APPENDIX A

COMMANDS & STATEMENTS

Commands & Statements

The following is a list of all CC-40 BASIC commands and
statements in alphabetical order. Commands are listed first.
Statements-are listed next. Most statements can be executed
immediately as well as used in a program line. Those
statements that can be used only in a program line have an
asterisk (*) after them. Commands and statements that can be
abbreviated have the acceptable abbreviation in italics.

Commands
CALL ADDMEM

CALL CLEANUP

CONTINUE
LiST

NEW
NUMBER
OLD
RENUMBER
SAVE
VERIFY

Statements

ACCEPT *
ATTACH
BREAK

CALL

CALL CHAR
CLOSE

DATA

CALL DEBUG
DEG

DELETE

DIM

DISPLAY

END

CALL ERR
CALL EXEC
FOR TO STEP
FORMAT
CALL GETLANG
CALL GETMEM

GOsSUB ~

GOTO *
GRAD

IF THEN ELSE
IMAGE

CALL INDIC
INPUT *
CALL 10
CALL KEY
LET

LINPUT *
CALL LOAD
NEXT

ON BREAK
ON ERROR
ON GOSUB *
ON GOTO *
ON WARNING
OPEN

PAUSE

CALL PEEK

CALL POKE
PRINT

RAD
RANDOMIZE
READ *
RELEASE
CALL RELMEM
REM

RESTORE
RETURN *
RUN

CALL SETLANG
STOP

suB *
SUBEND *
SUBEXIT *
UNBREAK
CALL VERSION

APPENDIX B

BUILT-

IN FUNCTIONS

5

Built-In Functions
The following list gives a brief description of each CC-40 BASIC

function in alphabetical order.

Function Value Returned and Comments

(continued)
Function

APPENDIX B
BUILT-IN FUNCTIONS

Value Returned and Comments

SEGS

ABS
ACS
ASGC
ASN

ATN

CHR$

COS

EOF

EXP
FRE
INT

INTRND

KEY$

LEN
LN

LOG
NUMERIC

Pl

POS

RND
RPTS

B-1

Absolute value of a numeric expression.
Trigonometric arccosine of a numeric expression
given in the angular measure indicated in the
display.

The numeric ASCHI code of the first character of a
string expression.

Trigonometric arcsine of a numeric expression given

in the angu!ar measure indicated in the display.

Trigonometric arctangent of a numeric expression
given in the angular measure indicated in the
disp!ay.

A one-character string that corresponds to an ASCII

code.

Trigonometric cosine of a numeric expression
calculated using the angular measure indicated in
the display. -

End-of-file condition of a file.

Exponential value (e*) of a numeric expression.
Information about available memory.

Integer value of a numeric expression.

Integer random number with a specified maximum
value.

A one-character string that corresponds to a key
pressed.

Number of characters in a string expression.
Natural logarithm of a numeric expression.
Common logarithm of a numeric expression.

Number that denotes whether a string expression is

a valid representation of a numeric constant.
The value of x (3.14159265359).

Position of the first occurrence of one string
expression within another.

Random number from 0 to 1.

String that is a specific number of repetitibns of a
string expression.

(continued)

SGN

SQR
STR$
TAB

TAN

VAL

Substring of a string expression, starting at a

specified point in that string and endin
certain number of characters g after a

Sign of a numeric expression.

Trigonometric sine of a numeric expression

calculated using the angular measure |
gl g asure indicated in

Square root of a numeric expression.
String equivalent of a numeric expression.

Column position for the next it g
PRINT or DISPLAY. em in the print-list of

Trigonometric tangent of a numeric expression

calculated using the angutar measure indi i
the display. d ure indicated in

Numeric value of a string expression which
represents a number.

B-2

"APPENDIX C APPENDIX D
___RESERVED WORDS - _ASCII CODES & KEYCODES LIST
%) o

Reserved Words ASCII Codes and Keycodes

The following is a list of all CC-40 BASIC reserved words. A
reserved word may not be used as a variable name, but may be
a portion of a variable name.

The following table lists the ASCII character codes in decimal
and hexadecimal notation. The ASCII codes produced and/or
character(sy displayed when the key or key sequence is pressed
are shown in the column titled CHARACTER. The characters

ABS GOSUB RELATIVE that can be displayed using the CHR$ function are shown in
ACCEPT GOTO RELEASE the column titled DISPLAYED USING CHRS$. The keys that are
ECE %HAD Egm ﬂlesdse;IEE? generate the ASCII code are shown in the column
- i
ALPHA IMAGE RENUMBER © EQUENCE. ~
ALPHANUM INPUT RESTORE User-defined character codes (0-6) and the user-assigned keys
AND INT RETURN (codes 128-137) are shown as two asterisks (**).
APPEND INTERNAL RND ASCII Code Displayed Ke
ASC INTRND RPTS DEC HEX c _ y
ASN KEYS$ RUN haracter Using CHR$ __ Sequence
AT LEN SAVE 00 00 NULL * [CTL] 0
ATN LET SEGS 01 01 SOH * [CTL] A
ATTACH LINPUT SGN 02 02 STX . ICTLI B
BEEP LIST SIN 03 03 ETX e [CTL] C
CALL LOG SQR 05 e
05 ENQ [CTL] E

CHR$ NEW STEP 06 0& ACK)
CLOSE NEXT STOP 0 07 [CTL] F
CON NOT STR$ BEL [CTL] G
CONTINUE NULL SUB 08 08 BS [CTL] H
COS NUM SUBEND 09 09 HT [CTL] |
DATA NUMBER SUBEXIT 10 O0A LF [CTL] J
DEG NUMERIC TAB 11 OB VT (CTL) K
DEL OLD TAI;N 12 0C FF [CTL L
DELETE ON TH 13 0D
DIGIT OPEN TO 14 OE gg ICTLI M or [ENTER]
DIM OR UALPHA 15 OF S [CTLIN
DISPLAY OUTPUT UALPHANUM 6 10 oL E [CTL) O
ELSE PAUSE UNBREAK 7 [CTL] P
END P\ UPDATE 11 DC [CTL) @
EOF POS USING 18 12 - DC2 [CTL] R
ERASE PRINT VAL 19 13 DC3 | [CTL] S
ERROR PROTECTED VALIDATE 20 14 DC4 CTL T
EXP RAD VARIABLE 21 15 NAK [CTL] U
FOR RANDOMIZE VERIFY 22 16 SYN [CTL] V
FORMAT READ WARNING 23 17 ETB [CTL] W
FRE REC XOR o4 18 CAN (OTL] X

25 19 EM [CTL] Y

26 1A SuB [CTL] Z

C-1

{continued)

D-1

APPENDIX D APPENDIX D
ASCII CODES & KEYCODES LIST __ ASCIICODES & KEYCODES LIST
{continued) 5 (continued)
ASCII Code Displayed Key ASCII Code Displayed Key
DEC HEX Character Using CHR$ _ Sequence DEC_ HEX Character Using CHR$ ___ Sequence
27 1B ESC [CTL] [CLR]] 64 40 - @ @ [CTL] 2
28 1C FS [CTL] = £ 65 41 A A [SHIFT] A
29 1D GS [CTL; 66 42 B B [SHIFT] B
30 1E RS [CTL]. 67 43 C C [SHIFT] C
31 1F us [CTL], 68 44 D D [SHIFT] D
32 20 Space Space Space 69 45 E E [SHIFT] E
33 21 ! ! [SHIFT] ! g 0 46 F F [SHIFT] F
34 22 " " [SHIFT} " "1 47 G G [SHIFT] G
35 23 # # [SHIFT] # 72 48 H H [SHIFT] H
36 24 $ $ [SHIFT] $ 73 49 I I [SHIFT] |
37 25 % % [SHIFT]/ 74 4A J J [SHIFT] J
38 26 & & [SHIFT] & 75 4B K K [SHIFT] K
39 27 ' ' {SHIFT] 76 4AC L L [SHIFTI L
40 28 (([SHIFT) (i 77 4D M M [SHIFT] M
41 29)) [SHIFT]) 78 4E N N [SHIFT] N
42 2A % * . 79 4F 0 0 [SHIFT] O
43 2B + + + z 80 50 P P [SHIFT] P
442G , , , 81 - 51 Q Q [SHIFT] @
45 2D - - - g 52 R R ISHIFT] R
46 2E . . . 83 53 S S [SHIFT] S
47 2F / / ! ¢ 84 54 T T [SHIFT] T
48 30 0 0 0 8 55 U U [SHIFT] U
49 3t 1 1 1 & 86 96 v v [SHIFT] V
50 32 2 2 2 87 57 W W [SHIFT] W
51 33 3 3 3 68 58 X X [SHIFT] X
52 34 4 4 4 83 59 Y Y [SHIFT] Y
53 35 5 5 5 9 5A 7 Z [SHIFT] Z
54 36 6 6 8 91 5B [[[CTLI 8
55 37 7 7 7 £ 92 5C ¥ ¥ [CTL) /
56 38 8 8 8 3 9 5D]] [CTL] 9
57 39 9 9 9 ¥ 94 SE “ [SHIFT] A
58 3A : : [SHIFT]: 3 9% SF - - [CTL] 6
59 3B ; s . 9% 60 : " [CTL] 3
60 3C < < [SHIFT], i 97 61 a 8 A
61 3D = = = 33 08 62 b b B
62 3E > > ISHIFT]. B 99 63 C c c
63 3F 2 ? ISHIFT] ? 100 64 d d D
{continued) X (continued)
D-3

D-2

APPENDIX D

D4

ASCII CODES & KEYCODES LIST
%
{continued) -
ASCII Code Displayed Key
DEC HEX Character _ Using CHR$ Sequence
101 65 e e E
102 66 f f F
103 67 g g G
104 68 h h H
105 69 i i |
106 GA h hi J
107 6B k k K
108 6C 1 1 L
109 6D m m M
110 6E n n N
111 6F o 0 o
112 70 p D P
113 71 q q Q
114 72 T T R
115 73 S g S
116 74 t t T
117 75 u u U
118 76 v v vV
119 77 W W W
120 78 X X X
121 79 y y Y
122 TA 2 A Z
123 78 £ { [CTL] 6
124 7C | I [CTL] 1
125 7D ¥ H [CTL} 7
126 7E 3 -3 [CTL] &4
127 7F DEL +- [SHIFT] J
128 80 e [FN] O
129 81 ol [FN] 1
130 82 il [FN] 2
131 83 il [FN] 3
132 84 e [FN] 4
133 85 * [FN]1 5
134 86 il [FN] 6
135 87 ** [FN) 7
136 88 e [FN] 8
137 89 bl [FN] 9
138 8A
139 8B

(continued)

-* APPENDIX D
' ASCII CODES & KEYCODES LIST

{continued)

ASCIl Code Displayed Key
DEC HEX Character Using CHR$ Sequence
140 8C .

141 8D [SHIFT] |
142 8E [SHIFT] »
143 8F [SHIFT] ~
144 90 ISHIFT] +
145 3N ICTL] »
146 92 ICTL] -
147 93 ICTL] +
148 94 DELETE [FN] &
149 95 [FN] -
150 96 [FN]
151 a7 NUMBER [FN] ¥
162 98 VERIFY [FN] /
153 09 SAVE [FN]
154 OA OLD {FN] -
155+ 9B LIST (FN] +
156 9C CALL [FN] .
157 gD ELSE [FN],
158 GE CHR$ ([FN] ;
1589 OF GOTO [FN] =
160 AD [FN) ICLR]
161 Al ASN(" [FN] A
162 A2 PAUSE J [FN] B
163 A3 GRAD J [FN] C
164 A4 ATN(N [FN] D
165 AD TAN(. [FN] E
166 AB LN{ = [FN] F
167 A7 LOG(K [FN] G
168 A8 LINPUT A (FN] H
169 A9 NEXT T [FN])
170 AA INPUT T [FN] J
171 AB PRINT | [FNI K
172 AC USING 1 [FN] L
173 AD THEN 1 [FN] M
174 AE IF = [FN] N
175 AF GOSUB "y [FN] O
176 BO RETURN - [FN) P
177 B1 SIN(r [FN] Q
178 B2 PI -1 {FN] R

(continued)

D-5

APPENDIX D

ASCII CODES & KEYCODES LIST

D6

(continued)

ASCH Code Displayed Key

DEC HEX Character Using CHR$ Sequence
179 B3 ACS(™ [FN] S

180 B4 SQR(T (FN] T

181 B5 TO A [FN} U

182 B6 EXP(1] [FN] V

183 B7 COS(T [FN] W

184 B8 RAD T [FNJ X

185 B9 FOR g] [FN] Y

186 BA DEG 71 [FN] Z

187 BB BREAK b {FN] [BREAK]
188 BC . [SHIFT] [RUN]
189 BD = [CTL]) [RUN]
190 BE CONTINUE 2 [FN] [RUN]
191 BF RUN] [RUN]

192 CO ., [SHIFT] [FN] O
193 C1 3 [SHIFT] [FN] 1
194 C2 4 [SHIFT] [FN] 2
195 C3 T [SHIFT] [FN] 3
196 C4 . E [SHIFT] [FN] 4
197 C5 + (SHIFT] [FN] 5
198 C6 - ISHIFT] [FN] 6
199 C7 £ [SHIFT] [FN] 7
200 C8 rs [SHIFT] [FN] 8
20t C9 2 [SHIFT] [FN] 9
202 CA X
203 CB k-
204 CC EJ
2060 CD "
206 CE L
207 CF .
208 DO =
209 D1 Cq
210 D2 =
211 D3 E
212 D4 ¥
213 D5 1
214 D6 =
215 D7 ;":
216 D8 .
217 D9 IL

(continued)

APPENDIX D
ASCII CODES & KEYCODES LIST

- 248

{continued)
ASCIl Code Displayed Key
DEC HEX Character Using CHR$ __ Sequence
218 DA - f -
219 DB 0
220 DC 3
221 DD s
222 DE =
223 DF d
224 EO i
225 FE1 E
226 E2 E
227 E3 £
228 E4 L
229 E5 PB & [SHIFT} 4
230 E6 OFF O [OFF]
23t E7 BREAK ' [BREAK]
232 EB8 up iy 1
233 E9 DOWN o 2
234 EA SHIFT 1 [SHIFT] [ENTER]
235 EB ®
236 EC 3
237 ED . 3
238 EE 3§
239 EF O
240 FO -
241 F1 1
242 F2 =
243 F3 o
244 F4 .
245 F5 ¥
246 F6 DEL 3 [SHIFT] ¢
247 F7 INS T [SHIFT]
F8 HOME = [CTL] 4
249 F9 SKIP L [CTLI ¥
250 FA CLR F [CLR]
251 FB BTAB 2 [CTL] ¢
252 FC « = €«
253 FD FTAB = [CTL] >
254 FE > ->
255 FF
D-7

APPENDIX E

TRIGONOMETRIC CALCULATIONS
& RESTRICTIONS

L%

Trigonometric Calculations and Restrictions

The following information provides restrictions for trigonometric
functions, a list of trigonometric identities, and a table of

trigonometric conversions.

Restrictions for SIN, COS, TAN

The approximate valid range for the arguments of SIN, COS,
and TAN is given below for radians, degrees, and grads.

[X| < PI/2+1010 radians
|X| < 90+1010 degrees
|X| <102 grads

Restrictions For Inverse Trigonometric Functions

The largest angle resulting from an arc function is 180°, =
radians, or 200 grads. Because each resultant value has many
angle equivalents (for example, ASN(.5)=30°, 150°, 390°, ...),
angles calculated by inverse trigonometric functions are

restricted as follows.
Range of calculated angles

ARC Function Degrees Radians Grads

Arcsine (x) -90t0o90 ~—x2toxi2 —100to 100
Arccos (X) 0 to 180 Oton 0 to 200
Arctan (x) -90t090 -—xf2toxf2 -100to 100

TRIGONOMETRI

Trigonometric Identities

The following trigonometric functions are not part of CC40
BASIQ, but may be calculated using the BASIC expressions
described below. The expressions for functions that are
freq_uent!y used can be assigned to any of the ten user-
assigned keys as described in chapters 1 and 2.

. APPENDIX E
C CALCULATIONS

& RESTRICTIONS

Function Symbol BASIC Expression Equivalent
Secant SEC(X) 1COS(X)

Cosecant CSCX) 1/SIN(X)

Cotangent COTX) 1HTAN(X)

Inverse Secant ARCSEC(X) SGNX)"ACSHN)

Inverse Cosecant ARCCSCGX) SGN{X)*ASN{1/X) + (SGN()~1)*PI2
Inverse Qﬂtangent ARCCOT(X} PIf2—-ATN(X) or P2+ ATN(=X)
Hyperbc}l!c Sine SINH(X) (EXP(X) — EXP{— X)}}{2

Hyperbul!c Cosine COSH(X) (EXPXO)+ EXP(- X))if2

Hyperholic Tangent COTH(X) = 2" EXP{- X3{EXP{X) + EXP{= X)) +1
Hyperbolic Secant SECH(X) 2HEXP(X} + EXP{— X))

Hyperbnl!c Cosecant CSCH(X} 2HEXP({X) — EXP{ = X))

Hyperbolic Cotangent COTH(X) 2* EXP(— XMEXPX) - EXP{=X)}+1
Inverse Hyperbolic Sine ARCSINH{(XX) LN+ SQRX*X + 1)

Inverse Hyperbolic Cosine ARCCOSH(X) LN(X+ SQR(X*X-1)

Inverse Hyperbolic Tangent ARCTANHX) LN{(1+ X}(1 - X)/2

Inverse Hyperbolic Secant ARCSECH(X) LN{1+ SQR{1-X*X))

Inverse Hyperbolic Cosecant ARCCSCH(X} LN((SGNQ)*SQR(X*X + 1)+ 1)¥X)

fnverse Hyperbolic Cotangent ARCCOTH(X)

Radian, Degree, and Grad Conversions '

It may be necessary to convert angular values from one unit of
angle measurement to another. The following table provides the
factors needed to make these conversions.

ANEX + X = 1))/2

[From/To Deg-rees Radians | Grads
Degrees [><F’IHBOI +~0.9
Radians | x180/PI | x 200/P

I__Grads | %09

| xPIr200 |

Because these conversions are independent of the computer's
angle setting, use care when using the results for further
calculations. Before you use the result in subsequent
trigonometric calculations, make certain that the appropriate
angle setting has been selected.

E-2

APPENDIX F

ACCURACY INFORMATION

1

%

Accuracy Information

Calculation Accuracy

The CC-40, like all computers, operates under a fixed set of
rules within preset limits. The mathematical tolerance of the
computer is controlled by the number of digits it uses for

calculations.

The CC-40 uses a minimum of 13 digits to perform calculations.
The results are rounded to 10 digits when displayed in the
default display format. The computer’s 5/4 rounding technique
adds 1 to the least significant digit of the display if the next
nondispiayed digit is five or more. If this digit is less than five,
no rounding occurs. Without these extra digits, inaccurate
results such as the following would frequently be displayed.

1/3%3=.9999999999

This result occurs because 1/3 is maintained as .3333333333 in
the finite internal representation of a number. However, when
1/3 x 3 is rounded to 10 digits, the answer 1. is displayed.

The more complex mathematical functions are calculated using

iterative and polynomial methods. The cumulative rounding
error is usually kept beyond the tenth digit so that displayed
values are accurate. Normally there is no need to consider the
undisplayed digits. However, certain calculations may cause
the unexpected appearance of these extra digits as shown
below.

2/3 = .66666666666667 and 1/3 =.33333333333333

213 - 113 - 1/3=.00000000000001 (displayed 1.E— 14)
Such possible discrepancies in the least significant digits of a
calcutated result are important when testing if a calculated

result is equal to another value. In testing for equality,
precautions should be taken to prevent improper evaluation.

A useful technique is to test whether two values are sufficiently
close together rather than absolutely equal as shown below.

Instead of
IF X=Y THEN ...

use
IF ABS(X-Y) <1E-11 THEN ...

F-1

APPENDIX F
ACCURACY INFORMATION

Internal Numeric Representation

Tﬁe CC-4q uses radix-100 format for internal calculations. A
single radlx-wp digit ranges in value from 0 to 99 in base 10.
T_hq computegr_ uses a 7-digit mantissa which results in 13 to 14
digits of decimal precision. A radix-100 exponent ranges in
val_u192;rom — 64 to +63 which yield decimal exponents from
1077 to 10+ 1%, The exponent and the 7-digit mantissa
combine to provide a decimal range from

— 9.9999999999999E + 127 through —1.E - 128; zero: and then
+1.E— 128 through +9.9999999999999F 4 127

The internal representation of the radix-100 form '

eight b}ftes: The first byte contains the exponentata:l?dq’:jl':rees
g!gebra_lc sign of the entire floating-point number. The exponent
Is a 7-bit r_lexadecirnal value offset or biased by 40 (the 16
subscript indicates hexadecimal values in this app;'eﬁndix). The
Correspondence between exponent values is shown below.

Biased hexadecimal value 00 to
Radix-100 value —64.'1B 10 4316 :t(g +-QS:16

Decimal value —-128 to 0 o +126

If the floating-point number is negative, the first byte (the
exponent value) is inverted (1’s complement). Each byte of the
mantissa contains a radix-100 digit from 0 to 99 represented in
b_ma_r}f coded decimal (BCD) form. In other words, the most
significant four bits of each byte represent a decimal digit from
D_tq 9 and the least significant four bits represent a decimal
digit frgrn_o_ 1o 9. The first byte of the mantissa contains the
most significant digit of the radix-100 number. The number is

normalized so that the decimal point immediatel folio
most significant radix-100 digit. d ws the

The following examples show some decimal values and their
internal representations.

F-2

Decimal
Number Internal Value
- 1 40 0145 0045 0044 0046 004 0O 00

10 4016 1015 0044 0046 0046 004 00:2 00::
100 4146 0115 0045 00 0045 00 004 . 004g
1234 41 16 1215 3416 0015 0015 0015 0013 0013
Pl 4016 0315 1445 1544 92:¢ 65:5 3545 9046
— Pl BFig 0315 144 1545 926 6515 3545 9046

T T II—S—————ss,

SI;FéElNEMIXPOWEH UP & DOWN sl
. SYSTEM POWER UP & DOWN
e

Coldstart

A coldstart of the CC-40 initializes the system by:
* Setting ttl& language flag to English

* Initializing the expected values used at power up
¢ |nitializing the BASIC program space

* Initializing the user-defined strings

. h:itializ ng all important registers, RAM based trap vectors
etc. |

System Power Up & Down Procedure

This appendix describes the actions taken when the system is
powered up and down.

System Power Up

When the CC-40 is turned off, the power continues to be
supplied to the CMOS RAM chips as part of the Constant
Memory™ feature. This power supply gives the computer the
capability to retain information in memory even when the
computer is turned off. Pressing the [ON] key turns on the full
power supply and causes the TMS70C20 microprocessor to
execute the power up code. The power up code resets all
hardware with power up defaults and performs several
operations to initialize the system.

The 10 bus is then reset and the cartrid
| ge is checked as in
warmstarting the system. Note: Entering the command NEwW ALL

Is the same as coldstarting the syst i :
cartridge port. 9 ystem without checking the

Partlal Initialization

When the expected values are correct, but th

| , e checksum
RAM is incorrect and CALL ADDMEM is not in effect, theOf the
message Memnry contents may be lost is displayed. The
system is powered up essentially ’as is’, except that registers

necessary for it to run are initialize (‘
Ecesa d and the cartridge port is

System Power Down

When the {OFF] key is pressed while in system command level
the power down code is entered. This code closes all open ’
files, resets the 1/O bus, and calculates the exclusive-OR

checksum of memory. This value is stored in m
next power up. emory for the

Next the power up code checks to see if the expected values
are stored in RAM locations 080245 and 08034¢ (the 16 subscript
indicates hexadecimal values). One of these locations must be
an A5, and the other a 5A or the system is coldstarted as
described below. If the expected values are correct, an
exclusive-OR checksum is calculated for all of the RAM in the
system. This checksum is compared to the checksum value
that was stored when the computer was turned off. If the
checksums are identical, the system is warmstarted as
described below. If the checksums are different and a CALL
ADDMEM is in effect, the system is coldstarted. If the
checksums are different and a CALL ADDMEM is not in effect,
the message Memory contents may be lost is displayed and
only essential parts of the system are initialized. This latter
operation leaves the contents of program memory intact and is
described below under “Partial initialization”.

Warmstart

When the CC-40 is warmstarted, a bus reset command is sent
over the /O bus. If a CALL ADDMEM is not in effect, the
cartridge port is checked for a cartridge. If one is installed,
pointers to the program/subprogram header list and BASIC
extension information are copied into the system reserved area
and the speed of the system is matched with the cartridge
speed. The cartridge is then checked for a program that is to be
executed at power up. If one exists, it is executed; otherwise,
the system enters the system command level.

G-1

APPENDIX H
LOGICAL OPERATIONS ON NUMBERS

Logical Operations on Numbers

The logical operators AND, OR, NOT, and XOR can be used on
integer numbers in the range — 32768 10 32767 . Thls_appendtx
briefly describes the binary number system, conversion of |
decimal numbers to their binary equivalents, and the operation

of the logical operators.

Binary Notation

Binary (base 2) notation is another way to express the value of
a number. Our usual system, decimal (base 10) notation, uses
combinations of the ten digits zero through nine. Numbers
written in binary notation use only the two digits zero and one.
Each position occupied by a binary digit (2 0 or 1) Is called a
bit.

In decimal notation, each digit in a number represents a power
of 10. For example, the number 2408 in decimal notation can be

written in expanded form as follows.
(2><103)+(4><102)+(0><101)+(8>c100)
This is equal to 2408 as shown below.
2x108=2 x 1000=2000
4% 102=4 x 100= 400
O0x10'=0x 10= 0
8x100=8 X 1= 8
2408

In binary notation, each digit represents a power of two. For
example, the binary number 101101 can be written as

(1 X254+ (0 x 24+ (1 x23) + (1 X 22) 4+ (0 x 21) + (1 x 20)

For reference purposes, the powers of two and their decimal

values are as follows.
. o7 o8 25 24 23 22 21 20
128 64 32 16 8 4 2 1

The decimal equivalent of 101101 can be calculated as shown

below.

1x25=1%32=32
Ox24=0x16= 0
1x23=1%x 8= 8
1x2=1x 4= 4
Ox21=0x 2= 0
1x20=1x 1=_1

45

H-1

=
£ -]
A
s
N
g
=
r
&,
da
-
Fo
o
e
' I.";i|
H L
Thn
hy
-
'.'l_
ok
3h=
3
o
.
=
i

4
m
el
ke
i
.
i:_gf: .
7
8
i

LOGICAL OPERATIONS ON NUMBERS

APPENDIX H

To convert a number from decimal notation to binary notation,
repeatedly reduce the decimal number by the greatest power of
2 not larger than the number until there is no remainder.

For example, the decimal number 77 can be converted to binary
notation using the following technique.

The largest power of 2 contained in the number 77 is 64 (25). A

1 is placed in that position of the binary number as shown
below.

128 64 32 16 8 4 2 1
O t 0 0 0 0 O O

Reducing 77 by 64 leaves a remainder of 13. The largest power
of 2 contained in 13 is 8 (23) and a 1 is placed there. Reducing
13 by 8 leaves a remainder of 5. The largest power of 2
contained in 5 is 4 (22) and a 1 is placed there. Reducing 5 by 4
leaves a remainder of 1. Place a 1 in the 20 position.

The decimal number 77 in binary notation is shown below.

128 64 32 16 8 4 2 1
o 1t 0 0 1 1 0 1

You can check the accuracy of the conversion as follows.

1x26=1x64=064
O0x2°=0%x32= 0
0x24=0x16= 0
1x23=1x 8= 8
1x22=1%X 4= 4
O0x21=0x 2= 0
Ix20=1x t=_1

77

Logical Operations

When logical operations are performed on numbers within the
valid range, the CC-40 first converts the values to their 16-bit
binary equivalents. The logical operations are performed on a
bit-by-bit basis, and the resulting binary number is converted
back to decimal notation.

The left-most bit is reserved to indicate the sign (0 = positive:
T = negative). Therefore, the largest number.that can be
represented by the remaining 15 bits is 32,767.

If a decimal number with a fractional part is used with a logical
operator, the number is rounded before any logical operation is
performed.

H-2

- APPENDIX H
LOGICAL OPERATIONS ON NUMBERS

%

The following are the rules for the four logical operators.

Operator Rule
AND if both bits are 1s, the result is 1.
If either bit is 0, the result is 0.

OR If either bit is a 1, the result is 1.
If both bits are zero, the result is O.

XOR If either bit, but not both, is 1, the result is 1.
If both bits are the same, the result is Q.

NOT If the bit is 0, the resuit is 1.
if the bit is 1, the result is 0.

The following table shows the results of the four logicai
operations on all the possible combinations of bits.

AND First bit 0 1 1
Second bit 0
Results

OR First bit
Second bit

Results

XOR First bit
Second bit

Results

NOT Bit
Results

For example, when the logical operations are performed on the
numbers 77 and 67, the numbers are first converted to binary
notation. The number 77 is represented in 16 bits as
0000000001001101 and the number 67 is represented in 16 bits
as 0000000001000011. The resuits of performing an AND, an
OR, and an XOR on the two values are shown below.

AND OR
(77) 0000000001001101 (77) 0000000001001101
(67) 0000000001000011 (67) 0000000001000011

(65) 0000000001000001 (79) 0000000001001111
XOR

(77) 0000000001001101
(67) 0000000001000011

(14) 0000000000001110

The results of performing an AND, OR, and an XOR on 77 and
67 can be obtained on your CC-40 by entering the following.

PRINT 77 AND 67; 77 OR 67; 77 XOR 67

Ol =|=mO 2= ol=o
o= ajlo= Olo

-lo oloo oloo ©

H-3

LOGICAL OPERATIONS ON NUMBERS

APPENDIX H

Using the logical operator NOT on 77 and 67 is shown below.
NOT 77 NOT 67
(77) 0000000001001101 (67) 0000000001000011

(=78 1111111110110010 (-68) 1111111110111100

To display the results of NOT 77
following. . and NOT 67, enter the

PRINT NOT 77; NOT 67

Note that the results of NOT 77 and NOT 67 h '

. | ave a 1in the left-
maost bit which deno’ges that they represent negative fumbers.
In tIJe CC-40 a negative binary number is represented as the
two's complement of the absolute value of the number.

To obtain the two’s complement of a binar
_ y number, change
each 0 bit to 1 and each 1 bit to 0. Then add 1 to this char?ged

number. For example, the two’s complemen i i
as shown below. P t of 77 is obtained

77 in binary . 0000000001001101
Change each bit 1111111110110010
add 1 1

— 77 in two’s-complement form 1111111110110011 .

A more detailed description of binary arithmetic is beyond the

scope of this appendix. Refer to a standard refer
this subject for more information, ence book on

H-4

APPENDIX |

__DEBUG MONITOR

hﬁ

DEBUG Monitor -

The DEBUG subprogram is used to access the debug monitor.
The debug monitor is designed to be used with the Editor/

Assembler to read and modify memory and to run and debug
assembly language programs and subprograms. More detailed

information on the debug monitor is available in the
Editor/Assembier manual. Indiscriminate use of the debug

monitor may result in loss of data in memory.

Running the DEBUG Monitor

To execute the debug monitor, type CALL DEBUG and press
[ENTER]. The prompt MONITOR: is displayed, followed by the
flashing cursor, to indicate that the debug subprogram is
active. The prompt changes to : after the first command is
entered. CALL DEBUG can be used as a statement in a BASIC

program to atlow debugging of assembly language
subprograms called from a BASIC program. The following
notational conventions are used in this appendix.

e The characters that are bold in examples must be typed by
the user and if the characters are to be entered, the [ENTER]

key must be pressed.

¢ The space bar and the [ENTER] key are used to execute most
commands.

e The [CLR] and [BREAK] keys are used to cancel commands.

e The € key can be used to erase the previous character typed
when entering an address or data.

» Memory addresses can be entered in either hexadecimal or
decimal notation. A number is assumed to be in hexadecimal
notation uniess it is preceded with a decimal point, in which
case it is assumed to be in decimal notation.

Displaying Memory—The D Command
The display command is D. It displays the contents of memory
eight bytes at a time in hexadecimal notation. Execute the

display command by entering
D nnnn

where nnnn is the address of the start of the first eight-byte
block of memory to be displayed.

The monitor responds by displaying
nnnn b0 bl b2 b3 b4 b5 b6 b7

where b0 represents the first byte and b7 represents the eighth
byte. |

I-1

APPENDIX |
DEBUG MONITOR

The ®or - key can be used to display the values in the next
lower addresses in multiples of eight. The ¥ or + key or the

space bar can be used to display the values in the next higher
addresses in multiples of eight.

Io leave the D command, press the [CLR], [ENTER], or [BREAK]
ey.

Examining and Modifying Memory—The M
Command

The examine and modify command is M. it can be used to read

and modify individual bytes of memory. Execute the command
by entering

M nnnn

where nnnn is the address of the first byte to be examined or
modified.

The monitor responds by displaying
nnnn=xx

where nnnn is the address of the byte and xx is the
hexade_crmal value stored in that byte. A new value can be
stored in that byte by entering the value.

The ® or - key can be used to display the value in the next
Iqwer address. The ¥ or + key or the space bar can be used to
display the value in the next higher address.

Io leave the M command, press the [CLR], [ENTER], or [BREAK]
ey.

Copying Memory—The C Command

The copy command is C. It can be used to copy a block of
memory to a specified location. Execute the copy command by
entering

C ssss dddd 1l
where ssss specifies the lowest address of the block to be

copied, dddd specifies the first memory iocation to be copied

to, a}nd Ml specifies the number of bytes to copy. llll bytes are
copied one at a time from ssss to dddd.

-2

APPENDIX | APP
DEBUG MONITOR o DEBUG MOEII;I'II?g(RI
% - —

To set a second breakpoint, press the space bar instead of

[ENTER] after the first address has been typed. The monitor
responds by displaying |

nnnn .

where nnnn is the address of the first breakpoint set. The
address for the second breakpoint can then be entered.

Modifying Processor Information—The P

Command |

The modify program information command is P. It can be used
to modify the microprocessor’s program counter (PC), status
register (SR), and stack pointer (SP). Execute the command by

typing

p | | When a break occurs, the monitor displays the prompt
The monitor responds by displaying - NN XX yy:
PC=nnnn where nnnn is the hexadecimal address where the breakpoint

occurred, xx is the hexadecimal value of the status register at
the time the breakpoint occurred, and yy is the hexadecimal
value of the stack pointer.

where nnnn is the current hexadecimal value of the program
counter. A new value can be entered for the prcgram counter. {f
the program counter is not to be modified, press the space bar.

The monitor responds by displaying
oT=xx

where xx is the current hexadecimal value of the status
register. A new value can be entered for the status register. {f
the status register is not to be modified, press the space bar.

The monitor responds by displaying
SP=yy
where yy is the current value of the stack pointer. A new value

can be entered for the stack pointer. If the stack pointer is not
to be modified, press the space bar to exit from the command.

Note: Indiscriminate modification of the program counter or
stack pointer followed by the E commmand may cause
undesirable resuits.

Setting Break Points—The B Command

The breakpoint command is B. It can be used to set up to two
breakpoints. A breakpoint is set by entering an address for
either of the breakpoints. Entering an address for a breakpoint
causes a break to occur when that location is executed. To set

a breakpoint, type the following.

Exfcuting a breakpoint automatically clears any breakpoint(s)
set.

Single Stepping—The S Command

]‘he single step command is S. It can be used to execute the
Instruction at the address in the program counter. Execute the
command by typing the foliowing.

S

This in_struction has the same effect as executing a breakpoint
at the instruction following the current one. (See the B
command.)

Executing—The E Command

The execute command is E. It can be used to start execution at
the address given in the program counter. Execute the
command by entering the following.

E
Paging—The R Command

Thg page command is R. it can be used to change the page on
which code is executing. The page can be either the system
ROM page or a cartridge page. Execute the command by typing

5 _ _ _ the following.
The monitor responds by displaying R
B nnnn

where nnnn is the current value of the first breakpoint. (A 0000
value means no breakpoint has been set.) To set only one
breakpoint, type the address, press [ENTER], and the monitor
prompts for another command.

I-3 4

APPENDIX |
DEBUG MONITOR

k3

The monitor responds by displaying

CARTRIDGE PAGE=X
where x is the current page that is selected for the cartridge. If
the cartridge page is not to be modified, press the space bar to
display the system ROM page. Otherwise, type the new
cartridge page number and then press the [ENTER] key to exit
from the command or the space bar 1o n]odlfy the system page.
When the space bar is pressed, the monitor responds by

displaying -
SYSTEM PAGE=n
where n is the current system ROM page that is selected while

the machine language program is running. The new system
ROM page can then be entered.

Help—The ? Command

The help command is ?. It can be used to display a list of the
commands used in the debug monitor. Execute the command

by typing the folliowing.
?

The monitor responds by displaying
COMMANDS=Q,B,E,¥,C,S5,D,P,R

Press the space bar or [ENTER] to leave the command.

Exiting—The Q Command
The exit command is Q. It is used to leave the debug monitor
by typing the following.

Q@
The monitor responds by displaying

:Q
B can be typed to continue program execution at the next
BASIC statement or | can be typed to return to system

command level.

I-5

L - i E—————

APPENDIX J
TECHNICAL INFORMATION

Technical Information

This appendix provides technical information on the Texas
Instruments Compact Computer Mode! CC-40 and presumes
some knowtedge of digital circuits and assembly language
programming. The CC-40 hardware, memory organization,
memory expansion, system command level, and the HEX-BUS™
Interface are described in this appendix. More detailed system
information is given in the Editor/Assembler manual.

CC-40 Hardware

The CC-40 is built around the TMS70C20 CMOS
microprocessor. The 70C20 is an 8-bit microprocessor with 2K
byt_es of internal ROM and 128 bytes of RAM (called the
register file). A 256-byte block, starting at 010044 (the subscript
16 indicates a hexadecimal number) is used for memory-
mapped peripheral ports.

Composing the rest of the system is a 32K-byte ROM, up to 18K
bytes of RAM, the display controller subsystem:; Liquid Crystal

Display (LCD), keyboard, power supply, and control logic. A
block diagram Is shown below.

[T 2.6 Mhz —— /O bus

CONTROL |= ""CAEB%GE)
" °PY [Tloaic [T
—-—‘ RAM l
- -~ C%?NIEI"LH%YL il
KEYBOARD | e -,
| DispLaY |

APPENDIX J

TECHNICAL INFORMATION
— 5

CC-40 Memdry' Organization

The TMS70C20 microprocessor can access a total of 64K bytes

of memory. This memory IS mapped into several distinct

sections.

s A 128-byte register file

e A peripheral file

e System RAM

» The cartridge port
s System ROM

¢ Processor ROM

Each of these sections is addressed at a specific area in the

memory map as shown in the following table.

pu,_r

[L lr—Lr gy’ e, el - e

Address:
_Decimal _ Hex Description]
0 0000 Register
127 O007F | File {128 bytes} !
128 (080 unused
255 QOFF (128 bytes) |
256 0100 Peripheral ;
511 O1FF | File (256 bytes)
512 0200 unused
2047 _ O7FF _(1.5K bytes) |
2048 0800 System
20479 AFFF | RAM _ {upto 18K bytes)
20480 5000 Cartridge
53247 CFFF_| port (32K bytes)
53248 D000 System
61439 EFFF | ROM _____(8Kbytes)
61440 FOO0 unused
63487 __F7FF (2K bytes)
63488 F800 Processor
65535 FFFF ROM (2K bytes) |

J-2

System Memory Map

"APPENDIX J
TECHNICAL INFORMATION

Note: When a RAM cartridge is added t
_ * o less than 18K of built-
in RAM, the cartridge overlays the memory starting at 10004. t

The Register File

The register file contains the following groups of registers used

in BASIC.
1. The A register
2. The B register

3. The assembly language subroutine stack
4. BASIC reserved (program pointer, current program character,

etc.)

5. General purpose temporary registers (floating-point

operations, /O temporaries, etc.)

The general layout of the register file is shown below.

Address: B B
Decimal Hex _Description
’
0 0000 A Register
1 0001 B Register
2 0002 | Assembly language
! 57 0039 subroutine sm__gkg
58 003A BASIC statement
74 004A temporaries
75 004B BASIC reserved
87 0057 area
88 0058 | General purpose
126 007E | temporaries
| 127 007F FFloating-point status
Register File

J-3

APPENDIX J
TECHNICAL INFORMATION

:

The Peripheral File

The TMS70C20 contains special instructions for performing l/O.

These instructions access a particular section of the memory
map called the peripheral file. This area contains several buiit-
in peripheral registers such as the I/O control register, timer
control registers, A and B ports, and the peripheral file
expansion area. The general layout of the peripheral fiie is
shown below.

s

- Address:
Decimal Hex Description

—rmrLr

256 0100 /0 control register

s e -

e 2 st — o

257 0101 Reserved

]

258 0102 Timer data register

—rn e

b s e L. S

259 0103 Timer control register

ey —— e ey

260 0104 A port input data

| PR wrwr e r—— p——.

261 0105 Reserved

T N e s ol el T ———

——

262 0106 B port output data

g g gy T e Mt L T e Sty By g

263 0107 unused
271 010F B

272 0110 Address control register

T g Sy R,
g o ot i —

273 0111 Power on hold latch

o BT r—m.r

274 0112 1O bus-data

= rr L= LT remm r—_r e akier |

——— vt

275 0113 IO bus-bus available

Lyl

276 0114 11O bus-handshake ctl

hsrnr i — i

277 0115 Piezo controi

e Sl e g — aure—r

arr

(continued)

J-4

APPENDIX J

____TECHNICAL INFORMATIO
{continued)
Address:
Dec:mal Hex Description
278 0116 Low battery sense line
279 0117 | unused -
280 0118 |
281 0119 Page control register
282 011A Clock control register
283 011B | unused
511 O1FF

Peripheral File

J-5

e o

APPENDIX J
TECHNICAL INFORMATION

.‘ﬁ-

System RAM

RAM starts at 0800, in the CC-40. The RAM can be increased
by using a Memory Expansion cartridge. A minimum of 402
bytes of the memory is reserved by BASIC for the following.

e RAM-based trap vectors

e List pointers

e Random number seeds

e Permanent buffers (such as the keyboard input buffer)

» Other necessary information

The rest of memory is used to store the floating point stack,
the dynamic area, any program in memory, and any user loaded

assembly language subprograms. Each l:lser-assigned string
requires 1 byte plus the length of the siring.

The use of RAM is outlined in the table below.

Highest
RAM Program

address Image

Run-time data structures
(dynamic area)

f\/

Floating point value and
execution control stack

Table of variable names

User assigned strings

Assembly language
091244 subprograms

System reserved area

RAM Usage

080045

-

J-6

APPENDIX J
TECHNICAL INFORMATION

BASIC Program Image

A BASIC program requires the following quantities of memory.
¢ Eleven bytes for overhead information.

» Four bytes of overhead for each program line.

¢ Two bytes of overhead plus the length of the variable name
for each variable name. Each additional use of the same
variable name requires only one byte.

* One byte of memory for each use of the following BASIC
program elements.

ABS, ACCEPT, ACS, ALL, AND, APPEND, ASC, ASN, AT, ATN,
ATTACH, BEEP, CALL, CHRS$, CLOSE, COS, DATA, DIM,
DISPLAY, END, EQOF, ERASE, EXP, FOR, FRE, GOSUB, GOTO,
IF, IMAGE, INPUT, INT, INTERNAL, INTRND, KEY$, LEN, LET,
LINPUT, LN, LOG, NEXT, NOT, NULL, NUMERIC, ON, OPEN,
OR, OUTPUT, PAUSE, PI, POS, PRINT, RANDOMIZE, READ,
REC, RELATIVE, RELEASE, REM, RESTORE, RETURN, RND,
RPTS, SEGS, SGN, SIN, SIZE, SQR, STEP, STOP, STR$, SUB,
SUBEND, SUBEXIT, TAB, TAN, THEN, TO, UPDATE, USING,
VAL, VALIDATE, VARIABLE, XOR, statement separator :,
comma ,, semicolon ;, left parenthesis (, right parenthesis),
not-equal < >, less-than-or-equal < =, greater-than-or-equal

> =, equal =, less-than <, greater-than >, concatenation &,
addition or unary plus + , subtraction or unary minus -,
multiplication «, division /, exponentiation A, file number # .

* Two bytes of memory for each use of the following BASIC
program elements.

ALPHA, ALPHANUM, BREAK, CONTINUE (CON), DEG,
DELETE (DEL), DIGIT, ELSE, ERROR, FORMAT, GRAD, LIST,
NEW, NUMBER (NUM), OLD, PROTECTED, RAD, RENUMBER

(REN), RUN, SAVE, UALPHA, UALPHANUM, UNBREAK,
VERIFY, WARNING, tail remark ! .

® The number of bytes required for the following BASIC
program elements are shown below.

a. Three bytes for each line reference which appears in
control transfer statements such as GOTO, GOSUB, ON
GOTO, ON GOSUB, and IF THEN ELSE. Line references
can also be in statements and commands such as ON
ERROR, RESTORE, RUN, and DELETE.

b. One byte of overhead plus two to eight bytes for each
numeric constant. The number of bytes depends upon the
number of significant digits in the floating-point
representation of the constant. Trailing zeros are truncated
from the normal representation to generate the program
representation.

J-7

APPENDIX J
TECHNICAL INFORMATION

Pl

:

c. Two bytes of overhead plus the length of the string
characters contained between the quotation marks for each

quoted string constant. The length does not include the
quotation marks. Within the quoted string two consecltive
quotation marks count as a single quotation mark.

d. Two bytes of overhead plus the length of the string for
each unquoted string constant. Leading and trailing spaces
are ignored. Subprogram names in SUB, CALL, ATTACH,

and RELEASE statements are unquoted strings. Unquoted
strings also appear in REM, IMAGE, and DATA statements.

Run-time Data Structures

The following memory requirements are necessary to run a
BASIC program. These structures are allocated dynamically

during program execution.

e Four bytes of overhead for each variable in the main program.
In addition the following memory is required for those
variables.

a. Eight bytes for each simple numeric variable.

b. Two bytes of overhead for each dimension of each numeric
array plus 8 bytes for each element value.

¢c. Four bytes of overhead for the value of each simple string
variable plus the length of the value. (Exception: If the
variable is assigned a simple constant value in the
program, the overhead for the value is reduced to 2 bytes.
For example, A$ = "HELLO" requires 4 bytes of overhead
for the variable A$ and 2 bytes of overhead for the value.
AS = "HELLO”&B$ requires 4 bytes of overhead for Ab, pius
4 bytes of overhead for the value, plus the length of the

value.)

d. Two bytes of overhead for each dimension of a string array
plus 4 bytes of overhead for each element value plus the
length of each element value (see exception ahove).

e Eleven bytes of overhead for each BASIC subprogram plus 2
bytes for each variable (including arrays), plus 2 bytes for
each dimension of each array. In addition each active and
each attached subprogram has two bytes of overhead plus
memory space for variables as described previously. If the
subprogram is attached, the additional memory space
remains allocated until the subprogram is released.
Otherwise, the memory space is released when the
subprogram terminates. See the CALL, ATTACH, and

RELEASE statements.

J-8

APPENDIX J
TECHNICAL INFORMATION

* Twenty-one bytes of overhead for each o '

. pen file or device
plus the maximum record length specified in the OPEN
statement. If record length is not specified in the OPEN
statement, it is specified by the device when the OPEN

statement is executed. This memory is released w *
T - S
or device is closed. sed when the file

* Twent):-four bytes of the execution control stack during
execution of each FOR NEXT loop.

¢ Eight bytes of the execution control stack durin i
. exe
the subroutine for each GOSUB or ON GOSUB. | cution of

* Sixteen bytes of the execution control stack duri '
| INg execution
of the error handling subroutine for ON ERROR Iinge-number.

* Twenty-four bytes of the execution control stack during

g:fl_cﬂtion of the subprogram for each BASIC subprogram

. E(i::::teen bytesf of tt'he execution control stack for an
urrence ot a breakpoint until the program is continued
the capability to continue is destroyed. J 7

Memory Expansion

The amount of memory added by a Memo .

_ ry Expansion
c:artndge depends upon the amount of resident memory and the
size of the Memon{ _Expansfan cartridge. The table below shows
the memory capacities resulting from adding a particular

Memory Expansion cartridge to a specifi .
memory. g pecific amount of resident

Cartridge Memory Size (K bytes)

Resident
Memory
(K bytes)

APPENDIX J
TECHNICAL INFORMATION

g

System Command Level

The system command level of the BASIC interpreter is a loop
which repetitively performs three phases of operation.

1. An input line is accepted from the keyboard and echoed in
the display.

2. The input line is transiated into an internal representation
which can be processed by the execution |evel of the BASIC

interpreter.

3. Based on the content of the input line and the key used to
terminate the input, the command level determines how to
use the input and processes it accordingly. After processing
the current input line, the command level loops back to the
input phase to accept another line from the user.

The key to the proper functioning of the command level is the
decision concerning how to use the input line. This process
begins in the line compression routine which translates the
input line into its corresponding internal representation. This
routine decides whether or not the input is a BASIC program
line. If the input line begins with a valid line number (an integer
from 1 to 32766), followed by one or more sSpaces, followed by
an alphabetic character, the at sign, the underline, or tail
remark symbol (), it is translated as a program line. Otherwise,
the input is transiated as a statement (or command) for
immediate execution or an equation for immediate calcutation.

BASIC program lines are edited into the current BASIC program
in memory. |f the current program is not a BASIC or a protected
program, an error 0ccurs. If the input is not a program line, the
command level must decide whether it is a statement/command
or an equation. A statement/command is executed immediately
as if it were a one line program. An equation is evaluated and
the result is displayed left justified in the display. Other
calculations may be appended to the result using the +, —, *, /,
and A operators. However, if a new equation or
statement/command is input, the result is automatically cleared
before the input is accepted.

J-10

APPENDIX J
TECHNICAL INFORMATION

“An input line must be one of the followi
n
statement/icommand. globea

1. The line begins with a statement/command keyword.

2. T_he line beg_ins with a variable name and contains one equal
. _?_rgn (=) which is not the last character of the line.
. The line begins with a variable name and ¢
one 6qual slon ontai_ns more than

All other input lines are considered to be equations.

The HEX-BUS™ Intelligent Peripheral Interface

The HEX-BUS™ interface is a 4-bit, medium-s

, -speed /O bus. The
CC-40 can trapsfer data at speeds up to 6000 bytes/second over
the HEX-BUS_mterfacg. The bus communicates over an eight-
line cable which consists of four data lines, two bus control

~ lines, a ground line, and one line that is reserved for future

expansion of the bus.

Transfers on the bus are controlled by two lines. The fi
AValllable (BAV), controls the start angl finish of a tranéﬁ%gggi
BAV |s_pulled low to indicate that a command is about to be |
trar]smltted over the bus. The second line, HandShaKe (HSK)
indicates that a nibble is available on the bus when it is Iaw.'

BAV _ _y /
< NN\,

Data ,]

Valid
Data Transmission on the Bus

Each transmission consists of the bus master (CC-40)

transmitting a command to a particular device along wi

' with an
required data, and the device transmitting a responge with agy
returned data and the status of the operation.

J-11

APPENDIX K
ERROR MESSAGES

Error Messages

The following lists describe the cause of each error message
generated by the CC-40. The first list, arranged alphabetically
by message, provides detailed information about the probable
cause of each error. The second list, arranged in ascending
order by error code, serves as a cross reference to locate the
message associated with a particular error code.

When an error message is displayed, the ¥, €, 4, ¥, and
{SHIFT] [PB] keys can be used to display additional system error

information and to edit an erroneous line.

[SHIFT] [PB] is used when an error occurs after alineis
entered. |SHIFT] [PB] displays the erroneous entry
which can then be edited and entered again

< - is used when an error occurs during program
execution. 9 displays the error code and the line
number of the line being exacuted (when the
error occurred) in an Enn Lmmmmm format where nn
is the error code and mmmmm is the line number.
(This line Is not necessarily the one that is the
source of the problem since an error may occur
because of values generated or actions taken
elsewhere in the program.)

When an /O error occurs, = displays either the
error cods, file number, and line number In an
FO, xxx #yyy mummm format or the error code,
device number, and line number in an EO, xxX
nyyy" mmmmm format. xxx Is the /O error code,
#yyy is the file number or "yyy" is the device
number, and mmmmn is the line number of the line
that was executing when the error occurred.

\ can be used to redisplay the error message
immediately after the ® key has been pressed.

4 or ¥ is used when an error occurs during program
execution to display the program line that was
executing when the error occurred.

Errors can be handled in a program using ON ERROR and
CALL ERR. Refer to chapters 4 and 5 for more information.

K-1

| APPENDIX K
ERROR MESSAGES

W

Messages Listed Alphabetically

Code Message/Cause

29

07

17

18

32

Bad argument -

* Invalid argument provided for one of the built-in

n | . :)
a#?E%cﬁ‘strmg, or file functions such as LOG, CHRS,

* Invalid argument provided for one of the option

clauses in an input/output st
VALIDATE, and TAB. P atement such as AT, SIZE,

* Arguments in a CALL statement did
| not ma
requirements for the subprogram calied. ten the

Bad INPUT data

* Entered more than one value at a time i)
ACCEPT statement. ©inan INFUT or

* Invalid data from a file in an INPUT or LINPUT
statement.

Bad 1ine number
* [ine number specified in a statement or ¢
omman
less than 1 or greater than 32766. I weas

e RENUMBER command generated a line
greater than 32766. ; number

Bad program type
¢ Entered a BASIC program line with an assembly
language or other non-BASIC program in memory.

e Entered a SAVE, VERIFY, BREAK /ine-list. UNBREAK
line-list, NUMBER, RENUMBER, LIST, CONTINUE /ine-
number, RUN line-number, or DELETE /ine-group

command with an assembly language or other non-
BASIC program in memory. 959 o

¢ Attempted to CALL a main program or RUN a
subprogram.

* Attempted to ATTACH a main program or ai
language subprogram. Pros " assemoly

* File specified for LOAD subprogram did not contain a
relocatable, assembly language subprogram.

Bad subscript
e Subscript value too large.

* Missing comma between subscripts or missing
parentheses around subscripts.

* Incorrect number of subscripts.
fcontinued)

K-2

APPENDIX K
ERROR MESSAGES

%

T —— S b ————

(continued)

Code Message/Cause

04 Bad value
e Index value in ON GOTO or ON GOSUB statement was
zero or greater than the number of line number entries.
¢ Raised a negative value to a non-integer power.
e invalid value provided for one of the option clauses in
an input/output statement such as AT, SIZE, REC, and
VARIABLE.

e Attempted a logical operation (AND, OR, XOR, or NOT)
with a value less than — 32768 or greater than 32767.

31 BASIC extension missing
e Attempted to execute an extended BASIC statement or
function without the extension in the system.

e May also occur when the contents of memory have
been improperly modified (see System error).

37 Break
e A breakpoint occurred or the break key was pressed.

10 Can't do that
o Attempted to perform a string operation as an
immediate calculation.
e Entered CONTINUE command when not stopped at a
breakpoint.

e A SUBEXIT or SUBEND statement was encountered
when no subprogram was called. For example,
CONTINUE line-number specified a line in a
subprogram after the main program stopped at a
breakpoint.

43 DATA error
e Out of data in the current program or subprogram.
* Improper data list in a DATA statement. For example,
items not separated by commas.

e During an attempt to read a numeric item, the data
read was not a valid representation of a numeric

constant.

34 Divigion by 2ero

e Evaluation of a numeric expression includes division
by zero; result is replaced by 0.9999999909999E + 127

with the appropriate algebraic sign.

(continued}

K-3

APPENDIX K
ERROR MESSAGES

{continued)
Code Message/Cause

23 Error in image
¢ NuH string provided as image string.
» N_un"!eric format field specified more than 14
significant digits.
o Prfnr-{fsr included a print-item but image string had
only literal characters. -

02 Expression too complex

¢ Too many functions, operators, or Jevels of
parentheses pending evaluation; expression must be

_simplified or must be performed in two or more steps
In separate statements.

24 File error

* File-number specified in an OPEN statement refers to
a file already opened.

® File-number in an input/output statement, other than
OPEN, did not refer to an open file. ’

* File-number or device number in an input/output
statement was greater than 255.

¢ Attempted to INPUT or LINPUT from a file opened i
OUTPUT or APPENC mode. pened in

e Attempted to LINPUT from an internal-type file.
¢ Attempted to PRINT to a file opened in INPUT mode.

e Used REC clause in an input/foutput statement which
accessed a sequential file.

° Mis_sing period or comma after device number in
device or filename specification.

30 FOR without NEXT

¢ More FOR statements than NEXT statements in a
program or subprogram. Note: the line number
reported is the last line of the current program or

subprogram, not the line containing the unmatche
FOR statement. ° |

11 I1legal after SUBEND

¢ Statement other than REM, !, END, or SUB used after
a SUBEND statement. t

{continued)

K-4

APPENDIX K

ERROR MESSAGES
- %

e ————— e

(continued)
Code Message/Cause

13

19

01

K5

I1legal FOR-NEXT nesting

» Too many levels of nested FOR NEXT loops.

e Same control variable used in nested FOR NEXT loops.

I1legal in program

e Used CALL ADDMEM, CALL CLEANUP, CONTINUE,
DELETE fine-group, LIST, NEW, NUMBER, OLD,
RENUMBER, SAVE, or VERIFY in a program.

I1lepal syntax

e Missing parentheses or quotation mark(s).

e F.dissing statement separator () or tail remark symbol
. |

e Missing or extra comma(s). For example:
—between arguments in argument-list
—between line numbers in line-number-list
—between variables in variable-list
—after file-number in input/output statements

¢ Missing hyphen in line sequence.

‘e Missing argument or clause. For example:

_no limit value after TO or increment value after STEP
~no line number or statement after THEN or ELSE
—no string-constant following IMAGE

_no line-number or string-expression after USING

—no value before or no value after a binary operator
suchas =, /, A, 0r &

—no input variable following INPUT, LINPUT, ACCEPT,
or READ

e Invalid argument or ctause. For example:
—a string variable is used as control-variable in FOR

—a numeric variable is used as input variable in
LINPUT

—VALIDATE or NULL is used in a DISPLAY statement
~USING or TAB is used with an internal-type file

—the size of print item exceeds record size for an

internal-type file
" (continued)

APPENDIX K
ERROR MESSAGES

(continued)

Code Message/Cause

* Missing keyword. For example:
—no TO after FOR
—-no THEN after IF

-no GOTO or GOSUB after ON numeric-expression

—no STOP, NEXT, or ERROR after ON BREAK

—no PRINT, NEXT, or ERROR after ON WARNING
* Improperly placed keyword. For example:

~-DIM or SUBEND is used after a DIM '
_ state
multiple statement line ment i a

—a statement begins with a non-statement k
. Such as TO, ERROR, VARIABLE, SIZE eyword

—a ynisspelled variable results in a keyword or a
misspelled keyword in a variable

—a keyword is used as a variabtle, su
GOTO or IF STOP=1 THEN " -or 88 ON VAL

* Duplicated option in input/foutput st
N D D atement. For

—more than one AT, SIZE, ERASE i
MAAON ALL is in ACCEPT

—more than one string expression is in VALIDATE

—more than one open-mode, file-t ile- _—
is in OPEN ype, file-organization

* Missing or invalid filfename in OLD, SAVE
DELETE file command. ’ VERIFY, or

* Invalid character in statement. For example “%”, “?”

“1"1 "O'”, HCH etc.. are valid Unfy Withln uoted .
) 1 U s
or in an IMAGE or REM statement. ; inas

* [nvalid character within a numeric constant.
08 Invalid dimension

® Specified array dimension was ‘
_ neqgative or was
numeric constant. | not a

* Too many elements specified for an array.
* More than three dimensions specified for an array

* Missing comma between dimensions or missing
parentheses around dimensions of an array.

{continued)

K-6

APPENDIX K

ERROR M

ESSAGES

-
4
_:-:? B

4

{continued) :

Code Message!Céuse

00

16

12

27

35

K-7

1/0 error

* An error was returned by a peripheral device during an
input/output (I/O) statement or command, or while
using the EOF function. A special 10 code is returned
by the device and is displayed after the message.
Common |/O error codes are described in the /O
ERROR CODES section of this appendix.

The error code is followed by the file-number or the
device number, whichever is appropriate to the
statement or command being executed. A number sign
indicates a file-number and quotation marks indicate a
device number. Both the common codes and other
device-dependent /O error codes are described in the
peripheral manuals.

Line not found

e Could not find a line number specified in BREAK,
CONTINUE, DELETE, GOSUB, GOTQ, ON ERROR,
USING, RESTORE, RUN, or BREAK.

* RENUMBER could not find a referenced line. The
command replaced the reference by 32767, which is
‘not a valid line humber.

Line reference out of range

» BASIC statement referred to a line number which was
lower than the first (or higher than the last) line
number of the current program or subprogram.

Line too long

¢ The internal representation of a program line or
immediate statement(s) was too long.

¢ The LIST representation of a program line exceeded 80
characters.

Memory contents may be lost

* When the power was turned on, the computer
determined that the contents of the constant memory
were not the same as when the power was turned off.
However, some system data was correct, so the loss
may or may not be serious. This message often
appears when the reset key is pressed while the power

IS on.
(continued)

Ennon'°ﬂf GEs

{continued)

Code Message/Cause

127

14

42

39

25

28

Memory full
* Insufficient space to add, insert, or edit a program line.

¢ Insufficient space to allocate variables for a program
or subprogram.

* Insufficient memory to allocate space for a string
value.

* Insufficient space to load a program or subprogram
into memory.

* Insufficient space to OPEN a file or device.

* Insufficient space to assign a user-assigned string.

¢ Attempted to allocate more than the largest available
block of memory using the GETMEM subprogram.

Miseing RETURN from error

® An error processing subroutine terminated with a
SUBEXIT or SUBEND statement instead of a RETURN
statement.

Missing SUBEND
e SUBEND missing in a subprogram.

* Encountered a SUB statement within a subprogram; a
subprogram cannot contain another subprogram.

Must be In program

* ACCEPT, CALL with BASIC language subprograms,
GOSUB, GOTO, INPUT, LINPUT, ON ERROR line-
number, ON GOSUB, ON GOTOQ, READ, RESTORE line-
number, SUB, SUBEXIT, and SUBEND statements can
be executed only in a program.

Must be in subprogram

¢ SUBEXIT or SUBEND statement encountered in a main
program. |

Name table full

* Defined more than 95 variable names. The CLEANUP
subprogram can be used to delete all variable names
not used in the current program in memory.

Name t00 long

* More than 15 characters In a variable or subprogram
name.

=J

(continued)

K-8

APPENDIX K o
eRRORMEssaces B ERROR MESSAGES

I.__. __-__\—_—___

—
F o

%

(continued) C {continued)

Code Message/Cause -;:. Code Message/Cause

06 NEXT without FCR - 03 String-number mismatch]

¢ More NEXT statements than FOR statements in a

program or subprogram * Used a string argument where a numeric argument

was expected or a numeric argument where a string

e Controil-variable in NEXT statement did not match argument was expected.
control-variable in corresponding FOR statement. | * Assigned a string value to a numerie variz
. : , meric variable or a
e Executed a NEXT statement without previously 1 numeric value to string variable.
executing the corresponding FOR statement. : *A numeric variable or expression was provided as a
40 No RAM in cartridge -j;! prompt in an INPUT or LINPUT statement.
e Called ADDMEM subprogram with no cartridge j 36 String truncation
installed or with a cartridge which did not contain * String operation (concatenation or R
- . . resulted in a
RAM memory. _- string with more than 255 characters?IﬁL extr;ed
33 Overflow] characters are discarded.
e A numeric value was entered or a numeric expression 21 Subprogram in use
was evaluated which resulted in a number whose 3 * Called an active subprogram; subpr
_ ; 0
absolute value was greater than call themselves, directly or In direcrily.grams may not
9 9999999999090E + 127: the value is replaced by ;. 126 System error
9.9009999990999E + 127 with the appropriate algebraic .;
sign. . : * This error generally occurs when the contents of

memory have been lost or improperly modified. For

15 Program not found example, memory may be modified by a loss of power

e RUN statement did not find the specified program. or by improper use of the POKE, RELMEM, EXEC, or
s CALL statement did not find the specified subprogram. ; DEBUG subprogram(s).
20 Protection violation ' | 38 System initialized
e Attempted to insert, delete, or edit a line with a i ¢ Plsplqyeq when circumstances force the complete
protected program in memory. i Initialization of the system. The system is initialized
» Attempted to LIST, SAVE, NUMBER, or RENUMBER a | when the power is turned on and one of the following
protected program. OCCUrs.
45 RETURN without GOSUB _3 ~The computer determines that the contents of

memory have been destroyed (may occur after

e Executed a RETURN statement without previously changing the batteries).

' sponding GOSUB statement.)
executing the corresponding —The computer determines that previously appended

06 Stack underflow - ; expansion RAM (through ADDMEM subprogram) is
¢ Attempted to remove a value from the execution ! no longer in the system.

control stack when it was empty. This error only * The message may also appear when the reset button

occurs when the contents of memory have been] is pressed because much of the same memory
improperly modified (see System error). | checking is performed,. (The system Initialization
41 Statement must be first on line j procedure is described in appendix G.)

s SUB statement used after the first statement in a - (continued)

multiple statement line.
{continued)}

K-9

K-10

APPENDIX K
ERROR MESSAGES

3

(continued) :

Code Message/Cause _

26

22

09

Unmatched parenthesis

e A statement or expression did not contain the same
number of left and right parentheses.

e Left and right parentheses in a statement or

expression did not match up. For example:
SIN(1+)PI/2)(where SIN(1+(PI/2)) was intended.

Variable not defined |
e Attempted to perform a calculation with a variable
which has not been defined.

e Encountered an undefined variable in a program ofr
subprogram. This error can occur when C_ONTINUE
line-number specifies a line which is not in the same
program or subprogram where the breakpoint occurred.

Variable previously defined
e Variable in a DIM statement appeared previously in the
current program or subprogram.

e Variable referenced using the wrong number of
dimensions. For example, a variable was first used as

a simple variable and later used as an array in the
' same program or subprogram.

Error Codes List in Ascending Order

Code Message

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

K-11

1/0 error

I1legal syntax

Expression too compleX
String-number mismatch

Bad value

Stack underflow

NEXT without FOR

Bad INPUT data

Invalid dimension

Variable previously defined
Can't do that

T1llegal after SUBEND

Line reference out of range
I1legal FOR-NEXT nesting
Missing RETURN from error
Program not found

{continued)

—_— ERRUAR MESSAGES

APPENDIX K

ERROR MESSAGES

(continued)
Code Message

16
17
18
19
20
21
22
23
24
25
26
07
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
126
127

Line not found

Bad 1ine number

Bad program type
I1legal in program
Protection violation
oubprogram in use
Variable not defined
Error in image

File error

Name table full
Unmatched parenthesis
Line too long

Name too long

Bad argument

FOR without NEXT
BASIC extension missing
Bad subscript
Overflow

Division by zero
Memory contents may be lost
String truncation
Break

System initialized
Must be in subprogram
No RAM in cartridge
Statement must be first on line
Missing SUBEND

DATA error

Must be in program
RETURN without GOSUB
oystem error

Memory full

K-12

~_ERROR MESSAGES

APPENDIX K

A
g
L
_,--:."."'

1.
T

¥

/0 ERROR CODES

The following list details the standard input/output (VO) error
codes. Some peripherals may have additional error codes; if so,

they are explained in the peripheral manual.

/O errors are displayed in one of the foliowing forms.
® 1/0 error cec #{ff
¢ 1/0 error cce "ddd"

where cce is the /O error code listed below or in the peripheral
manual, £ff is the file number assigned in an OPEN statement,

and ddd is the device code associated with the peripheral
device.

Code Definition

1 DEVICE/FILE OPTIONS ERROR

® Incorrect or invalid option specified in
“device.filename".

* Filename too long or missing in “device.filename’.

2 ERROR IN ATTRIBUTES

¢ In an OPEN statement, incorrect attributes (fife-type,
file-organization, open-mode, record-length) were
specified for an existing file.

3 FILE NOT FOUND |
¢ The file specified in one of the following operations
does not exist.
—OPEN statement using the INPUT attribute
—QLD “device.fifename’
-~RUN “device.filename”
~DELETE *device.filename”
—CALL LOAD(“device.filename”)

4 DEVICE/FILE NOT OPEN

e Attempted to access a closed file with a INPUT,
LINPUT, PRINT, or CLOSE operation.

e File specified in EQF function is closed.

5 DEVICE/FILE ALREADY OPEN
¢ Attempted to OPEN or DELETE an open file.

e Attempted to FORMAT storage medium on a device
which has a file open.

feontinued)

K-13

APPENDIX K
ERROR MESSAGES

— TRRORMESSAGES

{continued)

Code Definition |
6 DEVICE ERROR ________________ ——

® A failure has occurred in the peripheral. This error can
occur when directory information on a tape was lost,

the peripheral detected a transmission
medium failure, etc. error or a

7 END OF FILE

* Attempted to read past the end of the file.
8 DATAIFILE TOO LONG |

* Attempted to output a record which was lon
i er
the capacity of the device. ger than

* A file exceeded the maximum file length for a device.
9 WRITE PROTECT ERROR

¢ Attempted to FORMAT a write-prot
/itempt protected storage

* Attempted to OPEN a write-protec
or Ut o OF p ted file in OUTPUT

* Attempted to DELETE a file from
et a write-protected

10 NOT REQUESTING SERVICE

* Hegpons_e to a service request poll when the specified
dewqe did not request service. (This code is used in
Special applications and should not be encountered
during normal execution of BASIC programs.)

11 DIRECTORY FULL

* A_ttempted to OPEN a new file on a device whose
directory is fuil.

12 BUFFER SIZE ERROR

* When an existing file was opened for in
€ put or update,
the specified record length (VARIABLE XXX) was less
:il}:n the length of the largest record in the existing
* The VERIFY command found the program in memory
was smaller than the program on the storage medium.

13 UNSUPPORTED COMMAND |

* Attempted an operation not suppo
peripheral. Pported by the

fcontinued)

K-14

éPPENDIX K

ey R —

RROR MESSAGES
k2

(continued)
Code Definition

14 DEVICE/FILE NOT OPENED FOR OUTPUT |
e Attempted to write to a file or device opened for input.

15 DEVICE/FILE NOT OPENED FOR INPUT
e Attempted to read from a file or device opened for
output or append.
16 CHECKSUM ERROR
e The checksum calculated on the input record was
incorrect.
17 RELATIVE FILES NOT SUPPORTED
e Device specified in OPEN does not support relative
record file organization.
19 APPEND MODE NOT SUPPORTED
e Device specified in OPEN statement does not support
append mode.
20 OUTPUT MODE NOT SUPPORTED
e Device specified in OPEN statement does not support
:output mode.
21 INPUT MODE NOT SUPPORTED
e Device specified in OPEN statement does not support
input mode.
22 UPDATE MODE NOT SUPPORTED
¢ Device specified in OPEN statement does not support
update mode.
23 FILE TYPE ERROR

e File type specified in OPEN statement is not
supported by the specified device.

e File type specified in OPEN statement does not match
file type of existing file or device.
24 VERIFY ERROR
e Program or data in memory does not match specified
program or storage medium.
25 LOW BATTERIES IN PERIPHERAL

e Attempted an I/O operation with a device whose
batteries are low. .

e — —————————

(continued)

K-15

APPENDI (K
ERROR MESSAG)E:S(

{continued)
Code Definition

26 UNINITIALIZED MEDIUM _' I

* Attempted to o ' initiali
rempt pen a file on uninitialized storage

* Attempted to open a file
. on st : :
been accidentally erased or de?aaargﬁergledlum which has

32 MEDIUM FULL

g

 Attempted a normal (mast '
. er) /O bus operati '

Lt:fotr:%rgputer was in peripheral (slave) %odt;?r(!rmg”e
curs during some special applications and

should not be encoun '
2 BASIG procrams tered during normal execution of

* Note: Improper modificati
| on of memory by th
RELMEM, EXEC, or DEBUG subprogramsszzaner:s?.mEi’n

: gost f::cammunication with the specified device.
pecified device is not connected to the IO bus

K-16

APPENDIX L
SERVICE & WARRANTY
INFORMATION

E

ok

%

In Case of Difficulty "

In the event that you have difficulty with your Cﬂmpqct
Computer, the following instructions may help you diagnose
and remedy the problem. Usually you can correct the problem
without returning the unit to a service facility. If the suggested

remedies are not successful, contact Texas Instruments’

Consumer Relations Department by mail or telephone as
described later in the section IF YOU HAVE QUESTIONS OR

NEED ASSISTANCE.
Note: All peripherals attached to the CC-40 should be turned on
for proper operation.

If one of the following symptoms appears, try the suggested

remedy. If you are operating your computer with peripheral
devices and the remedy does not correct the protg!em, remove
the peripherals. If the symptom disappears, a peripheral is the
most likely source of the difficulty. Fiefer_ to the a.pproprlate
peripheral or accessory manual for more information on the

cause of the problem.

Symptom Remedy/Cause
No display Check that power is on. Move the display

contrast control to see if the display
becomes visible. If there is still no display,
replace the batteries with fresh AA
alkaline batteries.

No flashing cursor Check the /O display indicator to see if
any I/O operations are in progress. If the

indicator is on, wait for all peripheral
activity to cease. If the indicator is still on
several minutes later, disconnect the
HEX-BUS interface cable from the
computer. Then press the reset key.

If the V/O indicator is not on, the system
may be locked up. Press the [BREAK] Key
to try to halt the computer. If the word
BREAK appears in the display, enter CON
to continue executing the program in

memory.

(continued)

APPENDI-:’ T &

SERVICE &

WARRANTY

(continued)

Symptom Remedy/Cause

No flashing cursor If the [BREAK] key is inoperable, press the
reset key. The message Memory contents
may be lost should be displayed. Press
the [CLR] key to clear the display. You can

check if your program is still in memory by
entering LIST.

If pressing the reset key does not cause
the cursor to reappear, the batteries
should be removed. Normally, the system
Is then initialized and any program in
memory erased.

Returning Your Computer

When returning your Compact Computer for repair or
replacement, also return any software cartridges that were
being used when the difficulty occurred. For your protection,
the CC-40 should be sent insured: Texas Instruments cannot
assume any responsibility for loss of or damage to the CC-40
during shipment. It is recommended that the CC-40 be shipped
In its original container to minimize the possibility of shipping
damage. Otherwise, the CC-40 should be carefully packaged
and adeguately protected against shock and rough handling.
Send shipments to the appropriate Texas Instruments Service
Facility listed in the warranty. Please include information on
the difficulty experienced with your computer as well as return

a_ddress information inciuding name, address, city, state, and
Zip code.

If the CC-40 is in warranty, it will be repaired or replaced under
the terms of the Limited Warranty. Out-of-warranty units in need
of service will be repaired or replaced with reconditioned units
(at TI's option), and service rates in effect at the time will be
charged. Because our Service Facility serves the entire United
States, it is not feasible to hold units while providing service
estimates. For advance information concerning our flat-rate

service charges, please call our toil-free telephone number
(800) 858-4565. P

Exchange Centers

If your Compact Computer requires service and you do not wish
to return the unit to your dealer or to a service facility for
repair, you may elect to exchange the computer for a factory-
reconditioned computer of the same model (or equivalent model
specified by Tl) by taking the computer to one of the exchange
centers which have been established across the United States.

L-2

___INFORMATION

) vl
SWE
L
[]
I':L-'.E
, il
N

APPENDIX L
SERVICE & WARRANTY

INFORMATION

A handiing fee will be charged by the exchange center for
in-warranty exchange. Out-of-warranty exchanges will be
charged at the rates in effect at the time of the exchange. To
determine if there is an exchange center in your area, look for
Texas Instruments Incorporated Exchange Center in the white
pages of your telephone directory or look under the Calculating
and Adding Machines and Supplies heading in the yeilow
pages. Please call the exchange center for the availability of
your model. You can write or call Texas Instruments Consumer

Relations Department for more information.

If You Have Questions or Need Assistance

For General Information

If you have questions concerning Compact Computer repair or
peripheral, accessory, Of software purchase, please call our
Customer Relations Department at (800) 858-4565 (toll free
within the contiguous United States). The operators at these
numbers cannot provide technical assistance.

For Technical Assistance

For technical guestions such as programming, specific
computer applications, etc., you can call (806) 741-2663. We
regret that this is not a toll-free number, and we cannot accept

collect calls. As an alternative, you can write 10:

Texas Instruments Consumer Relations

P.O. Box 53
Lubbock, Texas 79408

Because of the number of suggestions which come t0 Texas
Instruments from many SOurces, containing both new and old
ideas, Texas Instruments will consider such suggestions only if
they are freely given to Texas Instruments. 1t is the policy of
Texas Instruments to refuse 10 receive any suggestions in
confidence. Therefore, if you wish 10 share your suggestions
with Texas Instruments, or if you wish us to review any
computer program which you have developed, please include

the following in your letter:
«Al of the information forwarded herewith is presented to

Texas Instruments on a nonconfidential, noncbligatory basis;

no relationship, confidential or otherwise, expressed or
implied, is established with Texas Instruments by this
presentation. Texas instruments may use, copyright,
distribute, publish, reproduce, Or dispose of the information

in any way without compensation to me.”

L3

APPENDIX L

SERVICE & WARRANTY
INFORMATION

90-Day Limited Warranty

THIS TEXAS INSTRUMENTS COMPACT COMPUTER

WARRANTY EXTENDS TO TH
E |
PURCHASER OF THE COM PUTEF': 'GINAL CONSUMER

Warranty Duration:

This computer is warranted t igi
_ o the original consumer
for a period of 90 days from the original purchase dat%?mhaser

Warranty Coverage:

This computer is warranted ‘ '
| against defective materials or
go;lg:;anshlp. THIS WARRANTY DOES NOT COVER BATTERIES AND
UNHEASlF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT
ONABLE USE, NEGLECT, IMPROPER SERVICE OR OTHER

CAUSE NOT ARISING OUT OF DEF
ORKMANEHID. ECTS IN MATERIAL OR

Warranty Disclaimers:

ANY IMPLIED WARRANTIES ARISING O
UT OF THIS SA
;Lér NOT LIMITED TO THE IMPLIED WARRANTIES OF &, INGLUDING
uE :ﬂ:ﬁ-ﬂgﬂu ngnir:?OI:TNESS FOR A PARTICULAR PURPOSE

TO THE ABOVE 90-DAY PERIO '
INSTRUMENTS SHALL NOT BE LIABL OF THE.

E FOR LOSS OF USE OF

COMPUTER OR OTHER INCIDENTAL OR CONSEQUENTIAL cosT;lsE,

EXPENSES, OR DAMAGES IN
CTHER Uoin CURRED BY THE CONSUMER OR ANY

Some states do not allow th ' '

| e exclusion or limitation of impli
warranties or consequential damages, so the above Hmitat?gr?g
or exclusions may not apply to you.

Legal Remedies:

This warranty gives you specifi -
, pecific legal rights, and
have other rights that vary from state togstate_ you may also

L4

APPENDIX L

SERVICE & WARRANTY
INFORMATION

¥

Warranty Performance:

' he
Please contact the retailer from whom you qurchased the
computer and determine the exchange policies of the retailer.

During the above 90-day warranty period., your TI Compact
Computer will be repaired or replaced with a new or
reconditioned comparable model (at TI's option) v_urhen .the
computer is returned either in person or by prepaid shipment to
a Texas Instruments Service Facility listed helow.

Texas Instruments strongly recommends that you insure the
computer for value, prior to shipment.

' 90
The repaired or replacement computer will be warranted for
days ﬁ%m date of repair or replacement. Other than the cost of

ippi ill be
ostage or shipping to Texas Instruments, no charge wi
rl::'ladegfar the repair or replacement of in-warranty computers.

Texas Instruments Consumer Service Facilities

U.S. Residents: Canadian Customers Only:

Texas Instruments Service Facllity Geophysical Services Incorporated
2303 North University 41 Shelley HF;Iad

Lubbock, Texas 79415 Richmond Hill,

Ontario, Canada L4C5G4

Consumers in California and Oregon may contact the following
Texas Instruments offices for additional assistance or

information. -
Texas Instruments Consumer Service Texas Instruments Consumer Service
821 South Douglas Street 6?5}0 Southwest 105th St.
El Segundo, California 90245 Kn;tin Square
{213) 973-1803 Suite 110

Beaverton, Oregon 97005

(503) 643-6758

L-5

N) . L . e . i}]

n s - . . -'.-'.,.t:.'. ___,.. CELE -.,_.I_‘
. ST -_'EZ-;-,.;-f . o
NOoLL
. |: . - "I- . J‘
F Ann i A 3

SERVICE &
IN

Important Notice Regarding Programs and Book Materials

The following should be read and understood before -
andfor using TI's Compact Computer. purchasing

Tl does not warrant that the programs contained in this
computer and accompanying book materials wil meet the
specific requirements of the consumer, or that the programs
and book materials will be free from error. The consumer
assumes complete responsibility for any decision made or
actions taken based on information obtained using these
programs and book materials. Any statements made concerning
the utility of TI's programs and book materials are not to be
construed as express or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, REGARDING THESE PROGRAMS OR BOOK
MATERIALS OR ANY PROGRAMS DERIVED THEREFROM AND MAKES
SUCH MATERIALS AVAILABLE SOLELY ON AN “AS IS” BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE
FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE
PURCHASE OR USE OF THESE PROGRAMS OR BOOK MATERIALS,
AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS,
REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THIS COMPACT COMPUTER. MOREOVER,
TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF
ANY KIND WHATSOEVER AGAINST THE USER OF THESE PROGRAMS
OR BOOK MATERIALS BY ANY OTHER PARTY.

Some states do not allow the exclusion or limitation of implied

warranties or consequential damages, so the above limitations
or exclusions may not apply to you.

L-6

INDEX M
INDEX

[y

A
Absolute value—5-2, B-1
ABS function—4-37, 5-2, B-1
AC adapter—1-7
ACCEPT—4-27, 53
Accuracy—F-1
ACS function—2-7, 5-6, B-1
Adding lines—4-4
ADDMEM—3-4, 4-42, 57
Algebraic hierarchy—2-2, 4-20
Alphanumeric keys—1-11
AND—4-22, H-3
Antilogarithms—2-6
APPEND—4-54, 4-58, 5-89
Arccosine—5-6
Arcsine—59
Arctangent—5-10
Arguments, functions—2-5
—subprograms—4-40, 4-41, 5-14,
5130
Arithmetic calculations—2-2
—operators—4-20
—operator keys—1-13
Arrays—4-16, 5-29
ASC function—4-35, 5-8, B-1
ASCIl character codes—4-22,
4-34, D-1
—characters—4-50, 5-18, 565,
5-66
—function (ASC)—4-35, 5-8, B-1
ASN function—2-7, 5-9, B-1
Assembly language programs—
4-42, 4-43, 5-35, 5-73
Assigning values—4-15, 5-3, 5-55,
5-68, 569, 5-107
Assignment statement (LET)—
5-68
Asterisks—5-50, 5-b1
AT—5-3, 5-30
ATN function—2-7, 510, B-1
ATTACH—4-42, 5-11
Attributes—4-53, 4-54, 5-88
Automatic Power Down
(APD)—1-10
Available memory—4-42, 5-40

M-1

B

Back tab—4-11

BASIC—4-1, 4-46, 5143

—functions—4-37, B-1

—keyword keys—1-15, 1-17

—keywords—4-2, 4-4

Battery replacement—1-5

BEEP—5-3, 5-30

Binary notation—H-1

Bit manipulations—H-3

Blanks—1-11, 4-14, 4-27, 4-28,
5-78, 5129

BREAK—4-47, 4-48, 5-13

IBREAK] key—1-16, 4-3, 4-47

Breakpoints—4-47, 4-48, 5-13,
5-21, 5-80, 5139, |-3

Buffer—4-55, 4-58

Bugs—4-48

C

Calculation accuracy—F-1
Calculations—2-1
CALL—4-40, 5-14, 5-130
—ADDMEM—3-4, 4-42, 57
—CHAR—4-44, 5-15
—CLEANUP—5-19
—DEBUG—5-26
—ERR—4-46, 4-47, 5-34
—EXEC—4-43, 5-356
—GETLANG—4-44, 5-41
—~GETMEM—4-43, 542
—INDIC—4-44, 5-54
—10—3-7, 4-43, 5-63
—KEY—4-46, 565
—I|LOAD—4-43, 5-73
—PEEK—4-43, 5-93
—POKE—4-43, 585
—SETLANG—4-44, 5124
—VERSION—4-46, 5-143
Care of CC-40—1-4
—cartridges—3-2
Cartridge port—1-7, 3-2
Chain calculations—2-8, 2-9
CHAR—4-44, 515
Character—4-44, 5-15, 5-18
Checking a peripheral—3-6

INDEX M

Checksum—G-1
CHBFIﬁ function—4-35, 4-45 518
8LEANUP—4-46, 519
learing memory—1-10,
CLOSE—460, 5720 % 44,875
[CLR] (clear) key—1-16
Coldstart--G-2
Column—5-3, 5-30
Comma—4-28, 5-98, 5-102, 5-103
Command level—J-10
Commands—4-5, A-1
Common logarithm—2-6, 5-74
Comparisons—4-22, 4-23, 4-31
Concatenation—4-21
Conditions—4-33, 5-47
Connecting peripherals—3-5
Constant Memory—1-10
Constants—4-13
CONTINUE—4-49, 5-13, 5-21
Control operations—5-18, 5-63
—statements—4-31
Copy memory—I-2
—program-—=5-122
COS function—2-7, 5-22, B-1
Cosine—5.22
CTL indicator—1-16
ICTL] key—1-16
Cursor—1-10
—position—4-27, 5.3, §-30, 5-55,
569, 597

D

D command—I-1
DATA—4-18, 5-23, 5-107, 5-113
Data format—4-50
—structures—J-8
Data-type—5-4
DEBUG-—5-25

DEBUG monitor—4-46, |-1
Debugging—4-48
Decimal field--5-50
—format—5-99

. —point—2-1, 5-49

DEG—5-26
Degrees—2-6, 5-26

DELETE—4-11, 4-12, 4-53,
460, 520, 527

DIM-—4-16, 5-29

Dimensions—4-16, 4-17

DISPLAY—4-28, 4-54, 5-30, 5-89

Display—1-18, 4-44

—commands—

—indicators—1-18, 4-44

—memory—¥-1

Display-type data-—4-50, 4-54,
5-58, 5102

Down arrow key ¥ —4-10, 4-11

E

E—2-4

Edit keys—1-13, 4-10, 4-11
Editing—4-10

END—4-6, 5-32

[ENTER) key—1-12, 4-11
Entries—4-7

EOF—4-60, 5-33, B-1

ERASE ALL—5-3, 5-30

Erase Field—4-12
ERR—4-46, 5-34

Error code—4-13, 5-34, K-1
—handling—4-12, 4-46
—messages—K-1
—subroutine—5-116
—type—5-34, K-1
Errors—4-46, 5-82
Evaluation—2-2, 4-20, 4-24
Exclamation point—4-8, 5-111
EXEC—4-43, 5-35
Execute—I-4

Exit—I1-5

EXP function—2-6, 5-36, B-1
Expanding memory—3-4, 4-42
Exponent—2-4, §-50
Exponential field—5-50
Exponentiation symbol—1-13,

549

Expressions—4-20
External devices—4-49

M-2

INDEX M
INDEX

F

Fields—4-51

File—4-49, 451, 4-52

—number—4-53, 5-88

—organization—4-52

File-number—5-88,

Files—-4-49, 5-20, 527, 533, 5-88,
5113

Flashing cursor—1-17

Flow—4-31

FN indicator—1-15

[FN] (function) key—1-15, 1-18

FOR TO STEP—4-6, 4-31, 5-37

Format—4-29, 5-49, 5-99, 5-140

FORMAT—4-9, 452, 539

FRE function—4-42, 5-40, B-1

Functions—2-5, 4-5, B-1

G

GETLANG—4-44, 541
GETMEM—4-43, 5-42
GOSUB—4-39, 5-44
GOTO—4-32, 5-45
GRAD—5-46 .
—indicator—2-6, 5-46
Grads—2-6

H
Hardware—J-1
HEX-BUS interface—3-1, 3-5, J-11

Home—4-12

!
IF THEN ELSE—4-33, 5-47

IMAGE—4-14, 4-29, 5-49
Immediate execution—4-5, A-1
Increment—4-31
Indicators—4-44, 5-54
INDIC—4-44, 5-54
Initialization—G-2
Initialize—1-10, 5-39
—variables—4-15, 442, 511
INPUT {with files)—4-55, 5-58
—(with keyboard)—4-26, 5-55
—mode—5-89
Insertion—4-11

INT function—4-37, B-1

M-3

INTERNAL—4-50, 4-54, 5-89
INTRND function—5-62, B-1
11O error code—K-13
I1/0 indicator—1-18, 3.7, 4-49
IO subprogram—3-7, 4-43, 563
Installing cartridges—3-2
Integer field—5-50
—random number—4-38, 5-62
—function (INT)—4-37, 561
Internal counter—4-53
—representation-F-2
—format—4-50, 4-54
Internal-type data—4-50
format, 5-58
—files—5-103

K

KEY—4-46, 565

KEY$ function—4-24, 4-27, 4-35,
566, B-1

Keyboard—1-8

Keycodes—D-1

Keywords—4-2, 4-4

L

Language—4-44, 5-41, 5124

LEN function—4-35, 5-67, B-1

Left arrow key € —1-13, 4-10, 4-11

LET—5-68

Line length—4-8

—numbering—4-3, 4-4, 4-7, 5-71,
5-112

—numbers—4-7, 5-77

Line-number error—5-34

LINPUT—4-27, 4-58, 569

LIST—4-3, 449, 571

Literal field—5-51

LN—5-72, B-1

1 OAD—4-43, 5-73

LOG—5-74, B-1

Logarithm—2-6, 5-72, 5-74

Logical expressions—4-22

—operations—H-1

—operators—4-22

Loop—448, 4-31, §-37, 5-76

-

M
Magnitude—2-4
Mantissa—2-4, 5-50
Mathematical functions—2-5
Memory Expansion
cartridges—3-1
Memory—4-42, 4-43, 5-40, 5-42,
875, 595, 5-110
—expansion—4-42, 5-7, J-9
—organization—J-2
—tequirements~—J-7, J-8
Microprocessor—I-3
Modify memory—I-2
Monitor—4-46
Multiple statements—4-8

N
Natural logarithm—2-6, 5-72
Negative values—2-1, 4-28
Nested loop—4-32, §-37
NEW-—-5-75
NEW ALL--1-19, 57, 546, 5-75
NEXT—5-37, 5-76
NOT—4-22, 4-23. H-3
NULL—5-3
Null string—4-15, 422, 5-29
NUM--5-77
NUMBER-4-7, 5-77
Number keys—2-1
—Sign—5-49
NUMERIC—4-37, 5-78, B-1
Numeric array—4-16
—comparison—4-22
—Constant—4-13, 4-37, 5-78
—expressions—4-20, 597, 5-102,
5103
—format—5-99
—items—4-50
—keys—1-12
—values—4-28
—variable—4-15

0 |
[OFF] key—1-10
OLD—49, 4-49, 5.79
ON BREAK—4-47, 5-80

INDEX M
INDEX

ON BREAK ERROR—5-80
ON BREAK NEXT—5-80
ON BREAK STOP—5-80
ON ERROR—4-46, 5-82
ON ERROR STOP—5-82
ON GOSUB—4-39, 5-84
ON GOT0O—4-33, 585

[ON] key—1-10

ON WARNING—4-48, 5-86
ON WARNING ERROR-—5-86
ON WARNING EXIT—5-86
ON WARNING PRINT—5-88
OPEN—4-50, 4-53, 588
Open-mode—4-54
Operators—4-20, 4-21, 4.22
OR—4-22 H-3

Order of execution—4-24
Order of operations—2-2
Output—4-24, 4.28
OUTPUT mode—4-54, 589
Overlay—1-15

P

Paging—I4

Parameters—4-40, 5-130

Parentheses—2-3

PAUSE—4-25, 591

PAUSE ALL-—4-25 591

PEEK—4-43, 593

Pending print—4-25, 4-30, 458,
598, 5-103

Peripheral devices—4-49, 563

—file—J-4

—port—16

Peripherais—3-5

Pl function—2-1, 5-94, B-1

Playback—1-14, 2-10, K-1

POKE—4-43, 5-95

POS function—4-36, 5-96, B-1

Positive values—4-13, 4-28

Power down—G-2

—up—G-1

PRINT (with files)—4-58, 5-101

PRINT (with display)—4-28, 597

M-4

INDEX M
INDEX

]
e
Ar

L

Print separators—5-98, 5-102,
5103

Print-list—5-31, 5-97, 5-101

Program counter—|-3

—execution—4-2, 49, 591, 5-120

—flow-—4-31

—image—dJ-7

—lines—5-71

—storage—4-9, 5122

-—termination—4-6, 5-32, 5-128

Prompts—4-44, 541, 5-55, 569,
5-124

PROTECTED—4-9, 5122

R o
RAD Indicator—2-6
RAD—5-75, 5-105
Radians—2-6, 5-105
Radix-100--F-2
Random accegs—4-52
—memory—>5-7
Random number—4-38, 5-62,
5106, 5-118
RAM—5-7, J-1
RANDOMIZE—5-106
READ—4-18, 4-19, 5-107
REC—4-52, 5-101, 5113
Record length—4-51
Records—4-51
Reference, arguments—4-41,
5131
Register file—J-3
Relational expressions—4-21
RELATIVE—4-54, 5-89
RELATIVE file—4-52
RELEASE—4-42, 5-108
RELMEM—5-110
REM—4-8, 5-111
Remarks—4-8, 5111
REN—5-112
RENUMBER—4-7, 5112
Repetitive calculations—2-10
Reserve memory—4-43, 5-42
Reserved word—GC-1
Reset key—1-17

M-5

RESTORE—4-19, 4-52, 461,
5-107, 5-113

RETURN with GOSUB—4-39,
5115

RETURN with ON ERROR—4-47,
5116

Right arrow key »—1-13, 410,
4-11

RND function—4-38, 5-118, B-1

RPT$ function—4-36, 5-119, B-1

RUN—5-120

[RUN] key—1-16

S

SAVE—4-9, 4-49, 5122

Scientific notation—2-4, 599

SEG$-—-4-36, 5-123, B-2

Semicolon—4-28, 598, 5102,
5103

Separators—4-8, 5-97, 5-101

Sequential—4-52, 5-89

SETLANG—4-44, 5-124

SGN--4-37, 5-125, B-2

SHIFT INDICATOR—1-11

[SHIFT] key—1-11, 1-15

[SHIFT] [DEL} key—1-14, 4-11

[SHIFT] [INS] key—1-14, 4-11

{SHIFT] [PB] key—1-14, 2-10, 4-11

Sign—4-37, 5-125

Signum function—5-125

SIN function—2-7, 5126, B-2

Sine—5-126

Single stepping—1-4

SIZE—4-28, 5-3, 5-30

Solid State Software cartridges—

3-1, 5-120

Solid State Software programs—

3-4
SQR function—5-127, B-2
Square root—5-127
Stack pointer—I-3
Statement—4-5, A-1
Status register—I-3
STEP—5-37
STOP—4-6, 5-32, 5-128

L e
} & g
._"?‘ i |
e, B -
.
I I I D I E R ||_-..
’ (L

String array—4-16
—comparisons-4-22
—constant—4-14
—expressions—4-21,
e 997, 5-102,
~—field—5-51
—items—4-51
—length—4-22, 4.35, 5-67, 5-119
—manipulation—4-34
—position—4-36, 5-96
—repeated—4-36, 5-119
—Trepresentation—5-129
—values—4-28
—variable—4-15
STR$ function—4-36, 5129, B-2
SUB—4-40, 5-130
SUBEND—4-40, 5-134
SUBEXIT—4-40, 5-135
Subprograms—3-4, 4-40, 5-11,
9-14, 5-108, 5-130, 5-134, 5-135
Subroutines—4-39, 544, 584,
5115
Subscript—4-16
Substring function (SEG$)—4-38,
5123
System RAM—J-6

T
Tab—4-11
TAB function—4-29, 5-97,
5102, 5-136, B-2
Tail remark symbol—4-8, 5-111
TAN function—2-7, 5-138, B-2
Tangent—5-138
Transfer control—4-31 , 4-39, §-47,
585, 5115, 5-116
Trigonometric calculations—E-1
—conversions—E-2
—identities—E-2
—restrictions—E-1

U
UCL indicator—1-12

[UCL] upper case tock key—1-12
UNBREAK—4-49, 5-139

INDEX M

Underline cursor—1-17, 4.3, 5.94

Up arrow key +—4-10, 4-11

UPDATE mode—4-54, 5-89

Upper-case—4-4

User-assigned strings—1-18,
1-19, 2-11

USING—4-29, 5-30, 5101, 5-140

vV

VAL function—4-36, 5-141, B-2

VALIDATE—5-3 -

Validating date—4-27

Validations—5-56

Value, argument—4-41, 5-131

VARIABLE—4.-54, 5-89

Variable assignments—2-1, 4-15,
4-55, 568

Variables—4-14, 4-40, 4-41, 5-|I
5-19, 8-23, 5107, 5-108, 5-131

Verification—5-142

VERIFY—4-9, 4.49, 5-142

VERSION—4-46, 5-143

W
Warmstart—G-1
Warning—4-48, 5.86

X
XOR—4-22, 4-23, H-3

M6

