CHAPTER IV
BASIC PROGRAMMING

Introduction

The BASIC programming language was developed at Dartmouth
College in the 1960s. The word BASIC is an acronym for
Beginner's All-purpose Symbotic Instruction Code. BASIC is the
language most commonly used on personal and home
computers and is increasingly accepted on larger machines.
The Texas Instruments Compact Computer Model CC-40 uses
an advanced version of BASIC called CC-40 BASIC. Programs
written in other versions of BASIC, including T1 BASIC and Tl
Extended BASIC (used on the Texas Instruments Home
Computer), may have to be modified for use on the CC-40.

This chapter provides an introduction to BASIC that enables
you to use the BASIC programming features immediately. It
contains overviews of what a program is, how to write a
program, the rules and syntax of CC-40 BASIC commands,
statements, and functions, what input and output are, the

¢ various parts of a program, how to edit a program, how to save
& a program, and how to debug (or find the errors in} a program.

% Each of the elements that makes up the CC-40 BASIC language
3 iIs mentioned, and some are explained in detail. For details on
y syntax and additional examples, see chapter 5, which is an
i

'

alphabetical listing of all the CC-40 BASIC commands,

statements, and functions.

If you have not used BASIC before, the book Learnt BASIC: A
Guide to Programming the Texas Instruments Compact

v Computer is available from local dealers. The only way to learn
to program is to actuaily program. Try the examples in this
book. Don’t worry about making mistakes when you begin. You
can always cancel any operation by pressing [BREAK] and [CLR].

If you are aiready familiar with some version of BASIC, this
chapter is a quick refresher. Be sure to review the topics that
are marked with the Tl logo (%) for features of CC-40 BASIC
that may differ from other versions of BASIC.

;
4-1

CHAPTER IV
BASIC PROGRAMMING

»
.1I

Getting Started -

CHAPTER IV
___BASIC PROGRAMMING

The computer calculates 25 times 7 and prints the answer,
175, in the display. It then pauses so you can see the answer.

A program is a series of instructions that the computer can
perform. You tell the computer what to do by typing
instructions on the keyboard and then pressing [ENTER]. These
instructions are performed only when you run or execute the
program by typing RUN and pressing [ENTER]. When you run a
program, the instructions are performed or executed one at a
time.

The computer has its own set of words, called keywords, that
it knows how to perform. There are not many such words, but
taken together these words let you perform virtually any
computational task.

The result is preceded by an underline cursor in column 1. The
vndertine cursor indicates that the computer is waiting for the
{CLR] or [ENTER] key to be pressed. To leave the pause, press
{CLR]. The flashing cursor appears in column 1 to indicate that
you can enter information from the keyboard.

Note: You can leave any BASIC program that is running by
pressing [BREAK].

To look at the program in the CC-40, type LIST and press
[ENTER]. The CC-40 prints the first line of the program.

100 PRINT 25%7

T . m "m N1l - - LT "t s Sl S o= S ko . [. . ’ -)
= P a . : - P Lty Ty Ay - ’ L. T T L 7 =N T [IR T
L R R R A e e A T e e S AL Yy e 0y P b e P gk ST
L T R T M e L g, R o LR T 0 L o T

ﬁ}s a simple example, you can write a program to multiply 25 Press [ENTER] to display the next line.
times 7 and print the answer. A program to do this is shown in 110 PAUSE
the following section.

:-_.Truﬁ-“"i-‘ e B

Press [ENTER] again and the flashing cursor appears on a blank

.x-. .
- "'""‘"1- B | i
Rt - S LI LR H

Writing, Running, and Listing a Program line. The blank line means there are no more program lines

f Turn on the CC-40. Either a message is displayed or there is a stored in memory. You can now proceed to enter information.
! flashing cursor in column 1. To clear the message from the % If you are in the middle of a listing and do not want to see the
i display, press the [CLR] key. Then in both cases, type NEW and ’; rest of a program, press [BREAK] to end the listing.

[‘ | press [ENTER]. 5 ‘

' Type the following line exactly as shown, including spaces. As I BASIC .ngrammm.g Procedures .

you type, the cursor moves to the right to show where the next The two-line program you just entered, executed, a_nd listed

| I character is placed. If you make a mistake typing, use the edit shows many of the procedures to follow as you write BASIC

;gl? ’ P programs. Remember—before you enter a program in the

| keys (described in chapter 1) to correct the line, or press the 4
£ [CLR] key to start over.
| 100 PRINT 25+7

!!!':; Press [ENTER] for the computer to store the instruction in its
memory. Type the next line exactly as shown.

! g
| MopAUSE Lines and Line Numbering
Press [ENTER] for this instruction to be stored. . 100 PRINT 25%7 is called a line of a program. This line instructs

the computer to calculate 25 times 7 and print the answer. The
computer recognizes * as multiplication and the word PRINT as

a task to perform.

'CGC-40, type NEW and press [ENTER] to be sure that memory has
been cleared. |

The rules for entering program instructions are described briefly
in the following sections.

The computer has now stored two instructions or lines in its
memory. To have the computer perform these instructions,
i you must run the program by typing RUN and pressing [ENTER].
}Il |) The 100 is the line number. Every line of a program must have a
I} line number from 1 through 327686, followed by a space. The

'|I|
| - ’ CC-40 executes program lines in numerical order, regardless of

the order in which they are entered.

! 1 i
’”‘-l 4.2 | §1 4-3

CHAPTER IV

BASIC PROGRAMMING

It is good programming practice to have unused line numbers
between the lines of a program. You can then insert additional
lines in the program. For example, suppose you want to

perform one more calculation in the program, 25 times 6. Enter
the following two lines.

105 PAUSE
108 PRINT 25+8

If you LIST the program, you will find that the two lines have
been added to the program in memory. The computer
sequences the lines by their line numbers. To run the program,
be sure the display is clear and then type RUN and press
[ENTER]. When the computer pauses while displaying the first
answer, 175, press [ENTER] to display the next answer, 150.
Then press [ENTER] again.

If you enter a line with the same line number as one already
stored in memory, the new line replaces the old one. For
example, type the following line and then press [ENTER].

100 PRINT 25+25

When you list the program, you will find the last line entered as
100 is the one that is now stored in memory.

Note: When entering any information into the computer, always
press [ENTER] after you have finished typing. In the rest of this
chapter, any references to enter any information assume that
the [ENTER] key is pressed after you have finished typing.

Keywords.

Following the line numbers in the program just executed are
English words that the CC-40 recognizes and knows how to
perform or execute. All program lines contain characters that
resemble algebraic formulas and/or English words. These
English words correspond to single tasks and are called
keywords. When entering keywords in the CC-40, you can type
them using either upper- or lower-case characters. When the
program is LISTed, these words are always displayed in upper-

case letters. The different types of keywords are discussed in

the following sections.
3

CHAPTER IV

BASIC PROGRAMMING

Statements

Statement keywords are elements of a program line that cause
an action, such as PRINT and PAUSE. Statement keywords
must be follbwed by a space in the program line. For example,
the CC-40 recognizes the statement 10 PRINT 2 but not 10
PRINT2. The CC-40 performs statements in a program only when
you execute the program.

Many statement keywords can also be executed immediately by
entering them without a line number. The statement is executed
as soon as the [ENTER] key is pressed. For example, enter the
following in your CC-40.

PRINT 25+7
The answer 175 is displayed immediately.

A list of all the statement keywords, indicating which ones can
be executed immediately as well as used in program lines, is
given in appendix A. For simple calculations such as the one
above, it is usually more practical to use the calculator features
of your CC-40 (refer to chapter 2). However, when you want to
perform the same series of calculations repeatedly, you can
often save time and effort by writing these calculations as a
program for the CC-40 to perform.

Functions

The function keywords perform specialized routines and return
a value. Most functions require that a value {called an
argument) be given to the function. There are function keywords
for many mathematical functions such as square root,
logarithm, and sine.

All of the functions available with the CC-40 are listed in
appendix B and many are discussed in this chapter in sections
that deal with similar instructions. All of the functions can be
used in program lines and most of them can be executed
immediately. |

Commands

The command keywords, such as NEW and LIST, are always
executed immediately. These keywords may not be used in a
program line. The commands available on the CC-40 are listed
in appendix A and are discussed throughout this chapter.

4-5

CHAPTER IV
__BASIC PROGRAMMING

'
"1

Using a Funclion in a Program

The program below calculates and displays the square roots of
the first 25 whole numbers. To obtain these answers without a
program would require making 25 separate calculations. Enter
the program shown below in your CC-40. (Remember to type
NEW and press [ENTER] before you enter the program, and to
press [ENTER] after you have typed each line.)

100 FOR A=1TO 25
110 PRINT A; SQR(A)
120 PAUSE 1
130 NEXT A

In line 100, the FOR statement sets up a loop, a group of
statements that are repeated a specific number of times. The
loop consists of the statement immediately following the FOR
statement and all the statements down to a NEXT statement. In
this case, the letter A is the counter that starts at 1 and goes

TO 25 by ones.

Line 110 tells the computer to print the value of the counter A
and the square root of the counter. The first time line 110 is
executed, the value of the counter is 1.

Line 120 tells the computer to pause for 1 second after it prints
an answer so that you have time to see it.

Line 130 is the last statement in the loop. The counter, A, is
incremented by one and the CC-40 goes back and repeats lines
110, 120, and then 130, where the counter is again incremented.
The loop is repeated until the counter is incremented past the
number 25, which is the number following the word TO in line
100. Thus, this toop is executed 25 times.

Enter RUN to execute the program. The CC-40 displays the first
twenty-five whole numbers and their square roots, pausing one
second to display each.

Ending a Program

A program normally stops running after the last line in the
program has been executed. However, if you wish, you can
enter an END statement as the last statement in your prcfgram.
The STOP statement can be entered anywhere in your program
that you want the program to stop execution.

4-6

CHAPTER IV
BASIC PROGRAMMING

Kinds of Entries

Everything entered in the CC-40 is determined by the CC-40 to
be one of two kinds of entries.

1. An entry that begins with a number from 1 through 32766
followed by a space and an alphabetic character (or an at
sign, the underscore, or an exclamation point) is treated as a
program line that is stored in memory.

2. Any other entry is assumed to be a command, a statement,
or a calculation that is executed immediately. Calculations
are discussed in chapter 2.

Program Lines

This section describes the requirements and restrictions of
program lines including line numbering, line length, lines
containing remarks, and multiple statement lines.

Line Numbering

Each line in a program must begin with a number followed by a
space. Line numbers can be any integer from 1 through 32766.
It is good practice to number lines in multiples of 10 in case
you need to insert lines.

Automatic Line Numbering

You can have the CC-40 supply line numbers by entering the
command NUM {for NUMBER). The CC-40 displays 100 followed
by a space. The cursor is positioned where the first character
of the line starts. After you type the statement and press
[ENTER], the CC-40 displays 110 followed by a space and waits
for you to enter the statement for that line. When you have
finished entering all of the program lines, press either [ENTER]
or [BREAK] when the next line number appears.

You can also use NUM to tell the CC-40 where to start
numbering and what increment you want. For example, entering
NUM 10,20 starts numbering the lines at 10 and increments each
succeeding line number by 20.

Renumbering Program Lines

After editing a program, you may want to renumber the program
lines. The CC-40 automatically renumbers the lines in a
program when you use the RENUMBER (or REN) command.

4-7

—_r——

BASIC PROGRAMMING

CHAPTER IV

Line Length

A line may be up to 80 characters long, including the line
number. Additional characters typed at the end of the line
replace the 80th character.

Lines Containing Remarks

You can include explanations and comments in a program by
using remarks. A remark is not executed, but it is stored in
memory. Enter remarks either by typing REM followed by a
space and the explanatory remark or by typing an exclamation
point and the explanatory remark as shown in lines 100 and 110
below.,

100 REM THIS LINE IS A REMARK AND IS NOT EXECUTED

140 ! NEITHER 1S THIS ONE

The exclamation point can also be used as a tail remark
symbol by following the statements on a line with the
exclamation mark (1) and the explanatory remark, as shown
below.

120 FOR A=1TO 25 1 SET UP LOOP

Multiple Statement Lines

Each program line may contain more than one statement by
separating the statements with colons. For example, the
program that calculated the square roots of the first 25 whole
numbers could be written on one line as shown below.

100 FOR A =1 TO 25:PRINT A;SQR(A):PAUSE 1:NEXT A ! PRINT
SQUARE ROOTS

The line begins with a line number followed by a space. The
statement FOR A=1TO 25 is followed by a colon to signal the
CC-40 that there is another statement, PRINT A; SQR(A). There
are four statements in the line. The tait remark symbol (!) telis
the CC-40 that the rest of the program line is an explanatory
remark which is not to be executed when the program is run.

Program Storage and Execution

You can save a program that you want to keep by using the
SAVE command. To execute a program that has been stgred,
use the RUN statement or the OLD command and RUN.

4-8

&
.
.'...
i
b
e
4
_i.

oy

CHAPTER IV
BASIC PROGRAMMING

Saving a Program

The SAVE command is used to copy a program in memory to
an external storage device. To store a program on a new tape,
you must first format the tape. If you format a tape that already
has information on it, all the data is erased. The example below
illustrates how to save a program on a new tape.

FORMAT 1
SAVE “1.MYPROG"

The tape on device 1 is formatted and the program in memory
is written to the tape with the filename MYPROG. To save a
program on a tape that contains other programs, be sure to
give the program in memory a name that does not already exist
for a program on the tape.

You can also protect a program when you save it by using
PROTECTED in the SAVE command. If the SAVE command
includes the option PROTECTED, the saved copy can not be
listed, edited, or stored. For example, the following SAVE
command places a protected copy of the program in memory
on external device 1.

SAVE “1.MYPROG",PROTECTED

Note: Since a protected program can never be listed, edited, or
stored, be sure to save an unprotected copy.

Executing a Stored Program

To execute a program stored on a peripheral device, the
program must be loaded into memory by using the OLD
command or the RUN statement. The OLD command is used
when you want to edit the program or verify that it was loaded
into memory correctly. The commands shown below load a
program into memory and verify that it was loaded correctly.

OLD “1.MYPROG"
VERIFY *“1.MYPROG"

To execute the program, enter [RUN].

The RUN statement can be used to execute a program stored
on a peripheral device. The statement below loads a program
into memory from peripheral device 1 and then executes it.

RUN “1.MYPROG"

4-9

CHAPTER IV

BASIC PROGRAMMING

"
i

g

Editing Program Lines

After you enter a program, it is often useful to check the
program lines for errors by using LIST or the edit keys. Many of
the editing features are obtained using the [SHIFT], [CTL], and
[FN] keys. By using these keys, you can display lines, delete
lines and portions of lines, and move the cursor within a line.

Note: In CC-40 BASIC you cannot delete a line by entering its
line number alone. You must use the DELETE keyword
described later in this section.

The Right Arrow Key— =

The right arrow key moves the flashing cursor one position to the
right. If you press and hold the < key, the cursor continues to
move to the right to column 31 and then scrolls the display to the
left until column 80 is reached or until the key is released.

The Left Arrow Key— €

The left arrow key moves the flashing cursor one position to
the left. If you press and hold the € key, the cursor continues
to move to the left until it reaches column 1 or unti the key is
released.

The Up Arrow Key— 4

The up arrow key is used to display the next lower-numbered
program line. If 4 is pressed with the first line of the program
in the display, the CC-40 displays the flashing cursor on a
blank line. If you press & again, the highest-numbered
program line is displayed. You can also use the P key to
display a specific program line by typing the line number and
pressing 1.

The Down Arrow Key— ¥

The down arrow key is used to display the next higher-
numbered program line. If 4 is pressed with the last line of
the program in the display, the CC-40 displays the flashing
cursor on a blank line. If ¥ is pressed again, the lowest-"
numbered program line is displayed. You can also use the ¥
key to dispiay a specific program line by typmg the line
number and pressing ¥

4-10

L 2 L P 7

Y T ki ok WP W W T e Y-V T iy D PPt = Th r (= -

CHAPTER IV
BASIC PROGRAMMING

Character Insert—|[SHIFT] [INS]
[SHIFT] [INS] is used to insert characters in a line. The following

keys can be used to end an insert.

- [eaves the edited line in the display and moves the
cursor one position to the right.

€ leaves the edited line in the display and moves the
cursor one position to the left.

4 enters the edited line. If the line was a program
line, the next lower-numbered program line is
displayed.

J enters the edited line. If the line was a program
line, the next higher-numbered program line is
displayed.

[ENTER] enters the edited line. If the line was a program
ling, the display is cleared. If LIST is in effect, the
next higher-numbered program line is displayed.

Character Delete—[SHIFT] [DEL]

[SHIFT] [DEL] is used to remove the character at the position
occupied by the flashing cursor. If you press [SHIFT] and then
press and hold [DEL), the computer continues to delete
characters, one at a time, until [DEL] is released. If you press
[SHIFT] |DEL] when you are inserting characters, the insert is
ended.

Playback—[SHIFT] [PB]

[SHIFT] [PB] causes the previous display contents to reappear. If
you want to enter a line similar to the most recently entered
lineg, press [SHIFT] [PB] and edit the line using the edit keys. The
[PB] key can be used to avoid retyping a long line. If you press
[SHIFT] [PB] when you are inserting characters, the insert is
ended.

Tab—|[CTL] 2
[CTL] - shifts the display to the next higher-numbered tab
position. Tab positions are set at 1, 25, and 50.

Back Tab—[CTL] €

[CTL] € shifts the display to the next lower-numbered tab
position.

4-11

n e ————————————————— —— TSN

e = =

CHAPTER IV

BASIC PROGRAMMING

Home—[CTL] ®
[CTL] ® moves the cursor to position 1 of the line.

Erase Field—ICTL] ¥

[CTL] ¥ clears the display from the current cursor position to
the end of the line.

Line Delete—DELETE

The DELETE (or DEL) keyword is used to delete a group of
program iines. DELETE can be accessed by pressing [FN] [DEL]
or by typing DELETE or DEL. You can delete a single line or a
group(s) of lines by entering DELETE (or DEL) followed by one
or more of the line groups shown below.

Line-group Effect

a single line number Deletes that line.

line number — | Deletes that line and all following
lines.

— line number Deletes that line and all preceding
lines.

line number — line number Deletes that inclusive range of
lines.

Iif more than one line number group is used, use commas to
separate the groups. For example, DEL 150,320-350,560- deletes
line 150, lines 320 through 350, and lines 560 through the end of
the program.

Error Handling

As you begin to write BASIC programs, you may make mistakes
as you enter instructions. The computer tells you through error
messages what is wrong. Sometimes a line can not be stored

in memory because you have made an error in typing it.
Sometimes a program may not work the first time you attempt
to execute it. By using the error messages that the computer
displays, you can determine what corrections to make.

For example, the following program has two errors in it.

100 FOR A=1TO25 |

110 PRINT A; SQR(A | s
120 PAUSE 1

130 NEXT A

4-12

!
j -
.
ke :
; -
! -.
i
1 . B
_ -
i 1
] -3
)
H -
-3
a5 g
i,
L 1.
T E
:..1| . "
it
i H
g j
-
R
.y'.' .:I

[
B
{ Z::

l.

CHAPTER IV
BASIC PROGRAMMING

When you enter lines 100, 120, and 130, they are stored in
memory. However, line 110 causes an error when you try to
enter it. The error indicator in the display is turned on and the
error message Unmatched parenthesis is displayed. To correct
this line, press [SHIFT] [PB] to display it, and then add a
parenthesis after the last A.

If you try to run the program, the error message I1legal syntax
is displayed. When an error message is displayed, press 9 to
display the error code and the number of the erroneous line. In

this case, the error code that is displayed is E1 and the number
of the erroneous line is 100.)

Press 4 or ¥ to display the erroneous line. Between the word
TO and the number 25 there must be a space. Use the edit keys
to place a space there. You can then run the program.

Refer to appendix K for a list of the error codes and messages.
You can handle errors which occur while a program is running
by using the error processing statements available in CC-40
'‘BASIC. Refer to Handling Errors in a BASIC Program in this
chapter.

Constants and Variables

The data used by BASIC keywords may be sither constants or
variables. The rules and conventions used are described in the
following sections.

Constants

A constant is a value that does not change throughout the
entire execution of a program. There are two kinds of
constants, numeric and string.

Numeric Constants

A numeric constant is elther a positive or negative real nhumber
or zero. Positive numbers may optionally be written with a +
sign. Negative numbers must be preceded by a minus sign.
Commas and spaces are not allowed in numbers.

Constants may be entered with any number of digits, but they

are rounded to 13 or 14 digits due to the internal storage

method used by the CC-40. Only ten digits of a constant are
displayed when a program is running, but all 13 or 14 digits are

4-13

T

CHAPTER |V

___BASIC PROGRAMMING

used in calculations and are displayed when a program is
listed.

Numbers are normally stored and displayed in standard
notation. Very large or small numbers are stored and displayed
in scientific notation, which is described in chapter 2.

For example, if you enter a constant as 3E4, it is retained in
memory and displayed when the program is listed or run as
30000.

The following are examples of valid numeric constants.

5

25.7

3.508E4 (which s retained internally as 35980)
- 1900

String Constants

A string constant is a series of characters usually enclosed in
quotation marks. The quotation marks may be omitted when a
string constant is used in a DATA or IMAGE statement. To
include leading and trailing blanks in a string constant, you
must use quotation marks. A quotation mark within a quoted
string constant is represented by two quotation marks. To
include a quotation mark at the beginning or end of a string
constant, you use three quotation marks. The CC-40 does not
change any lower-case alphabetic characters to upper-case
characters in string constants.

The following are examples of valid string constants and the
way they would appear if printed.

String Constant Example Appears in Print

Hello*”Goodbye Hello""Goodbye
“Hello"'Goodbye'*"” "Hello"Goodbye™
Hello Goodbye Hello Goodbye
“ Hello Goodbye” Hello Goodbye
Variables

A variable is a name given to a memory location in the CC-40. -

You can store a value in that location, and later change the

value of the variable by storing a different value in the location.

A variable name can consist of up to 15 characters, the first of
which must be a letter of the alphabet, an underline {_), or the

4-14

CHAPTER IV
___BASIC PROGRAMMING

at sign (@). The remaining 14 characters can be alphanumeric,
the underline, or @. A program can include up to 95 variable
names. The keywords that are reserved for use by CC-40 BASIC
may not be used as variable names, but they may make up part
of a variable name. See appendix C for a complete list of the
words reserved for CC-40 BASIC.

There are two kinds of variables, numeric and string.

Numeric Variables

A numeric variable is a name given to g location that stores a
numeric value. The following are valid numeric variable names.

X, AS, @ALPHA, BASE__PAY, _ @TABLE4

String Variables

A string variable is a name given to a location that stores any
combination of characters (letters, numbers, and other
symbols). The string variable name must end with a $, which is
counted as one of the 15 characters allowed. The following are

-@xamples of valid string variable names.

N$, YZ28, NAME@$, Q__505%, ADDRESS$

Assigning Values to Variables

Before values are assigned, numeric variables are equal to zero
and string variables are assumed to have no characters (or be
nutl). You can set the value of a variable to be either a constant
or the result of a calculation by using an assignment
statement. You can also set the value of a variable with READ
and DATA statements or by various input statements.
Assigning values using READ and DATA statements and input
statements is discussed later in this chapter.

In the example below, a 5 is put or stored in the location called
K when line 210 is executed and the characters File- are stored
in the location called K$ when line 220 is executed. When line
230 is executed, the value of K+10 (50) is stored in locations A,
B, and C.

0 K=5
220 K$ = “File-”
230 A,B,C=K+10

415

CHAPTER IV

BASIC PROGRAMMING

-
: __E

You can also use the optional keyword LET in an assignment
statement. The following statement stores the result of 25.5
times 3 in the location called A when the line is executed.

250 LET A=25.5+3

Arrays

An array is a group of values given the same variable name.
Each value is an element of the array. The elements are in an
ordered sequence to provide easy access to any value in the
array. When a variable name is chosen for an array, that name
must always refer to the array. For example, if A is chosen as
the name for an array, then A cannot appear as a simple
variable elsewhere in the program.

To tell the computer which element you are using, you need a
pointer. The pointer, called a subscript, is a value enclosed in
parentheses immediately following the name of the array. In
CC-40 BASIC an array begins with element 0.

The DIM Statement

To have the CC-40 reserve space for an array, specify the array
in a DIM statement such as 130 DIM C{5) which reserves six
locations, C(0) through C(5) for the array C. The CC-40 chooses
a memory location, names it C, and reserves enough space for
array C. You can use an array without including it in a DIM
statement if you do not require more than 11 elements.

A One-Dimensional Array
Suppose the array C has had the following values assigned to
the elements.
ARRAYC: CO) CM1 G20 C3 G4 C5
Value: 0 10 25 30 45 90

Then C(2) refers to the third element in array C, which has a
value of 25 in this example. If M =4, then C(M) refers to the
fifth element of array C, which has a value of 45.

An example of a string array is shown below.

ARRAY NM$: NM$(0) NM$(1) NM$2) NM$(3) NM$@)

Value: Bob Tom Bud Nancy John

4-16

CHAPTER IV
BASIC PROGRAMMING

A Two-Dimensional Array

You can extend an array to include information from a table
which has rows and columns. A two-dimensional array has two
subscripts that refer to the element’s row and column. Suppose
the array B is specitied in the statement DIM B{2,2). Then the
CC-40 reserves 9 locations for the 9 elements in array B.
Suppose these locations have the values as shown below.

ARRAY B

BOO) 15 B(0,1) 18 B(0,2) 21
B1,0) 24 B(1,1) 27 B(1,2) 30
B20) 33 B(21) 36 B(22) 39

Then you refer to the element of array B that has a value of 30
as B(1,2). Refer to the element of array B that has a value of 18
as B(0,1). You can refer to any element of array B as B(R,C),
where R is equal to the row and C is equal to the column of the
element.

In CC40 BASIC you can have an array with up to 3 dimensions.

| Using Arrays

Enter the following program in the CC-40. (Remember to type
NEW and press [ENTER] before you start.)

100 DIM A(5),B(5) |
Line 100 reserves six locations for array A and six for

array B.

110 A{1) = 2:A(2) = 4:A(3) = 6:A(4) = 8:A(5) =10 A(0) is not used
Line 110 has several assignment statements, assigning
values to A(1) through A(5).

120 B(1),B{2),B(3)=2:B(4) = 3E — 5:B(5) = 10 !1B{0) is not used
Line 120 has several statements to store values in array
B.

130 FORC=1TO5
Line 130 sets up a loop which is executed 5 times.

140 PRINT “A+B = ";A(C)~B(C).PAUSE 2.5
Line 140 prints the string constant A¥B= in the display,
followed by the product of the array elements that the
counter C refers to. The PAUSE statement holds the
answer in the display for 2.5 seconds sO you can see the
answer.

4-17

CHAPTER IV

CHAPTER IV

BASIC PROGRAMMING

-
K

150 PRINT “AiB = ";A(C)YB(C):PAUSE 2.5
Line 150 prints the string constant A/B= followed by the
quotient of the elements of the arrays and then pauses
for you to read the answer.

160 NEXT C
Line 160 is the last line of the loop.

To list the program, type LIST and then press [ENTER] to see
each succeeding line. To execute the program, enter [RUN]. The
CC-40 displays the following products and quotients: 4 and 1; 8
and 2; 12 and 3; .00024 and 266666.6667; and 100 and 1.

READ and DATA Statements

When you have many values to assign to variables, you can
easily assign them using READ and DATA statements. Each
time a READ statement is executed, it reads data from a DATA
statement. The values are written in a DATA statement(s) which
may appear anywhere in your program.

A READ statement can read data into any number of variables.
The data in the DATA statement is read from left to right. {f
necessary, a READ statement reads from more than one DATA
statement. More than one READ statement can assign the
values in a DATA statement; each READ statement assigns the
first unread data value.

The previous example could use the READ and DATA
statements instead of arrays and multiple assignment
statements, as shown below.

100 DATA 2,2,4,2,6,2,8,3E - 5,10,10
Line 100 lists the first value of A followed by the first
value of B and then repeats values of A and B for all five
pairs of numbers.

1M0FORC=1T05
Line 110 sets up a loop to be executed five times.

120 READ A,B

Line 120 stores the first value from the DATA statement in,

A and the next value in B. Each time line 120 is executed,
the next pair of values in the DATA statement is stofed in
A and B.

BASIC PROGRAMMING

130 PRINT “A~B =";A~B:PAUSE 2.5 |
Line 130 prints AXB= followed by the product of A and B
and then pauses 2.5 seconds for you to see the answer.

140 PRINT “A7B = ";A/B:PAUSE 2.5
Line 140 prints A/B= followed by the quotient of A and B
and pauses 2.5 seconds.

150 NEXT C
Line 150 ends the [oop.

To run this program, enter [RUN] and you will get the same
answers as in the previous example.

READ and DATA with the RESTORE Statement

You can also cause a READ statement to assign values from
the first DATA statement again or from other DATA statements
by using the RESTORE statement.

The following program reads the first five pairs of values from
the first DATA statement and reads the next two pairs from the

-second DATA statement. After the products and quotients have

been displayed, the RESTORE statement in line 160 causes the
next READ statement executed to start assigning values from
the first value in the first DATA statement.

All the values in the two DATA statements are assigned and
the sums printed. The RESTORE statement in line 210 causes
the next READ statement executed to start assigning values
from the first value in the DATA statement in line 105.

100 DATA 2,2,4,2,6,2,8,3E - 5,10,10
105 DATA 30,40,5,20

10 FORC=1TO7

120 READ A,B

130 PRINT “A«B =";A«B:PAUSE 2.5
140 PRINT “A/B =";A/B:PAUSE 2.5
150 NEXT C

160 RESTORE

170FORC=1T07

180 READ AB

190 PRINT A + B:PAUSE 2.5

200 NEXT C

210 RESTORE 105

220 READ A,B,C,D
230 PRINT A;B;C;D:PAUSE 2.5

|
j 4-18 419

CHAPTER IV CHAPTER IV
BASIC PROGRAMMING _ BASIC PROGRAMMING

evaluating numeric expressions in the order given below. Refer

%:i When you run this program, the following answers are to chapter 2 for a discussion of this order.

‘ ' dlela}'Ed. 1. Calculations within parentheses are evaluated first.
L | N 2. Exponentiation is performed next.
'|| 3 | 3. Negation is performed next.
|! 5 ;f 4. Multiplication/division from left to right is performed.
H ;,2 E 5. Addition/subtraction from left to right is performed last.
B
1 .00024 String Expressions
266666 .6667 © String expressions are constructed from string variables, string
1 100 3 constants, and function references using the operation for
1 's' concatenation (&) which combines or links strings. If the string
1200] length exceeds 255 characters, characters on the right are lost
H .75 3 and the warning String truncation is displayed. The following
) 100 is an example of string concatenation.
| ;25 o ABS =“THIS IS AN EXAMPLE "
-9 BBS =“OF STRING CONCATENATION"

g 4 STRINGS = ABS & BBS

300003 . PRINT STRINGS

50 Enter the above four lines in the CC-40 and It displays
. 70 THIS IS AN EXAMPLE OF STRING CONCATENATION.
| 30 40 5 20 | - § Relational Expressions
i . | Relational expresslons are constructed from variables,
i' Expressmns - constants, and functions to compare two values, using the
‘!i‘ In BASIC, calculations are performed by writing them as . following six relational operators.
!!.;[‘= expressions. Expressions are constructed from constants, = (equal to)
1| variables, and functions. There are four types of expressions: < > (not equal to)
H| numeric, string, refational, and logical. 3 < (less than)
P < = (less than or equal to)

A numeric expression is a series of one or more constants, P 3 > = (greater than or equal to)

il variables, andfor functions connected by any of five arithmetic

‘- operators: +, —, *, [, A. An operator must appear between

| each pair of numeric constants, variables, and/or functions.
When a numeric expression is evaluated, the result is always a
i number. CC-40 BASIC uses standard algebraic hierarchy |n '

The result of the comparison Is either true or false. A relational
expression has a value of —1 if it is true. A relational
expression has a value of 0 if it is false.

k | | H 2 5

1‘ Numeric Expressions . > (greater thar)
|

|

Relational expressions are most often used in the IF THEN
ELSE statement (described later in this chapter), but may be
used anywhere that a numeric expression is allowed. The
values compared must be either both numeric or both string.

4.20 4-21

x
A

e
.:'ii!lf
*E
X
&

CHAPTER IV
BASIC PROGRAMMING

..

2
T

Numeric Comparisons

Relational expressions are evaluated from left to right after all
arithmetic operations within the expression are completed. The
following examples illustrate the use of relational expressions
to compare numeric values.

150 IF X<Y THEN 200
If X is less than Y, control transfers to statement 200. If X
Is greater than or equal to Y, control continues with the
statement after line 150.

200 A=2<5

210 PRINT A:PAUSE
Sets A equal to -1 since it is true that 2 is less than b
and prints the value of A.

100 PRINT 2>5:PAUSE
Prints O since it is false that 2 is greater than 5.

String Comparisons

Comparisons of string values are performed by taking one
character at a time from each string and comparing their ASCil
codes. Leading and trailing blanks are significant. (See
appendix D for a complete list of ASCIl codes.) If the ASCII
codes differ, the string with the lower code is less than the
string with the higher code. If all the ASCIl codes are the same,
the strings are equal. For strings of unequal length, the
comparison is performed for as many characters as there are in
the shorter string. If all the ASCII codes are the same, the
longer string is considered greater. The null string (“”) is less
than every other string.

100 PRINT “THIS” = “THAT”:PAUSE
Prints O since it is not true that “THIS” is equal to
“THAT".

110 PRINT “ABC”<*“ABCD”:PAUSE
Prints ~1 since it is true that “ABGC” is less than “ABCD.

Logical Expressions |

The logical operators (AND, OR, NOT, and XOR) are generally
used with relational expressions. The logical operators cag also
be used to manipulate data on a bit basis. Refer to appendix H
for a description of using the logical operators in this way.

&+

4-22

CHAPTER IV
_ BASIC PROGRAMMING

The order of precedence for logical operators, from highest to
lowest, is NOT, XOR, AND, and OR. The following examples
lilustrate the use of logical operators with relational
expressions to form logical expressions. These logical
expressions have a value of either true or false,

A logical expression with AND is true if the conditions on both
its left and right sides are true.

100 IF 3<4 AND 5<6 THEN L =7
Sets L equal to 7 since 3 is less than 4 and 5 is less than

B.

110 IF 3<4 AND 5>6 THEN L=7
Does not set t. equal to 7 because 3 is less than 4, but 5

is not greater than 6.

A logical expression with OR is true if either the condition on
Its left side is true, the condition on its right side is true, or
both the conditions are true.

120 IF 3<4 OR5>6 THEN L=7
Sets L equal to 7 because 3 is less than 4.

A logical expression with XOR (exclusive or) is true if either the
condition on its left side is true, the condition on its right side
is true, but not if both the conditions are true.

130IF 3<4 XOR5>6 THEN L =7
Sets L equal to 7 because 3 is less than 4 and b is not

greater than 6.

140 IF 3<4 XOR 5<6 THEN L=7
Does not set L equal to 7 because 3is lessthan4 and S5 is

less than 6.

A logical expression with NOT is true if the condition following
it is not true.

150 IF NOT 3=4THEN L =7
Sets L equal to 7 because 3 is not equal to 4.

Note: NOT 3=4 is equivalent to 3< >4.

160 IF NOT 3=4 AND (NOT 6=5 XOR 2=2) THEN 200
Does not pass control to line 200 because while it is true
that 3 is not equal to 4, it is true that both 6 is not equal to 5
and 2 is equal to 2, so the condition in parentheses is not
true.

4-23

CHAPTER IV
BASIC PROGRAMMING

Order of Execution of Expressions

The order of operations within arithmetic, relational, and logical
expressions was given in the discussion for each type of
expression. The order of precedence for evaluating expressions
is given below.

» Functions are evaluated first.

o Arithmetic operations are performed next.
¢ String operations are performed next.

¢ Relational operations are performed next.
e Logical operations are performed |ast.

input/Cutput Statements

Before data can be processed, it must be transferred into the
computer. Data can be transferred into the computer by using
assignment statements, READ and DATA statements, the KEY$
function, or some form of input statement. In CC-40 BASIC the
Input statements are INPUT, LINPUT, and ACCEPT.

After the data has been processed, you either want to view it or
store it for future use. To display or store the processed data,
use some form of output statement. The output statements are
PRINT and DISPLAY.

Using input and output statements with the display is
described below. Using input and output statements with
external devices such as printers and tape drives is described
in this chapter under “Using External Devices”.

4-24

CHAPTER IV
BASIC PROGRAMMING

*3

The PAUSE Statement

The CC-40 digplays printed items so quickly that you can not
see them. There are three ways to have items remain in the
display long enough so that you can read them.

First, you may have the computer pause after each statement
that displays items by putting the statement PAUSE ALL in the
program before any output statement. During a pause, the
underline cursor is displayed in column 1 waiting for you to
acknowledge the pause by pressing [ENTER] or [CLR]. After
either of the keys is pressed, the computer resumes execution
of the program with the next statement.

Second, you may have the computer pause after a specific
statement by following that statement with PAUSE and the
number of seconds that the pause is to last. In this case the
cursor Is not displayed. After the number of seconds specified
has passed, the program resumes execution. If you use PAUSE
with no time parameter, the cursor is displayed in column 1 and
the program resumes execution after [ENTER] or [CLR] is
pressed.

Finaily, to keep a prompt for an ACCEPT statement in the
display, you can follow the PRINT or DISPLAY statement with a
comma or a semicolon to create a pending print (described
later under “Pending PRINT and DISPLAY Statements™).

4-25

CHAPTER IV

BASIC PROGRAMMING

3
Input Statements

The input statements allow a program to get data from the
keyboard. The INPUT, LINPUT, and ACCEPT statements store
the value(s) entered from the keyboard into the variable(s) listed

in the statement. Only one value can be entered at a time. The -

KEY$ function is used to halt program execution until a key is
pressed.

Each statement is disgussed briefly in the section bel'uw. Refer
to chapter 5 for a detailed explanation of each input statement.

The INPUT Statement

You can put values typed on the keyboard into variables by
using the INPUT statement. For example, enter the following
program in the CC-40.

100 INPUT K

110 INPUT “ENTER DEGREES: ™D
120 INPUT A, BS

130 PRINT K;D;A;B$:PAUSE

When the program is run, the INPUT statement in line 100 halts
program execution, displays a 7 in column 1, and waits for a
value to be entered from the keyboard. When a value is entered,
it is stored in variable K.

Line 110 displays ENTER DEGR
a value to be stored in D.

-

iES: and waits for you to enter

Line 120 displays a ? in column 1 and waits for you to enter a
value for A. When a value is entered, it is stored in A. A
guestion mark is displayed again to prompt you for a value for
B$.

4-26

CHAPTER IV
BASIC PROGRAMMING

The LINPUT Statement

The LINPUT statement assigns any series of characters entered
from the keyboard to a string variable. Therefore, you can enter
commas and leading and trailing spaces which are not allowed
in the INPUT statement unless they are enclosed in quotes.

120 LINPUT “NAME: ”;NEM$

“displays NAME: and waits for a value to be entered that will be

stored in NEM$.

The ACCEPT Statement

The ACCEPT statement gives more control over data that is
input from the keyboard. The options available in ACCEPT
allow you to sound a tone, erase all or part of the display, {imit
the number and type of characters, and specify the column
where they can be entered. For example, when the following
line is executed, the computer beeps, erases the display,
positions the cursor at column 10, and waits for you to enter a
value with up to 4 characters for DEG. As you type the value,
each character is tested to see If it is numeric (09, +, —, ., E)

- before it can be entered from the keyboard.

100 ACCEPT AT(10) VALIDATE(NUMERIC) BEEP ERASE ALL SIZE(4),
DEG

- The KEYS$ Function

The KEY$ function allows you to halt program execution until a
key is pressed. KEY$ returns a one character string that
corresponds to the key that was pressed. For example, when
the following statement is executed, program execution halts
until a key is pressed. The character corresponding to the key
that was pressed is then stored in K$. Refer to appendix D for
a list of keycodes.

150 K$ =KEY$

4-27

CHAPTER IV
BASIC PROGRAMMING

¥
4

3
Output Statemients

The output statements allow you to write data in many different
ways and on different media. Each statement is discussed
briefly in the section below. Refer to chapter 5 for a detailed
explanation of each cutput statement.

The PRINT and DISPLAY Statements

The PRINT statement allows you to print numbers and strings
in the display. Negative values are preceded by a minus sign
and nonnegative numbers are preceded by a space (instead of a
plus sign). Numeric values are followed by a space.

When several values are to be displayed on a line, they are
separated in the output statement with a semicolon or a
comma. The semicolon causes the next value to be printed
immediately after the preceding one. The comma causes the
next vafue to be printed in the next field. The display is divided
into fields 15 characters long. The fields start at columns 1, 16,
31, 46, 61, and 76.

The following statements print the output shown if X equals
—7 and Y equals 13.

Statement Output .
100 PRINT X; Y:PAUSE -7 13
110 PRINT X, Y:PAUSE -7 13

You can also display string constants in an output statement.
Unlike numeric values, string values have no leading signs and
no trailing spaces. For example, the following statements print
the output shown.

Statement Output
180 X$=“X IS ":X=10:Y$=“ Y IS ™
Y=20
190 PRINT X$;X;YS$;Y:PAUSE XIS 10 YIS 20

The DISPLAY statement gives you more control than the PRINT

statement over data that is displayed. The options available in -

DISPLAY atlow you to sound a tone, erase the display, spgcify
the size of items displayed, and specify the columns where

4-28

CHAPTER IV
BASIC PROGRAMMING

values are displayed. For example, when [ine 120 is executed,
the computer beeps, erases the display, and displays the value
of A$ at column 3 followed by the value of B as shown below.

Statements Output .
110 A% ="The answer is ":B=15.55
120 DISPLAY AT(3) BEEP ERASE

ALLAS:B The answer is 15.55
130 PAUSE

USING with the PRINT and DISPLAY Statem'ents

The PRINT and DISPLAY statements may optionally include a
USING clause that allows you to display the numbers with a
specific format. Pound signs (#) are used to show how many
digits to use in printing the number. The format can be
specified in the PRINT or DISPLAY statement itself or can be
written in an IMAGE statement. For example, the following
program uses the USING option in a PRINT statement.

100 INPUT “Enter Statting Mileage: ";SMILE

110 INPUT “Enter Ending Mlleage: ”;EMILE

120 INPUT “Enter Gallons Used: *;GALL

130 MPG =(EMILE - SMILE)/GALL

140 PRINT USING “Miles per gallon = ##i.4##",MPQ
150 PAUSE

If you run this program and enter values of 5§405.7, 5807.9, and
18.3, then Miles per gallon = 21.98 is displayed. Without the
USING clause, the MPG would have been displayed as
21.97814208.

You could use the IMAGE statement by adding line 132 and
changing line 140 as shown below.

132 IMAGE Miles per gallon = ###.#4
140 PRINT USING 132;MPG

TAB with the PRINT and DISPLAY Statements

- The TAB function is used with the PRINT and DISPLAY

statements to format data, much as the TAB key on a
typewriter does. TAB displays enough spaces to make the next
value printed appear in a specific column.

The fast example can be changed to use the TAB function to
display values starting in a specific column. In the following

4-29

CHAPTER IV
BASIC PROGRAMMING

’
L

program, lines 134 and 136 have been added to use the TAB
function.

100 INPUT “Enter Starting Mileage: ";SMILE
110 INPUT “Enter Ending Mileage: ";EMILE
120 INPUT “Enter Gallons Used: ";GALL
130 MPG ={(EMILE — SMILE)/GALL

132 IMAGE Miles per gallon = ##i.##
134 PRINT “Miles traveled: ;TAB(20);EMILE — SMILE:PAUSE 2.5

136 PRINT "“Gallons used: ";TAB(20);GALL:PAUSE 2.5
140 PRINT USING 132;MPG
150 PAUSE

if you enter the same values as before, 5405.7, 5807.9, and 18.3,
the display shows

Miles traveled: 402.2 (for 2.5 seconds)

Gallons used: 18.3 (for 2.5 seconds)

Miles per gallon = 21.98

Pending PRINT and DISPLAY Statements

The PRINT statements used in the examples have displayed
exactly one line. Sometimes you may want to have several
PRINT or DISPLAY statements display information on the same
line. A pending print is created when a PRINT or a DISPLAY
statement ends with a comma or semicolon. If a comma ends
the statement, the computer spaces over to the next field; if a
semicolon ends the statement, the computer does not space
over. Then the next PRINT or DISPLAY statement prints on the

same line at the current column position.

The program above can be changed to print the mileage and
the gallons on the same line by changing lines 134 and 136 as

shown below.

100 INPUT “Enter Starting Mileage: ”;SMILE

110 INPUT “Enter Ending Mileage: ;EMILE

120 INPUT “Enter Gallons Used: ";GALL

130 MPG ={EMILE - SMILE)/GALL

132 IMAGE Miles per galion = ###.##

134 PRINT “Miles ="";EMILE — SMILE;

136 PRINT “Gallons =";GALL:PAUSE 2.5 | R
140 PRINT USING 132;MPG

150 PAUSE

4-30

CHAPTER IV
BASIC PROGRAMMING

Control Statements

Most of the programs you have run on the CC-40 started
executing the first statement and continued executing each
sequential line to the last. The flow of the program or flow of
control has gone from the first statement to the last.

Control statements are used to direct the flow of the program.
Some statements form a loop and cause some lines 10 be
repeated a specified number of times. You have already used
two of these statements, the FOR TO STEP and NEXT
statements. Some statements compare data and cause
program execution to jump or branch to another line rather
than go to the next program statement. This section describes
the various control statements available in CC-40 BASIC.

The FOR TO STEP Statement

You have already used the FOR TO and NEXT statements in a
program to create a loop. The FOR TO statement has another

option that allows you to increment the counter other than by 1.
‘For example, entering

100 FOR COUNT =2 TO 100 STEP 2

starts a loop where the counter begins at 2 and is incremented
by 2 each time. The loop is repeated until the counter is greater
than 100.

If the starting value of the counter is greater than the limit
value, the loop is not executed. If the starting value and the
limit value of the counter are the same, the loop Is executed
one time.

You can also use a negative value for STEP. The counter of the
FOR statement is decreased each time the loop is executed. If

the starting value of the counter is less than the limit value, the
loop is not executed. If the starting value and the limit value of
the counter are the same, the loop is executed one time.

'Enter the following program. The CC-40 displays the steps it
calculates in the toop.

100 FOR A=6 TO 4 STEP - .25
110 DISPLAY AT(10) BEEP,“A= ";A:PAUSE 2.1
120 NEXT A

4-31

CHAPTER IV

BASIC PROGRAMMING

L4
T

You should not transfer control into the middle of a loop from
the outside. The counter or control variable is set up only when
the FOR TO statement is executed. You may transfer control
out of a loop with a GOTO, GOSUB, ON GOTO, or ON GOSUB
statement and then transfer back in.

Nested Loops

A FOR TO NEXT loop can be contained within another loop.
The loop that is inside is called a nested loop. A nested loop
must always be entirely inside the outer loop. For example, in
the program above, the value of the counter can be displayed in
successive columns by adding statements 105 and 130 and by
changing statements 110 and 120 as shown below.

100 FOR A=6 TO 4 STEP — .25

105 FORB=1TO 7 STEP 3 -

110 DISPLAY AT(B) BEEP,“A= ";A:PAUSE 2.1
120 NEXT B

130 NEXT A

The GOTO Statement

The GOTO statement tells the computer what line in a program
to execute next. The following program uses a GOTO statement
to read all the data in the DATA statement.

100 DATA 5,10,3.5,420,55.25
110 READ R

120 PRINT R, 2~PI~R:PAUSE 2
130 GOTO 110

Each time line 130 is executed, control is transterred back to
line 110 which is executed again. When line 110 tries to read
past the data in the DATA statement, an error occurs and the
message DATA error is displayed. To determine when to stop
reading data, a dummy value (a value you know marks the end
of the data) can be inserted in the DATA statement and the IF
THEN ELSE statement used to test it.

4-32

CHAPTER IV
BASIC PROGRAMMING

The IF THEN ELSE Statement

The IF THEN ELSE statement allows you to compare data in a
program. The data compared can be constants, variables,
and/or expressions. If the comparison or condition being tested
is true, the statement(s) following the word THEN are executed.
If the comparison is false, the statement(s) following the word
ELSE are executed. If the comparison is false and there is no
ELSE, the line following the IF statement is executed.

In the following program a check is made on the data read. If
the dummy value (a value less than zero) has been read, an end
of data message is printed. If the dummy value has not been
read, the result of the calculation is printed. After [ENTER] is
pressed, the next value in the DATA statement is read.

100 PAUSE ALL

110 DATA 5,10,3.5,420,55.25, - 5
120 READ R

130 IF R<0 THEN 160

140 PRINT R, 2+PI*R

150 GOTO 120

160 PRINT “END OF DATA”

The following are examples of IF THEN ELSE statements.

400 IF D =999 THEN DISPLAY “ARE YOU FINISHED?” ELSE 150
The computer checks the value in location D to determine
if it is 999. If D is 999, the computer displays ARE YCU
FINISHED? and executes the next line. If D is not 999, the
computer executes line 150.

S10IF LIC) <> 12 THEN C=S+ 1 ELSE COUNT =COUNT + 1:GOTO 140
The computer checks the value in L(C) and if it is not
equal to 12, then C is set equal to S+ 1 and the next line
is executed. If L{C) is equal to 12, then COUNT is set
equal to COUNT plus 1 and line 140 is then executed.

The ON GOTO Statement

“ Another control statement is ON GOTO. The ON GOTO

statement is used to transfer control to a program line based
on whether the value of the variable following the word ON is 1,
2, 3, etc.

4-33

¥

CHAPTER IV
BASIC PROGRAMMING

E
. "I

100 REM THIS PROGRAM IS A DEMONSTRATION
110 1 OF THE ON GOTO STATEMENT

120 PRINT *1 for LOG, 2 for LN, 3 for EXP”;

130 ACCEPT AT(31) SIZE(1) BEEP VALIDATE(*123"),CODE
140 DISPLAY ERASE ALL, “ENTER ARGUMENT:";
150 ACCEPT BEEP, ARG

160 IF ARG<0 THEN 140

170 ON CODE GOTO 180, 200, 220

180 PRINT “LOG of ”;ARG;“is ";LOG(ARG):PAUSE
190 GOTO 120

200 PRINT “LN of ";ARG;“is ";LN(ARG):PAUSE
210 GOTO 120

220 PRINT “EXP of ";ARG;"is *;EXP{ARG).PAUSE
230 GOTO 120

The program above accepts a 1, 2, or 3 for the variable CODE.
The PRINT statement displays a prompt and the AGCEPT
statement halts program execution until a value is entered for
ARG. If the value of ARG is negative, the prompt is again
displayed and the ACCEPT statement waits for another value
for ARG. When a nonnegative value is entered for ARG, the
program calculates the LOG, LN, or EXP of ARG depending
upon the value entered for CODE.

Strings and String Manipulation

String constants and string variables have already been defined
in this chapter. However, you may find that you need to be able
to manipulate a string. This section describes strings and the
functions you can use on the CC-40 to manipulate them.

Each character is stored in the CC-40 as a number from 0
through 255. The number is called the ASCI| character code.
For example, the string values “BASIC” and “Basic” are
represented as shown below. The string BASIC is less than the
string Basic because the ASCIl code for A is less than the
ASCIH code for a.

B A S | ©C B a s | ¢

66 65 83 73 67 66 97 115 105 99

CHAPTER IV
BASIC PROGRAMMING

Converting a Character to ASCIl Code—ASC

You can convert the first character in a string to its ASCII
character code by using ASC.

100 NUMB1 = ASC(*H")
110 NUMB2 = ASC{*hello®)
120 NUMB3 = ASC(*%")
- Assign NUMB1 the value 72, NUMB2 the value 104, and
NUMBS3 the value 37.

Converting a Number to its Corresponding
Character—CHR$

You can convert a number (from 0 through 255) to the character
that Is designated by the number according to ASCII
conventions.

100 A$ =CHR${(42)
Assigns the character ¥ to AS.

The following program accepts a value from the keyboard. If the
value Is a lower-case character, it is changed to upper-case.
The value is then printed and control returns to statement 100Q.
To terminate the program, press [BREAK)].

100 PRINT “Press a key:

110 AS=KEYS$

120 IF ASC(A%) <97 OR ASC(AS)>122 THEN 140

130 AS$ = CHR$(ASC(AS) - 32

140 PRINT *“The character Is now ";A$:PAUSE 2: GOTO 100

Finding the Length of a String—LEN

You can determine the length of a string by using the LEN
function.

100 ALBS$ =“LIST 10"

110 N =LEN{ALBS)
Define the string ALB$ and assign the number of
characters in ALB$ to the variable N. In this case N has a
value of 7.

CHAPTER |V

CHAPTER IV
BASIC PROGRAMMING

BASIC PROGRAMMING

Repeating a Strmg—RPT$

You can repeat a string by using the RPT$ function.

130 PRINT RPT$(*BASIC ”,5)PAUSE
Displays the string BASIC BASIC BASIC BASIC BASIC .

Finding a String within a String—POS$S
You can determine the position of one string within another
string by using the POS function.

140 BB = POS{ALBS,"ST",1)
Assigns the variable BB the position in string ALB% where
the string “ST” first occurred. From the example above,
ALBS$ is equal to “LIST 10” and the position where the
string “ST” first occurs in ALB$ is 3.

Getting a Substring of a String—SEG$

You can get a substring of a string by using the SEGS$ function.

190 CC$ =SEGS$(ALBS,4,3)
Assigns the variable CC$ three characters from the string

ALBS$ starting at the fourth character. If ALB$ is equal to
“LIST 10", CC$ is set equal to T 1.

Converting a Number to a String—STR$

You can convert a number to a string by using the STR$
function.

150 BB=17

160 VALUES =STR%BB)
Converts the number in BB to a string that represents that

number and assigns it to VALUES$. In this case VALUE$S
contains the string “17".

Converling a String to a Number— VAL

You can convert a string to a number by using the VAL
function.

170 NUMBRE =VAL(VALUES) |
Converts the string representing a number in VALUES

(which is “17’") to the number and assigns it to NUMBHE
In this case, NUMBRE has a vaiue of 17.

*3

Testing a String for a Numeric
Constant—NUMERIC

You can test a string to determine if it is a valid representation
of a numeric constant by using the NUMERIC function.
NUMERIC returns a vaiue of —1 {true) if the string is a valid
representation of a numeric constant and a value of O (faise) if
it is not. NUMERIC can be used on a string to see if VAL will
convert it to a numeric value.

The statements below are used to test if A$ is a valid
representation of a numeric string before the VAL function is
used to change the string to a number.

160 IF NUMERIC(AS) THEN A =VAL(AS) ELSE PRINT “NOT A
NUMBER”:PAUSE

Built-in BASIC Functions

All of the CC-40 BASIC functions may be used in a program
line. The trigonometric and logarithmic/exponential functions
have been discussed in chapter 2. Some CC-40 functions are
described in this chapter in sections that deal with similar
instructions. The functions available on the CC-40 to
manipulate numbers and generate random numbers are
described below.

Manipulating Numbers

The absolute value of an expression can be obtained by using
ABS. In the example below, K is set equal to 20. ABS always
returns a positive value or zero.

100 K = ABS{—4+5)

The sign of a number can be determined by using SGN. In the
example below, K is set equal to 1 if C is positive, 0 if C is zero,
and —1 if C is negative.

110 K =8SGN(C)

The INT function is used to find the largest integer that is less
than or equal to a number. In the example below, K is set equal
to 23 and L is set equal to - 5.

120 K =1NT{23.99999)
130 L=INT(—4.1)

4-37

CHAPTER IV
BASIC PROGRAMMING

)
: ':t

Generating Random Numbers
You can have the CC-40 generate random numbers for
programs involving statistical analysis, games, and simulations.
The CC-40 produces random numbers from 0 to 1 when RND is
used. For example, the program below generates 10 random
numbers.

100 FOR J=1TO 10

110 PRINT RND:PAUSE 1.5
120 NEXT J

The same series of random numbers is generated each time

you run a program unless a RANDOMIZE statement is executed

before generating the random numbers.

The program betow prompts for the number of random numbers
to be generated. The random numbers are printed one at a time
followed by their average. Press [BREAK] to stop the program.
Note: The average of many random numbers is approximately

5.

100 INPUT “ENTER NUMBER OF VALUES: ";QUAN

110 AVER=0

120 FOR A=1 TO QUAN

130 D =RND:PRINT D:PAUSE 2

140 AVER=AVER +D

150 NEXT A |

160 PRINT *“Average is ”;AVER/QUAN:PAUSE

170 GOTO 100

To generate a sequence of integer random numbers, you can
use INTRND. INTRND generates a random number between 1

and the number that you give it. For example, the program
below generates ten random numbers between 1 and 100.

100 FOR J=1TO 10
110 PRINT INTRND{(100):PAUSE 1.5

120 NEXT J

4-38

CHAPTER IV
BASIC PROGRAMMING

Subroutines

Many times in a program you may find that you need to use the
same group of lines in several places. By writing these lines as
a subroutine, you can eliminate the need to duplicate them.
Then when you need to execute these lines, you transfer
control to the subroutine. When the subroutine has finished
executing, control is transferred back.

The GOSUB Statement

To transfer control to a subroutine, you can use the GOSUB
statement followed by a line number. The line number is the
first program line in the subroutine. The last line of a
subroutine must be a RETURN statement that transfers control
back to the statement after the GOSUB statement. A subroutine
may also transfer control to another subroutine, allowing
nesting of subroutines. Refer to chapter 5 for a description of
GOSUB.

A subroutine can use and change the values of any variables in
the main program which includes it.

When the GOSUB statement is executed, the following process
takes place.

1. A pointer to the statement after the GOSUB statement is
stored by the computer.

2. Program control transfers to the line specified by the GOSUB
statement.

. The statements of the subroutine are executed.

4. Program control transfers to the address contained in the
pointer when the RETURN statement is encountered.

5. Execution resumes with the statement following the GOSUB
statement.

The ON GOSUB Statement

The ON GOSUB statement is another way to call a subroutine.

o

‘ON GOSUB determines which subroutine to call according to

the value of the variable following the word ON.

4-39

BASIC PROGRAMMING

CHAPTER IV

100 ON XVAL GOSUB 200, 400, 600
Transfers control to the subroutine at line 200 if XVAL is
1, to line 400 if XVAL is 2, and to line 600 if XVAL is 3.

XVAL is rounded to the nearest integer.

Subprograms

Like subroutines, subprograms eliminate the need to write
duplicate program lines. However, subprograms cperate very
differently from subroutines. Subprograms are executed by
using the CALL statement followed by the subprogram’s name
and, optionally, a list of arguments enclosed in parentheses.
When a program includes subprograms, they must follow the
main program.

CC-40 BASIC Subprograms

The first statement in a subprogram must be the SUB
statement followed by an optional list of parameters. If a
subprogram needs data from the main program, the data must
be passed through the parameters. The variables in a main
program are restricted for use by the main program and any
subroutines in the main program. The variables in a
subprogram are restricted for use in the subprogram and any
subroutines within the subprogram. Therefore, variable names
may be duplicated in a main program and a subprogram. A
subprogram may call other subprograms, but must not call
itself, either directly or indirectly.

The last statement in a subprogram must be a SUBEND. When
the SUBEND statement is executed, control returns to the
statement following the CALL statement that called the
subprogram. Control may also be returned by the SUBEXIT
statement before the end of the subprogram.

Argument List

Data is passed to the subprogram through the argument list of
the CALL statement. Each argument in the argument list has a
corresponding variable in the parameter list of the subprogram..
The arguments of the argument list can be constants, varjables,
arrays, or expressions. Arguments can be passed by reference
or by value.

4-40

CHAPTER IV
BASIC PROGRAMMING

Passing Arguments By Reference

Arguments that are passed by reference can be variables or
arrays. Arrays are always passed by reference. When
arguments are passed by reference, the subprogram uses those
variables or arrays from the calling program. If a parameter in a
subprogram is changed, its corresponding argument in the
calling program is also changed.

In the program segment below, the subprogram uses the
variables A, B, and L(3) and can change the stored values of
these variables. When the SUBEND statement at line 990 is
executed, program control returns to line 210 in the main
program.

200 CALL MARINE(A,B,L(3)
210 ...

900 SUB MARINE(F,L,2)
890 SUBEND

Passing Arguments By Value

Arguments that are passed by value can be variables,
constants, or expressions. To pass a variable by value, the
variable must be enclosed in a set of parentheses. Constants
and expressions are always passed by value. When arguments
are passed by value, the subprogram can use the values of the
arguments, but the subprogram cannot alter the values of the

arguments.

In the program segment below, the values of the variables A
and L(3) and the expression L(3)+ 1 are passed by value to the
subprogram TRACTION, along with the constant 17. TRACTION
cannot alter the values of the variables A and L(3} in the calling
program or subprogram, but it can alter the value of the
variable B. When the SUBEND statement at line 990 is
executed, program control returns to line 210 in the calling

- program ¢r subprogram.

200 CALL TRACTION((A),B,(L(3)),17,L(3) + 1)
210 ...

900 SUB TRACTION(N,L,Z,D,P)
990 SUBEND

4-41

‘CHAPTER IV
BASIC PROGRAMMING

-
%

The ATTACH and RELEASE Statements

You can reduce the execution time of a program that repeatedly
calls a subprogram by using the ATTACH statement when you

" have sufficient free memory. When a subprogram is attached,

~ the variables are initialized when the ATTACH is executed and
not each time the subprogram is called. The vaiues of the
variables are maintained when the subprogram terminates.

To release the memory that is used when a subprogram is
attached, use the RELEASE statement. The variables in the
subprogram are then initialized each time the subprogram is
called, and are not maintained when the subprogram
terminates.

Built-in Subprograms
The CC-40 has many built-in subprograms that you can access.
The following sections describe these subprograms.

Expanding Memory

You can add to the internal memory of the CC-40 by using
CALL ADDMEM. CALL ADDMEM appends the Random Access
Memory (RAM) in the Memory Expansion cartridge to resident
memory. See chapter 3 and appendix J for a description of
memaory expansion.

Using Memory

The CC-40 provides the capability of using assembly language
programs and subprograms. The function FRE can be used to
determine the amount of memory available and the following
BASIC subprograms can be used to access it: GETMEM, POKE,
PEEK, EXEC, LOAD, 10, and RELMEM. Refer to chapter 5 for
more infocrmation.

The FRE Function

The FRE function is used to determine how much memory is
being used for the operating system and the program in
memory and how much memory is available.

4-42

CHAPTER IV
BASIC PROGRAMMING

The GETMEM Subprogram

The GETMEM subprogram is used to reserve the memory that
you have determined is available from the FRE function. You
can store data and assembly language programs and
subprograms there. The amount of memory reserved should be
significantly less than the largest block available. Sufficient
memory space must remain available for statements that
require additional temporary memory. GETMEM requires four
bytes of memory for its own operation.

The POKE Subprogram

The POKE subprogram is used to write data or an assembly
language program or subprogram in reserved memory. If you
use POKE indiscriminately, you may erase programs and/or
files. You cannot do any physical harm to the CC-40 with POKE,
but you may have to reset the system. |

The PEEK Subprogram

The PEEK subprogram is used to read the data in memory
locations.

The LOAD Subprogram

The LOAD subprogram is used to load into computer memory
an assembly language subprogram from external storage. More
than one subprogram may be loaded into memory and if space
permits, they may reside in memory with a BASIC program.

The EXEC Subprogram

The EXEC subprogram is used to execute an assembly
language program or subprogram.

The 10 Subprogram

The 10 subprogram is used to perform control operations on
peripheral devices.

The RELMEM Subprogram

The RELMEM subprogram is used to release the memory you
reserved with GETMEM.

4-43

CHAPTER IV
BASIC PROGRAMMING

" CHAPTER IV

BASIC PROGRAMMING

»
]

100 CALL CHAR(1,040404041F1F0E04”)

110 CALL CHAR(2,"“040E1F1F04040404™)

120 DISPLAY BEEP,“GUESS A NUMBER BETWEEN 1 AND
25”:PAUSE 1.5

130 DISPLAY BEEP,“YOU HAVE 6 CHANCES”:PAUSE 1

140 DISPLAY BEEP,“INDICATORS RECORD YOUR
GUESSES”:PAUSE 1 |

150 COUNT =1

160 RANDOMIZE

170 SNUM = INTRND{(25)

180 PRINT “ENTER YOUR GUESS *:

190 ACCEPT AT(28)VALIDATE(DIGIT),GUESS

200 IF GUESS =SNUM THEN 280

210 CALL INDIC(COUNT)

220 IF COUNT =6 THEN 360

230 IF GUESS <SNUM THEN 260

240 PRINT CHRS$(1;GUESS;*Try a smaller number*;

250 COUNT =COUNT + 1:GOTO 190

260 PRINT CHRS$(2);GUESS;"Try a larger number”;

270 COUNT =COUNT + 1:GOTO 190

280 PRINT “WOW!l s« +":GUESS;"“+++ I8 comroct”:PAUSE 2

290 FORA=1TO 0 STEP—-1t:X=1

300 FORB=1TO 6

310 CALL INDIC(B,A):PAUSE .1

320 DISPLAY AT(X)BEEP,“YEA!I":X=X+5

Language Prompting

You can use SETLANG to display system messages in either
English or German. Many of the Solid State Software™
cartridges provide messages in languages in addition to
English. By using GETLANG, you can determine which
language is currently in use. The statement below sets the

language code to German.

CALL SETLANG(1)
To reset the language code to English, enter CALL SETLANG(0).

Display Assignments

With CALL CHAR you can define your own displayable
characters. With CALL INDIC you can turn the display

indicators on and off.

The CHAR Subprogram

CALL CHAR can define up to 7 disptayable characters at one
time. in the example below, character codes 1 and 2 are
defined to be up and down arrows by using CALL CHAR. For a

description of CALL CHAR, refer to chapter 5.

100 CALL CHAR(1,“040404041F1F0E04™)
110 CALL CHAR(2,040E1F1F04040404")

The INDIC Subprogram
There are 17 indicators in the display that you can turn on and

. 330 NEXT B
off. The six indicators at the bottom of the display are reserved 340 NEXT A
for your use. If the other indicators are turned on and off, 350 GOTO 420

undesirable results may occur. For more information on CALL
INDIC, refer to chapter 5.

To turn on indicator one, the following statement can be used.
430 CALL INDIC(1)

360 PRINT “6 Chances!”;SNUM;"“was the number”:PAUSE 4
370 FOR A=1 TO 30 STEP 10

380-DISPLAY AT(A) BEEP,"BOOY"PAUSE 2:NEXT A

390 FOR J=1 TO COUNT

400 CALL INDIC(J,0)

The program below uses both CALL CHAR and CALL INDIC. 410 NEXT J
CALL CHAR is used to define up and down arrows for 420 PRINT “Press ENTER to play again™:PAUSE
character codes 1 and 2. The user is allowed six chances to 430 GOTO 150

guess the number the computer has stored. Each time a wrong
guess is made, one of the six indicators in the display is turned
on by CALL INDIC. When the number is guessed or when the
six chances have been used, a message is printed.

4-45

.CHAPTEF{ IV

___BASIC PROGRAMMING

- d
%

The KEY Subprogram

The KEY subprogram is used to determine which key, if any, is
pressed. For example, CALL KEY(K,S) assigns to K the ASCI
code of the current key that is pressed. S is set equal to 1 if the
key pressed is different from the one the last time the KEY
subprogram was called. S is set equal to —1 if the same key is
pressed that the last call to KEY returned, and to 0 if no key is
pressed.

For example, the following section of a program waits for a key
to be pressed and then checks if the key was Y or y.

150 CALL KEY(K,S)
160 IF S=0 THEN 150
170 IF K = ASC(“y”) or K=ASC(*Y”) THEN 250

The VERSION Subprogram

The VERSION subprogram is used to determine the version of
BASIC that is being used. CALL VERSION(V) sets V equal to 10,
the BASIC used on the CC-40.

The CLEANUP Subprogram

You can eliminate any variables that are not being used in the
current program in memory by calling the subprogram
CLEANUP. CLEANUP cannot be called from a program.

The DEBUG Subprogram

The DEBUG subprogram is used to access the debug monitor
to allow you to read and change memory locations and run and
debug your assembly language programs and subprograms.
Refer to appendix | for a description of DEBUG.

Handling Errors in a BASIC Program

The CC-40 provides a means of processing errors in a BASIC
program by using the ON ERROR statement and the ERR
subprogram. When a program is executed, the error handler is ..
automatically set to display a message and stop program
execution when an error occurs. However, you can modify the
error handler to cause it to execute a subroutine when an error
occurs by using ON ERROR followed by a line number.

4-46

CHAPTER IV

BASIC PROGRAMMING

The line number must be the beginning of a subroutine. In the
subroutine, you can call the ERR subprogram to obtain the
error code of the error that occurred. You can then compare
error codes in the subroutine and determine what caused the
error. The subroutine must end with a RETURN statement.
Refer to appendix K for a complete list of the error codes.

For example, in the following program, the ON ERROR
statement causes any errors that occur to be handled by the
subroutine starting at line 300. The program accepts the name
of the next program to run. The computer searches for the
program. If the program is not found, an error occurs. The
subroutine prints a prompt for another program name to be
entered. The program continues execution when the program to
be executed is found. If the error occurred for any other reason,
the error code and the line number are printed and the program
stops.

190 ON ERROR 300

200 INPUT “ENTER PROGRAM NAME ”;PROGS
210 RUN PROGS

300 REM ERROR HANDLING SUBROUTINE

310 CALL ERR(CODE,TYPE,FILE,LINE)

320 IF LINE<>210 THEN RETURN 360

330 IF CODE<>>15 THEN RETURN 360

340 PRINT “Prog. not tound, press CLR":PAUSE
350 RETURN 190

360 REM PRINT ERROR SUBROUTINE

370 PRINT “ERROR”;CODE:" IN LINE”;LINE:PAUSE

Handling Breaks in a BASIC Program

The CC-40 provides a means of processing breakpoints that
occur in a BASIC program. When a program is executed, the
computer automatically halts program execution and displays a
message when a breakpoint occurs. However, by using ON
BREAK, you can cause breakpoints to be ignored {including the
[BREAK] key) or to be treated as errors. If breakpoints are
treated as errors, the ON ERROR statement can process them
as described above. See ON BREAK in chapter 5 for more
information.

4-47

CHAPTER IV
BASIC PROGRAMMING

’
P

Handling Warnings in a BASIC Program

The CC-40 provides a way to handle warnings that occur in a
BASIC program. When a warning occurs while a program is
executing, the computer automatically displays a warning
message and then continues program execution when [CLR] or
[ENTER] is pressed . However, by using ON WARNING, you can
cause a warning message not to be displayed or a warning to

be treated as an error.

Debugging

You may find that a program does not work the way you
intended. The errors that are in it are logical errors, called
“bugs” in computer usage. Testing a program to find these
bugs is called “debugging” a program.

Finding Bugs
Remember that a program s doing exactly what it was told to

do. When the program is not working properly, think about what
could be going wrong, then devise tests to perform within the

program to aid you in finding the bugs.

Debugging Aids
When you are debugging a program, you c¢an use the following
aids to help track down the error.

The [BREAK] key stops program execution when the key is
pressed. At this point you can clear the break message and
print or change the values of variables.

The BREAK statement allows you to stop a program at specific
lines to determine what is happening in the program. You can
print or change the values of the variables.

130 BREAK |
Stops the program when the BREAK statement is

executed.

230 BREAK 240,250 .
Sets breakpoints immediately before lines 240 and 2560. -

BREAK 300,350,380 :
Can be entered for immediate execution either before you

RUN a program or while you are in the middie of a break
to set breakpoints before lines 300, 350 and 380.

4-48

CHAPTER IV
BASIC PROGRAMMING

The CONTINUE command causes the computer to continue
program execution after a breakpoint. Press [CLR] and type
CONTINUE (or CON) and press [ENTER].

The UNBREAK statement is used to remove the breakpoints
you have set in a program. The only breakpoints that are
removed are the ones that are set immediately before a line. In
lines 130 and 230 in the previous example, UNBREAK can only
remove the breakpoints set before linas 240 and 250. Line 130
always halts program execution when it is executed.

Using External Devices

Programs can be saved on external devices and then reloaded
into memory and run. Data can be stored on external devices
such as the Tl Wafertape™ peripheral and programs created to
update this data. External devices such as printers can be used
to provide information in a form you can read. When the
computer is transmitting data to or receiving data from an
external device, the /O display indicator is turned on. You
cannot use the keyboard at this time (including the [OFF] key).

If a file is open when you press the [OFF] key, the file is
automatically closed before the computer is turned off.
(Generally the term file refers to data stored on a mass storage
device. However, in CC-40 BASIC a file refers to any information
sent to an external device, even a printer.)

You can save programs on an external device and later run
these saved programs by using the SAVE and OLD commands
and the RUN statement. SAVE writes the program in memory to
an external device in the internal machine format. The OLD
command is used to lcad a SAVEd program into memory when
you want to edit the program or VERIFY that it was ioaded
correctly. To execute the program, use the RUN statement.

Note: If you attempt to load (with OLD) or RUN a data file rather
than a program file, you may have to press the reset key to
reset the sytem.

You can list a program to an external device such as a printer
by using ithe LIST command. LIST writes the program in
memory to an external device in ASCII characters, the same
form you see in the display.

4-49

CHAPTER IV
BASIC PROGR

F
£

AMMING

You can store, update, and print data to an external device by
using the BASIC input/output statements. You must first open a
file on an external device with the OPEN statement before you
can use a BASIC input/output statement to access the file. The
OPEN statement is used to inform the computer how the data
on the file is stored and the number that you will use to access
the file. You do not use the OPEN statement when you use the

BASIC commands, SAVE, OLD, or LIST.

Data Format

If data is to be stored, updated, or printed, you must specify to
the computer the data format or how the data is recorded.
When data is printed for people to read, the data should be
written in ASCII characters (like the characters you see in the
display). This type of data format is catled display. When
display-type data is printed, the numeric and string items are
written according to the specifications in PRINT and appear the
same as if the items were displayed in the CGC-40.

If the data is stored on a mass storage device, the data should
be recorded in the internal machine-code format. Data written
in this internal-type format is stored in binary code, the type the
computer uses to process data. Storing data in this format
expedites processing and reduces the storage space required
because the computer does not have to convert internal format
to display characters and back again. When internal-type data
is used, the numeric and string items are stored as shown

below.

e Numeric items are stored in a form which occupies from 3
through 9 bytes of memory. The first byte is used to store the
length of the numeric data item and the remaining 2 through
8 bytes are used to store the data value.

Numeric ‘ | ‘ ‘ ‘
ftems: — —]
designates length value of item
of item

4-50

CHAPTER IV
BASIC PROGRAMMING

e String data is stored in the same manner, except that the
maximum length for a string item extends through 256 bytes.
The first byte is used to store the length of the string data

and the regmaining 0 through 255 bytes are used to store the
string value.-

reme.] [] [2] |

I I
designates length value of item
of item

Data Records

Data is stored, updated, and printed in a form called a record. A
record consists of one or more of the processing units called
fields and a collection of records is called a file. Records are
numbered from O through 32767 where record #0 is the first
record of the file, record #1 is the second record of the file, and
s0 on. After a file is created, the CC-40 retrieves and updates
data from the file in terms of records.

Record Length

When you write records to an external device, you can specify
the maximum length for the records. If you do not specify a
maximum record length, the computer assumes a default value
according to the peripheral device you are using. When you
design your records, be familiar with the lengths of the fields
that make up a record. Plan your record so that you allow for
the largest length needed.

The record length you specify determines how much space is
reserved in the computer for storing a record of the file. If you
attempt to write a record that is longer than the record length
you specified, the computer breaks the record into smaller
parts as described in PRINT (with files) in chapter 5. If you write
a record that is smaller than the record length you specified,
the record occupies only as much space in the file as is
required to write its fields of data. When a record is read from a
mass storage device, the computer determines the length of the
record by indicators that were written when the record was
created.

4-51

CHAPTER IV

BASIC PROGRAMMING

1.|'I'
- 11:

File Organization

When you store and update files on mass storage devices, the
records can be arranged in sequence or in random order. If you
want data to be stored so that you read it in sequence from the
beginning, the file should be organized sequentially. Data
stored in a sequential file is read the same as you would read
data in a DATA statement. Files kept on tape must be
sequential files. When you use external devices to print data for
people to read, the records are always processed in sequence
beginning with the first record.

If you want to process data directly without reading through ali
the data in sequence, the file should be organized as a relative
(or random access) file. You specify that a file is a relative one
when you use the OPEN statement to open the file. With
relative files, you can access a particular record by using the
REC clause in the INPUT, LINPUT, PRINT, and RESTORE
statements. Relative files can also be accessed sequentially.
Only certain types of devices support relative files.

File Processing Keywords

CC-40 BASIC provides an extensive range of file-processing
features including sequential and random file organization and
processing, variable length records, display and internal data
formats, and file accessibility. This section describes the CC-40
BASIC keywords which are provided to facilitate file
processing—FORMAT, DELETE, OPEN, INPUT, LINPUT, PRINT,
CLOSE, EOF, and RESTORE. Refer to chapter 5 for a complete
description of these keywords.

The FORMAT Command

The FORMAT command initializes the medium on an external
storage device. You must format a new medium {(such as a
tape) before writing on it. If you format a medium that has data
already written on it, all the data is erased. For example, the
command below formats the tape on device 1.

FORMAT 1

4-52

CHAPTER IV
BASIC PROGRAMMING

The DELETE Statement

The DELETE statement can be used to delete a file from an
external storage device, as well as to delete lines from a
program (described earlier in “Editing Program Lines”).

DELETE “2.MFILE”
Deletes the file named MFILE on device 2.

The OPEN Statement

The OPEN statement sets up a link between a peripheral device
and a file number to be used in all the BASIC statements that
refer to the file. In the OPEN statement you specify file
attributes such as file accessibility, file organization, record
length, and file type. The computer then creates the file
according to the specifications in the OPEN statement. When
you use the OPEN statement to open a file that already exists,
the file attributes you specify must match those you used when
the file was created (except how the file can be accessed).

For each opened file, the computer keeps an internal counter
that points to the next record to be accessed. The counter is
incremented by 1 each time a record is read or written. For
random access files, be sure to use the REC clause if you read
and write records on the same file within a program. Since the
same internal counter is incremented when records are either
read from or written to the same file, you could skip some
records and write over others if REC is not used.

4-53

CHAPTER IV
__BASIC PROGRAMMING

LA
¥

The following section describes the attributes that can be
specified in the OPEN statement and the default values that
are assumed if an attribute is omitted.

File Accessibility: The open-mode attribute of the
OPEN statement specifies how the
file can be accessed. UPDATE is
assumed if no open-mode is

specified.

Open-Mode Attribute File Accessibility

INPUT The computer can only read from
the file.

OUTPUT The computer can only write to the

- file.

UPDATE The computer can both read from
and write to the file.

APPEND The computer can write data only at

the end of the file. The records that
already exist on the file cannot be
accessed.

File Organization: RELATIVE for random access file or
omitted for sequential file.

File Types (Data Formats): DISPLAY or INTERNAL. If file type
is omitted, DISPLAY is assumed.

Record Length: VARIABLE followed by a numeric
expression for the record length. If
this option is omitted, the
maximum record length is
established by the peripheral
device.

4-54

_ CHAPTER IV
_ BASIC PROGRAMMING

In the exampte below, the OPEN statement opens a file that is
to be referenced as #5 in all of the BASIC statements that
access the file. The file is opened on device 100 (which is
assumed to.support relative files) with the file-name AFILE. The
attributes of the file are relative (random access) organization,
internal data format, INPUT open-mode, and a maximum record
length of 64 bytes.

100 OPEN #5,100.AFILE”, RELATIVE, INTERNAL, INPUT,
VARIABLE 64 :

The statement below opens a file named BFILE on device 1 as
#7. The file can be both read from and written to (UPDATE
open-mode), has sequential organization, and is recorded in
display-type data.

150 OPEN #7,“1.BFILE”

The INPUT # Statement

The INPUT # statement is used to read data values from a file.
You must use the same file-number to read this file as you did
to open the file. When the INPUT # statement is executed, the

data read from the file is assigned to the variables listed in the
INPUT # statement.

Filling the INPUT # Variable-List

When the computer reads a file, it retrieves and stores an entire
record in a temporary storage area called an input/output (I/O)
buffer. Values are then assigned to the variables in the variable-
list from left to right, using the data items (or tields) in the l/O
buffer. A separate buftfer is provided for each opened file.

if the variable-list of the INPUT statement is longer than the
number of fields held in the {/O buffer, the computer retrieves
the next record from the file and uses its fields to complete the
variable-list. When a variable-list has been filed with the
corresponding values, the fields left in the buffer are discarded
unless the INPUT statement ends with a comma (as described
later in “Pending Input Conditions”).

4-35

CHAPTER IV
BASIC PROGRAMMING

’
Y]

i:
.l
|
|
;
1_
L
i
:

The statements below open a file that is referred to as #3. The
computer reads a record into the input buffer and assigns the
fields in the record to the variables in the INPUT statement. If
there are more fields in the buffer than are needed to assign to
the variables, the remaining fields are discarded. If there are

not enough fields to assign, the computer reads another record. ':

100 OPEN #3,“1.MYFILE”,INTERNAL,VARIABLE 64
110 INPUT #3,A%$,J,K,L,B$,P,Q,R

Pending Input Conditions

An INPUT statement that ends with a comma creates a pending
input condition. Any remaining fields in the input buffer are
maintained for the next INPUT statement that reads the file. If
this next INPUT statement has no REC clause, the computer
starts assigning the remaining fietlds in the buffer to the
variables in the INPUT statement. If the INPUT statement
contains a REC clause, the remaining fields are discarded and
the specified record is read into the /O buffer. If a pending
input condition exists when a PRINT, RESTORE, or CLOSE
statement accesses the file, the remaining fields are also
discarded.

The statements below open a file and create a pending input
condition. After the variables are assigned in the first INPUT
statement, any fields left in the input buffer are retained. When
the next INPUT statement is executed, the remaining fields are
assigned to the variables. -

100 OPEN #3,“1.MYFILE”,INTERNAL,VARIABLE 64
110 INPUT #3,A%,J,K.L,BS,P,Q,R,
120 INPUT #3,C$,A,B,C

4-56

CHAPTER IV
BASIC PROGRAMMING

input # and Data Formats

When the INPUT statement reads display-type data, the fields
are separated by the commas that appear between the fields.
Display-type records look like the data in a DATA statement.
Numeric and string items must appear with their separators.
Each field in a display-type record is checked to ensure that
numeric values are placed in numeric variables.

In the example below, the first time the INPUT statement is
executed, it assigns the fields in the first record to the
variables. The second time the INPUT statement is executed,
the fields in the second record are assigned to the variables.
Note that there is no field in the buffer for the last variable, so
the next record is read. When the INPUT statement attempts to
assign a field to the last variable, an error occurs. The variable
IS a numeric variable but the field is not a numeric value.

(Record #0 on file #3) Jones, 95,98,65,32,78
(Record #1 on file #3) Smith, 67,87,66,90
(Record #2 on file #3) Lee,89,88,90,67,90

100 OPEN #3,“1.MYFILE” INTERNAL,VARIABLE 64
110 INPUT #3,NAMES$,A,B,C,D,E
120 GOTO 110

When the INPUT statement reads internal-type data, the length
byte stored with each data item is used to separate the fields.
The only validation performed on internal-type data is to ensure
that numeric data is from 2 through 8 characters long.

4-57

CHAPTER IV
BASIC PROGRAMMING

4

The LINPUT # Statement

Like the INPUT # statement, the LINPUT # statement is used to
read records from a file. However, LINPUT places all commas,
leading and trailing spaces, semicolons, and quotation marks
into string variables. The INPUT statement places these
symbols into variables only if they are enclosed in quotation
marks.

The PRINT # Statement

The PRINT # statement writes data values 1o a file. You must
use the same file-number in opening and writing to the file.
When the PRINT # statement is executed, the values of the
items in the print-list are written to the file.

To write a record to the end of a sequential file, you can use
the open-mode APPEND (but you cannot access the other
records in the file). For UPDATE mode you must first read to
the end of a sequential file before you write the new record.
Using the PRINT statement before the end-of-file is reached
results in a loss of data because the PRINT statement always
defines a new end-of-file each time it is executed.

The values of the variables in the PRINT statement are written
in a temporary storage area called an /O buffer. A separate
buffer is provided for each open file number. if the PRINT
statement ends with a comma or a semicolon, a pending print
is created.

Pending Print Conditions

When a PRINT statement ends with a comma or semicolon, the
values of the print-list are retained in the YO buffer for the next
PRINT statement that writes to the file. If this next PRINT
statement has no REC clause, the computer places the values
of the print-list into the I/Q buffer immediately following the
fields already there. If the PRINT statement has a REC clause,
the computer writes the pending print *hat is in the /O butfer to
the file at the position indicated by the internal counter. Then
the new PRINT statement is executed.

458

CHAPTER IV
BASIC PROGRAMMING

If a pending print condition exists and an INPUT statement that
accesses the file is encountered, the pending print record is
written to the file at the position indicated by the internal
counter and the - internal counter is incremented. Then the
INPUT statement is performed as usual. If a pending print
exists when a CLOSE or RESTORE statement accesses the file,
the pending print is written before the file is closed or restored.

For example, the following statements open a file for output,
accept data from the keyboard, and write it to the file until a
$END is entered.

100 OPEN #6,“1.PENDING”,INTERNAL,OUTPUT
110 INPUT A$

120 IF A$ =“SEND” THEN CLOSE #6:STOP

130 INPUT D,E

140 PRINT #6,A$,D,E,

150 GOTO 110

PRINT # and Data Formats

Refer to PRINT (with files) for information on how the PRINT
statement writes a record in internal- or display-type data
format. Note that if you print a file in display-type format that
the computer will later read, the file must look the same as it
does in a DATA statement. You must include the comma
separators and quotation marks needed by the INPUT
statement. When the data is read from the file, the computer
separates the fields by the comma separators placed between
them.

If the file in the example above had been opened with a display-
type data format, the PRINT to the file must write print
separators between the values for them to be read later.

100 OPEN #6,“1.PENDING”,DISPLAY,QUTPUT
110 INPUT AS$

120 IF AS=“SEND” THEN CLOSE #6:STOP
130 INPUT D,E

140 PRINT #6,AS; “,”;D; ,”; E; *,7 ;

150 GOTO 110

4-59

CHAPTER IV
BASIC PROGRAMMING

N
%

The CLOSE Statement

The CLOSE statement breaks the link between the file-number
and the peripheral device. You cannot access this file untit you
OPEN it again. If you attempt to close a file that is not open,
an error occurs. The CLOSE statement can be used to delete a
file on some peripheral devices.

The following statements open the file CFILE on device 2, read
three fields, and close the file.
100 OPEN #3,“2.CFILE”,INTERNAL

110 INPUT #3, AS,D,E
120 CLOSE #3

The EOF Function

The EOF function determines if an end-of-file has been reached.

The EOF function can be placed before an INPUT statement to
test the file status before attempting to read from the file. The
value that is returned by EOF is 0 if you are not at the end of
the file and — 1 if you are at the end of the file.

For example, the statements bellow open a file and check if the
end-of-file has been reached before trying to read a record.
When the end-of-file is reached, the file is closed.

100 OPEN #3,“2.CFILE”,INTERNAL
105 IF EOF(3) THEN CLOSE #3:STOP
110 INPUT #3, AS$,D,E

115 PRINT AS;D;E:PAUSE 1

117 GOTO 105

4-60

CHAPTER IV
BASIC PROGRAMMING

The RESTORE Statement

The RESTORE statement can be used to reposition an open ftile
at record zero (for a sequential file} or at a specific record (for a
relative file). {f RESTORE refers to a relative file and the REC
clause is not used, the fiie is repositioned to record zero.

For example, the statements below open a file referred to as
#5, accept data from the keyboard and write the processed data
to the file. The file is then repositioned to the first record. A
printer is opened with a file number of 1. The data is read from
file #5 and printed on file #1. When the end-of-file is reached,
the message End of data is displayed.

100 OPEN #5,“1.RESFILE”,INTERNAL

110 INPUT “Enter street: ”;ST$

120 INPUT “Name: ";A$

130 IF AS=“END$” THEN 170

140 INPUT “Address: ”;B$,“Zip: ”;C$

150 PRINT #5,A%8 ‘family”,B$&* "&STS$;*794”84C$
160 GOTO 110

170 RESTORE #5

180 OPEN #1,50”,0UTPUT

190 IF EOF(5) THEN PRINT “End of data”:PAUSE:CLOSE #5:STOP
200 INPUT #5,NAMES,STS$,ZIPS

210 PRINT #1,NAMES,STS,ZIPS

220 GOTO 190

4-61

