
IE B®
BOI

SECTION 1

Introduction

This oocument describes the use oP TI9°00 assembly language
cose rrom Extended Basic on the TI 99/4 Home Computer. It
includes an introduction to the architecture ot the 99/4, and to
relevant portions or the design o-P Extended Basic. The minimum
system conrigura11 on required to run 9900 cede is a 99/4 console/
a monitor/ a Memory Expansion d e rid h e r s L and an Extended Basic
programming language module. A cassette tape pl a yer/recorder or
a r loppy disk unit are required to make use or all available
■Pastures.

The 9900 code is written and assembled on a host TI 990
minicomputer and downloaded to the 99/4 diskette. The -Pile
transfer utility o42 the Terminal Emulator II command module is
useful tor this procedure. IP that is not available/ the object
code mag be entered directly by using a small Extended Basic
program to c j p y -Prom keyboard to disk.

100 OPEN 41 ' 4’DSR 1. PECG_AH .• OUTPUT, DISPLAY/ FI XED SO
ZOO ACCEPT A^
300 IF A$=“. " THEN CLOSE #1 : : STOP
400 PRINT 41:AS
500 GOTO ZOO

Texas Instruments PRELIMINARY

SECTION 2

Nemory Architecture of the 99/4

The
accessed

99/4 has
thro u gh

several independent address spaces/ which are
memory mapped I/O in the primary <CPU) address

VDP RAN

host of the RAN within the console is in the VDP (Video
Display Processor) space. This memory is accessed through the
VDP chip/ and therefore cannot contain 9900 code or workspaces.
VDP RAN is used for the screen image/ character pattern tables/
colon tables/ etc. When using Extended Basic with an Expansion
RAN peripheral, the VDP RAN is also used to hold the program's
symool table/ value stack/ and string space. VDP RAN is accessed
by writing the target address to CPU address >8002 (least
significant byte first), ano then reading data from address >8800
or writing data to address 1SC00. The address written to >8002
should have 14000 added to it if you wish to write. Access to
VPD RAN is in auto-increment mode, so that you only need to send
one address to read or write a block of data. VDP RAN consists
of 16K bytes.- with addresses 10000 to >3FFF (or >4000 to >7FFF
for write mode).

The Screen is at VDP RAN locations
bytes are the characters on the first
characters on the second line, etc.

>0 to >2FF.
line/ the

The
next

first
32 the

O c.

CAUTION

The characters on the screen are not in the
standard ASCI I code. Each character has an
offset of 1:6C« added to it. Thus the
character "A" is represented by a >A1/
instead of by a >41. If you want to display
a string on the screen/ you must add >60 to
each byre before writing it to the screen.

The character pattern table begins at VDP location >400. The
locations >400 to >407 contain the bits for the character SPACE

Texas Instruments 2-1 PRELININARY

Ar z n i “ ac zw p e or :ne 99/4

(AECII 2 20 or screen 2 90). These are initialized to all O's.
•= i -- a a 2 20 is supposed to display as blank. Locations 2'408 to
* -CF dascrioe the character " ‘ “ (ASCII 2'21 or screen >81), etc.

Texas Instruments PRELIMINARY

a m o r g ~ - c r 1 ~ a c - j ~ e or r n 3 7 ; -1

-sincere VDP RAM
CPU FAM Addresses

4__ + >3FFF
I Static Symbol Table J

ESSE------ 1 --
: Dynamic Sym Tab and FAB's

8319------ >-<--+
{ String Space J

(Free/

! Value Stack !
4-- +■ >0960
: Edit-Recall Suffer J
4---4 >0800
; CrunchBuFfer ‘
4.-- - >0820

I ColorTables i
+-- 4- >0800

■ Sprite Velocity Block 5
-- - 1'0 7 SO
I Character Tables I
+-- 4- >0400
; QPL Interpreter I
{ Roll-out Area !
4.--4- >0300
: BASIC Temporaries J
+--4 >0370

। Sprite Attribute List I
4--4 >0300

5 Screen
4--- 1- 20000

Figure 2.1

VDP RAN Usage by Extended
Basic when Memory Expansion
is Present.

Texas Instruments PRELIMINARY

2. 2 Internal RAM

The only directly addressable CFU RAM inside the console is
at addresses >8300 co 283FF. >8300 to >8'313 will be used to
susoort parameter passing to machine language subprograms. This
will be discussed later under CALL LINK. The rest is used by
Extended Easic for Pointers into vDP RAM (e g. top-of-stack) and
global parameters (e g. OPTION SASE 0 or 1/ ON ERROR transfer
address/ etc.) .

Expansion RAM

The Memory Expansion peripheral has two blocks of memory/ a
24K block from address >A000 to >FFFF, and an 8K block from >2000
to >3FFF Extended Easic uses the 24K block for storage of the
Sasic program/ line number table/ and numeric variables. The 8K
block may be used for machine language subprograms. It is
possible to use a part of the 24K block for machine language as
well. Easic allocates space to itself from the high end of
memory/ so you mag place machine language code and data at the
low end. In order to load code here, it should be assembled in
absolute mode (e.g. AOPQ >A000) rather than relocatable. A
pointer to the beginning of free (unallocated) memory may be
found in location >8386 (RAMFRE).

2 4 Structure of the ALC block

The Routine Name Table consists of 8 byte entries; 6 bytes
of s uopr o gram name followed by 2 bytes of entry address. The
first entry is placed at location >3FF8—>3FFF As described below/
these entries are taken from the 5- and 6- tags of an object
file The Last Free Address (LFA) pointer is initialized to
>4CC0. It points at the first used byte in the Routine Name
Table when the name table is not empty. The First Free Address
(FFA? pointer is initialized to the first unused location after
the utilities and points to the next free byte after subprograms
have been loaded. FFA V. LFA are loaded into RAM locations >8308

>830A (CPU RAM? respectively at the start of a LOAD from a
file. So if absolute code is to change the values of FFA V. LFA
it must modify locations >8308 & >830A.

Texas Instruments 2-4 PRELIMINARY

' XML vector J
_— — _ _ _ — _ _ — — _ — _, _ _ — _ —

I First Free Address Ptr (FFA)

! Last Free Address Ptr (LFA) {

’ Constant >AA55 <

I Utility Branch Table

! Name Link Routine I

i U11 1 11 e s '

J ALC Routine Space <
(<

i \ / x / x / v / \ / x / x / x / \ / \ / x / :

/ \ / \ ■' x / x / \ / \ / x / \ / x / \ /x:
c

R o u t i n e N a m e T a b 1 e 5
<

Figure 2-2
ALC Support Memory Usage

Texas Instruments 2-5 PRELIMINARY

Interface w i c n Extended Basic

SECTION 3

Interface with extended Sasic

hour subprograms
interface between B a s i c

are included in Extended Basic which
and ma c n i n e 1 a n g u a g e .

CALL I NIT

I NIT initializes the free space and entry name table
p oin:t e r s/ and transfers the standard assembly language support
package rrom GROM to RAN An exception will occur if INIT is
called with no expansion RAN attached/ or with the expansion RAM
not cowered up.

3. CauL Pt^K(ad□ress । .ar-b Cvar-2/ . . .

PEEK is used to directly read bytes of CPU RAM into Basic
variables. The address is a decimal value from -32768 to

representing two byte addresses. Addresses above >7FFF
a a written as negative numbers/ treating the two byte quantity
as a two's complement integer. (i. e. to access an address above
327^7/ subtract 65536 from it.)

CAUTION

Because of the auto increment addressing of
some memory mapped address spaces/ PEEKing
certain addresses will have undesirable side
effects. In particular/ trying to read from
the ROM containing Extended Basic can cause a
system crash.

3. 3 CALL LOAD(ob j e c t-1, Cob j e c t-2/ . . . J)

The LOAD routine is used to load an assembly language object
file or direct data into the PAM expansion for later execution

Tex as Instruments 3— 1 PRELIMINARY

w i c n cl » t e n c e a Basic

the LINK routine. Each of the object arguments must be
either a string expression or a list of integers. The string
expression should evaluate to the name of a file containing a
F°CC{ object program. The list of integers (poke list) should be
an address between -32^88 and
32787 (see PEEK), followed by a list of integers to be used as
one byte of data each. These will be loaded into consecutive
locations, starting at the given address. An empty string (““)
mag be used to separate the last byte of one poke list and the
starring address of the next. The address in a poke list is
absolute and the data is non-re1ocatab1e. If you load a routine
directly with a poke list/ you should also load a name table
entry/ so that the routine may be found by CALL LINK described
below. whan poking data, space is not automatically reserved.
The poke procedure written oy the user can do this by modifying
the FFA and LPA pointers. However this cannot be done without
reading (peeking) them. The PEEK routine can be used to read the
pointers before modifying them.

The file will be opened and read by the LOAD routine.
Relocatable code will be loaded at the first available address.
Room will be reserved for the ALC routine according to the length
specified in the "O-tag“ field in the object file. Absolute code
will be loaded at the absolute address specified in the object
coda.

CAUTION

Absolute code will be loaded at whatever
address is specified in the object code.
Space will not be reserved in the RAN
expansion for that code. Space will be
reserved at the first available address for
the length specified in the HO-tag“ field.
The assembly language programmer must take
extreme care that absolute code is really
needed and that it will work properly.
Loading data into memory already being used
by Extended Basic can/ of course/ cause a
system crash.

The first ALC module loaded will load starting immediately
after the utilities. The First Free Space pointer will be
initialized to that address by the CALL INIT. Relocatable code
will be relocated to the starting load address. Whenever a ”0-
tag" is encountered the starting load address is updated from the
First Free Space pointer and the First Free Space pointer has the

Texas Instruments 3-2 PRELIMINARY

Interface w . c h Extended Basic

module length added to it With this scheme modules are loaded
serially from the lowest address. Individual modules cannot be
deleted from memory. The whole memory mag be cleared with a CALL
IN I

The object tags generated by DEF statements (5- and 6-tags)
are used to define ALC routines which can be called by name from
BASIC. The 5- and 6- tags contain the DEFed name and address.
These names and addresses are placed in the Routine Name Table
starting at the highest memory address O3FFF) and working down
These entries are 8 bytes each.

Assembly language code may be loaded from any device which
suooorts sequential display files of fixed length 80.
Principally the load device will be a file on the floppy disk/
however, the audio cassette recorder may be used.

In order for the object code files to load properly the
following conventions must be followed:

Pr og ram:

Assembly:

Linking:

No secondary references (SREF, LOAD) or
segments (PSEG, DSEG, CSEG) are allowed.

The SYMT (symbol table) option cannot be used.

Following is the correct form for the Link Editor
Control File:

TASK task-name
PARTIAL
NOTGLOBAL label, . .
INCLUDE file-name
INCLUDE file-name

<< << << <<

END

If only one file is being used then it does not have to be
linked.

The PARTIAL
which are used
Libraries may ba

command retains the entry points (5- and
by the BASIC subprogram LINK as entry

used in the link edit.

6-ta g s)
points.

The NOTGLOBAL command causes the labels listed to be
excluded from the Linked Object File. They will still be used
during the Link process though. This would include any labels
that were DEED but are not to be used as entry points from
Extended Basic.

Texas Instruments PRELIMINARY

If the DEES or REEE macros are used then all of those labels
will have to be included in a NCTGLOBAL command/ otherwise they
‘joule be placed into the Routine Name Table (and De available as
entry points from Extended Basic). A skeleton Link Edit Control
File is available on rile: .HCDEV.ALCLINK which contains the
NOTGLCBAL commands For the labels DEED by DEES Specifically
file .HCDEV.ALCLINK should contain:

partial
NO : GLOBAL
NOT GLOBAL
NOTGLOBAL
NG^ GLOBAL
NCTGLOBAL
NG^GLOEAL

VDPWA,VDPWD,VDFRD/VDPSTA,FAC,SUBWS,QPLNS
NUNASG,NUNREF,ETRASG,STRREF,XNLLNK,KSCAN
VEEN, VNEW, VEER, VNBR, VWTR, ERR, EADD
ESUB, FNUL, FDIV, EADD, SSUB, SNUL,SDIV, CEN
CFI,FCCNP,NEXT,CONPCT,GETSTR,NENCHK,VPU3H
ASSGNV, CNS, VP OF, CIF, SCROLL, VGW ITE, G VUJ ITE

END

3. 4 CALL LINK<string-express i on,[parameter-list])

The LINK subprogram passes control from a BASIC program to
a n assembly language subprogram. The string-expression should
evaluate to 1-6 characters, which is the name of an assembly
language routine. The parameter-list is an optional list of
parameters, passed using the same conventions as parameters
passed to an Extended Basic subprogram. The LINK subprogram
p e r f o r m s the following actions:

1. Evaluate the ALC subprogram name and its length (1-6),
and push the FAC entry on the value stack.

2. Build the ALC argument list consisting of stack and
identifier table entries.

3. Move the sub-name from string space to the FAC entry
and transfer control over to the utility code.

4. On return, branch to an error routine if an error has
been detected; otherwise, clear the stack and return
n orma 1 1 y.

The arguments are passed to the ALC subprogram through the
stack in VDP RAN and the identifier list in CPU RAN. The
identifier list consists of the following;

a d d r a s s

Texas Instruments 3-4 PRELININARY

Ince^tace 'd i ~ -nendec basic

1. 08300 - 2830P / Argument identifiers (one byte each;
max imum of 16)

2. 0 8310 ; Old value stack pointer.

3. 08312) Number of arguments.

4. (2-8314 • Temporary storage space for subroutine
name.

There are 6 types of arguments supported.

Numeric Expression - The identifier will contain a O.
The eight byte stack entry will contain the value of
the numeric expression. The first byte is the
exponent/ in excess-64, radix 100 notation. The other
seven bytes contain 0 to 99, for radix ICO digits. If
the number is negative, the first word (two bytes) IS
n e g a t e d .

String Expression - The identifier will contain a 1.
Tne string entry will contain:

a. Bytes 0-1: 2001C

b. Byte 2: 265 (the string tag?

c. Bytes 4-5;
VPD RAN.

Bytes 6-7:
a 1wa y s be

Pointer to the value of the string in

d Length of the string. Byte 6
zero, since the maximum string

should
length

is 255 characters.

Numeric variable - This item will either be a numeric
variable or a numeric array element. The identifier
list will contain a 2 for this entry. The string will
contain:

a. Bytes 0-1: Pointer to the varaible's symbol
table entry in VDP RAm.

b. Byte 2: zero

c. Bytes 4-5: Pointer to the eight byte value of
the variable, in Expansion RAN.

4. String Variable - This item will either be a string
variable or a string array element. The identifier
list will contain a 3. The stack entry will contain:

Texas Instruments 3-5 PRELININARY

za r r ac e with xxrenoed 3 as i c

a. Bytes 0-1: Pointer to the variable's symbol
table entry in VDP RAM.

b. Byte 2: 1'6 5

c. Bytes 4-5:
RAM.

Pointer to the string's value in VDP

d . Bytes 6 - 7: String length.

Numeric Array - This entry results from an argument of
the form A() or AG) etc. This is used so that a
subprogram may manipulate an entire array. The
identifier list will contain a 4 for this entry. The
string entry will contain:

a. Bytes 0-1: Pointer to the array's symbol table
entry in VDP RAM. The byte pointed to will
contain the number of dimensions of the array in
the least significant three bits.

b. Byte 2: zero.

c. Bytes 4-5: Pointer to the array's value space in
VDP RAM. The value space will have two bytes for
each dimension/ indicating the maximum index for
that dimension/ and two bytes for a pointer to
the first element's eight byte value in Expansion
RAM. The values are stored in row-major order,
(i.e. the first index varies the fastest.)

String Array - Similar to the entry for a numeric array
except the identifier list will contain a 5 and byte 2
of the stack entry will contain >65. The value space
for a string array will contain two bytes for each
dimension/ indicating the maximum index/ followed by
two bytes for each array element/ which is used as a
pointer to the element's value string in VDP RAM.

Any argument that can be passed as a variable will be passed as
such rather than as an expression.

The assembly subprogram is called through a Name Link
Routine written in assembly language and loaded with the
utilities. The Name Link Routine looks up the name of the
routine to be called in the Routine Name Table and branches to
the ALC subprogram. The Name Table is searched from the lowest
address up so that if two routines are LOADed with the same name
then the second one loaded will be used. The name of the routine
to be called will be placed in FAC blank filled to 6 characters.

Texas Instruments 3-6 PRELIMINARY

with c. x r a n a e a basic

If the name supplied by the user is greater than 6 characters
then an error will result. This error will be detected in GPL
before the XML. If the Name Link Routine cannot find the name in
the table then it will return with the GPL condition bit set to
indicate that error.

The Name Link Routine will branch to the ALC routine with a
direct 9QGG code branch. When the ALC routine is called from the
LINA routine the workspace will be at IS3E0. The ALC routine
must retain Rll, R13, R14/ and R15 in that workspace and return
to the GPL interpreter with an RT instruction. Normally the ALC
routines will have their own workspaces and will return to GPL
with a LWPI >83E0 followed by a RT. The macros ENTRY and RETURN
described below are useful to handle this.

The ALC subprogram can assign new values to numeric or
string variables or to elements of numeric or string arrays with
utilities provided by the system. These utilities are described
in a later section.

When the ALC routine returns to LINK the stack must be
cleared. The entries on the stack must be individually popped to
release any temporary strings.

Texas Ins trumen ts PRELIMINARY

SECTION 4

Utilities

The utility routines are provided for use by assembly
language subprograms to access machine resources and to interface
with the BASIC interpreter.

Utility subroutines are provided in the RAM expansion so
than ALC subprograms can be shorter and more machine independent.
The utility routines are called with BLWP instructions and use
registers to pass arguments.

4 .1 VDP Access Utilities

Several utilities are provided for access to the Video
Display Processor. Macros (see below) are also provided when
speed is important. Generally using the utilities instead of the
macros will save code space.

All parameters are passed through the calling program's
workspace registers.

VDP Single Byte Write,
in the most significant
indicated in register 0.
@VS3W.

This routine writes the single byte value
byte of register 1 to the VDP RAM address

The routine is accessed by a BLWP

VDP Multiple Byte Write. This routine writes the number of bytes
indicated in register 2 from the CPU RAM buffer pointed to by
register 1 to the VDP RAM buffer pointed to by register O. The
utility is called with a BLWP @VMBW.

VDP Single Byte Read. This routine reads a single byte from the
VDP RAM address indicated in register 0/ and places it in the
most significant byte of register 1. The routine is called with
a BLWP evSBR.

VDP Multiple Bute Read. This routine reads the number of bytes
indicated in register 2 from the VDP RAM buffer pointed to by
register 0/ and places them in the CPU RAM buffer pointed to by
register 1. The utility is accessed by a BLWP @VMBR.

Texas Instruments 4-1 PRELIMINARY

vDP Urite to Register. This routine writes the single byte value
in the least significant byte of register 0 to the VDP register
indicated in the most significant byte of register 0. The
routine is called ^ith a ELWP @VWTR.

4 2 Argument passing utilities

Numeri c As s i q nmen t. A utility is provided to allow a value to be
assigned to a numeric variable passed as an argument. The
floating point variable to be assigned will be in FAC and the
argument number will be passed in RI (full word). The utility is
called with a BLWF GNUMASG. If the requested argument is not a
numeric variable then the routine will return to GPL with the GPL
condition bit set.

For assignments to a simple numeric variable RO must contain
a zero. For an assignment to an array RO will contain the array
element number. The assignment utility will test for legal
bouncs on the element number. With OPTION EASE 0 the element
number must range from 0 to (maximum number of elements - 1).
With OPTION BASE 1 then the element number must range from 1 to
maximum number of elements.

String Assignment . A utility is provided to allow a string to be
assigned to a string variable passed as an argument to the
subprogram. The utility does the following:

Allocates space for the string in VDP RAM.

Copies the string into VDP RAM.

Assigns the string to the selected varaible.

4. Fixes up the original argument stack entry to point to
the new string.

The string to be assigned is constructed by the ALC routine in
the RAM expansion. The first byte of the string is the length of
the string. The assignment utility is called with the string
address in register 2 and the argument number in register 1 (full
word). The utility is called with a 3LWP @STRASG. If the
argument specified is not a string variable then the routine will
return to GPL with the GPL condition bit set.

For assignments to a simple string variable RO must contain
a zero. For an assignment to an array RO will contain the array
element number. The assignment utility will test for legal

Texas Instruments PRELIMINARY

bounds on the element number. With OPTION BASE O the element
number must range -from 0 to (maximum number of elements — 1).
With OPTION BASE 1 then the element number must range from 1 to
maximum number of elements.

Get Numeric Parameter. A utility is provided to fetch the value
of a numeric parameter. Register 1 contains the parameter
number. If the parameter is an array, register 0 contains the
element number, otherwise, register 0 contains 0. The value of
the numeric parameter is returned in FAC. The utility routine is
accused by a BLWP @NUNREF.

Get String Parameter. This utility is used to fetch the value of
a soring parameter. Register 1 contains the parameter number.
If the parameter is an array, register 0 contains the element
number, otherwise, register 0 contains C Register 2 contains
the address of a CFU RAN buffer. Upon calling the utility, the
first byte of the buffer must contain the buffer length. If the
string will not fit in the buffer, an error condition occurs.
Otherwise, the string is returned in the buffer following the
length byte. The length byte will be modified to reflect the
actual length of the string. This utility is called with a BLWP
2STRREF.

4. 3 Extended Utilities

Utilities built into the RON of the Q9/4 console and the
ROMs in Extended BASIC may be accessed as follows:

BLWP @XMLLNK
DATA Cr ou t i n e —nameG

Some routine names will BL through the XML tables in Extended
BASIC While others will call various console ROM routines.
Routine names are defined in the EQUS macro and are li

FADD F1oa t i ng point add.

FSUB Floa t ing point sub trac t.

F^UL Floating point multiply.

FDIV Floating point d ivide.

SACD Floating point s tac k add.

SSU3 Floating point stack subtract

Texas Instruments 4-3 PRELIMINARY

ENUL Floating point stack multiply.

EDIV Floating point stack divide.

CEN Convert string to number.

CFI Convert -Floating point to integer.

FCOMP Floating point compare.

CCNPCT Perform garbage collection.

GETSTR. Allocate space from string space.

NENCHK Allocate memory for PAB.

VPUSH Push a value on the -Floating point stack.

ASSGNV Assign value to variable.

CNS Convert number to ASCII string.

VPGP Pop a value -Prom the stack.

CIF Convert integer to floating point.

SCROLL Scroll the screen.

VQWITE Transfer VDP memory to expansion RAN.

GVWITE Transfer expansion RAN to VDP memory.

Keyboard Scan. The equivalent o-F a GPL scan instruction can be
done by a BLUP @KSCAN. The GPL status bit may be tested on
return with a compare ones corresponding (CSC) instruction. The
GPL status register is in location >83C7.

H / GT /COND /CARRY/ OVF / 0 / 0 / 0 /

bit 7 6 05 4

Bit 5 tui 11 be set if a key was found pressed- and it was
different from the key found pressed on the last call to KSCAN.
The program must select keyboard device by placing a byte in
location >8374. The meaning of this byte is the same as the key
unit in the CALL KEY subprogram. You may read the ASCII value of
the key pressed from location >8375. Joystick Y and X positions
are in locations >8376 and >8377- respectively.

Texas Instruments 4-4 PRELININARY

£r-c- Reporting. assembly language program mag report any
ejiacmo Extended SASIC error or warning message upon returning
to SASIC. This is done with the error reporting utility. The

am must load RO with the appropriate error code and then
@ERR. Tae definitions cP the error codes may be included in

the standard macro file; described in a then next section.
7)

 uj

Texas Instruments 4-5 PRELIMINARY

HacrOS-

SECTION 5

Macros

Assembler macros are provided to make programming in the TI
904 environment easier. The macros are used in a 9900 assembly
with a COPY of the file given in Appendix A.

5 1 EQUS

This EGUS macro is used to define global equates for the ALC
subprogram. Included is the definition of a workspace and
equates for the various hardware resources. Equates for the
addresses of the utility branch table entries are also provided.

5. 2 EQUDEB

This macro is similar to EQUS/ but contains the addresses
appropriate for use from a debugger station. The addresses of
routines in console ROM are different; since extra code has been
included there to support breakpoints.

ERREGU

This macro provides equates for all
BASIC error and warning messages.

the various Extended

5. 4 DEFS

The DEFS macro is used when several ALC routines will be
linked together to form one ALC subprogram. This macro causes
the definitions in the EQUS macro to be global during the link
edit.

Texas Instruments 5-1 PRELIMINARY

5. r RtrS

The REFS is used when several ALC routines will be
linked together to Form one ALC subprogram. This macro allows a
routine to reFerence the equates deFined in the DEFS macro.

5. o ENTRY

The ENTRY macro is written as ENTRY label where label is the
entry point name oF the routine. This macro deFines the entry
point with the speciFied/ deFines a workspace For the subprogram/
end loads that workspace.

5. 7 RETURN

The RETURN macro is used to return From the ALC subprogram
to SASIC. This macro requires that the program contain the one
byte value '20 at the label “C20“. This value is used to reset
the CPU condition bit beFore returning to BASIC. IF this is not
done, False error reporting can occur.

VDPADR

This macro loads the VDP address with
workspace register.

the speciFied

VDPWD

The VDPWD macro is used to write one byte oF data From the
most signiFicant byte oF a register. Two VDPND macros cannot be
used without other code between them or the accesses will be too
Fast For the VDP.

5. 10 VDP RD

The VDPRD macro is used to read one byte oF data From the
VDP into the most signiFicant byte oF a register. Two VDPRD
macros cannot be used without other code between them or the
accesses will be too Fast For the VDP.

Texas Instruments 5-2 PRELIMINARY

5. 11 CALL Extended Utilities

A macro is provided to call utilities built into the ROM of
the 99/4 console and the ROMs in Extended EASIC. The syntax and
code generated are:

CALL Groutine-name>

BLWP ^XMLLN’^
DATA Cr ou t i n e-name>

SCAN

The SCAN macro scans
identical to the GPL SCAN
tested on return with
instruction.

the 99/4 keyboard. The protocol is
instruction. The GPL status bit may be

a compare ones corresponding (COC)

SOUND

The SOUND macro can be used to set up for the execution of
auto-sound. The sound list/ as described in the “GPL
Programmer's Guide"/ must be placed somewhere in VDP RAM. The
VDP RAM address must be on a word boundary, ie. an even value/
and must be in the register used in the macro. In addition the
use of this macro requires that the program contain the one byte
value >01 at the label “C01“. This code does not actually start
the auto-sound. It simply initializes all the necessary memory
locations. Auto-sound is driven by the VDP interrupt/ therefore/
the sound list will not begin executing until the interrupt is
turned on.

5. 14 ERROR

The ERROR mag be used to report errors and warnings. If it
becomes necessary for an ALC program to return to BASIC with an
error condition, the program may use the following macro in place
of the normal return.

ERROR Csymbol or value>

Texas Instruments 5-3 PRELIMINARY

a v e i o p m e n t

SECTION 6

D e ve1 o p m e n t

The assembly language support i 1 1 be developed using the
GPL debugger hardware. This causes some dif ficu 11ies since the
debugger preempts RAN expansion at address >2000->3FFF. That
space is used by code and RAN memory for debug purposes. To
avoid this problem the ALC support will be developed using RAN at
2EOOG-LFFFF. To achieve this Extended EASIC will be patched (in
GRON; to only use 1 -K oP the 24K RAN block. Then SASIC will use
>ACOO->DFFF for program and data storage and >EOGO->FFFF Por ALC
support. Reassembly for EGRON will change the appropriate
equates to use the correct address. The debugger EFRONS will be
chanced so that the XNL table at >2000 will be moved to >E000.

Ereakpoint capability -For assembly language is being added
to the debugger to support testing the ALC support and for use
during ALC development.

Any ALC code developed on the debugger will run at a
different address than in the real machine due the reasons
mentioned above. For relocatable code (the recommended way) this
should be transparent when the code is written.

Texas Instruments 6-1 PRELIMINARY

No ~ e s

SECTION 7

Notes

PEEK and POKE

The LOAD statement supports the equivalent ot a POKE
function -{direct memory load?. The values PEEKed or POKEed are
one byte values in the range 0 to 255. Larger values are put in
this range <i.e. 25o=0, 257=1 ...y, provided they do not exceed
the range 32767 to -32768. It the address tor PEEK or POKE, or
the data tor POKE is a tlcating point value than it is rounded.

Te xas Instruments 7-1 PRELIMINARY

SECTION 8

Errors

No new error messages were added tor INIT> LOAD/ or LINK.
All o t the error messages issued are t r o m Extended Basic. This
section lists the causes ot errors tor INIT/ LOAD/ and LINK that
are unique to assembly language support.

INIT

1. Syntax Err or

a. Expansion Ram not present

LOAD

1. Syntax Error

a. INIT has not been called

2. Numeric Overt low

a. Address ot POKE out ot range +32767 to -32768

b. Data not in range
327^7 to -32768

3. Unrecognized Character

a. Invalid tag rie 1 d

4. Data Error

a. Check Sum error when reading tile

5. Memory Full

a. Not enough memory to load relocatable code into

Texas Instruments 8-1 PRELIMINARY

ER AM.

b. Not enough memory for entry table.

I/0 Errors

a. #02 - File not round or is not a data tile.

b. #25 - File is not Sequential. Display/ Fixed 80.

1. Syntax Error

a. INIT has not been called.

2. Subprogram Not Found

a. Entry name in call to LINK not found.

3. Bad Argument

a. First paramater is not a string or is null.

b. First parameter is greater than 8 characters.

c . More than 16 parameters.

S. 4 PEEK

1. Syntax Error

a. Constant in parameter list/ other than as the
address.

2. String Number Mismatch

a. String argument in parameter list.

3. Numeric Overflow

a. Address is out of range

Texas Instruments 8-2 PRELIMINARY

32767 to -32768.

8. 5 NUMASQ/STRASG/NUMREF,STRREF

1. String Number Mismatch

a. Requested argument is not the proper type (string
vs. numeric;.

2. Bad Argument

a. Attempt to do an assignment to an expression
instead of a variable.

b. Array element number (RO) is non—zero value when
doing an assignment or reference with a simple/
i. e. non-array# argument.

c . Argument number (Ri) is zero.

d. Argument number (RI) exceeds number of arguments.

3. Bad Subscript

a. Array element number (RO) is zero when OPTION
EASE is 1.

b. Array element number (RO) exceeds number of array
elaments.

c. Bad dimension information found in symbol table.

4. String Truncated

a. In using STRREF/ the referenced string exceeds
the length of the provided buffer.

Texas Instruments 8-3 PRELIMINARY

Macro Definition File

APPENDIX A

Macro DeHnition rile
Thia appendix lists the text of the file that should be included
in an assembly language program (using the COPY directive) to
define the macros discussed in an earlier section.

Texas Instruments A—1 PRELIMINARY

MACROS FOR ALO SUPPORT->

EQUDEB 5MACR0
Ot4 EGU 1
OFF EQU 0
DEBUG EGU ON
VDPWA EQU >eco2
VDFND EGU >8000
VDPR.D EQU >8800
VDPSTA EQU >8802
FAC EQU >834A
SU BUS BSS 32
GPLUS EQU >83E0

-> util i ty bra
*
NUMASG EQU >E008
NUMREF EQU >EOOC
STRASG EQU >E010
STR.REF EQU >E014
XMLLNK EQU >E018
KSCAN EGU >E01C
VSEW EQU >E020
VMBW EQU >E024
USER EQU >E028
UM ER EQU >E02C
VWTR EQU >E030
ERR EQU >E034
FADE EQU >0DE4
FSUB EQU >0DE0
FMUL EQU >OEEC
FDIV EQU >1058
SADD EQU >0DE8
SSUE EQU >0DD8
SMUL EQU >0EF0
SDIV EQU >1050
CSN EGU >1212
CFI EQU >1310
FC CMP EQU >0D9E
NEXT EQU >008E
COMPCT EQU >00
GETSTR EGU >02
MEMCHK EQU >04
CNS EQU >06
VPUSH EQU >0E
UP OP EGU >10
ASSGNV EGU >18
CIF EGU >20
SCROLL EQU >26

PRELIMINARYTexas Instruments

VGKITE EGU >34
GVKITE EQU >36

$END
->
EQ US SMACRO
ON EQU 1
OFF EGU 0
DEBUG EQU OFF
VDPWA EQU >8C02
VDPWD EQU >ecoo
VDPRD EQU 2 8800
VDPSTA EQU >8802
FAC EQU .>834A
SLEWS ESS
GFLWS EQU >S3E0

Si- utility branches
*
NUMASG EGU >2008
NUMREF EGU >200C
STRASG EGU >2010
STRREF EGU >2014
XMLLNK EGU >2018
KSCAN EGU >20 IC
USBW EGU >2020
VMEW EQU >2024
USER EGU >2028
VMBR EGU >202C
VWTR EGU >2030
ERR EGU >2034
FADD EGU >0D80
FSUB EGU >0070
FMUL EGU >0E88
FDIV EQU >0FF4
SADD EQU >0084
SSUB EQU >0D74
SMUL EGU >0E8C
SDIV EQU >0FF8
CSN EQU >11AE
CFI EQU >12B8
FCOMP EGU >0D3A
NEXT EQU >0070
COMPCT EGU >00
GETSTR EQU >02
MEMCHK EQU >04
CNS EQU >06
VPUSH EQU >0E
UPGR EGU >10
ASSGNV EQU >18
CIF EGU >20

PRELIMINARYTexas Instruments

nscro Derinition File

SCROLL EGO >26
VGWITE EQU >34
GVWITE EGU

$END
>36

ERREGU SMACRO
->

ERROR EQUATES
->
ERF NO EGU >0200 2 Numeric Overflow
ERRSYN EGU >0300 Syntax Error
ERRIBS EGU >0400 4 Illegal after subprogram
ERRNGS EGU >0500 5 Unmatched quotes
ERRNTL EGU >0600 6 Name too long
ERRSNM EGU >0700 -T String—num mismatch
ERROEE EQU >0800 8 Option base error
ERRMUV EGU >0900 Q Improperly used name
ERRIM EQU >0A00 10 Image error
ERRMEM EQU >0B00 1 1 Memory full
ERRSO EQU >0000 12 Stack overflow
ERRNNF EQU >0D00 13 Next without for
ERRFNN EGU >0E00 14 For next nesting
ERRSNS EQU >0F00 15 Must be in subprogram
ER RRSC EQU >1000 16 Recursive subprogram call
ERRMS EQU >1100 17 Missing sub end
ERRRUG EQU >1200 18 Return without gosub
ERRST EQU >1300 19 String truncated
ERRBS EQU >1400 20 Bad subscript
ERRSSL EGU > 1 500 21 Speech string too long
ERRLNF EQU >1600 Line not found
ERRBLN EQU >1700 23 Bad line number
ERRLTL EQU >1800 24 Line too long
ERRCC EGU > 1900 25 Can t continue
ERRC IP EQU > 1AOO 26 Command illegal in program
ERROLP EQU >1800 Only legal in a program
ERRS A EQU >1000 28 Bad argument
ERRNPP EGU > 1 DOO 29 No program present
ERRBU EQU >1EOO 30 Bad va1ue
ERR IAL EQU >1FOO 31 Incorrect argument list

ERR INF EQU >2000 Jc. Input error
ERRDAT EQU >2100 33 Data error
ERRFE EGU >2200 34 File error
ERR IO EGU >2400 36 I/O error
ERRSNF EGU >2500 Subprogram not found

ERRPV EQU >2700 39 Protection violation
ERRI UN EQU >2800 40 Unr e cognized character
URNNO EQU >2900 41 Numeric overflow
URNST EGU >2A00 42 String truncated
WRNNPP EQU >2 BOO 43 No program present
WRNINP EQU >2000 44 Input error
URNIO EQU >2000 45 I/O error

Texas Instruments A—4 PRELIMINARY

acro L:e r i n i : i on File

URNLNF EQL >2E00 Line not -Found
SEND

->
DEES SMACRO

DEF VDPWA,VDPWD,VDPRD,VDPSTA, FAC, SLEWS- GPLWS
DEF NUMASG,NUMREF,STRASG,STRREF,XMLLNK,KSCAN
DEF VSEW,VMBW,VSBR,VMBR, VWTR,ERR- FADD
DEF FSUB,FMLL,FDIV,SADD, SSUB, SMLL,SDIV, CSN
DEF CFI,FCOMP,NEXT,CGMPCT, GETSTR, MEMCHK, VPUSH
DEF ASSGNV,CNS-VPOP,CIF,SCROLL,VGWITE,GVWITE
SEND

REFS SMACRO
REF VDPWA, VDPWD, VDPRD, VDPSTA, FAC, SLEWS, GPLWS
REF NUMASG,NUMREF,STRASG,STRREF,XNLLNK,KSCAN
REF LSBW, L'MEW, LSBR, LM3R, VWTR, ERR, FADD
REF FSLB,FMLL,FDIV,SADD, SSLB, SMUL,SDIV, CSN
REF CFI,FCDMP,NEXT,COMPCT- GETSTR, MEMCHK, VPLSH
REF ASSGNV,CNS,VPOP,CIF,SCROLL,VGWITE,GVWITE
SEND

ENTRY SMACRO Pl
DEF :P1

: r 1 : LWPI SLEWS
SEND

RETURN SMACRO
SZCE @C20, <2>S37C
LWPI GPLWS
3 ©NEXT
SEND

->
VDPADR SMACRO Pl

SWPB :P1
MOVB :P1:,@VDPWA
SWPB :P1
MOVB :Pl:,QVDPWA
SEND

VDPWD SMACRO Pl
MOVB :P1:,(2VDPWD
SEND

VDPRD SMACRO Pl
MOVB SVDPRD, : Pl
SEND

CALL SMACRO Pl
BLWP SXMLLNK
DATA :Pl

Texas Instruments PRELIMINARY

Macro Derinition File

SEND

SCAN SMACRO
BLWP QKSCAN
SEND

SOUND SMACRO Pl
MOV : Pl: ;83CC
SOCB ^C01/^>83FD
MOVE ^CO1/^283CE
SEND

*
ERROR SMACRO Pl

LI RO;:Pl
BLWP @ERR
SEND

Texas Instruments A—6 PRELIMINARY

