\.--

N
\H‘H-..

-
e
-

i i

Pk

CHAPTER V
REFERENCE SECTION

~ LINPUT

[Input-prompt;) string-variable
LINPUT <« [#file-number, [REC numeric-expression,] |
string-variable

Format

Description

The LINPUT statement assigns an entire input record or the
remainder of a pending input record to string-variable. Unlike
INPUT, LINPUT performs no editing on the input data. Thus, all
characters including commas, leading and trailing spaces,
semicolons, and quotation marks are placed into string-
variable.

Input-prompt is a string expression that must be followed by a
semicolon. If a string constant is used, it must be enclosed in
quotes. Input-prompt is displayed beginning at the current
cursor position as left by previous input/output statements. If
input-prompt is omitted, a question mark followed by a space is
used for the prompt.

Following the prompt, the flashing cursor is displayed. If the
resultant cursor position is greater than 31, the display is
cleared and the cursor position is set to column 1 prior to
displaying the prompt. When input-prompt is greater than 30
characters, it is truncated to 30 characters.

LINPUT can also be used to read display-type data from a file
or a device. File-number is the number of an open file. If the
specified file has pending input, the remainder of the pending
record is read. The message Bad input data is displayed if the
record or partial record is longer than 255 characters.

The optional REC clause may be used with devices which
support retative record (random access) files. Numeric-
expression specifies the record to be accessed. Refer to the
appropriate peripheral manual for more information concerning

reiative files.
{continued)

5-69

CHAPTER V
REFERENCE SECTION

NPUT

=

{continued)

Cross Reference
INPUT

Examples
300 LINPUT L$

Causes the computer to display the question-mark prompt

and store the entered data in L$.

470 LINPUT "NAME: ";NM§

5-70

—

4y

Causes the computer to display NAME:

e W

entered data in NM$.

and store the

.
s L T T L I O L S ' : .
o A B i R S R S T R S e N 2 e
Ll == ERES . " - .) .

.J =g .t
A

..'\:-1,:_..- _'...-?-'._

CHAPTER V
REFERENCE SECTION

LIST

Format |
[line-group]
LIST § [“device.name”]
[“device.name”, line-group]

Description

The LIST command is used to list program lines. If line-group is
not included, the entire program is listed. When Jine-group is
given, only those lines are listed. Line-group may specify any of
the following line ranges.

Line-group Effect

a single line number Lists that line.

line number — Lists that line and all following lines.
— line number Lists that line and all preceding lines.
line number — line - |
number Lists that inclusive range of lines.

When device.name is given, the lines are listed to the specified
device. If device.name is omitted, the lines are shown in the
display. During a listing to the display, the lines may be edited.

To suspend a listing to a device, press and hold any key until
the listing stops. Pressing the key again resumes the listing.
Pressing [BREAK] terminates any listing. Pressing 4 terminates
a listing to the display.

Examples
LIST 100
Lists line 100 to the display.

LIST 100-200
Lists ail lines from 100 through 200 to the display.

LIST "500
Lists the entire program to peripheral device 50
(presumably a printer).

LIST "50.R=C", -200
Lists all lines up to and including line 200 to peripheral
device 50.

5-71

CHAPTER V
REFERENCE SECTION

N -

Format
LN{numeric-expression)

Description |
The LN function calculates the natural logarithm of numeric-
expression. Numeric-expression must be greater than zero or
the error message Bad argument is displayed. The LN function

is the inverse of the EXP function.

Cross Reference
EXP

Examples

710 PRINT IN(3.4) :PAUSE o
Prints the natural logarithm of 3.4, which is 1.223775432.

850 X=IN(EXP(2.7)) .
Sets X equal to the natural logarithm of e raised to the 2.7

power, which equals 2.7.

910 S=LN(SQR(T)}
Sets S equal to the natural logarithm of the square root of

the value of T.

572

CHAPTER V
REFERENCE SECTION

LAD

SUBPROGRAM

Format o
CALL LOAD("device.filename’)

Description

The LOAD subprogram loads assembly language subprograms
from an external storage device into computer memory. These

i subprograms are run using the CALL EXEC statement.

More than one subprogram may be loaded into memory. When
Space permits, assembly language subprograms may reside in
memory in addition to BASIC programs and subprograms.

@ When loaded in this manner, these subprograms are appended

to the memory space reserved for system operation.

3 Device.filename identifies the device where the assembly
language subprogram is stored and the particular file to be
loaded. Device is the number associated with the physical
device and can be from 1 through 255. Filename identifies the
particular file. An error occurs if the LOAD subprogram
determines that the contents of the specified file are not an
assembly language subprogram. Refer to the appropriate
peripheral manuals for the proper device code and for specific
information about the form of filename.

Loaded subprograms remain in memory until NEW ALL is
entered or the system is initialized.

Cross Reference
EXEC

Examples

CALL LOAD("1.MYSUBS")

Loads the subprogram in file MYSUBS on device 1 into
memory.

100 INPUT "ENTER FILE NAME",A$

110 CALL LOAD ("1."8&A$)
Loads the assembly language subprogram entered by the
program user.

5-73

CHAPTER ¥ ' CHAPTER V

REFERENCESECTION =) REFERENCE SECTION
OG NEW
Format - Format _

LOG(numeric-expression) NEW [ALL]

Description | | Description

The LOG function calculates the common logarithm of numeric- The NEW command prepares the computer for a new program

expression. Numeric-expression must be greater than zero or by deleting the program and variables currently in memory. All

the error message Bad argument is displayed. B open files are closed.
Examples The NEW ALL command deletes the current program and

variables in memory, clears the user-assigned strings and
assembly language subprograms, cancels any expansion of
memory implemented by CALL ADDMEM, clears ail display

230 8=L0G(SQR(T)) , | indicators, sets the angle mode to RAD, and closes all open
Sets S equal to the common logarithm of the square root | files. |

of the value of T.

150 PRINT LOG(3.4):PAUSE |
Prints the common logarithm of 3.4, which is .531478917.

5-74 575

CHAPTER V | CHAPTER V

REFERENCESECTION = . REFERENCE SECTION
Format . - Format o

NEXT [control-variable] | NUMBER [initial-line] [, increment]
Description Description

The NEXT statement is always paired with a FOR '_I'O ST_EF'_
statement for construction of a loop. If control-variable is given,
it must be the same as control-variable in the FOR TO STEP

statement. If controi-variable is omitted, NEXT is paired v::ith
the most recent, unmatched FOR TO STEP statement. It is
good programming practice to include control-variable.

When FOR TO STEP...NEXT loops are nested, the NEXT
statement for the inside loop must appear before the NEXT

statement for the outside loop.
See FOR TO STEP for a description of the looping process.

The NUMBER (or NUM) command generates sequenced line
humbers. These line numbers are displayed with a trailing
space for convenience when entering program lines. All that
needs to be typed in are the statement(s). After [ENTER]} is

pressed, the line is stored in memory and the next line number
is displayed.

If initial-line and increment are not specified, the line numbers
start at 100 and increase in increments of 10. Otherwise, lines
are numbered according to the initial-tine and increment
specified. If a line already exists, that line is displayed and may

then be replaced or changed using the edit functions. If the line

L Cross Reference number is altered, the sequence of generated line numbers

| FOR TO STEP continues from the new line number.

};E Example * To terminate the numbering process, press [ENTER] when a line
; | comes up with no statements on i

i The program below illustrates a use of the NEXT statement. line is dinlayed. it or press [BREAK] when any

! The vatues printed are 30 and -2.
Cross Reference

100 TOTAL=0 |
| 110 FOR COUNT=10 TO O STEP -2 | RENUMBER
120 TOTAL=TOTAL+COUNT -

| 130 NEXT COUNT Examples

i 140 PRINT TOTAL; COUNT: PAUSE : NUM 110

! . Instructs the computer to number starting at 110 with
increments of 10.

NUM 105,5

Instructs the computer to number starting at line 105 with
increments of 5.

5-76 577

CHAPTER YV | CHAPTER V
_ REFERENCESECTION _ REFERENCE SECTION
NUMERIC - - OLD
Format Format

NUMERIC(string-expression) OLD “device.filename”

Description

Description
The OLD command loads a program from an external device

The NUMERIC function tests whether string-expression is a
valid representation of a numeric constant. NUMERIC returns a

value of — 1 (true) if string-expression is a valid numeric
constant, and 0 (false) if string-expression is not a valid
numeric constant.

Leading and trailing blanks in string-expression are ignored.
NUMERIC can be used to test if the VAL function will work
correctly on a string which is meant to represent a number.

into memory. OLD closes all open files and removes the
program currently in memory before loading the program. A

BASIC program can be stored on device.filename with the
SAVE command.

Device.filename identifies the device where the program is
stored and the name of the file. Device is the number
associated with the physical device and can be from 1 through

Cross Reference 255.. Filename identifies the particular file. Refer to the
peripheral manuals for the device code for each peripheral

| |
VAL I
. _ device and for specific information about the form of fifename.

" Example

‘ | The following program segment determines if an entry from the
!'l keyboard is a valid numeric constant. If it is not, an error
message is displayed until data is reentered. If the data is a

Note: If filename specifies a data file rather than a program file,
it may be necessary to press the reset key.

Cross Reference

numeric constant, it is stored in variable A. SAVE
100 LINPUT "ENTER VALUE: ";Ad E
110 IF NOT NUMERIC(A$) THEN LINPUT "ERROR, REENTER: "; xample
T A$:GOTO 110 OLD "1.MYPROG"
I 120 A=VAL(A$) Loads the program MYPROG into the computer's memory

from peripheral device 1.

578 _ 5-79

CHAPTER V
REFERENCE SECTION

A —— L L A—— N ——

ON BREAK

Format STOP
ON BREAK € NEXT

A - #

ERROR

Description

The ON BREAK statement determines the action taken when a
breakpoint occurs. After the ON BREAK statement is executed,
breakpoints are handled according to the option selected.

ON BREAK STOP restores the normal function of BREAK,
which is to halt program execution and display the standard
breakpoint message. This option is set when a program is run.

ON BREAK NEXT causes breakpoints to be ignored. When a
breakpoint that immediately precedes a line number is
encountered, the breakpoint is ignored and the program line is
executed. The [BREAK] key is also ignored. However, a BREAK
statement that does not contain a line-number-fist halts the
program even though ON BREAK NEXT is in effect. ON BREAK
NEXT can be used to ignore breakpoints which you have
specified in a program for debugging purposes. Note: Since the
[BREAK] key is ignored, the reset button must be pressed to
stop a program that does not stop normally.

ON BREAK ERROR causes breakpoints to be treated as errors,
which altows the ON ERROR statement to be used to process
breakpoints. See ON ERROR for more information.

The ON BREAK statement remains in effect until another ON
BREAK statement changes it. When a subprogram ends, the
ON BREAK status in effect when the subprogram was called is

again in effect.

Cross Reference

BREAK, ON ERROR

{continued}

¥

5-80

N mima .l g
e _-L"':ﬂif_ I

(R - - .)
A T R T T M T BIPFRPU AP - . . Ll ; '
SRR PRSI AR e Do T T T ety S

R

e oaar

L

CHAPTER V

Example

REFERENCE SECTION

~ ONBREAK

(continued)

The program below illustrates the use of ON BREAK. When the
Mmessage Break is displayed, press [CLR] and enter CONTINUE.

.100 BREAK 140
Sets a breakpoint in line 140.
110 ON BREAK NEXT

Sets breakpoint handling to ignore breakpoint
120 BREAK " >

A breakpoint occurs in line 120 in spite of line 110. Press
[CLR] and CONTINUE.
130 FOR A=1 TO 500
140 PRINT " (BREAK) IS DISABLE
150 NEXT A

The [BREAK] key does not work while lines 130 through
150 are being executed.

160 ON BREAK STOP
Restores the normal use of [BREAK).

170 FOR A=1 TO 500

180 PRINT "NCW (BREAK) WORKS"

190 NEXT A

The IBFEAK] key again works while lines 170 through 190
are being executed.

-~

it

b-81

CHAPTER V | CHAPTER V
__REFERENCE SECTION _____ REFERENCE SECTION
ON ERROR ON ERROR
Format | (&unﬁnued)

STOP
ON ERROR {Hne-number}

Description

The ON ERROR statement determines the action taken when
an error occurs during the execution of a program. After the ON
ERROR statement is executed, any errors that occur are
handled according to the option selected.

ON ERROR STOP restores the normal way of handling errors
which is to hait program execution and print a descriptive error
message. This option is set when a program is run,

ON ERROR /ine-number transfers control to the specified line
when an error occurs. Line-number must be the beginning of an
error-processing subroutine. Once an error has occurred and
control has been transferred, error handling reverts to ON
ERROR STOP. If the ON BREAK ERROR option was selected, it
is changed to ON BREAK NEXT. For an error-processing
subroutine to handle any new errors, an ON ERROR
line-number must be executed again.

The ON ERROR statement remains in effect until another ON
ERROR statement changes it. if a subprogram ends, and no
errors occurred white the subprogram was executing, the ON
ERROR status In effect when the subprogram was called is
again in effect. If an error occurred In a subprogram, any
changes in the error handling status made by the error handler
is in effect when the subprogram ends.

The main program and subprograms can share the same error-
processing subroutine. Subroutines called by GOSUB cannot be
shared.

Cross Reference

ON BREAK, ON WARNING, RETURN (with ON ERROR}

(continued)

5-82

Example -
The program below illustrates the use of ON ERROR.

100 ON ERROR 150
Causes any error to pass control to line 150.
110 X$="Ar
120 X=VAL(X$)
Causes an error.
130 PRINT X;"SQUARED IS";X*X:PAUSE 2
140 STOP
150 REM ERROR SUBROUTINE
160 ON ERROR 220
Causes the next error to pass control to line 220.
170 CALL ERR{CODE, TYPE, FILE, LINE)
Determines the error using CALL ERR.
180 IF LINE< >120 THEN RETURN 220
Transfers control to line 220 if the error is not in the
expected line.
190 IF CODE< >29 THEN RETURN 220
Transfers control to line 220 if the error is not the one

expected.
200 X$=" 51

Changes the value of X$ to an acceptable value.
210 RETURN

Returns control to the line in which the error occurred.
220 REM UNKNOWN ERROR

230 PRINT "ERROR";CODE;"™ IN LINE";LINE:PAUSE

Reports the nature of the unexpected error and the
program stops.

5-83

CHAPTER V
- _REFERENCESECTION

ON GOSUB

Format
ON numeric-expression GOSUB line-number1 [, line-number2 ..

Description
The ON GOSUB statement determines which subroutine to
execute by evaluating numeric-expression. If the value of
numeric-expression is 1, the subroutine starting at line-numbert
is executed: if 2, the subroutine starting at line-number2 is
executed, and so forth. Each line number must be the first
statement of a subroutine. If numeric-expression is 0, negative,
or larger than the list of line numbers, the error message Bad
value is displayed. If numeric-expression is a decimal number,
it is rounded.

After the RETURN statement of the subroutine is executed,
control returns to the statement following ON GOSUB. ON
GOSUB may not be used to transfer control into or out of a
subprogram.

Cross Reference
GOSUB, RETURN (with GOSUB)

Examples

140 ON X GOSUB 1000,2000,300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if

Xis 3.

240 ON P-4 GOSUB 200,250,300,800,170
Transfers control to 200 if P-4 is 1 (P is 5), 250 if P-4 is
2,300ifP-4is3,800ifP—-4is4,and 170 if P—4is b.

5-84

CHAPTER V
REFERENCE SECTION

ON GOIO

ON numerie-expression GOTO line-number? [, line-number2 ..

Description

The ON GOTO statement determines where to transfer control
by evaluating numeric-expression. If the value of numeric-
expression is 1, control is transferred to line-numberf; if 2,
control is transterred to line-number2, and so forth. If numeric-
expression is 0, negative, or greater than the list of line
numbers, the error message Bad value is displayed. If numeric-
expression is a decimal number, it is rounded.

ON GOTO may not be used to transfer control into or out of a
subprogram.

Cross Reference
GOTO

Examples

130 ON X GOTO 1000,2000, 300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if
X is 3. The equivalent statement using an IF THEN ELSE
statement is 1320 IF X=1 THEN 1000 ELSE IF X=2 THEN 2000
ELSE IF X=3 THEN 300 ELSE PRINT "Bad value":
PAUSE: STOP, which is more than 80 characters.

210 ON P-4 GOTO 200,250, 300,800,170
Transfers control to 200 if P—4is1(Pis5), 250 if P-4 is
2,300iftP-4is 3,800ifP—4is 4, and 170 if P-4 is 5.

! CHAPTER V CHAPTER V

| __REFERENCE SECTION _ REFERENCE SECTION
ONWARNNG —— — ON WARNNG
| ‘ Format PRINT (continued)

| ON WARNING {gg:; H} | Example *

j; | The program below illustrates the use of ON WARNING.

i Description 100 ON WARNING NEX
: \ | The ON WARNING statement determines the action taken when - " .
Sets warning handling to go to the next statement.

a warning occurs during the execution of a program. After the
ON WARNING statement is executed, any warning is handled 110 PRINT 110,5/0:PAUSE

i according to the ON WARNING option selected. ' Prints the result without any message.
‘ - | _ 120 ON WARNING PRINT
ON WARNING PRINT restores the normal use of warnings | Sets warning handling to the normal option, which is to

i which is to print a descriptive warning message and continue

: | _ rint a message and allow execution to |
| program execution after the [ENTER] or [CLR] key is pressed. iaming occurgs on 1o continue when a
: This option is selected when a program is run. | 130 PRINT 130,5/0: PAUSE |
! ON WARNING NEXT causes the program to continue execution Prints the warning. When [ENTER] or [CLR] is pressed,
without printing any message. | prints 130 followed by the value of 5/0.

140 ON WARNING ERROR
Sets warning handling to treat warnings as errors.

ON WARNING ERROR causes the occurrence of a warning to

be treated as an error, allowing effective handling of warnings - 150 PRINT 150,5,/0: PAUSE
y .
'y with ON ERROR statements. | Prints the warning message and treats the warning as an
IH | The ON WARNING statement remains in effect until another error.
ON WARNING statement changes it. When a subprogram ends, 160 PRINT 160:PAUSE
the ON WARNING status in effect when the subprogram was | Not executed because execution stops in line 150.

! called is again in effect.

" Cross Reference _ : r

ON ERROR
{fcontinued)

OPEN

CHAPTER V
REFERENCE SECTION

Format

OPEN #file-number, “device.filename” |, file-organization]
[, file-type} [, open-mode] [, record-length]

Description

The OPEN statement enables a BASIC program {0 use data
files and peripheral devices by providing a link between file-
number and a file or device. In setting up this link, the OPEN
statement specifies how the file or device can be used (for
input or output) and how the file is organized. The OPEN
statement must be executed before any BASIC statement in a
program attempts to use a file or device requiring a file number.

If an OPEN statement references a file that already exists, the
attributes in the OPEN statement must be the same as the
attributes of the file.

File-number is a number from 1 through 255 that the OPEN
statement associates with a file or device. This file-number is
used by all the input/output statements that access the file or
device. File number 0 is the keyboard and display of the
computer. It cannot be used for other files and is always open.
If file-number specifies a file that is already open, an error
occurs. File-number is rounded to the nearest integer.

Device.filename is an actual peripheral device number and
other device dependent information. Device.filename may be a
string expression. Device is the number associated with the
physical device and can be from 1 through 255. Filename
supplies information to the peripheral device for the OPEN
statement. For example, with an external storage device,
filename specifies the name of the file. With other devices,
filename specifies options such as parity, data rate, etc. Refer
to the peripheral manuals for the device code for each
peripheral device and for specific information about the form of

filename. | ;
(continued)}
e

5-88

CHAPTER V
REFERENCE SECTION

OPEN

fcontinued)

The,: file attfibutes listed below may be in any order or may be
omitted. When an attribute is omitted, defaults are used.

File-organization specifies either a sequential or a relative
(random access) file. Records in a sequential file are read or
written in sequence from beginning to end. Records in a
RELATIVE (or random access) file can be read or written in any
record order, including sequentially. Omit file-organization for
sequential files or specify RELATIVE for random access files.

File-type may be either DISPLAY or INTERNAL. DISPLAY
specifies that the data is written in ASCI format. INTERNAL
specifies that the data is written in binary format. Binary
records take up less space, are processed more quickly by the
computer, and are more efficient for recording data on external
storage devices. However, if the information is going to be
printed or displayed for people to read, DISPLAY format should
be used. If file-type is omitted, DISPLAY is assumed.

Open-mode instructs the computer to process the file in
UPDATE, INPUT, QUTPUT, or APPEND mode. UPDATE specifies
that data may be both read from and written to the file. INPUT
specifies that data may only be read from the file. OUTPUT
specifies that data may only be written to the file. APPEND

specifies that data may only be written at the end of the file. |f
open-mode is omitted, UPDATE is assumed.

Note that if a file already exists on external storage, specifying
OUTPUT mode resuits in new data being written over the
existing data.

Record-length consists of the word VARIABLE followed by a
numeric expression that specifies the maximum record length
for the file. The maximum allowable record is dependent on the
device used. If record length is omitted, the peripheral device
specifies a default record-length.

(continued)

989

CHAPTER V

REFERENCE SECTION

OPEN"

(continued)

Cross Reference
CLOSE, INPUT, LINPUT, PRINT, RESTORE (Also see chapter 4.)

Examples
100 OPEN #23,"1.X", INTERNAL, UPDATE |
Opens the file named “X” on peripheral device 1 an_d
enables any input/output statement 10 access the file by

using the number 23. The type of the file is INTERNAL.
Since the file is opened in UPDATE mode, data can be

both read from and written to the file.

150 OPEN #243,A$&".ABC", INTERNAL | |
If AS equ’als “1” opens a file on device 1 with a name of

ABC. The file type is INTERNAL, UPDATE mode I8
assumed, and the device specifies the default record

length.

5-90

CHAPTER V
REFERENCE SECTION

_ PAUSE

Format

[iumeric-expression)
PAUSE { ALL]

Description

The PAUSE statement suspends program execution either for a
specitied number of seconds or until the [CLR] or [ENTER] key is
pressed. If numeric-expression is omitted, the underline cursor
IS displayed in column one to indicate an indefinite pause is
occurring. The cursor control keys can then be used to view the
contents of the 80-column line. Execution continues when
either [ENTER] or [CLR] is pressed. |

It numeric-expression is given, PAUSE suspends program
execution for the number of seconds in the absolute value of
numeric-expression. If numeric-expression is positive, the timed
pause can be overridden by pressing [ENTER] or [CLR]. If
negative, the timed pause cannot be overridden. The effective
resolution is approximately one tenth of a second. If numeric-
expression is less than .1, the program does not pause. During
a timed pause, the cursor is not displayed and the display
cannot be scrolled.

The PAUSE ALL statement suspends program execution each
time a complete output line is sent to the display. Execution
continues when the [CLR] or [ENTER]) key is pressed. PAUSE ALL
remains in etfect until a timed PAUSE of length zero is
executed.

PAUSE ALL remains in effect when a subprogram is cafled. If
PAUSE ALL is modified in a subprogram, it is again in effect
when the subprogram ends.

Cross Reference

DISPLAY, PRINT

{continued)

5-91

CHAPTER V
REFERENCE SECTION

fecontinued)

Examples
120 PAUSE 2.2
Halts execution for 2.2 seconds or until the [CLR] or
[ENTER] key is pressed.

190 PAUSE
Halts execution until the [CLR] or [ENTER] key is pressed.

The following program changes degrees Fahrenheit to degrees
Celsius.

100 PRINT "ENTER DEG: ";
Prints the prompt ENTER DEG: . The pending print, created
by the semicolon at the end of the PRINT statement,
causes the prompt to be displayed until data is entered.

110 ACCEPT DG

120 PRINT DG;"DEG ="; (DG-32)%5/9; "DEGREES C":PAUSE
Prints the answer. The PAUSE statement that follows the
PRINT statement causes the answer to be displayed until
the [ENTER] or [CLR] key is pressed.

130 GOTC 100

5-92

.\
_—
a Y
ety
e
7
.
)
e
o
T "
bt
s
-llh " 0
-
=,
W,
-, _y"
i
1 .‘
g 1
H
S
o
.
i,
)
Py
=]
F
Taed
i
"
"...)
£

LTy
R A
R

CHAPTER V
REFERENCE SECTIO

SUBPROGRAM PE E K

Format |
CALL PEEK(address, numeric-variable1 [, numeric-variable2])

Description
The PEEK subprogram is used to read the contents of memory
locations. Starting at the memory location specified by address,
the value of that byte of memory is assigned to numeric-
variable1, the value of the next byte to numeric-variable2, and
so forth. The number of variables listed determines how many
bytes are read.

Address must be a numeric expression from 0 to 65535. The
values assigned to the variables are in the range 0 through 255.

Cross Reference
POKE

Example

100 CALL P ‘*‘K(2096,;1,X2,X3,X4)
Returns the values in locations 2096, 2097, 2098, and 2099
in variables X1, X2, X3, and X4, respectively.

-

593

CHAPTER V
REFERENCESECTION

.
.ol

P | I

SUBPROGRA_M

P —— e — ——————

Format
Pl

Description
The P function returns the value of r as 3.14159265359.

Example

130 VOLUME=4/3*%PT*R A3 |
’ Sets VOLUME equal to four thirds times Pl times the

radius cubed, which is the volume of a sphere with a
radius of R.

594

CHAPTER V
'REFERENCE SECTION

POKE

Format

CALL POKE(address, byte? [, byte2 ..])

Description

The POKE subprogram is used to write data into memory
locations. The value of byte? is stored in the memory location
specified by address, the value of byte2 is stored in the next
memory location, and so forth.

The value of each data byte can be from O through 255. If the
value is greater than 255, it is repeatedly reduced by 256 until it
is from 0 through 255. Using a byte value greater than 32767

- g¢auses an error.

Indiscriminate use of this statement may destroy the program
currently in memory and require that the computer be reset to
continue.

Cross Reference

PEEK

Example

200 CALL PCKE(ADDR, 162,10,17)
Places the values 162, 10, and 17 in the locations ADDR,
ADDR + 1, and ADDR + 2 respectively.

595

CHAPTERV
REFERENCE SECTION

F

Ly T
"

POS

Format |
POS(string1, string2, numeric-expression)

Description |
The POS function returns the position of the flrst_ occurrepf:e of
string2 in string1. The search begins at the position specufled
by numeric-expression. If no match is found, the function

returns a value of zero.

Examples
110 X=POS("PAN","A",1)
Sets X equél to 2 because A is the second letter in PAN.

140 Y=POS{"APAN","A",2) _ . .
Sets Y equal to 3 because the A in the third POSI'(IDI'I in
APAN Is the first occurrence of A in the portion of APAN

that was searched.

170 Z=POS("PRN" HAH’B)
Sets Z equa’I to 0 because A was not in the part of PAN
that was searched.

290 R=POS("PABNAN","AN",1)
Sets R equal to 5 because the first occurrence of AN
starts with the A in the fifth position in PABNAN.

5-96

' . . - L 2 O L L L T I LR B AP)
z ‘%ﬁ.&%ﬂﬁ“;‘,]ﬁ&qfﬁ! A e N TR e e WL
N N N AL Lk Tl CEVA L - PR
- r .. . 1 [t S
) L}

CHAPTER V
REFE_B_ENCE _SEOTION_
Format

PRINT [USING /ine-number

string-expression | Printlist]

L . s T

WITH DISPLAY

Description

The PRINT statement may be used to format and write data to
the display. USING may be used to specify a format for the
items in print-list. Refer to IMAGE and USING for a description
of format definition and its effect upon the PRINT statement. If
print-list is omitted, the PRINT statement clears the display.

Print-list consists of print items and print separators. Print
items are numeric and string expressions that are displayed
and TAB functions that control print positioning. Print
separators are commas or semicolons that indicate the
position of print items in the display.

Print ltems

During execution of a PRINT statement, the values of the
expressions in print-list are displayed in order from left to right

In the positions determined by the print separators and TAB
functions.

e String expressions are evaluated to produce a string result.
String constants must be enclosed in quotation marks.
Blank spaces are not inserted before or after a string. To
print a blank space before or after a string, include it in the
string or insert it separately with quotes.

* Numeric-expressions are evaluated and displayed with a
trailing space. Positive values are printed with a leading

space (instead of a plus sign) and negative numbers are
printed with a leading minus sign.

* The TAB function specifies the starting position in the

print line for the next item in the print-list. See TAB for
more information.

(continued)

597

CHAPTER YV CHAPTER V
REFERENCE SECTION REFERENCE SECTION

| WITH DISPLAY . WITH DISPLAY l NT
(continued) | (continued)
Print Separators - Numeric Formats
You must place at least one print separator between adjacent Numbers are printed in either normal decimal form or scientific
print items. Multiple print separators in a PRINT statement are - notation. Scientific notation is used when more significant

evaluated from left to right. . ; digits can be shown.

e The semicolon prints the next item in the print-list
immediately after the last print item, with no extra spaces
between the values.

e The comma prints the next print item at the beginning of

When a number is printed in normal decimal form, the following
conventions are cbserved.

* Integers are printed without a decimal point.

the next print field. The print fields are 15 characters long * Non-integers are printed with a decimal point. Trailing
and are located at columns 1, 16, 31, 46, 61, and 76 for an zeros in the fractional part are omitted. If the number has
80-column line. If the current column position is past the more than ten significant digits, the value is rounded to
start of the last print field, the comma causes the next &) ten dlgits.
printed item to be displayed in the next line. * A number whose absolute value is less than one is printed
If a print item Is longer than the remainder of the current line, it without a zero to the left of the decimal point.
is displayed at the start of the next line. If a numeric print item o A number printed in scientific notation is in the following form.

fits on the current line without its trailing space, it is printed on mantissa E exponent

the current line. If a print item is longer than 80 characters, the When a number is pri : :
. o er is print
first 80 characters are printed on one line and the remaining conventions are obzerueeg in sclentific notation, the following

characters are printed on successive lines, 80 characters at a ‘ e The mantissa is printed with 7 or fewer digits with
igits with one

time. .

| digit always to the left of the decimal.
Pending Prints * Trailing zeros are omitted in the fractional part of the
If the print-list is not followed by a comma or a semicolon, mantissa. .
the remainder of the 80-column line is cleared. Therefore, the * The exponent is displayed with a plus or minus sign
next input/output statement must begin a new line. followed by a two or three digit exponent.

* When the exponent is two digits, the mantissa is limited to
seven digits. When the exponent is three digits, the
mantissa is limited to six digits. When necessary, the
mantissa is rounded to the appropriate number of digits.

Using a comma or a semicolon after print-list creates a pending
print which causes the remainder of the line not to be cleared.
Instead the computer spaces over to the start of the next field
if a comma ended the PRINT statement, or does not space at 3
all if a semicolon endef.d the statement. The next /O statement L Cross Reference
displays or accepts information beginning at the current |
column position unless the statement changes the position. ~ ACCEPT, DISPLAY, IMAGE, INPUT, PAUSE, TAB, USWGW e
ninu
A pending print can be used to create an input prompt for the
ACCEPT or INPUT (with display) statement. The next INPUT
statement places its prompt after the pending print. See
ACCEPT and INPUT (with display) for more information.

(continued)

5-98 5.99

CHAPTER V
REFEHENCE SECTION

PR' NT ~ WITH DISPLAY

(continued)

Examples
100 PRINT
Prints a blank line.

210 PRINT "THE ANSWER IS"; ANSWER :PAUSE
Prints THE ANSWER IS immediately followed by the value of

ANSWER.

320 PRINT X,Y/2 : PAUSE |
Prints the value of X and in the next field the value of Y/2.

450 PRINT "NAME: ";

460 ACCEPT N§
Prints NAME: and accepts the entry after the prompt.

f Y

5-100

CHAPTER V
REFERENCE SECTION

WITH FILES o I?_l?‘ N___I

Format
PRINT #file-number [, REC numeric-expression]

line-number int. i
[USING string-expression I'L printlist)

Description

The PRINT statement may be used to format and write data to
a file or device. File-number is a number from 0 through 255
that refers to an open file or device. The file must have been
opened in OUTPUT, UPDATE, or APPEND mode. File-number 0
refers to the display, which is always open. File-number is
rounded to the nearest integer.

REC numeric-expression may appear only when file-number
refers to a relative record file. Refer to chapter 4 and the
individual peripheral manuals for information about relative
record files and the proper use of REC. Numeric-expression is
evaluated to designate the specific record number of the file to
which to write.

USING may be used to specify an exact format for a display-
type file. Refer to the IMAGE and USING sections for a
description of format definition and its effect upon the PRINT
statement. Including USING in a reference to an internal-type
data file results in an error.

Print-list consists of print items and print separators. Print
items are numeric and string expressions that are displayed
and TAB functions that control print positioning. Print
separators are commas or semicolons that indicate the
position of print items in the display.

Print-list is interpreted in order from left to right. The form of
the output depends upon the type (DISPLAY or INTERNAL) of
file or device. See OPEN and chapter 4 for a description of
file-type.

(continued)

5-101

CHAPTER V
__REFERENCE SECTION
BI?H\H_ B ~ WITH FILES
{continued)

Display-type Files
During execution of a PRINT statement that refers to a display-
type file or device, print-list is evaluated as follows.

e String-expressions are evaluated to produce a string result.
String constants must be enclosed in quotation marks.
Biank spaces are not inserted before or after a string. To
print a blank space before or after a string, include it in the
string or insert it separately with quotes.

e Numeric-expressions are evaluated and displayed with a
trailing space. Positive values are printed with a leading
space (instead of a plus sign) and negative numbers are
printed with a leading minus sign.

¢ The TAB function specifies the starting position in the
print line for the next ttem in print-list. See TAB for more

information.

You must place at least one print separator between adjacent
print items. Multiple print separators in a PRINT statement are

evaluated from left to right.

¢ The semicolon prints the next item in the print-fist
immediately after the last print item, with no extra spaces

between the values.

* The comma prints the next print item at the beginning of
the next print field. The print fields are 15 characters long
and are located at columns 1, 16, 31, and so forth. i the
current column position is past the start of the last print
field, the comma causes the next printed item to be
printed in the next record.

if a print item is longer than the remainder of the current
record, the current record is printed and the print item is
printed at the start of the next record. If a numeric print item
fits in the current record without its trailing space, it is printeg"
in the current record. If a print item is longer than the record:
length, it is divided into segments that are the length ofthe
record until the last segment is the length of the record or less.

The segments are then printed in successive records..
(continued)

5-102

WITH FILES

CHAPTER V
REFERENCE SECTION

_ PRINT

(continued)

Internal—iype Files

!During execution of a PRINT statement that refers to an
internal-type file or device, print-fist is evaluated as follows.

* String expressions are evaluted and printed in the record in
internal string representation.

* Numeric expressions are evaluated and printed in the
record in internal numeric representation.

. Thg TAB function causes an error when used in printing to
an internal-type file.

:You must pilace at least one separator between adjacent print
items. Multiple print separators in a PRINT statement are
evaluated from left to right.

. :I'he semicoton prints the next item in the print-fist
immediately after the last print item, with no extra spaces
between the values.

* The comma functions exactly the same as the semicolon
separator.

If a print item is longer than the remainder of the current
record, the current record is printed and the print item is written
at the start of the next record. If a print item is longer than the
record length, an error occurs.

Pending Prints

If the prfnr-ﬁst ends without a comma or a semicolon, the
record is immediately written to the file. The next input/output
statement which accesses the file begins a new record. |

U:-:.Ing a comma or a semicolon after print-list creates a pending
print. If the print-list ends with a comma or semicolon, the
current record is not written. The computer spaces over to the
start of the next field if a comma ended the PRINT statement,
or does not space at all if a semicolon ended the statement.
The next output statement which accesses this file prints data
on this same record, beginning at the current column position

unless the statement changes the position.
(continued)

5-103

CHAPTER v

CHAPTER V -
__REFERENCE SECTION REFERENCE SECTION

P .NT B | WITH FILES DAD |

(continued) | Format ;
When print-list is omitted, but there is a pending output record, RAD i 3
the PRINT statement writes the pending record. When there is . 1
no pending record, the result depends upon the file type. If the Description E
file is display-type, the PRINT statement writes a blank (zero The RAD statement sets the units for angle calculations 1
length) record. If the file is internal-type, an error occurs radians. After the RAD angle setting is selected, all entere?:l
because internal-type files do not support zero length records. calculated angles are measured in radians. The 'FIAD settinge::d :
Cross Reference selected when NEW ALL is entered or the system is initialized.
IMAGE, INPUT (with files), OPEN, TAB, USING Cross Reference
a DEG, GRAD
Examples

150 PRINT #32,4,B,0,
Causes the values of A, B, and C to be printed to the next
record of the file that was opened as number 32. The final
comma creates a pending print condition. The next PRINT
statement accessing file #32 is printed to the same record
as this PRINT statement.

The program below writes data to a file.

100 OPEN #5,"1.MYPROG" , INTERNAL, UPDATE
Opens file number 5. MYPROG is created if it does not k
already exist on device number 1.
110 DIM A(50)
Dimensions an array for 51 values.
120 B=0
Initializes the summation variable.
130 FCR J=1 TO 50
Lines 130 through 180 facilitate data input.
140 PRINT "ENTER VALUE";
150 ACCEPT A(J)
160 B=B+A(J)
170 PRINT #5, A(J);
Value of A{J) is written to the file.
180 NEXT J

190 PRINT #5,B ’
Value of summation variable is written to the file.

200 CLOSE #5

5104

5105

CHAPTER V

REFERENCE SECTION
RANDOMIZE
Format

RANDOMIZE [numeric-expression]

Description |
The RANDOMIZE statement sets the random number generator
to an unpredictable sequence.

I¥f RANDOMIZE is followed by a numeric-expression, the same
sequence of random numbers is produced each time the
statement is executed with that value. Different values give
different sequences.

Example
The program below illustrates a use of the RANDOMIZE
statement. It accepts a value for numeric-expression and prints
the first 10 random numbers obtained using the RND function.
Press [BREAK] to stop the program.

100 INPUT "SEED: ";S

110 RANDOMIZE S

120 FOR A=1 TO 10:PRINT A;RND:PAUSE 1.1
130 NEXT A

140 GOTO 100

s

5-106

1
1
o
pal
+
I-.
N
L]
=
o
.\-
-
e
o
-
L
i
Al
FIY
T
5
"
. .I-
.I
"1
H
W
F
4
L
HH
-'1
H
[N
-
LA
-
s
i
I-'I
-2
Y
-2
- ’ -
e
i
-
Lo
o
.
R

5 3_: -'l-{f L""‘.‘;" .'.-'\.3' v

e T

L

'\-':- :E':?;f.“’.:'"' ,\.._'-.".ﬁ.:,.'l".:.'r\:-:- it e _"'".'_"”: e ""q.' "‘-"4' Y -'-".

R R A s T
T : - e S

e e

. Sy .
P e e T e T
L e -:'_:_ﬁll;l_g- F e S e L AL B
MLl e R el
e . _-'-1.-'_-.._|F.;\.g:,r_

CHAPTER V
REFERENCE SECTION

READ

- ...i'_ﬁr_' = B HEY nal-] T I ot} s
P et R R T b e LT
TR I TR . I] i PR .

. 5 . - ’ i

R L
o T P

Format

READ variable-list

Description

The READ statement is used with the DATA statement to
assign values to variables. Variable-fist consists of string and
numeric variables, either subscripted or unsubscripted,
separated by commas. The value read in the DATA statement
must correspond to the type of the variable to which it is
assigned in READ. Note that any number is a valid string. When
two adjacent commas are encountered in the data list, a null
string is read.

The READ statement begins reading from the first DATA
statement in the current program or subprogram and proceeds
to the next DATA statement when the current data list has
been read. A single READ statement may read from more than
one DATA statement, and several READ statements may read
from a single DATA statement. If a READ statement does not
read all of the current data list, the next READ statement
begins with the first unread item in the list. An attempt to read
data after all the data in the current program or subprogram
has been read results in an error.

The RESTORE statement can be used to alter the order in
which DATA statements are read.

READ can read data only from a DATA statement that is in the
same program or subprogram as the READ statement. Each
time a subprogram is called, data is read from the first DATA
statement whether or not the subprogram has been attached.
(See ATTACH in this chapter.)

Cross Reference

ATTACH, DATA, RESTORE

9107

RELEASE

CHAPTER V
REFERENCE SECTION

I A ﬁ

Cross Reference

Format

RELEASE sub-name1l |, sub-name2 ..]

Description

The RELEASE statement is used to release attached
subprograms. (See ATTACH in this chapter). When RELEASE is
executed, the allocated memory space for the subprogram
variables is released, and thus the values are destroyed.

Releasing a repeatedly used subprogram increasgs execution
time for a program. However, the subprogram variables do not
require memory space between calls to the subprogram.

A RELEASE statement may appear in the main program or in
any subprogram, including a subprogram that it release{s. if a
sub-name is specified for an active subprogram, the variables
are not released untit the subprogram terminates. If sub-name
specifies an assembly ianguage program, an erroriaccurs. If a
specified sub-name is not attached or does not exist, that sub-
name parameter is ignored.

ATTACH

(continued)

5-108

CHAPTER V
'REFERENCE SECTION

RELEASE

{conlinued)

-

Example

The following program illustrates the |yse of the RELLEASE
statement.

100 ATTACH X
110 FOR J=1 TO 5
120 CALL X

130 NEXT J

Prints 0 1 2 3 4 because the variable values are not

Initialized when X is called and are not destroyed when X
Is terminated.

140 BRELEASE X:PRINT
Releases subprogram X and clears the display.
150 FOR J=1 T0 5
160 CALL X
170 NEXT J
Prints 0 0 0 0 0 because the variable values in

subprogram X are initialized each time it is called.
180 SUB X

190 PRINT J; :PAUSE 2
200 J=J+1
210 SUBEND

9-109

CHAPTER V
REFERENCE SECTION

RELMEM

Format
CALL RELMEM(numeric-expression)

_— e

Description
The RELMEM subprogram releases memory previously reserved

by the GETMEM subprogram. The value given in numeric-
expression must be the same address returned by GETMEM

when the memory space was reserved. |f the wrong value is
specified for numeric-expression, the contents of memory,
including the program, can be lost.

Cross Reference
GETMEM, PEEK, POKE

Example
The following example acquires some memory with a CALL
GETMEM. POKE is used to store an assembly language
program in the memory. When the subprogram is no longer
needed, the memory is returned to the system with CALL

RELMEM.

100 CALL GETMEM (50, ADDR)
110 CALL POKE (ADDR, .. .)
120 CALL EXEC (ADDR)

350 CALL RELMEM(ADDR)

LE]

5110

CHAPTER YV
REFERENCE SECTION

__[REM

Format

REM [character-string}

Description

The REM statement allows you 10 enter explanatory remarks
into your program. Remarks may give any type of information,
but usually explain a section of a program. Character-string
may include any displayable character.

Remarks are not executed, but they do take up space In
memory. Any character that folliows REM, including the
statement separator symbol () is considered part of the remark.
Therefore, if REM is part of a multiple statement line, it must
be the last statement on the line.

The exclamation point (!) is called a tail remark symbol and
may be used instead of the word REM. The exclamation point
can appear as the first statement on a line or after the last
statement in a multiple statement fine. If the exclamation point
appears after a statement, the statement separator () is not
needed. Using the tail remark symbol saves space in the listed
form of the program.

Example

150 REM BEGIN SUBROUTINE
Identifies a section beginning a subroutine.

270 SUBTOTAL=1I+B ! Calculate subtotal

Identifies statements which perform a specific
calculation.

5111

CHAPTER V

REFERENCE SECTION

e

Description

Example

RENUMBER]

Format

RENUMBER [initial-line] [, increment]

The RENUMBER (or REN) command changes the line numbers
of a program. If no initial-line is provided, the renumbering
starts with 100. If no increment is given, an increment of 10 is

used.

REN also changes all references to line numbers so that they
refer to the same lines of code as before. If a statement refers
to a line number that does not exist, a warning is displayed and
the line number is replaced with 32767, which is not a valid line

number.

If the values entered for initial-line and increment result in the
creation of line numbers larger than 32766, the error message
Bad 1ine number is displayed and the program is left
unchanged.

REN
Renumbers all lines to start with 100 and increment by 10.

————tt T At AT —_ . I O .
v
. b) -

5112

.-"F-:. A L W LA 1."'-4'r-' TR A
R T T o T T i S

CHAPTER V
___REFERENCE SECTION

~ RESIORE

Format |
I lline-number]
RESTORE {[#ﬁfe-number [, REC numeric-expression]]}
Description

The RESTORE statement is used to control the order in which
data is read from DATA statements or from a file.

RESTORE specifies that the next READ statement executed
accesses the first item in the DATA statement specitied by fine-
number. Line-number must be in the same program or
subprogram as the RESTORE statement. If no line-number is
given, the DATA statement with the lowest numbered line in the
current program or subprogram is used. If line-number is not a
DATA statement, the next DATA statement following it is used.

RESTORE #file-number positions that file to the first record.
The next input/output statement that refers to fife-number
accesses the first record in the file. Any pending output data is
written to the file before the RESTORE statement is executed.
Any pending input data is ignored. File-number 0 refers to a
DATA statement as described above.

REC may be used with devices which support relative record
(random access) files. Numeric-expression specifies the record
to which the random access file is positioned. The next
inputfoutput statement that refers to that file accesses that
record, Refer to the peripheral manuals for information about
relative files.

Note: The first record of a file is record zero.
(continued)

5-113

CHAPTER V
REFERENCE SECTION

RESIORE

{continued}

] Cross Reference
! DATA, INPUT, LINPUT, PRINT, READ

Examples

150 RESTORE -
Sets the next DATA statement to be read to the first

DATA statement in the program.

|
200 RESTORE 130
'l Sets the next DATA statement to be read to the DATA

statement at line 130 or, if line 130 is not a D@TA
statement, to the next DATA statement after line 130.

“ 230 RESTORE #1

5114

I Sets file #1 to the first record in the file, which is record 0.

CHAPTER V
REFERENCE SECTION

RETURN

WITH GOSUB

Format .
RETURN

Description

RETURN used with GOSUB transfers control back to the

statement following the GOSUB or ON GOSUB statement which

was last executed. A subroutine may contain more than one
RETURN statement. -

Cross Reference
GOSUB, ON GOSUB

L

5115

CHAPTER V
' REFERENCE SECTION

RETURN. wmonavor

Format

[NEXT]
RETURN [line-number]

Description

RETURN ends an error-processing subroutine. An error-
processing subroutine is called when an error occurs after an
ON ERROR line-number statement has been executed. The
error-processing subroutine can contain any BASIC statements,

including ancther ON ERROR statement.

RETURN with no option transfers control to the statement in
which the error occurred and the statement is executed again.

RETURN NEXT transfers control to the statement following the
one in which the error occurred.

RETURN line-number transfers control to the line specified. The
specified line must be in the same program or subprogram as
the error-processing subroutine even though the error may have

occurred in some other subprogram.

Cross Reference

ON ERROR
{continued)

5116

CHAPTER V
__REFERENCE SECTION

IQETU PN WITH @N ERROR

Example

(continued)

The program below illustrates the use of RETURN with ON
ERROR.

100 ON ERROR 150
Transfers control to line 150 when an error occurs.
120 X=VAL("D")
Causes an error, so control is transferred to line 160.
130 PRINT "Done™:PAUSE 2
Prints Done.
130 STOP
140 REM ERROR HANDLING
150 IF A>4 THEN 200
Checks to see if the error has occurred four times and
transfers control to 200 if it has.
160 A=A+1
Increments the error counter by one.
170 PRINT A;"errors":PAUSE 2
Prints the number of errors which have occurred.
180 ON ERROR 150
Resets the error handling to transfer to line 150.
190 RETURN
Returns to the line that caused the error and executes it
again.
200 PRINT "Last error®:PAUSE 2:RETURN NEXT
Is executed only after the error has occurred four times.
Prints Last error and returns to the line following the one
that caused the error.

F 4

5117

CHAPTER V
'REFERENCE SECTION

D

Format
RND

Descriptidn

The RND function returns the next pseudo-random number in
the current sequence of pseudo-random numbers. The number
returned is greater than or equal to zero and less than one.
Unless the RANDOMIZE statement is used to create an

unpredictable sequence, RND generates the same sequence
each time a program is run.

Cross Reference
INTRND, RANDOMIZE

Example

100 PRINT 10%END : PAUSE

Prints a random number greater than or equal to 0 and
less than 10.

5-118

::::::

i
=

5.
U

CHAPTER V
REFERENCE SECTION

RPTS

Format

RPT$(string-expression, num eric-expression)
Description

The HF’T$ function returns a string that is numeric-expression
repetitions of string-expression. If RPTS produces a string
longer than 255 characters, the excess characters are

d_iscarded and the warning message otring-truncation is
displayed.

Examples
100 M$=RPT$("ABCD",4)
Sets M$ equal to “ABCDABCDABCDABCD”.

100 CALL _CI-IAR(0,RPT3("0000FFFF",8))
Defines characters 0 through 3 with the string

“0000FFFFO000F FFFO000FFFFO000F FFFO000F FFF
0000F FFFO000FFFFO000FFFF”,

100 PRINT USING RPT$("#",40) ; X$:PAUSE

Prints the value of X$ using an image that consists of 40
number signs.

5-119

"
—— I L I

CHAPTER V
REFERENCE SECTION _

" T
-
A

RUN

Format

[line-number]
RUN < [“program-name’]
[“device.filename”]

Description

The RUN statement starts execution of a program. The
statement RUN entered with no options starts execution of the

program currently in memory beginning with the lowest
numbered line.

RUN line-number starts execution of the program in memory at
the specified fine-number.

RUN “program-name” searches the Solid State Software™

cartridge and starts execution of program-name when it is
found. If program-name is not found or refers to a subprogram,
an error occurs. A string expression may be used to specify

program-name.

RUN “device.filename” deletes the program currently in
memory, loads the contents of filename from device into
memory, and executes it. A string expression may be used to
specify device.filename. Note: If filename specifies a data file
rather than a program file, it may be necessary 0 press the

reset key.

Before a program is executed, the following process takes

place.

e Variables are initialized. Numeric variables are set to zero
and string variables are set to null strings.

e Certain errors, such as a FOR statement without a NEXT
statement or a line reference out of range, are detected.

e All open files are closed.

e ON BREAK STOP, ON WARNING PRINT, and ON ERROR
STOP are selected. I

e The angle mode selected is left unchanged.]

{continued)

-

5120

Examples

CHAPTER V
REFERENCE SECTION

{continued)

-

RUN

pauses the computer to begin execution of the program
in memory, starting with-thg lowest numbered line.

RUN 200

_Causes the computer to begin execution of the program
in memory starting at line 200.

RUN "1.PRG3"

Causes the computer to load and begin execution of the
program in file PRG3 on device 1.

RUN "STAT®

Executes the program STAT in the Solid State Software
cartridge.

The program below #llustrates the use of the RUN statement to
execute a program from a program. A menu is created to allow
the person using the program to choose what other program to
run. The other programs should run this program rather than

ending in the usual way, so that the menu is given again after
they are finished.

100 PRINT "Enter 1, 2, or 3 for programs":PAUSE 2
110 PRINT "... or enter 4 to stop":PAUSE 2

120 INPUT "YOUR CHOICE: ";C

130 IF C=1 THEN RUN "1.PRG1"

140 IF C=2 THEN RUN "1.PRG2"

150 IF C=3 THEN RUN "1.PRG3"

160 IF C=4 THEN STOP

170 GOTO 100

5-121

_ RUN

ii

CHAPTER V
REFERENCE SECTION

A

Format
SAVE “‘device.filename” [, PROTECTED]

Description
The SAVE command altows you to copy the BASIC program in
memory to an external device. SAVE removes any variables
from the system which are not used in the program. By using
the OLD command, you can later recall the program into
memory.

Device.filename identifies the device where the program is to
be stored and the file name. Device is the number associated
with the physical device and can be from 1 through 255.
Filename identifies the file which contains the program.

When PROTECTED is specified, the program in memory is left
unprotected but the copy on the external storage device is
saved in protected format. A protected program cannot be
listed, edited, or saved.

Cross Reference
OLD, VERIFY

- Examples
SAVE "1.PRG1"

Saves the program in memory to device 1 under the name
PRG1.

SAVE "2.PRG2",PROTECTED
Saves the program in memory to device 2 under the name
PRG2. The program may be loaded into memory and run,
but it may not be edited, listed, or resaved.

5122

T
':i:".:'.:'
'rl:_ _:
T
SEr
- anary
'_'IL. vl
Ik .
Al
AT
=kl
e
B
]
i
2
S
) _::&;;..-
L

S e e, gt oSl th
R L -""*’r-"if‘r*”g

o '.l._"-\." P -'.__ ., P '.—'_.-t'.'
e i = i ﬁ-\%:_ ity
R S S A S LSRR T
P bt R LT R AR ISR A T
- 1 LN A e e P R

I T i L e T - o N - L
BRI T A TR e R e
. - . .o [P b -

CHAPTER V
REFERENCE SECTION

SEGS

Format
SEGS(string-expression, position, length)

Description

The SEG$ function returns a substring of a string. The string
returned starts at position in string-expression and extends for
length characters. If position is beyond the end of string-
expression, the null string (") is returned. If jength extends
beyond the end of string-expression, only the characters
through the end are returned.

Examples

100 X$=SEGS$("FIRSTNAME LASTNAME",1,9)
Sets X$ equal to “FIRSTNAME".

200 Y$=SEG$("FIRSTNAME LASTNAME",11,8)
Sets Y$ equal to “LASTNAME".

240 Z$=SEG$("FIRSTNAME LASTNAME",10,1)
Sets Z3% equal to * .

280 PRINT SEG$(A$,B,C):PAUSE
Prints the substring of A$ starting at character B and
extending for C characters.

5123

CHAPTER V _
REFERENCE SECTION

SEMLANG

Format
CALL SETLANG(numeric-expression)

SUBPROGRAM

Description

The SETLANG subprogram selects the language in which
system messages and errors are displayed. Numeric-expression
is a number that is the code of a specific language. The
following are the assigned language codes.

0= English

1 = German

2= French

3 = ltalian

4 = Dutch

5 = Swedish

6 = Spanish

If numeric-expression is 0 or 1, all system messages and errors
are displayed in English or German, respectively. If numeric-
expression selects any other language that is supported in a
Solid State Software™ cartridge, prompts and messages in the
cartridge are displayed in the chosen language, but all system
messages and errors are displayed in English.

The language code is maintained by the Constant Memory™
feature. Therefore, the language code setting is not altered by
turning the computer on or off, and remains in effect until it is
changed or the system is initialized. When the system is
initialized, the language code is set to zero (English).

Cross Reference
GETLANG

5-124

CHAPTER V
REFERENCE SECTION

SGN

Format |
SGN(numeric-expression)

Description

The SGN function returns the mathematical signum function. If
{Jumenc-expressfon IS positive, a 1 is returned. If it is zero, a 0
Is returned and if it is negative, a - 1 is returned.

Examples

140 IF SGN{A)=1 THEN 300 ELSE 400
Transfers control to line 300 if A is positive and to line
400 if A is zero or negative.

790 ON SGN(X)+2 GOTO 200,300,400

Transters control to line 200 if X is negative, line 300 if X
is zero, and line 400 if X is positive.

5-125

CHAPTER V
REFERENCE SECTION

N -

Format
SIN(numeric-expression)

CHAPTER V
REFERENCE SECTION

o<

Format
SQR(numeric-expression)

Description

The sine function gives the trigonometric sine of numeric-
expression. The expression is interpreted as radians, degrees,
or grads according to the current angle mode in effect (see
DEG, GRAD, and RAD). See appendix E for a description of the
limits of numeric-expression.

Description

The SQR function returns the positive square root of numeric-

expression. SQR(X) is equivalent to X A(1/2). Numeric-expression
must not be a negative number.

Examples
150 PRINT SQR(4) : PAUSE
Prints 2.
780 X=SQR(2.57E5)

Sets X equal to the square root of 257,000, which is
506.9516742255.

Example

150 DEG
160 PRINT SIN(3*21. 5+4) : PAUSE
Prints .930417568.

5-126 5127

CHAPTER V

__REFERENCE SECTION
SIOP
Format
STOP
Description

The STOP statement stops program execution. It can be used
interchangeably with the END statement except that it may not
be placed after subprograms.

Cross Reference
END

Example

The program below illustrates the use of the STOP statement.
The program adds the numbers from 1 to 100.

100 TOT=0

110 NUMB=1

120 TOT=TOT+NUMB

130 NUMB=NUMB+1

140 IF NUMB >100 THEN PRINT TOT:PAUSE 2:5TOP
150 GOTO 120

5128

CHAPTER V
REFERENCE SECTION

STRS

Format
STR$(numerit-expression)

Description

The STR$ function returns the string representation of the value
of numeric-expression. No leading or trailing spaces are
included. The STR$ function is the inverse of the VAL function.

Cross Reference
LEN, VAL

Examples

150 NUM$=STR$ (78.6)
Sets NUM$ equal to “78.6".

220 L1$=STR$(3E15)
Sets LL$ equal to “3.E+ 15"
330 JP=STR$(Ax4)

Sets J$ equal to a string equal to the vatue obtained when

A is multiplied by 4. For instance, if A is equal to —8, J$
is set equal to “ —32".

5129

CHAPTER V
REFERENCE SECTION

Format

SUB subprogram-name [(parameter-list)]

Description

The SUB statement is the first statement in a subprogram and
must be the first statement on the line. A subprogram is a
group of statements separated from the main program. A
subprogram is used to perform the same task in several
different places without duplicating the statements in several

places.

Subprograms are accessed by CALL subprogram-name
[(argument-list) }. Subprogram-name consists of 1to 15
characters. The first character must be an alphabetic character
or an underline. The remaining characters may be alphanumeric
characters or underlines. The CALL statement searches for
subprograms in a specific order (see CALL for the order) and
executes the first subprogram found with subprogram-name. If
the name of one of your subprograms is the same as a built-in
subprogram, the built-in subprogram is executed.

Parameter-list defines the information passed to the
subprogram. A parameter may be a simple string variable, a
simple numeric variable, or an array. An array is listed as a
parameter by writing the array name followed by parentheses. A
one-dimensional array is written as A(), a two-dimensional array
as A(), and a three-dimensional array as A(,,).

Information is passed to the subprogram through the argument-
list of the CALL statement. The arguments of argument-list and
the parameters of parameter-list need not have the same
names. However, the number and the types of arguments in
argument-list must match the number and types of parameters

in parameter-list of the SUB statement.
(continued)

f
ra

5-130

CHAPTER V
REFERENCE SECTION

oUB

Information is passed to a subprogram either by reference or by
value. If an argument is passed by reference, the subprogram
uses the variables from the calling program. If the
corresponding parameter in the subprogram is changed, the
arg'ument in the calling program is also changed. A simple
variable, an element of an array, or an array listed in argument-

list is passed by reference. Arrays are always passed by
reference. -

(continued)

If an argument is passed by value, only the value of the
argument Is passed to the subprogram. If the corresponding
parameter in the subprogram is changed, it does not alter the
value of_the argument in the calling program. Any type of
expresston in argument-list is evaluated and passed by value to

the sut_:program. Simple variables may be passed by value by
enclosing them in parentheses.

All vartables used in a subprogram other than those in
par_ameter-ﬁsr are local to that subprogram, so the same
variable names may be used in the main program and in other
subprograms. Changing the values of local variables in a
program or subprogram does not affect the values of local
variables in any other program or subprogram.

Any [ocal variables in the subprogram are initialized each time
the subprogram is called, unless the subprogram has been
attgched. Attaching a subprogram causes the values of the
variables to be retained between calls until the subprogram has
been released. See ATTACH and RELEASE.

A subprogram terminates when a SUBEXIT or SUBEND

statenjent is executed. Control is returned to the statement
following the CALL statement.

fcontinued)

5-131

CHAPTER V
REFERENCE SECTION

SUB_

#—

(continued)

Subprograms appear after the main program. A subprogram _
cannot contain another subprogram. When a SUB statement Is
encountered in a main program, it terminates as if a STOP
statement had been executed. Only remarks and END
statements may appear between the SUBEND of one program

and the SUB of the next subprogram.

The ON BREAK, ON WARNING, ON ERROR, and PAUSE ALL
statements in effect when a CALL is executed remain in effect
while the subprogram is executing. If the subprogram changes
any of these statements, they are changed back when the
subprogram terminates. Subprograms cannqt share any
subroutines except error-processing subroutines.

Cross Reference

ATTACH, CALL, ON BREAK, ON ERROR, ON WARNING,
RELEASE, RETURN, SUBEND, SUBEXIT

5-132

ﬂ_#

| Examplés

(continued)

CHAPTER V
REFERENCE SECTION

oUB

(continued)

100 SUB MENU

Marks the beginning of a subprogram. No parameters are
passed or returned.

220 SUB MENU(COUNT, CHOICE)
Marks the beginning of a subprogram. The variables
COUNT and CHOICE may be used and/or have their
values changed in the subprogram and their

corresponding arguments in the calling statement
changed.

330 SUB PAYCHECK (DATE, (Q) ,SSN, PAYRATE, TABLE(,))
Marks the beginning of a subprogram. The variables
DATE, SSN, PAYRATE, and the array TABLE with two
dimensions may be used and/or haye their values changed
in the subprogram and their corresponding arguments in
the calling statement changed. The variable QG cannot be
altered by the subprogram.

5133

CHAPTER V
REFERENCE SECTION

CHAPTER V
__REFERENCE SECTION

¥

SUREND

Format
SUBEND

_oUBEAT

" M e e T T Py e
. R T .
g . | . e e e
S I I N S il

Format
SUBEXIT

o

Ll L T
S i s AL EIE S b So

Description &
The SUBEND statement marks the end of a subprogram. When 3
SUBEND is executed, control is passed {o the statement []
following the statement that called the subprogram. The
SUBEND statement must always be the last statement in a
subprogram and cannot be in an IF THEN ELSE statement.
Only remarks and END statements may appear between a
SUBEND statement and the next SUB statement.

Description

The SUBEXIT statement terminates execution of a subprogram.
When it is executed, control is passed to the statement
foliowing the statement that called the subprogram. The

SUBEXIT statement may appear as many times as needed in a
subprogram.

Cross Reference

Cross Reference SUB, SUBEND
SUB, SUBEXIT

L Ealalrhey o Cai W'HWU'-'.F-FIJWF;W&?"—;H PEEEART S TR s =T e mrer o e s mae - B T T PR
P S L s pboeam e ool . C : T, e e : .
- -l.vl-_-.-,:: bt e L e L e e N T A o "l.-:-'-"-i:: el e b S ok T T __"-.-. JEL '-_ o bk bl e e S e =il RO T "-I_l_lg-':
L LI P}
H S A e
R AR S S o

5134 5135

CHAPTER V

_ REFERENCE SECTION

TAB_

Format

TAB(numeric-expression)

Description

The TAB function is used in a PRINT or DISPLAY statement to
select a specific column position for a orinted item. If numeric-
expression is less than or equal to zero, the position is set 10
one. It numeric-expression is greater than the length of a record
for the device being used, then numeric-expression is
repeatedly reduced by the record length until it is less than the
record length.

If the current position is less than or equal to the specified
position, the TAB function spaces over to the specified
position. If the current position is greater than the specified
position, the TAB function proceeds to the next record and
spaces over to the specified position.

The TAB function is treated as a print-item and must be
separated from other print items by a print separator. The print
separator before TAB is evaluated before the TAB function and
the print separator following TAB is evaluated after the TAB
tunction. Normally, semicolons are used betfore and after TAB.

In a DISPLAY statement, the TAB function is relative to the
beginning of the display field. 1f AT is used, the TAB function is
relative to the specified column position. If more than one line
of output is displayed, subsequent lines begin in column one.
Any TAB functions are then relative to column one.

If SIZE is used, the value specified in SIZE is the absolute limit
of the number of characters displayed. This limit is the record
length used in evaluating any TAB functions.

(continued)

5136

CHAPTER V
REFERENCE SECTION

: 1AB

(continued)

Cross Reference
DISPLAY, PRINT

Examples
100 PRINT TAB(12);35 : PAUSE
Prints the number 35 starting at column 13.
190 PRINT 356;TAB(18);"NAME" : PAUSE

Prints 356 at the beginning of the li) ‘
column 18, g ne and NAME starting at

710 DISPLAY AT{10) SIZE(20),"MGB";TAB(10) ; "ADDR" : PAUSE

m

9137

CHAPTER V

JEFER&NCE__S_EOTION B

%
AN
Format

TAN(numeric-expression)

Description

The TAN (tangent) function gives the trigonometric tangent of
numeric-expression. The expression is interpreted as radians,
degrees, or grads according to the current angle mode in eftect
(see DEG, GRAD, and RAD). See appendix E for a description of
the timits of numeric-expression.

Example

250 RAD
260 PRINT TAN(20) :PAUSE
Prints 2.237160944.

5138 -

CHAPTER V
_REFERENCE SECTION

_UNBIREAK

Format o
UNBREAK [iine-list)

Description

The UNBREAK statement removes all breakpoints. If fine-list is

specified, only the breakpoints for those lines listed are
removed.

Cross Reference
BREAK

Examples
| UNBREAK
Removes all breakpoints.

400 UNBREAK 100,130
Removes the breakpoints set before lines 100 and 130.

5139

CHAPTER YV
__ REFERENCE SECTION
USING '—“—
Format
usin {Inemmbe on }
Description |

USING can be in a PRINT or DISPLAY statement to format the
output. If line-number is given, the format is specified in that
line by an IMAGE statement. Line-number must refer to a line in
the current program or subprogram. See IMAGE. if string-

. expression is given, the format is defined by USING.

When USING is present, the following changes occur in the
evaluation of the print-list of PRINT or DISPLAY.

e Comma print separators are treated as semicolons.

e The TAB function causes an error.

e The print items are formatted according to fields specified
in the format definition. If the number of print items in
print-list exceeds the number of fields in the format, the
current formatted record is written. The remaining values
are written in the next record, using the format definition
again, from the beginning. The format is used as many
times as is necessary to complete the print-list. A new
record is generated each time the format is used. When
the number of print items is less than the number of fields
in the definition, output stops when the first field is
encountered for which there is no print item.

e If a formatted item is too long for the remainder of the
current record, it is divided into segments. The first
segment fills the remainder of the current record and any
remaining segments are written on the next record.

Cross Reference
DISPLAY, IMAGE, PRINT

5140

CHAPTER V
REFERENCE SECTION

W

Format
VAL(string-expression)

Description

The VAL function returns the numerical value of string-

expre_ssiqn. Leading and trailing spaces are ignored. The VAL
function is the inverse of the STR$ function.

—p

If string-expression is not a valid representation of a number, an
| €rror occurs. To avoid this error, the string-expression may be
checked first with the NUMERIC function.

Y L = e TAr e I e A T
-) n

N . . . " - =
(A & ot et rar .:_"'__ b5k E g il

.ﬂrr_ LR Tt o L B

Ciross Reference
NUMERIC, STR$

Examples
170 NUM=VAL(™78.6")
Sets NUM equal to 78.6.

190 L1=VAL("3E15")
Sets LL equal to 3.E + 15.

300 PRINT VAL{"$3.50") : PAUSE

Cayses an error because the string does not represent a
valid numeric constant.

ey L ey e TR =
L., . . P
P] T i o e, o

5141

CHAPTER V
__ REFERENCE SECTION

VER]

Format
VERIFY “device.filename” [, PROTECTED]

Description

The VERIFY command checks that data was saved on an
external storage device or was loaded into memory correctly.
VERIFY is used after a SAVE or OLD command to compare the
program in memory to the program on the external storage
device. If a difference Is found, an error message is displayed.
Both input/output errors 12 and 24 indicate a verification error.

Device.filename identifies the device and the file in which the
program is stored. Device is the number associated with the
physical device and can be from 1 through 255. Filename
identifies the file.

Like SAVE, VERIFY removes any variable names which are not
used in the program. If the program is protected, then
PROTECTED must be specified in the VERIFY command.

Cross Reference
OLD, SAVE

Examples

SAVE "1 MYPROG"™

Saves the file named MYPROG to device 1.
VERIFY "1.MYPROG"

Verifies whether the file was stored correctly.

Q01D "1.STAT"

Reads the file named STAT into memory from device 1.
VERIFY "1.STAT"

Verifies whether the file was read correctly.

5142

g CHAPTER V
L __REFERENCE SECTION

wroms_ VERSION

Format |
CALL VERSION(numeric-variable)

Description

The _VEF{SION subprogram returns a value indicating the
version of BASIC that is being used. The BASIC used on the

CC-40 returns a value of 10.
Example

170 CALL VERSION(V)
Sets V equal to 10.

5-143

