
o

TEXAS INSTRUMENTS
Bringing Affordable Electronics To Your Fingertips

Graphics Programming Language
Prog rammer"s Guide

ORIGINAL Issu e , MA Y 1979

.=l EV 1S;::" 1 JUNE 1979

REVIS C:" J OeCZNlBE" 1979

Personal Computer Divis ion

)

@

)

)

TEXAS INSTRUMENTS

GRAPHICS PROGRAMMING LANGUAGE

USER'S GUIDE

TEXAS INSTRUMENTS INCORPORATED 1979

ALL RIGHTS RESERVED

Personal Computer Division

June 1. 1979

Revised December 3, 1979

,
I

Section 1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Section 2.0
2.1
2.1.1

2.1.2

2.1. 3
2.2

Section 3.0
3.1
3.1.1
3.1. 2
3 . 1. 3
3.1. 4
3.1. 5
3.2
3.3
3.3.1

3.4

TABLE OF CONTENTS

GRAPHICS PROGRAMMING LANGUAGE

GRAPHICS PROGRAMMING LANGUAGE
Overview
GPL Instruction synopsis
GPL Timing
GPL Assembler
Software Monitor Reconfiguration
Foreign Language Screens
Applicable Documents '

SUMMARY OF SYSTEM ORGANIZATION
VDP Organization
Patterns
Pattern Name Table
Pattern Generator Sets
Pattern Color Table
Sprites
Sprite Attribute Block (SAB)
Sprite Descriptor Block (SDB)
Sprite velocity Block , (SVB)
VDP Text Mode and Multicolor Mode
System Memory Organization

GPL INSTRUCTIONS
Addressing Memory
Immediate Field (IMM)
Global Source (GS)
Global Destination (GO)
Label
Addressing Modes
Format Types
Running GPL Programs
The Status Block
Maxmem
Data Stack
Subroutine Stack
Keyboard
Key
Joystick Y
Joystick X
Random Number
Timer
Motion
VDP Status
Sta tus
Character Buffer
Y-Pointer
X-Pointer
The Status Byte

PAGE

1-1
1-1
1-2
1-2
1-3
1-3
1- 4
1-4

2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2- 6
2-7
2-8
2-9

3-1
3- 2
3-2
3-4
3- 4
3-5
3- 5
3- 9
3-12
3-17
3-17
3-17
3-18
3-18
3-18
3-18
3-18
3-18
3-18
3-19
3-19
3-19
3-19
3-19
3-19
3-22

Section 4.0
4.1
4.1.1
4.1. 2
4.1. 3
4.1. 4
4.1. 5
4.1. 6
4.1. 7
4.1. 8
4.1. 9
4.1.1 0
4.1.11
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2. 6
4.2.7
4.2.8
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4 • 4 • 2
4 .4 .3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10
4.4.11
4.4.12
4.4.13
4.4.14
4.4.15
4.4.16
4.4.17
4.4.18
4.4.19
4.4.20
4.4.21
4.4.22
4.4.23
4.4.24

TABLE OF CONTENTS
Page 2

INSTRUCTI ON DESCRIPTIONS
Compare and Test Instructions
Text Logical High Bit
Test Arithmetic Greater Than Bit
Test Carry Bi t
Test Overflow Bit
Compare Equal
Compare High
Compare Logical High or Equal
Compare Greater Than
Compare Greter Than or Equal
Compare Log ical
Compare Zero
program Control Instructi ons
Br anch on Se t
Branch on Reset
Branch
Case
Call Subroutine
Fetch
Return from Subroutine
Return from Subroutine (Save Condition)
Bit Manipulation Instructions
Reset Bit
Se t Bi t
Test if Bit Reset
Arithmetic and Logical Instructions
Add
Subtract
Multiply
Divide
Increment by One
Increment by Two
Decrement by One
Decrement by Two
Abosolute Value
Negate
I nve r t
Log ical AND
Log ical OR
Exclusive OR
Clear Loca t ion
Store
Exchange
Push Onto Data Stack
pop Off of Data Stack
Block Move
Shift Left Logical
Shift Right Arithmetic
Shift Right Logical
Shift Right Circular

4-1
4-2
4-2
4-3
4-4
4- 5
4- 6
4-7
4-8
4- 9
4-10
4-11
4-12
4-13
4-13
4- 14
4-15
4 -16
4-17
4-18
4-19
4-20
4- 21
4-21
4-21
4-21
4-22
4-2 3
4- 24
4-25
4- 26
4- 27
4- 28
4-29
4- 30
4- 31
4- 32
4-3 3
4-34
4- 3 5
4- 36
4-37
4- 38
4- 39
4- 40
4-41
4- 42
4-43
4- 44
4-45
4-46

4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4. 5. 7
4.5.8
4.5.9
4.5.10

Appendix A

Appendix B

Append ix C

TABLE OF CONTENTS
Page 3

Graphics and Miscellaneous
Col nc idence
Load Backdrop Color
Load Screen
Formatted Block Move
Generate Random Number
Scan Keyboard
Execute Machine Language
Exit GPL
I/O Instruction
BOME

THE GPL ASSEMBLER
Source Pile Format
Assembler Directives

DATA
TITLE
END
EQU
GROM
ORG
BASE
PAGE
LIST
UNL
LISTM
UNLM

GPL MACROS
$END
$SEND
$WBI LE
$REPEAT
$UNTIL

Instructions 4-47
4- 47
4- 48
4- 49
4- 50
4-53
4- 54
4-55
4-57
4- 58
4-59

A-1
A-1
A-2
A-2
A-2
A-2
A-2
A-3
A-3
A-3
A-4
A-4
A-4
A-4
A-4
A-s
A-s
A-s
A-s
A-s
A-s

$FOR GO = GS TO GS BY GS
$FOR GO = GS DOWN TO GS BY GS
$IF - GOTO

A-s
A-6
A-6

$IF - THEN
$ELSE
$SELSE
$CASE
$GOTO
$CALL
COMPARISON

AUTOMATIC SPRITE MOTION

AUTO-SOUND INSTRUCTION
Table Forma t
Sound Generator Chip (SGC)

Control Summary
Attenuation Control
Frequency Control
Noise Control

A-6
A-6
A-6
A-6
A-7
A-7
A-7

B-1

C-l
C-1

C-3
C-3
C-3
C-4

Appendix D

Appendix E

Append ix F

Appendix G

Appendix 8

Appendix I

TABLE OF CONTENTS
Page 4

HANDSET/KEYBOARD INTERFACE
40-Key Keyboard
Remo te Sa nd se ts
Remote Keyboard
Wired Handsets

COINCIDENCE DETECTION
constructing Coincidence Tables for

D-1
D-1
D-1
D-2
D-2

E-1

Mapping = 0 E-2
Higher Mapping Values E-4

I / O INSTRUCTION

TEXT AND MULTI COLOR MODE

DEVICE I /O
Monitor Funct ions
System Init ialization
Power-Up Routines
Genera l Subroutines Provided

by the Mon i tor
Ex it
8i t Reversal
writing I / O Routines
Subroutine and nSR Calls
Interrupt Routines

CASSETTE DSR
Definition
Mode of Operation
Implementati on
Peripheral Access Block (PAB)

Definiti on
I /O Opcodes

Open
Close
Read
We i te
Res tore/ Re '''' i nd
Lo ad
Save
De Ie te
Scratch Record

Ve r i fy
Error Codes

Bad Device Name
Illegal Operation
Device Er ror

Issuing t he Command to the Cassette DSR
Audio Gate
Motor Control

F-1

G-1

8-1
B-1
H-1
B-3

H- 5
H-4
B- 5
H-6
B-6
B-7

1-1
1-1
1-2
1-2

1-2
1- 7
1- 8
1- 8
1- 8
1-9
1-9
1-9
1-10
1-10
1-10
1-10
1-11
1- 11
1- 11
1- 11
1-11
1-12
1-13

)

)

Appendix J

Append!x K

Appendix L

Append ix M

Glossary

TABLE OF CONTENTS
Page 5

LIST OF INSTRDCTIONS
Alphabetic
Instruction Map

FLOATING POINT OPERATIONS
CNS - Convert Number to String
INT - Greatest Integer Function
PWR - Involution Routine
SQR - Square Root Rou t i 'ne
EXP - Exponential Routine
LOG - Natural Logarithm Routine
COS - Cosine Routine
SIN - Sine Routine
TAN - Tangent Routine
ATN - Arctangent Routine
CSN - Convert String to Number
CFr - Convert Floating Point to Integer
FADD - Floating Point Addition
FSUB - Floating Point Subtraction
FMUL - Floating Point Multiplicatio n
FDIV - Floating Point Divide
FCOMP - Floating Point Compare
SADD - Value Stack Addition
SSUB - Value Stack Subtraction
SMUL - Value Stack Multiplication
SDIV - Value Stack Division
SCaMP - Value Stack Compare
RADIX 100 - Internal Format

9900 ASSEMBLY LANGUAGE

PROGRAMMER/ PLANNER STANDARDS
Purpose
Screen Processing and Function Key

Usage
Screen Formats
Menus, Submenus
Prompts
Multi-Lingual Planning

Alphabetical Index

J-1
J-1
J-4

K-1
K-2
K-3
K-4
K-S
K-S
K-6
K-7
K-8
K-8
K-9
K-10
K-10
K-ll
K-ll
K-12
K-12
K-13
K-13
K-14
K-14
K-1S
K-1S
K-16

L-1

M-l
M-l
M-2

M-8
M-8
M-9
M-ll

Figure/Table

2.1

2.1. A

2.2

2.3

3.1

3.2

3.3

3.4

3.4.A

3.5

4.5. 1

A.1

D.1

D. 1.A

D.2

D.2.A

D.3

E. l

E. 2

E .3

E. 4

G. 1

LIST OF FIGURES AND TABLES

Oescr iption

Color Nybble Assignments

Best Color Combinations

CPU RAM Memo ry Map

VDP RAM Memo ry Map

Syntax for GS, GD

Formats of Instructions

Default Character Set

VDP Registers

Command Register Values

Status Block

XML Table

Macr o Expansions

Console Keyboard

Page

2-4

2-5

2-10,2-11

2-12

3-7

3-10,3-11

3-13

3 - 15

3-16

3-21

4-5 6

A-8,A-9,A- 10

D-4

Console Keybo ard Sex-Code Assignments D- S

Handheld Unit Keyboard D-6

Console Keybo ard Mapped as

Two Sandheld Units

Joy stick Codes

Coincid ence Testing

Coincidence Bi t Table

Manually Constructing a Bit Table

Magnification Zero Table

Mu l tic olor Mode Scree n Format

D- 7

D-8

E- 6

E- 6

E- 7

E-8

G-5

)

B. l

B.2

1.1

1.2

J . 2

M.l

M.2

M. 3

M.4

M. S

LIST OF FIGURES AND TABLES

Page 2

GROH Header

Program Header

PAB Layout

I / O Ope odes

Instruction Map

Function Key Swruna ry

CPU-RAM CHart

Sprite Table

Title

Screen Display

B-2

B-2

1-6

1-7

J-4

M-8

M-14

M-1S

M-16

M-17

1.0 GRAPHICS PROGRAMMING LANGUAGE

The system software resident in the product consists o f a

monitor and a GPL (Graphics Programming Language) processor. It

is the function of the monitor to insure that every time the

system is turned on, a new cartridge is inserted, or an existing

prog ram terminates, that al l memory and periphera l devices are

initialized. The GPL processor is an interpreter optimized to

execute GPL programs directly out of GROM . The GPL processor

software is coded in TMS 9900 assembly language.

1.1 OVERVIEW

GPL is a programming language specially developed by Texas

Instruments to provide the best possible tradeoff of c ode compac

tion, e xecu t ion speed, and ease of program development f or the

target computer s ystem. The GPL instruction set facilitates

development of programs which make use of the unique features of

the system chip set. It is byte oriented , and instruct ion s

typically have one or two operands. The addressing scheme is such

that most instructions can access either standard

microprocess or RAM, GROM, or the vide o scratchpad RAM address

space eas i 1y.

Most instructi o n operands can be either single or double byte

values. The addressing modes are : immediate, direct, indirect,

indexed. indexed indirect (with pre-indexing) , and 't o p of

stack'. Source operands and desti na tion addresses can be in the

CPU, video RAM, or in GROM. Support for t\ol O stacks is

available; a data stack and a subroutine ret ur n address stac k

(allowing arbitrary nest ing of subroutines) .

1 - 1

1.2 GPL INSTROCTION SYNOPSIS

GPL has the following types of instructions:

"DATA TRANSFER

"ARITHMETIC

"LOGICAL

"CONDITION TESTS

"BRANCHING

"BIT MANIPULATION

"SUBROUTINING

'STACK OPERATIONS

"MISCELLANEOUS

1.3 GPL TIMING

-single or double byte transfers:

-block to block transfers

-formatted block transfers

-add, subtract, multiply, divide,

negate, absolute value

-and, or ,exclusive or, shifting

-arithmetic and logical tests

-unconditional and conditional

-set, reset, and test

-call, return, parameter fetching

-push and pop

-random number generat ion, key-

board scan, coincidence detection

pattern movement, sound control ,

TMS 9900 subroutine linking, I / O

The GPL interpreter contains an interrupt driven serv ic e

r outine which is tied to the video scan. Video symbols may be

moved about the screen automatically; also sounds may be

generated from a sequence table.

These are of the ftset it and forget itft type of

instruct ions which free up the control program to do concurrent

decision and computational ope rations . The interrupt also

controls a software real t ime clock.

1-2

Each system will have a clock byte reserved in the console ROM at

location >OOOC to indicate the clock rate for that system.

Peripherals may read this byte to adjust their timing interface

to the CPU's clock combinations in different consoles. The high

nybble contains the integer frequency in megahertz and the low

nybble, the fractional frequency.

1.4 GPL ASSEMBLER

The assembler for GPL (GPLASM) is written in a mixture of

FORTRAN and assembly language and is currently available for

installation on 990 / 10 DS minicomputers. The assembler provides

standard features such as creation of a list file, cross

reference tables, and error flagging. A set of macros is included

to help structure GPL programs; these include statements such as:

REPEAT ... UNTIL and IF •.. THEN ... ELSE. The output o f the

assembler is a 990 object module.

1.5 SOFTWARE MONITOR RECONFIGURATION

The monitor code is executed whenever a system restart is

required. The system parameters and control values are

initialized to default values. A default character set is loaded

into the video pattern generator, making it immediately available

to GPL programs. This pattern set consists of 64 ASCII

characters, including the upper-case alphabet, digits, arithmetic

symbols, and punctuation symbols.

The monitor is also resp o nsible for determ i n ing t he

existing system configuration. The power-up monit o r must pol l

1-3

)

add-on I/O peripherals and the 'SOLID STATE SOFTWARE CARTRIDGE'

to determine which program to execute.

The Borne Computer system has been designed to be flexible

and expandable. Each plug-in ROM or GROM may contain power-up

procedures. These power-up procedures will all be executed

allowing for expansion of the power-up routines. A power-up

routine may also be replaced by another.

1.6 FOREIGN LANGUAGE SCREENS

GPL code has been included in GROM 0 to allow a plug-in

GROM. to "translate" the main screen, the menu screen, and the

cassette DSR messages to alternate languages. The main screen

and the menu screen are "translated" after the screen has been

formatted in English but while the screen is turned off (only the

backgound color is visible on the screen) . At this time, the

plug-in GROM is checked for a negative versi o n number (byte 1 of

the GROM) . When a negative version number is encountered, a

routine is called at >6010 for the main screen 006013 for the

menu screen. These locations should contain unconditional

branches to the routines in the plug-in GROM that will rewrite

the screen in the desired language. These routines may use all

of the usual CPU RAM locations (>0 through >6F) and the full

facilities of the Monitor and Interpreter. The routines should

end with a RTN instruction .

1.7 APPLICABLE DOCUMENTS

• System Monitor Specification

1-4

•

•
•
•
•

TMS 9918 Video Display Processor Specification

TMS 9919 Sound Generation Controller

TMS 9900 Microprocessor Specification

File Management Specification

Borne Computer System Memory, CRU, and Interrupt Mapping

Specification

1 - 5

)

J

J

2.0 SUMMARY OF SYSTEM ORGANIZATION

The system, as supponed by the interpreter, consists ora 9900 microprocessor with the following

peripheral devices tied to it

*A Sound Generat ion Control ler Chip

*A Video Display Processor Chip

·One or more GROM devices

• At least one type of keypad entry device

The sound chip interface is discussed in Appendi x C. The GROM is described in System

Memory Organization below. The following is a quick summary of the VDP organization. For

more detailed information on any orthe system hardware, refer to the appropriate document.

2.1 VDP ORGANIZATION

The VDP RAM contents determine what will appear on the screen. They contain several sub

blocks, each of which is described below. The base address of each sub-block is detennined by

the contents of the VDP control regi sters. Also shown are the most commonly used va lues for

these registers. These values keep all the sub-blocks within the first 4K bytes of VOP RAM, and

insure that none of the sub-blocks overlap each other.

2. 1.l PATTERNS

The active area of the screen is divided into a grid of 192 pixals

(vertica l) by 256 pixels (horizontal). These pixels are then clustered into

2- 1

)

8 x 8 pixel groups called Patterns. Thus there are 24 x 32

pattern positions on the screen in the normal mode.

There are three sub-blocks of VDP RAM associated with

displaying patterns on the screen:

• Pattern Name Table (76 8 bytes)- Each byte corresponds to

a pattern position on the screen, and its value is the ,

pattern number (0 thru 255) displayed at that location .

• Pattern Generator Sets (8 * 256 = 2048 bytes)- Each block

of 8 bytes in the Pattern Generator Set defines a pattern

(8 x 8 pi xels); the first 8 bytes correspond to pattern

number 0 (as called out in the Pattern Name Table), t he

last 8 to pattern number 255. No te that a pattern is not

displayed on the screen until an entry i n the Pattern Name

Table calls for it. Als o , a pattern can be disp l ayed in

multiple p ositions on the screen by setting several entr i es

in the Pattern Name Table t o the same pattern number .

• Pattern Color Table (32 bytes) - Each byte o f the Color

Table conta i ns in its left nybble a foreground color (l 's

in the pattern) and in its right nybble a background co lo r

(O's in the pattern) . The first byte describes c olo rs f or

pattern numbers 0 thru 7, the next for numbers 8 thru 15,

etc. See Table 2.1 (p age 2-4) for color nybble

assignments . Table 2.l.A (page 2-5) contains s ome o f the

best foreground / background combinations.

2-2

2.1.2. SPRITES

Sprites are objects that exist essentially in planes in

front of the pattern plane. These objects can be moved on a

pixel-by-pixel basis, providing for excellent animation capabi

lity. Up to 32 Spr i tes may be on the screen at any time; however,

no more than 4 on a given h o rizontal pixel line are allowed

(subsequent sprites on that line will not be displayed) . Three

sub-blocks of VDP RAM define the Sprites:

• Sprite Attribute Block (SAB) (4 • 32 = 128 bytes) - Each

4-byte entry in this block describes the positio n and color

of each Spr i te:

byte 1- y-position of Sprite (> FF is t op of

screen, i.e., vertical position is 1

p ixel less than desired starting posi

tion of sprite);

byte 2- x-position of Sprite (0 is left edge of

screen);

byte 3- pOinter to Sprite Descriptor Block

en t ry;

byte 4- ear ly clock and color nybble.

The pOinters to Sprite Descriptor Block entries,

.... hen the recormnended base addresses are chosen , range from

>80 to >FF if no Sprite motion is used and from >80 t o >EF

if Sprite motion is used (each pOinter points to a

succeeding 8 - by:e :,!ock in the S?rite Desc:-i;t or 3! o c "<: .

;'ihen ~::e .:. si"i::.es (32-oyte) are chosen, the pointer value

must be an even multiple of 4 (i .e. >80, >84, >88 .. etc.)

and point to a 32-byte block in t he Sprite Descriptor

Bl ock. 2- 3

TABLE 2.1

COLOR NYBBLE ASSIGNMENTS

NYBBLE VALUE (»

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

COLOR

Transparent
Black
Green 2
Green 1
Blue 2
Blue 1
Red 3
Cyan
Red 2
Red 1
Yello 2
Yellow 1
Green 3
Magenta
Gray
White

When there is more than one shade of the same color, the
lo est numbered color is the lightest and the highest numbered
color is the darkest (e .g. ; Green 1 is the lightest, Green 2 is
medium, and Green 3 is darkest.)

2-4

TABLE2.1.A

BEST COLOR COMBINATIONS

BEST

Black on Medium Green
Dark Green on Medium Green
Dark Blue on Light Green
Dark Green on Light Green
Black on Light Blue
Dark Blue on Light Blue
Black on Dark Red
Black on Cyan
Dark Blue on Cyan
Dark Green on Cyan
Black on Medium Red
Dark Red on Light Red
Magenta on Light Red
Dark Green on Dark Yellow
Dark Green on Light Yellow
Dark Red on Light Yellow
Medium Green on Light Yellow
Black on Dark Green
Black on Magenta
Dark Blue on Magenta
Black on Gray
Dark Blue on Gray
Dark Red on Gray
Dark Green on Gray
Medium Green on White
Dark Blue on White

THIRD BEST

Dark Red on Medium Red
Medium Red on Light Reden
Medium Green on Dark Yellow
Light Green on Light Yellow
Dark Blue on Light Yellow
Medium Red on Light Ye llow
Medium Green on Gray
Medium Red on Gray
Mag en ta on Gray
Slack on 'lih'::e
. !e -::"u .::J ::ell .:n ;i1 _ :~

~agen:a o n ~h :te

White on Dark Red

2-5

SECOND BEST

Light Blue on Light Green
Black on Dark Blue
Black on Light Red

, Dark Green on Light Red
Black on Dark Yell ow
Black on Light Green
Black on Light Yellow
Light Blue on Gray
Light Green on White
Light Blue on White
Dark Red o n White
Dark Green on White

FOURTH BEST

Light Green on Bl ack
Light Bl~e on B~ack
Dark Red on Black
Cyan on Black
Light Red on Black
Medium Red on Light Green
Dark Red on Light Green
Whi te on Light Blue
Magenta on Light Yellow
Cyan on White
Light Red on Wh ite
Gray on Wh ite

The MSB of byte 4 is set if you want the sprite to come in

or go off smoothly on the left side of the screen. If this

bit is not set, the sprite will come in or go off smoothly

on the right side of the screen. The right nybble of this

byte is the color nybble. A >00 in the first byte of a

4-byte block in the Sprite Attribute Block will tell the

system to disregard all following data in the Sprite ,

Attribute Block. The >00 indicates t o the system that the

preceding 4-byte block is the last sprite to be displayed

on the screen .

• Sprite Descriptor Block (SOB) (3 2*32 = 1024 bytes if no

sprite motion is used; 32*28 = 896 bytes if sprite moti on

is used since the Sprite Velocity Block begins at >780) .

The SOB is similar to the Pattern Generator Set area, each

block of 8 byt es describes an 8 x 8 pixeled Sprite;

alternately, each block of 32 bytes may describe a 16 x 16

pixel Sprite (.... hen the size bit is set to a 1 in the VDP

Command Register 1). When the size bit is set and 4

characters (3 2 bytes) are used t o make the sprite, the

first 8 bytes are the upper left character, the next 8

bytes are the lower left character, the next 8 bytes are

the upper right character and the last 8 bytes are the

lower right character . For example, if the bytes in a

32-byte Sprite Descriptor Block area are numbered 0 through

2-6

31, this is how the characters would be displayed in a

sprite:

bytes 0-7 bytes 16-23

bytes 8-15 bytes 24-31

When the magnification bit in the VDP Command Register (1)

is set, all sprites double their size, but keep the same

pixel dimensions (8x8 or l6xl6) . Each pixel doubles its

size. This expansion of size is to the right and down.

Therefore, an unmagnified sprite on the screen will keep

the same upper left c o rner position when the magnificat ion

bit is set .

• Sprite Velocity Block (SVB) (4*32 = 128 bytes) -Each

4-byte entry in this block assigns motion to the

corresponding 4-byte entry in the Sprite Attribute Block:

byte 1 - y-velocity of Sprite (positive

number means down, negative

number means up)

byte 2- x-velocity of Sprite f90si ~i v e

numb~r means :~ght, nega:i~e

number means left)

2-7

)

)

bytes 3 and 4- reserved for system use

(must be initialized to zero).

A velocity can range from 0 to >7F in the positive direc

tion and from >FF to >80 in the negative direction. See

Appendix B for more information on Automatic Sprite Motion.

2.1.3 VDP TEXT MODE AND MULTICOLOR MODE

The VDP Text Mode and Multicolor Mode as described in the

VDP Specification are supported to the extent described in

Appendix G. The programmer may use Text, Multicolor and

normal mode in the same program if he chooses. The

programmer sh ould be aware, however, that a new mapping of

VDP RAM into a screen image is created f o r each mode.

2-8

2.2 SYSTEM MEMORY ORGANIZATION

There are three segments of memory associated with the

basic system:

• CPU RAM: 256 bytes of high speed Read/Write random access

memory (Figure 2.2, page 2-10, 2-11). To access CPU

RAM in Asssernbly Language, a bias of 8300 is added to

the address.

• VDP RAM: 4K, 8K or 16K of Read / Write random access

memory (Figure 2.3, page 2-12); as discussed earlier,

this memory is segmented into sUbbloc'ks whose data map

into a screen image; whatever memory is left over is

available for GPL programming use.

• GROM: Increments of 6K bytes located at 8K-hyte boundar

ies; this is special, medium speed, ROM; i t typically

contains GPL programs and data.

Certain areas of the t hr ee segments are dedicated for

special use by the VDP hardware or the interpreter software. See

Figure 2.2 (page 2-10, 2-11) for CPU RAM segments dedicated t o

the interpreter. See Figure 2.3 (p age 2-12) for VDP RAM dedicated

f o r use by the VDP chip (no te the base addresses of the

sub-bl ocks assume that the recommended values are loaded in the

VDP Registers). Also shown in Figure 2.3 (page 2-12) is a

sub-b lock that is used by the Interpreter software for

auto-motion of sprites. If auto-motion is not to be used in a

GPL ?rogr~m. t hi s memory space is freed up for ot.he~ use. See

A?pendi~ 3 for decails on Au:o-Sprice ~o~~on. GROMs have a

format pr o tocol which they must adhere to in order t o maintain

system compatibility. See the System Monitor Specification for

details. 2- 9

mrIMAL HEX

0 0

16 >10

32 >20

48 >30

64 >40

80 >50

96 >60

112 >70

)

128 >80

144 >90

160 >AO

176 >50

192 >CO

208 >00

224 >EO

:40 > FO

P'IQJRE 2.2

,

STA'lUS =

FREE

INTERRlJPl'
~PFa:

2-10

'" >4A thru>6D will be
destroyed when using
peripherals

T
Default s ubr. stack

TCefault Data Stack

Rl3 address of Q04 wr i te address
Rl4 Systen flags

Sourd tiner in MSBy. Flags for
1'01. Interrupt flag. ard GRCM,IVDP
select for sound are in LSBy.

RlS address of VDP write address

FIGURE 2.2 (Cont.)

> CO: Rardon Seed
>C2- C9: Re!rote hardset debource
> CA: Console Keyboard debource
>0::: Soure list pointer
>CE: NLnber of sourrl bytes
> DO: search p:>inters for
> 02: GRCM arrl ReM searches
> D4: One byte - stores last VDP (1)
>06: Screen timeout counter
> 08: Save return add ress for scan

routine
> CA.: Save player rumber in scan

routine

Rl3 .. Rl5: Return linkage for interrupts

2-11

DB:IMAL III!X
0 >000

256 >100

512 >200

768 >300

896 >380
1024 >400

1280 >500

0

1536 >600

1792 >700

1920 >780
2048 > 800

2304 >900

2560 >AOO

2816 >BOO

3072 > COO

3328 >000

3584 >EOO

:840 > <"00

4096 >1000

FIGURE 203
VDP !WI MEHlRY M1\P •

PA'I'I'mI
NA'!E

TABLE (768 byte)

SPRITE ATffiI IIlI'E
LIsr (128°bytes)

(

rnEE (96 bvtes)

SPRITE
DES:::lUProR

BLOCKS

(lK)

«

PATl'EFN

GENERA'I1:R

AREA

(2K)

2-12

PATl'EFN OJLCR =
(32 bytes)

SPRITE VELO:ITY 'Il\llLE
(128 bytes)

*AsSunE!S stardard values in VDP
registers.

3.0 GPL INSTRUCTIONS

The Graphics Programming Language is similar t o an Assemb l y

Language in many respects. Commands are followed by operands

which specify addresses and immediate values. The completed

program is run through an assembler which generates, for each

instruction, the opcode followed by an encoding of the operands.

Many instructions can operate on single or double byte values. In ,

the instruction descriptions of Section 4, this is indicated by a

"D" prefix on the mnemonic; for example, the single-byte to

single-byte "add" instruction is an ADD, hile the

double-to-double-byte add is a DADO.

The extent of graphics support is through the following:

• Almost all instructions can mod i £y locat ions in VDP RAM

easily; t his can cause a change in the screen image;

• Locations in the Pattern Name Table can be addressed by

specifying an X pointer and a Y pointer:

• Special instructions allow the reading and writing of

large blocks of VDP RAM quickly;

• Automatic motion of Sprites can be initiated; after

enabling auto-motion with a GPt instruction, motion of

sprites is automatically controlled until stopped by

another GPL command.

GPL instructions fall into severa l classes:

• Data Transfer

• Arithmetic

• :'og ic 3.:"

• Condition Tests

3-1

)

)

• Bra.nching

• Bit Manipulation

• Subroutining

• Stack Operations

• Miscellaneous

3.1 ADDRESSING MEMORY

The addressing modes of most instructions allow operands to

reside ",nywhere in VDP RAM or CPU RAM. This is called "Global

Addressing". Each address above CPU locatio n >7F requires two

bytes to specify its address.

The next section is a description of all GPL instructions.

The mnemonics used f or specifying the operand t ypes required for

a given instruction are always of the following types:

GS (Global Source), GO (Gl obal Destination) , IMM (imm ed iate

value) , LABEL (GPL label). These are each described more fully

be low.

• 3.1.1. IMM

An immediate field can be a numeric c onstant in

decimal, hexadecimal or binary format. Depending upon

the context, values can be si ngl e or double byte values.

In DATA statements doub le-byte values must be preceded by

a pound sign (I). The I sign is optional for do uble-byte

values in branches, move statements , and double

instructions.

A symbol can be used in an IMM field if it is equated

to an immediate value using the assembler EQU directive

3- 2

(commonly used locations in CPU RAM and VDP RAM are often

assigned symbolic equates to improve program clarity). If

it is a label in the GPL program, it is a double-byte

value unless used in a single byte operation.

case the least significant byte Is used.

In th i s

To illustrate the possibilities:

'LOOP

FIVE EQU 5 (now the s'ymbol FIVE can be used

51

>33 or 033

&110011

wherever IMM is called fori)

•• decimal 51;

.• hexadecima133;

. . binary 110011i

.• (if LOOP is a label in the GPL program)

The ASCII equivalent of characters can also be used f or

IMM fields. The character(s) should be enclosed between

c olons; e.g.

:A: is equivalent to >41

:2A: is equivalent t o >3241

The FMT instruction, to be discusse d later, as well

as the assemble r directive DATA (in Appendi x A) can use

IMM fields of arbitrary length (e .g .• :ABCD1234:) . Instr

uctions that require double-byte IMM operands !legin with

a "D" (e.g . , DADD = Double Add) as opposed to instruct

ions that do not (e .g ., ADD = Add) . The instructions D

or DIV, DEC, and DECT require single-byte I~~ operands;

wh ile DD or DDtV, DDEC, and DDEr.T ~equ ir e d ouble-byte I~1

operands.

3- 3

• 3.1.2 GS (GLOBAL SOURCE)

Unless otherwise specified for a given instruction,

a Global Source operand can be an immediate value (i.e.

anything that fulfills requirements for IMM), or an

address with any combination of the following features in

effect:

1) Select CPU RAM or VDP RAM (select ROM i n a MOVE ,

statement only);

2) Select direct or indirect addressing;

3) Select indexing or not.

There are two special mnemonics that can be used

wherever GS is called for : pop and TOP. pop pops the top

value off the data stack and uses this data as an

operand. TOP uses the data pointed to by the data s tack

pointer, but it does not actually p op the data off the

stack. POP and TOP should not be used in double-byte

instructions. An example of the use of POP and TOP is :

ADD POP,TOP

This instruction is equivalent to the sequence:

ST *DATSTK,@TEMP

DEC @DATSTK

ADD @TEMP,*DATSTK

The ne xt section discusses the Data Stack more

fully .

• 3 .1.3 GO (GLOBAL DESTINATION)

Global Destination is exactly the same as G lo ba~

Source except that immediate values are not allowed.

3-4

• 3.1.4 LABEL

A LABEL field refers to a symbol which has been

used in front of a GPL instruction, or a symbol that has

been equated (using EQU) to an IMM. A LABEL always

generates a 2-byte immediate value (16 bits). LABEL

fields are called for in Branch instructions and

Subroutine call instructions. , A long branch (B)

instruction, a CALL subroutine instruction, and a GS or

GD of ROM ('LABEL) in a MO VE statement may use labels

contained anywhere in the program, but short branch

instructions (SR , S5, or $IF-GOTO) must use labels

contained in the same 6K GROM segment as the instructio n.

A special LABEL, "$", is used to represent the current

location; (e.g. "B $" will cause the GPL program to loop

forever) •

LABELs can have, in addition to the symb ol, an

expression of the fo rm {symbol)+IMM or {symbol) -IMM; f or

example,

BR tLAB1+3

or: BR LAB3-1

• 3.1.5 ADDRESSING MODES

Table 3 .1 (page 3-7) shows the formats f o r the

various mode combinations with an examp le . IMM specifies

a numeric constant. If an "at sign" (@) ?r~cedes ':i:1 !MM

value , i: specifies the contents stored at iocation r>lM

in CPU RAM.

3- 5

)

If a star (*) precedes an IMM value, it specifies

indirect addressing through location IMM in CPU RAM. For

example,

A

B

EQU

EQU

ST

ST

>02

>04

>60, @A

*A @B , ,

will take the data stored in CPU location >60 and store

it in CPU location >04.

A double byte value in CPU RAM can be used as an

index to a specified location. For example,

A EQO >02

B EQU >0 4

INDEX EQU >06

DST >OOOA, @INDEX

ST @A(INDEX) , @B

will store the contents of CPU location > OC in CPU > 04.

You would obtain the same results with:

ST @A (>06) ,@B

Notice that indexing takes the double-byte contents

located at the CPO RAM address in parentheses and adds

that parentheses and adds the double-byte value stored in

value to the CPU RAM address in front of the parentheses.

You do not use the @ sign with the index variable. In

the case of VDP RAM indexing, the inner parentheses

contain the index value .

3-6

C
P
U

R
A
M

V
D
P

R
, A

M

I

G
R
0
M

JM!

@ lIM!.
• IM>!l
@ IM>!l (11oM2)
*IIMl(IMM2)
CB, XPI', YPI'

AAM (UoMl)
AAM@IM>!l)
AAM (lloM3 (I1oM2))
!WI) @IIMl (IM-!2)

DISPLAY (X=I/ofoI,
y.JM!

=(I1+1)
Tl\BLE (lMM)
SPRITE (IMM)
FIGURE (IM1)
VEL (IMM)

VDP(IMM)

Tl\BLE 3.1
SYNTAX FOR GS, GD

la te value for GS only
• indicates 2 bytes iII1nediate value

Direc t to CPU RA'1
Irrlirect to am thru cru RAM
Direct indexed by and to CPU AAM,
In:Hrect in::3exed by, thru & to em RAM
Direct to CRT RA'1 at >70, >7E, >7F

respectively

Direct to VDP RAM
Irrlirect to VR1>M thru cru RAM
Di rec t 'iRIl'I indexed by CPU AAM
Indirect to \/RAM. thru & irrlexed by
CPU AAM

Pattern name table *

Pattern generator L'« = 00 to FF
Pattern color table L'M = 00 to IF
StRITE attr ibute list IMM • 00 t o IF
SPRITE descriptor block LMM = 00 to SF
SF!UTE velocity table rn4 .., 00 to IF

VDP register in VDP chip register

.EXNo!PLE

t [Alll, 21

@IOC, @ 30
*LOC, • 31
@LOCl (I0C2)
IOCl (I0C2)
XPr, CB, YPI'

AAM(LOCl) ,AAM (300)
!WI(@IOCl)
AAM (LOCl (I0C2))
!WI (@IOC (I0C2 II

All di.rect
to

Vl\aI

,

\'DP(7)
GS in HJ\1E statement only IM1 = 00, to 07 '

I

GS in MJVE statenent only I
IRCM (tDATAl) OCM(Ut13) Direct to ~

RCM (@IMM2) Irdirect to GRCM thru cru AAM !ReM(@IOCl)
ReM (lloM3 (IW>12)) DIrect to GIn! indexed by CPU FA'! ;RCM (,DATAl (LOCl))

I ,

IM>!l - 1 byte CPU FA'! adress expardable to 6SK.
2 bytes accepted byut need to be one byte to address to CRJ R/l:1.

!JoM2 1 byte cru RA'1 address. If 2 byte value is used, the f irst byte
is ignored.

DM3 - 2 by t~5 "lRA'of or GRO·1 DDRESS.

* - AsstJTIe5 re:cmneoced base address

3-7

I ,

I

I

El[PLl\NATI(NS FOR '!BE EXJloIIU:s

@= (I0C2) 2 byte <''"tent at IOC2 In CIU IWI will be a:lded to = and then addressed to CIU IWI.

*= (I0C2) 2 byte content at IOC2 In CIU IWI will be a:lded to
LOCI. and addressed thru that address In CIU IWI to
CIU IWI.

RAM (LOCl (LOC2» 2 byte content at LOC2 in CPO RAM will be
added to 2 byte VDP RAM address LOCI and then
_ressed to VDP IWI.

RAM (@LOCI.(I0C2» 2 byte content at LOC2 in CPO RAM will be
added to the content of c:ru- RAM at LCX:l and then
addressed to CPO RAM to obtain 2 byte VDP RAM
address.

RCM (LOC1(LOC2» 2 byte content of LOC2 at CPO RAM will be
added to 2 byte GRa-1 adjress LOCl then addressed
to GROt.

3-8

3.2 FORMAT TYPES

In the next section you will see that instructions

get assembled into several different variations of

formats. Each instruction has a "format type" number.

Table 3.2 (page 3-9) shows all the possible formats,

listed by format type. Also shown is the op-code range

for each of the format types. The XiS in the formats

represent bits that may be turned on or off according to

the ope ode for the instruction. Each letter in the

format other than X is described on page 3-10 along with

the five forms of GS and GO.

3- 9

FCRIAT THE

1

2

3

4

)

5

6

7

8

TABLE 3.2

FCRIAT

bit f 7 6 5 4 3 210

I
1 IxlxlxlXIXISI!2

GO
GS

bit f 76543210

bit f 76543210

bit t 76543210

bit t 76543210

I olololx lxlx lXlx

bit t 76543210

I 11010lxlx lx XID
GS

bit t 76543210

QIQIQIOl1101010
FOlMAT OOOES

bit t 76543210

bit t 7 6 5 4 3 2 1 0

I : r I I I I
O J 13 'V 1C '! 'N

Ll'NG1H
GO
GS

3-10

OP OOOES

AX, BK, at
ox ,EX

ax,
lX

OX,lX

4X,5X,6X, n

I ax,lX

I
8x,9X

08

F6

::L :x

o •

S =

"10 = SINGLE BYTE OPrnATICN
~ = lXXJBLE Bl'TE OPERATI CN

= GS I S lUI' IM-IIDIATE

TABLE 3.2
(Coot.)

= GS IS If.i.lWlATE (1 OR 2 BYTES DEFENDING CN 0)

001RVCIN

R' ¢O = GO is 1CM
1 = GO is not R01

V = Q~ =GO is rot a VDP register
=GO is a VDP register

C • Q~ = GS is rot RA.."
=GS is RA.."

I • ¢~ =GS is rot 101 addressed by au
=GS is Ra.i irilexed or addressed by a var iable

N = 0 = Number of bytes moved is rot .i.rmediate value
1 = Number o f bytes movoo is i.rmlediate va l ue

in em RJoM

GS, GO SAVES FOR-1S:

I

II

III

IV

V I
I

!

1 0 V I ADDRESS
ADORESS (CCNT' D)
INDEX

1 1 V I ADr:rus5
=s (CCNT' O)

10 VI 1111
AIJ[RE5S

ADDRESS

11 VI lill
ADrnESS
ADDRESS
INDEX

= 01= ADDRESSING '!O FIRSI' 128 BYTES OF cru RA'I;

V=l S=S VDP RAM; O~ RAM
1=1 SELEI:TS INDIREI:T; O=Drn=

LIKE ABJ\IE, EXCEl':' AN INDEX V1illJE IS ADDED '!O '!HE
AIJ[RE5S IN cru RA'I

LIKE II WI'lH
EXTENDED RANGE 0- 651<

LIKE ABJVE II I
E:!TENDID ADIRESS AND

3-11

INDEXED

3.3 RUNNING GPL PROGRAMS

The system Monitor performs the startup of a GPL program.

See the Monitor Speeification for details on power-up and restart

sequences. It will suffice here to know the state of all RAM and

Register locations upon beginning program execution.

• A >60 is written to the VDP Command Register, which

makes the Start bit a 1; this turns the TV screen to the ,

background color.

• A default character set has been loaded into Pattern

Generator Sets 4 thru 11, corresponding to ASCII symbols

>20 thru >5F; see Table 3.3. The Pattern Color Table is

initialized and all other locations are zero.

• Several locations in the "Status Block" in the CPU RAM

have been initialized to pre-defined values; these

locations are explained in Appendix H under System

Initialization.

The programmer has the responsibility of initializing the

values of the VDP Registers if default values are not to be used.

The values in Table 3.4 are the default values. For a system

without RAM expansion, these VOP block bases are suggested.

3-12

PATTERN i

>20 BLANK

"

i

>24 $

%

&

> 28

•
+

>2C

I

TABLE 3.3

DEFAULT CHARACTER SET

>30 0 >40

1

2

3

>34 4 > 44

5

6

7

>38 8 >48

9

>3C < >4C

=

>

?

3-13

@ >50 P

A G

B R

C S

D > 54 T

E U

F V

G W

H > 58 X

I Y

J Z

K [

L >5C \

M J
N ,\

0

)
VDP(l) is the command register. Bit 7 is set if there is a

16K chip in the system. This bit should always be reset by the

programmer. The interpreter will set the bit if there is 16K.

Bit 6 turns the screen on when set. Bit 5 is the interrupt enable

bit. The Bit 4 tells the VDP to use text mode when it is set

and Bit 3 tells the VDP multicolor mode when it is set. Bits 3

and 4 may not be set at the same time. Bits 1 and 0 tell the ,

system double-size and magnified sprites, respectively, when set.

Bit 2 must always be reset.

The value in VDP(2) can range from 0 to 15. The Pattern

Name Table will begin at location VDP (2) • 1024.

The value in VDP(3) can range from a to>FF. The Pattern

Color Table will begin at location VDP (3) * 64.

The value in VDP (4) can range from a - 7. The Pattern

Generator Table will begin at l ocat ion VDP(4) * >800.

The value in VDP(S) can range from 0 - >7F. The Sprite

Attribute List will begin at location VDP (S) * 128.

The value in VDP(6) can range from 0 - 7. The Sprite

Descriptor Block will begin at location (VDP (6) * >800) + >400.

The value in VDP(7) contains the only way of giving

foreground and background colors to Text mod e . The most

significant nybble is the foreground color, and the least

significant nybble is the background color and also the border

color in any mode.

The value of VDP (l) will probably be the reg i ster most

often changed in a program. Taole 3.4.A (page 3-15) lists s ome

of the most common values used in this command register and what

they represent.

3-14

1

2

3

4

5

6

TABLE 3.4

VDP RffiIsrrns

7 654 3 210

I
sr ~ TXT MOl 4K lZE1

16K nm I

1

I
I I I

I I
i

!NT BASE

I I i i , I
PA'ITERN CO[QR TABLE ' BASE

PAT GENi
BASE '

Ccmnand Reg.
bi ts turn on/off
4K or 16K, screen
on/off, interrupt
text mcde, M: mcde
Sprite size & mag

Multiple of 256
to start mT at

Multiple of 64 to
to start col. table

Multiple of > 800
to start pat. gen.

LIsr BASE Multiple of 128
jL--'>--~--...,..-..,..-----l to start SAL,

, SOB BASE Multiple of >800 , ,

jL--':'--"--"-..:.L-'---...,.--l then add> 400 to
start SOB

I
7 TEXT CO[QR Bl\Q(J)R)p COUlR Colors for text

1_-_"":'_-'--'----'---11 mode, backdrop
1- , color

3-15

>60-sets VDP for
4K memory, turns
screen on,enables
VDP interrupt,
puts VDP in oorm-
al pattern mode
with size 0, mag
a spri tes

a-puts Pattern
Name Table at o.

>OE-puts color
table at 380

>l-puts pattern
genera tor area

at>800

>06-pu ts Spri te
Attribute List
at > 300

O-puts Sprite
Descriptor
Blocks at> 400

>F7-make text
c olor white,
backdrop cyan

VALUE

>61

>62

>63

> 20

>70

>68

>69

>6A

>6B

TABLE 3.4.A

COMMAND REGI STER VALUES

MEANING

4K memory, screen on, interrupt on,
single-sized magnified sprites. ,

4K memory, screen on, interrupt on,
double-sized ~magnified sprites

4K memory, screen on, interrupt on,
double-sized magnified sprites.

4K memory screen off (viewer sees a
blank screen the color of the
border) •

4K memory, screen on, interrupt on,
text mode (40 x 24 character screen)

4K memory, screen on, interrupt on,
multicolor mode, single sized ~mag
nified sprites.

4K memory, screen on, interrupt on,
multicolor mode, single-sized magni
fied sprites.

4K memory , screen on, interrupt on,
multicolor mode, do uble-s ized unmag
nified sprites.

4K memory, screen on, interrupt on,
multicolor mode , double-sized magni
fied sprites.

3-16

The actual mechanics of writing and running a GPL program

are described in Appendix A. This describes the format of

instructions that the GPL assembler will accept.

The interpreter and the GPL program communicate with each

other through a dedicated location in CPU RAM, called the Status

Block. Table 3.5 (page 3-20) shows the fixed locat io ns of each

Status Block variable.

3.3.1 THE STATUS BLOCK

If any of the byte s in the Status Block are to be accessed

from a GPL program, it is recommended that the symbols in Table

3.5 (page 3-20) be equated t o the proper values as shown at the

beginning of the GPL pr ogram. The symbol can then be used as an

instruction operand.

The foll owing is a discussion of each of the Status Block

by tes:

• MAXMEM - Highest available VDP memory address. For a 4K

system this would be >OFFF .

• DATSTK- Stack pointer f o r data; initialized to >9F by the

Monitor , the pointer always points to the last value pushed

on t he data stack. The data stack is a pre-incremented,

byte-oriented stack, and grows to increasing values in CPU

RAo'-1. If the use r , ishes, he can change the ~ocation of the

stack I';y doii'lg an ST in~o DA'~S':'K (.:.g. ST >92,~DATS'!'K) .

PUSH and POP affect the pointer value , as we ll as the

ope r and POP.

3-17

)

)

)

• SUBSTK- Stack pointer for subroutine return addresses:

initialized to >7E by the Monitor, the pointer always

points to the last address pushed onto the stack. Addresses

are automatIcally pushed onto the stack by the CALL

instruction, and popped off by the RTN and RTNC

instructions . As ."ith DATSTK, the user can change the

default address of the stack. The user should be careful ,

."hen changing this stack pointer. SUBSTK should only be

initialized ."ith even numbers if it is changed. The MOVE

and SCAN instructi ons use one level of subroutine stack.

• KEYBOARD, KEY ,JOYY ,JOYX- These locations are used for

handset, joystick and keyboard interfaces. KEYBRD is the

keyboard number, KEY is the returned keycode, JOYY and JOYX

are the returned joystiCk parameters. See the SCAN

instruction description for more details. Also see

Appendix D. These values are initialized to 0 by the

Monit o r.

• RANDOM- This location is loaded with a random number when

the RAND instruction is executed. It is initialized to a

random number generated by the Monito r.

• TIMER- When the VDP Frame interrupt is enabled, this byte

gets incremented by one every 1/60 second. By clearing it

with a CLR and then using the loop

LOOP CEQ (delay),@TIMER

BR LOOP

3-18

a fixed delay in the GPL program can be implemented.

• MOTION- This location, when set to a non-zero value by the

programmer, represents the number of Sprites that are

i ncluded in auto-motion. Fo r e xample, if it contains a

two, Sprites 0 and 1 will be put into auto-moti o n . See

Appendix B for details on Sprite auto-motion.

• VDPSTT- This location is a copy o f the VDP Status register.

It is updated every frame interrupt (when frame interrupts

are disabled, VDPSTT is not updated) .

• STATUS- This byte automatically gets loaded with bits as a

result of many instructions. It contains bits represent i ng

equality, arithmetic greater than, logical greater than,

carry and overflow . See Section 3.4 for details.

• CB, YPT, XPT- The se bytes, in conjunction with one another,

provide a method f or writing information out t o the VOP

Pattern Name Table. When t h e CB location is used as a

source operand in an instruction , it is first l oaded wi th

the va lue of the Pattern Name Ta ble specified by XP7 and

YFT. This ass umes that the Pattern Name Ta ble base address

is 0 and the absolute VDP RAM address is calculated by

Th i s pr ovid es a conve nient ~e~hod for read i ng

informa ~ lon off o f ~ he screen . I! CB is ever f ound t o hav~

been modified by an instruction, the ne· ... value of CB is

3-19

,

)

written to the Pattern Name Table location specified by IPT

and YPT.

Some examples :"

DST t0302,YPT

ST CB,@TEMp· •• causes TEMP to get loaded with the

byte from l ocation XPT=2,YPT=3;

ST @CBRl, CB .. causes whatever is in CHRl to be

Mu 1 tic 0 lor

,

written to the screen at the

location corresponding to the

current values of XPT and

YPT.

mode uses YPT and XPT to do mappi ng

automatically in range YPT :!t 0 to 47, XPT = 0 to 63. CB,

XPT, and YPT are predefined symbols and can be used with or

without @ sign in front of them.

3- 20

TABLE 3.5

SfA'IUS BLOCl<

REXXMMENOED AOORESS ill illITIALIZED '10
SYMB)L CRJRAM (» B\' M:NI-rrn

MAXMEM 70, 71 MAXIMUM VDP
MEMJRY A!XRESS

DATSTI< 72 >9F

SUIETK 73 >7E

KEYBRD 74 0

= 75 0

JOYY 76 0

JOYX 77 0

AANDCM 78 0

TIMER 79 0

MJTICN 7A 0

VDPSM' 7B 0

srA'lUS 7C 0

CB 7D 0

YPI' 7E 0

XPI' 7F 0

3- 21

3.4 THE STATUS BYTE

Two bytes in the STATUS BLOCK are used to indicate the VDP

and program status. Five bits in the program status byte, called

STATUS, indicate the result of operations. The format of the

STATUS by te is:

I B / GT / COND I CARRY / OVF / o / o / o I

bit 7 6 5 4 3 2 1 o

The COND bit is most important, si nc e the BR (Branch on

Reset) and as (Branch on Set) instructions use this bit to decide

whether to branch or not. Many operations affect all the bits,

) especially single and double operand arithmetic / logical

instructions. Instructions have been provided which transfer one

of the other bits into the COND bit; t hi s makes it easy to

conditionally branch based on the results of an operation (See

instructions H, GT, CARRY, OVF) . Fo r example, to branch to the

LABEL ftBR l ft if the CARRY bit or the OVF bit is set, the fo l lowing

sequence can be used:

CARRY

BS ' BRl

o r $IF .CARRY. GOTO BR l

OVF

BS 4BRl

or $IF .OVF . GOTO BRl

3-22

In the instruction descriptions in the following section,

the STATUS bits affected for each instruction are shown boxed in.

Other STATUS bits are not affected at all. Note that s ome

instructions like the branches always reset the COND bit.

The format of the VDP status byte, called VDPSTT, is:

bit

The MSB is a frame interrupt bit. Bit 6 is the f ifth sprite

bit and is set any time there are f ive sprites o n a line. Bit 5

is a sprite coinci dence flag and is set any time there is spr i te

coincidence. The last five bits are used for the number of the

fifth sprite on a line .

3-23

)

4.0 INSTRUCTION DESCRIPTIONS

The following pages are a description of each Graphics

Language instruction.

All instruction descriptions tell how the status byte is

affected and give execution results. The symbol := represents

"takes the value of.ft Parentheses mean ·contents of", e.g.

·Compare (A) to 48" means "Compare the contents of variable A ,

to 48".

4-1

4.1 COMPARE AND TEST INSTRUCTIONS

4.1.1 TEST LOGICAL HIGH BIT

Syntax definition: H

Example: LABl H TEST THE LOGICAL HIGH BIT

Definition: Set/r eset condition bit to the logical high
status bit value

Status bits affected: I 8 I GT I cond I carry I OVF I

Execution results: COND:= H

H

Application notes: Use the R instruction to detect whether the
logical high status bit was set as a result
of the previ ous instruction as a prelude to
a condit iona l branch (BR or as)

Op Code: >09

Forma t Type: 5

For example:
8
BS LAB l
or $IF .8. GOTO LAB1

causes a Branch to LABEL "LABl" if t he
logical high bit has been set.

4-2

)

4.1.2 TEST ARITHMETIC GREATER THAN BIT GT

Syntax definition: GT

Example: LABl GT TEST THE ARITHMETIC GT BIT.

Definition: Set/reset condition bit
than status bit value.

to the arithmetic greater ,

Status bits affected: I H I GT I cond I carry I OVF/
I

Execution results: COND:= GT

Application notes: Use the GT instruction to detect whether
the Arithmetic greater than status bit was
set as a result of the previous instruction
as a prelude to a conditional branch (BR or BS)

Op Code: >OA

Forma t type: 5

4- 3

4.1 . 3 TEST CARRY BIT CA~RY

Synta x definition : CARRY

Example: LABl CARRY TEST THE CARRY BI T

Definition: Set/ reset condition bit to the carry status bit value

Status bits affected: I H I GT I c ond I carry I OVF I
i

Execution results : COND:= CARRY

Application notes: Use the CARRY instruction to detect whether
there was a carry out of the most significant
bit of a byte or word as a result o f the p re
vious instructi o n as a prelude t o a c ondi
tional branch (BR or BS)

Op Code: >OC

Forma t type 05

4- 4

)

)

4.1.4 TEST OVERFLOW BIT OVF

Syntax definition: OVF

Example: LAB1 OVF TEST THE OVERFLOW BI T

Definition: Set/reset condition bit to the overflow status
bit value.

Status bits affected: (B (GT (cond I carry I OVF (

Execution results:

Application no tes:

Op Code: >00

Format type: 05

CONO : = OVF

Use the OVF instruction to detect whether
an arithmetic overfloW' (the result is too
large or too small to be correctly
represented in two's complement representa
tion) has occurred as a pre l ude to a condi
tional branch (BR or BS) .

4- 5

4.1.5 COMPARE EQUAL

Syntax definition: CEQ
DCEQ

GS,GD
GS,GD

Example: LABl CEQ 48,@A

OR

LABl $IF @A .EQ. 48 THEN

COMPARE (A) TO 48 AND
SET CONDITION BIT
ON EQUAL

CEQ
OCEQ

Definition: Compare the GO t o the GS and set the condition
bit depending on the result.

Status bits affected: I H I GT I cond / carry I OVF/

?
Executio n results: (GO) = (GS) CONDo

CONDo
= set, if true
= reset, if fa lse

Application No tes: Use the CEQ instruction to compare t he GD t o
the GS and set the condition bit if they are
equal. This is used as a pre l ude to a condi
tional branch (BR or BS) . The effect on the
status bits is as if GS is subtracted fr om GO
and the result compared t o zer o .

Op Code: >04

Format type: 1

4-6

4.1.6 COMPARE LOGICAL BIGB

Syntax definition: CB
DCB

Example: LABl C8
or

GS,GD
GS,GO

@A,@B

LABl $IF @B .B. @A THEN

COMPARE (B) TO (A)

CH
DCH

AND IF (B) IS LOGICALLY
BIGBER THAN (A) SET THE
CONDITION BIT

Definition: Compare the GO t o the GS and set the condition bit
if the GO is l ogi cally higher than the GS

Status bits affected: I H I GT I cond 7 carry I OVF I
I

Execution results: COND:= (GO) B (GS)

Applicati on Notes:

Op Code: >C4

Format type : 1

Use the CH instruction to do the comparison
GD.B.GS and set the c ondition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS) .

/ 4-7

4.1.7 COMPARE LOGI CAL HIGH OR EQUAL

Syntax definition: CHE
DCBE

Example: LABl CHE

or

GS.GD
GS,GO

20.@VALUE

SIF @VALUE .HE. 20 THEN

CHE
DCHE

COMPARE (VALUE) TO 20
& SET CONDITION BIT IF
(VALUE) IS LOGICALLY
HIGHER THAN OR EQUAL TO 20

Definition: Compare the GD to the GS and set the condition bit
if the GO is logically higher than or equal t o
the GS

Status bit affected: (H (GT / c ond 7 carry I OVF (
I

Execution Result: COND :" (GD) HE (GS)

Application Notes: Use the CHE instruction t o do the comparis on
GO.HE . GS and set the c ondition bit if the
relation is t rue. Use as a prelude to a
conditional branch (BR or as)

Op Code: >C8

Fo rmat type: 1

4-8

}

4 . 1. 8 COMPARE GREATER THAN CGT

Syntax definition: CGT GS,GO
DCGT GS,GD

Example: LABEL CGT @A,NEW

OR

DCGT

COMPARE NEW TO (A) AND SET
CONDITION BIT IF NEW IS
GREATER THAN (A)

LABEL $IF @NEW . GT. @A THEN

Definition: Compare the GD to the GS and set the condition bit
if GO is greater than (arithmetically) the GS.

Status bits affected: I H I GT I c ond I carry I OVF I ,

?
Execution results: COND := (GO) GT (GS)

Application Notes: Use the CGT instruction to do the c omparison
GD.GT.GS and set the condition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS)

Op Code: > CC

Forma t type: 1

4-9

4.1.9 COMPARE GREATER THAN OR EQUAL

Syntax definition: CGE
DCGE

GS,GD
GS,GO

CGE
DCGE

Example: LABl CGE

or

82,@B COMPARE (B) TO 82 AND SET
CONDITION BIT IF (B) IS
GREATER THAN OR EQUAL TO 82

LABl $IF @B .GE . 82 THEN

Definition: Compare the GD to the GS and set the condition bit
if GO is greater than or equal to the GS

Status bits affected: I B / GT (cond 7 carry / OVF /
•

Execution results: COND := (GO) GE (GS)

Application Notes: Use the CGE instruction to do the comparison
GO GS and set the c onditi on bit if the
relation is true as a prelude t o a conditi onal
branch (BR or as)

Op Code: >00

Format type: 1

4-10

4.1.10 COMPARE LOGICAL

Syntax definition: CLOG
DCLOG

GS,GD
GS,GO

CLOG
DCLOG

Example: LABEL CLOG 86.@VALOE SET CONDITION IF RESULT
OF 86.AND.(VALUE)
IS ZERO

Definition: Perform the bit by bit logical AND operation between
GS and GD and set the COND bit if the result is O.

Status bits affected: I B I GT Z cond Z carry I OVF I

?
Executi on Results: COND:= (GS) AND (GO) = 0

Applicat ion Notes: Use the CLOG instruction t o set CONO

Op Code: > 08

Forma t type: 1

if GO and GS have no lis in same positions.

Use as a prelude to a conditional branch (BR
or BS)

4-11

4.1.11 COMPARE ZERO

Syntax definition: CZ GO
DCZ GO

ez
Dez

Example: LAB1 CZ @VALUE SET CONDITION BIT IF
(VALUE)IS EQUAL TO ZERO

Definition: Compare the GO to zero and set the condition bit
accord in91y.

Status bit affected: I H I GT I c o nd / carry / OW / ,

?
Execution Results: COND =: (GO) = 0

Applicatio n No tes: Use the CZ ins t ruction t o do t he c ompa ri s o n
GO = 0 and set the c o ndit i o n bit i f t h e
relation is true. Use as a prelude t o a
conditi onal branch CBR or BS)

Op Code: > 8E

Forma t type: 6

4-12

4.2 PROGRAM CONTROL INSTRUCTIONS BS

4.2.1 BRANCH ON SET

Syntax definition: BS LABEL

Example: LABEL BS HERE BRANCH TO ADDRESS OF HERE
IF CONDITION IS SET

Definition: Branch to address of the LABEL operand if the COND
bit is set. After branching the condition bit is
rese t.

Status bit affected: I R / GT / cond 7 carry / OVF /

Execution results: IF (COND.EQ.set) TIlEN (PC):' LABEL

Application Notes: Use the as instruction to branch to another
portion of the program depending on whether
the condition bit is set . For example if
the previous instruction was a SUB that re
sulted in a zero result; the instruction,

Op Code: >60

:or:nat : '! ':!e: ~

BS ZERO

program execution commencing at the
instruction at label "ZERO".
NOTE: The LABEL must reside in the same
6K GROM segment as the as instruction.

4-13

4.2.2 BRANCH ON RESET

Syntax definition: BR

Example: LABl BR HERE

LABEL

BRANCH TO ADDRESS "HERE" IF
CONDITION IS RESET

BR

Definition: Branch to address of the label operand if the
condition bit is reset. After execution the
condition bit is reset.

Status bits affected: I H I GT I cond I carry I OVF I ,

Execution results: IF (COND.EO.O) THEN (PC):= LABEL

Applicat ion notes: Use the BR instruc ticn to branch t o another
portion of the program depending on whether
the condition bit is reset. For example i f
the previous instruction was an ADD t hat
resulted in a non-zero result the instruct i on,

Op Code: >40

Format type: 4

BR NONZ

would result in the program commencing
at the instruction at "NONZ" in the program.
NOTE: The LABEL must reside in the" same 6K
GROM segment as the BR instruction.

4-14

)

)

4.2.3 BRANCH B

Syntax definition: B LABEL

Example: LABl B HERE BRANCH TO ADDRESS OF HERE

Definition: Branch absolutely to address of the label operand.
This branch is unconditi onai. The condition bit
is reset after execution.

Status bits affected: / H / GT / c o nd I carry / OVF /

Execution results: (PC): = LABEL

Application Notes: Use t he B instruction to unconditionally
transfer program control t o another por ti o n
of t he pr ogram. If t he label HERE is at
the address 08; the instruction,

Op Code: >05

Format type: 3

B HERE

will replace the PC with the value OB.
The condition bit will be reset.
NOTE: The B instruction should be used
to trans fer control between 6K GROM
segmen ts .

4-15

4.2.4 CASE CASE
DCASE

Syntax definition: CASE GO
DCASE GD

Example: LABl CASE @A GOTO NEXT INSTRUCTION FOR (A)
EQUAL TO ZERO, TWO MORE IF
(A) EQUAL TO ONE, ETC

Definition: Add two times the value of the operand to the current
GROM Program Counter. Resets condition bit in status.

Status bits affected: I B I GT I cond 7 carry I OVF I

Execution results: (PC):= 2 * (GD) +PC

Application Notes: The CASE instruction is typically followed by

. :;:: : .;ce: > 3,;

Format type: 6

a series of BR statements. Since the condit ion
bit resets after executing, the BR's are always
taken. (Th e BR is used because it is a two
byte instruction while B is a 3-byte instruc
tion). An examp l e of use of the CASE statement
is:

CASE @NMBR
BR LAB l
BR LAB2
BR LAB3

If the byte at locat ion NMBR is a 0, branch t o
LABl, if a I, branch to LAB2; if a 2, branch
to LAB3.
NOTE: All the labels have t o reside in t he
same 6K GROM segment as the (0) CASE inst ruc
t ion .

4-16

4.2.5 CALL SUBROUTINE CALL

Syntax definition: CALL LABEL

Example: LAB1 CALL HERE CALL THE SUBROUTINE STARTING
AT "mE ADDRESS OF THE LABEL HERE

Definition: Replace the PC with the address of the LABEL. Place
the old PC at the top of the call stack (pointer at
CPU RAM >73). Reset condition bit.

Status bits affected: I H I GT I cond I carry I OVF I
I

Execution results: (SBRSTK): -(SBRSTK)+2
((SBRSTK)) : '(PC)
(PC) : =LABEL

Application Notes: Use the CALL instruetion to enter a subr outine .

Op Code: > 06

Format type: 3

The following table may be used as a reference for determining
when it is more economical t o use a subroutine:

Instruction Set Length
(m) in bytes

3 or less

4

5

,
7

8+

Mi nimum Number of Times
Instruction Set is Used

6

4

-
3

2

4- 17

Bytes Saved
n z Times Used

n - 5

2n - 6

;:1. -

4n - 8

(m-3)n - (m+1)

4.2.6 FETCH FETCH

Syntax: FETCH GO

Examp l e: LAB1 FETCH @VAL1 FETCH 1ST PARAMETER

Definition: Retrieves a byte of data pointed to by the return
address on the subroutine stack and increments th is
return address by 1.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := (((SBRSTK)))
((SBRSTK)) : = ((SBRSTK)) + 1

Applications Note: Use the FETCH instruction to pass parameters
in line t o a subroutine For example in
this sequence,

CALL SUB
DATA 1,24

SUB FETCH @ARG1
FETCH @ARG2

The FETCH statement at SUB wi ll p lace a 1 in location ARG1 . The
next instruction will place a 24 in location ARG2. Upon returning
from the subroutine, execution commencences at instruction after
the 24. The FETCH instruction uses t o bytes of the subroutine
stack. The FETCH ins truct ion can only use CPU RAM as GO.

Op Code: >88

Format type: 6

4-18

)

4.2.7 RETURN FROM SUBROUTINE

Syntax definition: RTN

Example: LABl RTN RETURN WITH 0 TO CONDITION

Definition: Replaces PC with the value at the top of
routine stack (pointer at >73 in CPU RAM).
the condition bit.

Status bits affected: I H / GT / cond I carry / OVF /

Execution results: (PC) : = ((SBRSTK))
(SBRSTK):=(SBRSTK)-2
COND:=reset

RTN

the sub
Rese ts

Applications Notes: RTN is used to return from a subroutine call
when you don't care about saving the condition
bit value. By changing the value of the top
of the subroutine call stack (pOinted to by
CPU RAM location >73) , the return address
may be modified.

Op Code: >00

Format type: 5

4-19

4.2.8 RETURN FROM SUBROUTINE (SAVE CONDITION) RTNC

Syntax definition: RTNC

Example: LAB1 RTNC RETURN WITH NO EFFECT ON STATUS

Definition: Replaces PC with the value at the top of the
subroutine stack (pOinter at >73 in CPU RAM) .
Does not affect status.

Status bits affected: I H / GT I cond I carry I OVF /

Execution results: (PC):= ({SBRSTK »
(SBRSTK) := (S BRSTK) -2

Applications Notes: see RTN

Op Code: > 01

Forma t type: 5

4-20

4.3 BIT MANIPULATION INSTRUCTIONS
.

Individual bits of memory may be set, reset, or tested using

bit operations. The memory bits are numbered 76543210, with 0

being the least significant and 7 the most signif ican t bit. The

immediate oper"and that specifies bit number is truncated to 3

bits . The status byte is modified by these insructions.

These instructions are macro-instructions which the

assembler converts into equivalent GPL instructions.

4.3.1 RB GD,IMM :. AND IMM1,GD

Reset the bit in memory identified by the two operands. The COND

bit is set if the resulting destination byte is zero and rese t

otherwise. Note that an AND instruc ti on is generated by the

assembler.

4 .3.2 SB GD,IMM := OR IMM1,GD

Set the bit in memory identified by the two operands. The COND

bit is always reset. This instructio n is assembled as an OR

instruction.

4.3.3 TBR GD,IMM := CLOG IMM1,GD := SIF BIT (IMM) GO .EO. 0 THEN

Test the bit in memory identified by the two operands and set the

CONO bit if the tested bit is a zero. Otherwise reset the COND

bit . This instruction is assemb l ed into a CLOG statement.

4- 21

4.4 ARITHMETIC & LOGICAL INSTRUCTIONS

Arithmetic operations work on operands in two's complement

form and affect the status byte. The result of an add, subtract,

increment, or decrement instruction sets the COND bit if the

result is zero, the H bit if logical high, the GT bit if

arithmetic greater than, the OVF bit on overflow, and the CARRY

bit if a carry occurs from the most significant digit. The

divide instruction sets the OVF bit if the divisor is less than

or equal to . the first byte of the dividend. The compare

instructions compare the destination operand to the source

operand. For example, a CGT instruction sets the COND bit if the

destination is greater than the source .

The address fields of these instructions contain one or two

operands. In general the first is the source operand and the

second the destination. For example, in an add operation the

first operand is added t o the second and in a subtract oper ati on

the first is subtracted from the second.

4-22

4.4.1 ADD ADD OR A
DADD OR DA

Syntax definition : ADD
DADO

GS,GD
GS,GD

Example: LABl ADD 48,@X(ONE) ADD 48 TO (X) INDEXED
BY (ONE)

Definit ion : Replace GO with the sum of the GS and GO. Compare
the result t o zero and set/ reset status bits to
indicate this result

Status bits affected: I H I GT I cond I carry I OVF I
'I I I i

Execution resluts: (GO) := (GS) + {GD)

Application notes: ADD is used to ad d Twos c omplemen t integer.

Op Code: >AO

Format type: 1

For examp l e, if the address labeled TABLE
contains >FE and the address lab e led NO
contains a >Ol ~ the instruction

ADD @TABLE,@NO

would result in NO containing a FF and
TABLE remain ing unchanged. The logical
high bit would be set and the o ther b its
rese t.

4- 23

4.4.2 SUBTRACT

Syntax definition:

Example: LABl

SUB
OSUB

SUB

GS,GD
GS . GO

@A.@B

SUB OR S
DSUB OR DS

SUBTRACT (A) FROM (B)

Definition: Replace GO with the GO less the GS. Compare the
result to zero and set/reset status bits to indicate
this result.

Status bits affected : / H / GT / cond / carry / OVF /
• I I I I

Execution results: (G O) :. (GO) - (GS)

Application notes: Use the SUB instruction to subtract signed
integer values. For example, if the location
NEW contains a value of 6F and memor y
location OLD contains a value of -Ii the
instruction,

Op Code: >A4

Format type: 1

SUB @O LD.@NE.W

results in the contents of NEW changing t o
>70. The logical high, greater than stat us
bi ts set, the o thers reset.

4- 24

)

4.4.3 MULTIPLY MUL OR M
DMUL OR OM

Syntax definition: MUL
DMUL

GS,GO
GS,GD

Example: LIIBI MUL > 4,@1I MULTI PLY >4 TIMES (11)

Definition: Multiply the GO by the GS. In the single byte MUL,
both operands are single byte values but the result
is stored in a double byte l ocation at GO. The 8
most significant bits are stored in the GO. In the
double byte DMUL, both operands are d ouble byte
values and the result is a four byte value at GO.
No status bits are affected. The multiply is a n
unsigned type.

Status bits affected: I H / GT / c ond / carry / OVF /

Executi on results: MUL: (GD,GD+l) := (GS)* (GD)
DMUL (GD,GD+l,GD+2,GD+3) := (GS, GS·l) •

(GD, GD+l)

Application no tes: In the single MUL the GS & GO are a-bit
values. The result is a 16-bit value. In
the double DMUL , the GS and GO are 16-bit
values . The result is a 32-bit value. Fo r
example, if location A contains a > F3 and
locati on B contains a >82 , the instruction

-:p C.::lce: >Aa

Forma t type: 1

MUL @II,@B

would result in location A being unchanged &
location 8 containing >78 , and location (8+1)
containing >66. Status bits are unchanged.

4- 25

4.4.4 DIVIDE

Syntax definition: DIV
DDIV

GS,GO
GS,GO

DIV OR D
DDIV OR DD

Example: LABl DIV >08,@VALUE DIVIDE TWO BYTES STARTING AT
VALUE BY >08

Definition: Replace the GO with the quotient and remainder of GO
divided by GS. Compare the result to zero and set/
reset status bits to indicate the result.
The divide is of the signed type.

Status bits affected: ! H / GT ! cond / carry / OVF /

Executi on results:
OIV: (GD) := (GD,GD+l)/(GS) ,(GD+l) := remainder,
DDIV: (GD,GD+l): = (GD,GD+l,GD+2,GD+3)/(GS,GS+l),

(GD+2,GD+3) := remainder.

Application Note: If the DIV instruction is a sing l e byte
instruction, the single byte GS is divided
into the double byte GO and the quotient is
put in the GO. If the DOlV instruction is
used, the two byte GS is divided into t he f our
byte GO and the quotient is put into the t· ... o
bytes at GO; the remainder is placed in two
bytes at GD+2.

Op Code: >AC

Forma t type: 1

4- 26

4.4.5 INCREMENT BY ONE

Syntax definition: INC GD
DINC GO

Example: LABl INC @A INCREMENT (A) BY 1

INC
DINC

Definitio n: Replace the GO with the GO plus one. The result is
compared with zero and the status bits are set/reset
to indicate the result of this comparison.

Status bits affected: (8 7 GT Z cond / carry 7 OVF I ,

Execu tion results: (GD): = {GO)+l

Application notes: Use the INC instruction to count and index
byte arrays, add a value of one to an
addressable memory location, or set flags.
For example, if COUNT contains a zero, the
instruction

Op Code: >90

Format type: 6

places a >01
high, and
bits, while
status bits

INC @COUNT

in COUNT and sets
arithmetic greater
the condition, carry
are rese t.

4- 27

the logical
than status
and over flo·

4.4.6 INCREMENT BY TWO INCT
DINCT

Syntax definition: INCT GO
DINCT GO

Example: LABl INCT @A INCREMENT (A) BY 2

Definition: Replace the GO with the GO plus two. The result is
compared with zero and the status bits are set / reset
to indicate the result of this comparison.

Status bits affected: I B I GT I cond I carry I OVF I ,

Execut ion Results: (GO) := (GD) +2

Applicati on notes: Use the INCT instruction to count and index
double byte arrays and add a value of two to

Op Code: >94

Fo rrna t ty pe : 6

an addressab l e memory location . For example,
if TEMP contains the address >00 (i.e. points
to the first te mporary two byte locatio n in
CPU RAMi the instruction,

lNCT @TEMP

places a 0002 in TEMP (so that it now points
to the next two bytes of tempor ary byte CPU RA'1) .

4- 28

4.4.7 DECREMENT BY ONE DEC
DDEC

Syntax definition: DEC GO
DDEC GD

Example: LABI DEC @A DECR&~ENT (Al BY 1

Definition: Replace the GO with the GO minus one. The result is
compared with zero & the status bits are set / reset to
indicate the result of this comparison.

Status bits affected: 1HZ GT I cond 7 carry I OVF /

Execution results: (GO):= (GD)-l

) Application notes: Use the DEC instruction to subtract a value

Op Code: > 92

Forma t type: 6

of one from any addressable operand. The DEC
instruction is also useful in counting and
indexing byte arrays . For example, if COUNT
contains a value of 1, then

DEC @COUNT

results in a value of zero in location COUNT &
sets the condition and carry status bits while
resetting th~ logical high , arit hmetic greater
than, and overflow status bits.

4- 29

4.4.8 DECREMENT BY TWO

Syntax definition: DECT GO
DDECT GD

Example: LABl DECT @A DECREMENT (AI BY 2

DECT
DDECT

Definition: Replace the GO with the GO minus two. The result is
compared with zero and the status bits are set /reset
to indicate the result of this comparison.

Status bits affected: (H (GT (cond 7 carry (OVF (

Execution results: (GO): = (GD)-2

Application notes: The DECT instruction is useful in counting &

indexing two byte arrays. Also, use the OECT
instruction to subtract a value of two fr om
any addressable operand. For example, if
COLOR contains the value >OA the ins truct ion

Op Code: >96

Fo rmat type: 6

DECT @COLOR

would result in the value >08 being stored in
COLOR

4- 30

4.4.9 ABSOLOTE VALOE

Syntax definition: ABS GO

ABS
DABS

Example: LAB1 ABS @DX(INDEX) ABSOLUTE VALUE OF (DX)
INDEXED BY (INDEX)

Definition: Replace the GO with the absolute value of the GO.
Does not affect status bits.

Status bits affected: ! GT ! B ! cond I carry! OVF I

Execution results: (GO): = ABS (GO)

Application notes: Use the ABS instruction to take the absolute
value of an operand. For example if the
location >76 (joystick Y) contains -4 then

ABS @ 76

will result in a +4 at >76.

Op Code: >80

Format type: 6

4-31

4.4.10 NEGATE

Syntax definition: NEG GO
ONEG GO

Example: LABl ONEG @B NEGATE TWO BYTES AT B

,

NEG
DNEG

Definition: Replace the GO with its t o's complement value.
Does not affect status bits .

Status bits affected: / H / GT / cond I carry / OVF /

Execution results: (GO) := -(GO)

Applications notes: Use the NEG instruction to make the contents
of an addressable memory location its additive
inverse. For example if TEMP contains the
value of 1, the instruction,

Op Code: >82

Format type: 6

NEG @TEMP

would result in the value >FF being stored
in TEMP.

4- 32

)

4.4.11 INVERT

Syntax definition: INV
DINV

Example: LABl INV @A

GO
GO

INVERT (AI

LW
DINV

Definition! Replace the GD with its one 1's complement va lue,
Does not affect status bits.

Status bits affected: / GT / B / cond / carry / OVF /

Execution results: (GD I :" LOGICAL INVERSION (GO)

Applicat ion notes: Use the INV instruction t o complement an
operand . For example if location COUNT
contained a zero~ the instruction

INV @COUNT

will result in a >FF being stored in COUNT.

Op Code: >84

Forma t type : 6

4-33

4.4 . 12 LOGICAL AND AND
DA~D

Syntax definition: AND GS , GO
GS,GD DAND

Example: LAB1 AND >FO,@Y SET 4 LSB OF (Y) TO ZERO

Definition: Perform a bit-by-bit AND operation of the 8 (16)
bits in GS with the GO and store the result in the
GO. The result is compared to zero and the status
bits are set/reset to indicate the result.

Status bits affected: I H I GT I cond I carry I OVF I
I I ,

Execution results: (GO) := (GS) AND (GO)

Application notes: Use the AND instruction to perform a logical
AND operation between a GS and GO. The AND
operation is useful in masking out bits before
a comparison. If location X contains a >66
and location Y contains a >OF; the instruction

Op Code: >BO

Format type: 1

AND @Y,@X

would result in X containing a 06. The GT
and B status bits will be set and all other
status bits reset.

4-34

4.4.13 LOGICAL OR OR
DOR

Syntax definition: OR
DOR

GS,GD
GS,GO

Example: LABl DOR FFFE,@VALUE 'OR" THE DOUBLE BYTE
IMMEDIATE VALUE FFFE WITH
(VALUE)

Definition: Replace the GO with the GO ORld with the GS . Compare
the result to zero & set/r eset the status bits to
indicate this result.

Status Bits Affected: (H 1 GT 1 cond 1 carry 1 OVF 1
ii' I

Execution results: (GD) := (GS) OR (GD)

Application notes: Use the OR instruction to perform a logical OR
between the GS and GD. If location A contains

>F6 and location B contains a >68 the instruction

Op Code: >B4

Format type: 1

OR @A.@B

would result in location B chang i ng to >FE.
The logical high status bit will be set, the
rest will be reset.

4- 35

4.4.14 EXCLUSIVE OR XOR
DXOR

Syntax definition: XOR
OXOR

GS,GO
GS,GO

Example: LAB1
A

lOR >F8,@A "EXCLUSIVE OR" > F8 WITH (A)

Defini ticn: Excl usively
the result.
status bits

OR the GS and GO and replace the GO with
The result is compared to zero and the

are set/r eset to indicate the result.

Status bits affected: I H 7 GT 7 cond 7 carry 7 OVF I

Executi on results: (GO) :- (GS) XOR (GD)

Application notes: The exclusive OR is accomplished by comparing
the GO and GS on a bit-by-bit basis. If the
bits are both 0 or both 1, the GO is reset;
otherwise it is set. If location A contains
>88 and location B contains >87, the instruc
tion

Op Code: >B8

XOR @A,@B

would result in location B changing to >OF.
The logical high and greater than status
bits will be set, t he rest will be reset.

To reverse bits in a byte, do an XOR with a
number which has all bits set you want t o
reverse.

4- 36

)

4.4.15 CLEAR LOCATION

Syntax definition: CLR GO
DCLR GO

Example: LABl CLR @A STORE ZERO IN (Aj

CLR
DCLR

Definition: Replace the GO with a zero. 1 Does not affect status
bits.

Status bits affected: (H I GT I cond I carry I OVF I

Execution results: (GD):= 0

Applications notes: Use the CLR instruction to replace any
addressable memory location with a zero.

Op Code: >66

Format type: 6

4-37

4.4.16 STORE ST
DST

Syntax definition: ST
CST

GS,GO
GS,GO

Example: LABl ST @X,@TEMP STORE CONTENTS OF LOCATION X
IN LOCATION TEMP

Definition: Replace the GO with the GS. Status bits are not
affec ted.

Status bits affected: I H I GT I cond I carry I OVF I

Execution results: (GO):= (GS)

Application notes: Use the ST instruction to copy the contents
of any addressable memory location or an
immediate value into any addressa ble memory

Op Code: >BC

Format type: 1

location. For example, if location X
contains a>88; the instruction

ST @X,@TEMP

will result in both location X and TEMP con
taining a >88.

4- 38

)

J

4.4.17 EXCHANGE

Syntax definition: EX
OEX

GD,GD
GO,GD

Example: LAB1 EX @X,@Y

Definition: The contents of
the contents of
a re affected.

the
the

EX
DEX

EXCHANGE THE CONTENTS OF
LOCATIONS X • Y.

first operand is
second oper and .

exchanged
No sta tus

Status bits affected: I H I GT I cond I carry I OVF I

Execution results: (GO) (EXCHANGE WITH) (GO)

with
bits

Applicati on notes: Use the EX instruction to exchange the
co ntents of two locations in memory. For
example if location >380 in VDP RAM contains
a 03 and location >381 in VDP RAM contains
a 05 the instruction;

Op Code: >CO

Format type: 1

EX RAM(>380), RAM (>381)

would result in location>380 in VDP RAM
containing a 05 & location >381 in VDP
RAM containing a >03; thus swapping the
colors of pattern set to with pattern set ,1.

4- 39

4.4.18 PUSH ONTO DATA STACK

Syntax definition: PUSH GD

Example: LABl PUSH @NEWEST

PUSH

PUSH VALUE AT LOCATION
NEWEST ONTO DATA STACK

Definiti on: Increment the data stack pointer & push the one
byte operand onto it. (Opposite of instruction
POP). No status bits are affected.

Status bits affected: I B I GT (cond (carry I OVF /

Execut ion resu lts : (DATSTK) (DATSTK) + 1
((DATSTK)) := (GD)

Applicat ion no tes: Use PUSH instruction t o add t o data stack.
Opposite of POP.

Op Code: >8C

Format ty pe : 6

4- 40

4.4.19 pop OFP OP DATA STACK POP

Syntax definition: pop GD

Example: LABl pop @DAT pop top value off data
stack and into location OAT

Definition: Pop a byte off the data stack and load it into
GO, then decrement the value of the data stack
pointer

Status bits affected: / H / GT / cond / carry / OVF I

Execution results: (GD) := ((DATSTK))
(DATSTK) (DATSTK) - 1

Application notes: This is a macro instruction which the
assembler accepts. The pop instruction is
the opposite of the PUSH instruction. It
assembles in to:

ST *STATUS,GD

The interpreter traps this out to pop a
byte of data off the data stack and places
it into the GO, then decrements the data
stack pointer.

4-41

4.4.20 BLOCK MOVE MOVE

Syntax definition: MOVE GS l FROM GS2 TO GO

Example: MOVE 21 FROM ROM (,TABL) TO RAM (S OO)

Definition: Move the specified number of bytes from the source
to the destination.

Status bits affected: I B I GT ~ cond I carry I OVF I
(GO): =(GS) Ll
GO: =GOH
GS2: =GS2+1
GS1: =GSl -1
$IF GSl .GT: 0 GOTO Ll,

Ex ecut ion results: The requested number of by tes are transferred
from the Source to the destination.

Applicat ion notes: The MOVE instruction is useful wherever a
block of data must be mov ed from one
section of memory to ano ther. Note that
the byte count is IMM or CPU and a double
byte value.The Source and Destinat io n operands
can represent blocks in CPU RAM, VDP RAM, or
ROM. In addit ion , the f ollo i ng mnemonics
can be used:

Destination only: VDP (IMM) . . block of VDP Registers

Instead of using a LABEL f or GROM, an tMM
field 0-48K, o r a GS poin ting into CPU RAM
can be used (e.g. ROM (22), ROM (@CPULOC) .
Furthermore, an index can be used, as in the
norma l addressing mode (e .g . ROM (tAB (A » .
The VDP registers cannot be used as Sou rce,
since they a re write-only registers. The
MOVE instruction uses tw o bytes of the sub
routine stack.

Forma t t ype: 9

More
MOVE
MOVE

examples:
7 FROM ROM (2000) TO VDP(l)
@COUNT FROM @O to @100

.. loads
.. copy

4- 42

up registers
a block from

1 th ru
CPU to

7.
CPU

4 . 4.21 SHIFT LEFT LOGICAL SLL
DSLL

Syntax Definition:

Example: LABl

SLL
DSLL

SLL

GD, GS
GO, GS

@ VALUE,S SHIFT (VALUE) LEFT
LOGICAL 5 BITS

Definition: Shift the (GD) left for the (GS) number of bits.
Pill in the vacated bits with logical zeros. Status
is not affected.

Status bits affected: I H I GT / cond / carry / OVF /

Execution results: Shift the (GO) left for the (GS) number of
bits and fill in the vacated bit with zeros.

Application notes: Use the shift left logical to shift t he GO.

Op Code: >EO

Format type : 1

For example, i f VAL has >21 in it, the
instructio n

SLL @VAL, 2
results in the contents of VAL bec omi ng >84.
OSLL requires a 2-byte shift count.

4-43

4.4.22 SHIFT RIGHT ARITHMETIC SRA
DSRA

syntax definition:

Example: LABl SRA

SRA
DSRA

@A,@B

GO, GS
GO, GS

SHIFT (A) RIGHT ARITHMETIC BY
THE NUMBER OF BITS SPECIFIED
IN LOCATION B

Definition: Shift the (GO) right for the (GS) number of bits.
Fill in the vacated bits with the MSB of (G O) .
Status is not affacted.

Status bits affected: (H (GT I cond I carry / OVP/

Execution results: See definition

Application Notes; An example of an a rithmetic right shift is:

Op Code: >DC

Forma t type: 1

if location contains a >86; the instruction

SR @A,2

.... i ll resu lt in changing location A to be a
El. DSRA requires a 2-byte shift count.

4- 44

)

4.4.23 SHIFT RIGHT LOGICAL SRL
DSRL

Syntax definition:

Example: LABl SRL

SRL GO, GS
DSRL GO, GS

@VALUE,7 SHIFT (VALUE) RIGHT 7 BIT
POSITIONS

Definition : Shift the contents of the GD to the right for the
(GS) number of bits while filling in the vacated bit
positions with zeros. Status is not affected.

Status bits affected: I H I GT I cond I carry I OVF I

Execution results: See definition

Applicati on notes: An example of a logical right shift is: If

Op Code: >E4

Forma t type: 1

the double byte location A contains the value
>FFEF, then the instruction,

DSRL @A.3

changes the contents of location A to >lFFD.
DSRL requires a 2-byte shift . count.

4-45

4.4.24 SHIFT RIGHT CIRCULAR SRC
DSRC

Syntax definition:

Example: LABl SRC

SRC
DSRC

@A,@B

GO, GS
GO, GS

SRIFT (A) RIGHT CIRCULAR BY
THE NUMBER OF BITS SPECIFIED
IN LOCATION B.

Definition: Shift the (GD) to the right for number of bits
specified in the GS while filling vacated bit
positions with the bit shifted out (LSB). Status
bits are not affected.

Status bits affected: I H I GT I cond I carry I OVF /

Execution results: See definition

Application notes:

Op Code : >E8

Format type: 1

An example of a =ight circular
locati o n VALUE contains
instruction

SRC @VALUE, 1

shift is, if
a >A 5, the

will result in location VALUE containing a
02. OSRe requires a 2-byte s hift count

4- 46

)

4.5 GRAPHICS AND MISCELLANEOUS INSTRUCTIONS COINC

4.5.1 COINCIDENCE

Syntax definition: LAB 1 COINC GS, GO

Example: COINC RAM (>300),RAM(>304)

Definition: The Source operand must indicate a Y,X byte pair for
object 1; likewise, the Destination operand
indicates the Y,X byte pair for object 2: COINe sets
the status equal bit if the objects are in
coincidence: otherwise it resets the status equal
bit.

Status bits affected:

Execution results:

Application notes:

Op Code : >ED

Format type: 1

H I GT I cond I carry I OVE I

COND = (obj ects in coincidence?)

See Append ix E f o r details on operation
of the COINC INSTRUCTION .

4-47

4.5.2 LOAD BACKDROP COLOR BACK

Syntax definition: BACK IMM

Example: LABl BACK 3 LOAD BORDER WITH COLOR 3

Definition: Load the border area of the display with the
immediate color specified. Does not affect status
bits. Loads VDP register 7.

Status bits affected: I H I GT I cond I carry I OVF I

Execution results: (VDP reg.7) := IMM

Application notes: Use the BACK instruction to change the VDP
register 7 to change the bo rder c o lor of the
display to the desired color.

Op Code: >04

Format type: 2

4- 48

4.5.3 LOAD SCREEN ALL

Syntax definition: ALL IMM

Example: LABl ALL 0 LOAD EVERY BLOCK ON SCREEN WITH
PATTERN ,0 (RESIDES AT>0800 ->0807
IN VDP RAM)

Definition: Replace every byte in the pattern name table
(768 bytes) with the immediate operand. No status
bits are affected.

Status bits affected: I B I GT I cond I carry I OVP I

Execution results: ST IMM,RAM {O)
HOVE 767 from RAM (O) to RAM (l)

Application notes: Use the ALL instruction to display a

Op Code: >07

Format type: 2

repetitive pattern on the entire screen.
This can be used to clear the screen.
Assuming >900 to >907 (Pattern number >20)
contains OO's (which they will at power up from
the ASCII default character set); the instruction

ALL >20

will result in the the sceen getting filled
up with ASCII blanks. No status bits a re
affected.

4-49

4.5.4 FORMATTED BLOCK MOVE FMT

Syntax definition: FMT OPERANDl,OPERAND2.0PERAND3 • • ..

Example: FMT BIAS=>20,4('O,2,4,6')

Oefinition: Output immediate and variable data to the Pattern
Name Table in a controlled, formatted fashion.

Status bits affected: I H I GT I cond I carry I OVF /

Execution results: The Pattern Name Table is modified; see
below,

Application notes:
The operands of the FMT instruction are encoded by

the assembler and placed inline after the FMT op code.
The FMT processor in the interpreter is essentially
a sub-interpreter in that its ftlanguage" is different
from the rest of GPL. The FMT instruction places
data into the VDP Pattern Name Table in such a way
that the resulting screen image is formatted in the
way the programmer desires.

The locations XPT and YPT in the CPU RAM are used
heavily by FMT to determine where to put the next bytes
of data. These locations can be set within the FMT
statement; they are updated by the FMT statement also.

Some of the FMT capabilities are:
• Place a sequence of immediate data across the

screen from a defined starting pOint;
• Place a sequence of immediate data down the

screen from a defined starting point;
• Repeat the same immediate data byte or sequence

of bytes across or down the screen;
• Nest the above features in order to put data

up in a rectangular fashion;

Each of the OPER&~D5 can be o f one of the
: :1 2.2. 0 : :19 : ':I: :na~3:

I IMM., IMM, IMM, • •••• '
(places the data across the screen from

starting point specified by XPT,YPT) ;

4- 50

• IMM, IMM, IMM, •••.•
(places the data down the screen from

.tarting point specified by IPT,YPT):

M('@IMM')
(repeats the data from location IMM in

M'IMM'

CPU RAM across the screen M times, where
M is from 1 to 32, or left off for 1, uses
the data stack);

(repeats the same value across the screen

N"IMM"

M times; M is from 1 tq 32, or left off for 1);

(repeats the same value down the screen
N times; N is from 1 to 32);

':character string:' or ·:character string:"

N

M

(outputs the ASCII equivalents of the character
string to the Pattern Name Table; note also
that this colon-delimited string can be
used wherever IMM is called for in the
above formats) ;

(adds the value of N to YPT, N from 1 to 32) ;

(adds the value of M to XPT, M from 1 to 32),

XPT=IMM
(sets XPT to a specified value);

YPT-IMM
(sets YPT t o a specified value);

BIAS=GS
(sets the BIAS to a specified value, see below) ;

Upon entering the FMT statement, the BIAS is O.
Everyth ing that gets outp ut to the Pattern Name Table
gets the value of BIAS added to it. Setting the BIAS
to a non-zero value a llows using the same FM~ statement
to output alternate character sets, the same character
set of different colors, etc.

Any sequence of operands to the FMT instruction
may be enclosed in parentheses, and a "loop" count
constant used in front of it. The operands inside the
?a:ent~eses ~r~ the~ af!ecti~ely rapeat~d t~e ~u~be[
of times specified by the loop count. Examples of this
will be seen below. Furthe rmo re, these loop structures
may be nested inside one another.

4-51

If a horizontal boundary is reachec while outputting
data to the VDP, 1PT is reset to 0 and YPT is incremented.
Thus further data is then output starting at the beginning
of the next line. If the vertical boundary is reached, YFT
is reset to 0 : 1PT is kept the same (this means vertical
wrap-around will be to the same column) .

Examples:

FMT 3" :HELLO:" (Repeats BELLO 3 times
down the screen)

HOME
FMT

,
32' >EO I ,22 ('>EO' ,30 < , '> EO') ,32, ' >EO I

(Puts a border around
screen one character
of character >EO)

the
wide

FMT BIAS= >AO,XPT=13,YPT=23,':TENNIS:'
(Adds >AO to the hex value o f

the ASCII characters and puts
those characters on the screen)

PAOL I EOU > AS

FMT XPT= lS ,YPT=l, 22 "PADL1" (Puts 22 of characer >AS
down the screen)

FMT BIAS=>20,2 (' @NUM') (Adds >20 to the value stored
in NUM and puts 2 of those
characters on the screen.)

FMT

FMT

FMT

3(1" ,29<,3 (' :AAA:' » (Moves pointer one line down,
29 spaces right, and puts 9
A's on the screen- - repeats
this two more times)

BI AS =RAM (0) ,1 , 2 ,3 , 4 , 5 ,6 ,7, 8, 9,0
{Adds the value at RAM (O) t o
eac h number and puts t ha t
character across the screen)

" " XPT=O,YPT=O," :MY:",1 ,2 <,":ARM:",1 ,3<;
":THAT:", I" ,4<,":THROWS:"

(Start ing at the t op c orne r,
puts MY down the sc reen, moves
down 1 line, right 2 spaces,
puts ARM down screen ; moves
down 1 line. right 3 spaces.
?U':3 :':-.:.;-:' .3 owr. ':. :1e 3C:-~~~,
:na ves down one l i ne , r i ght 4
spaces . puts THROWS down the
sc reen.)

Op Code >08

Format type: 7
4-52

4.5.5 GENERATE RANDOM NUMBER RAND

Syntax definition: RAND IMM

Example: LABEL RAND 25 GENERATE A RANDOM NUMBER FROM
o TO 25 INCLUSIVE

Definition: Generate a random number fr~m zero to the immediate
operand and store this number in location >78 of CPU
RAM. Does not affect status bits. If no immediate
value is specified, the default is 255.

Status bits affected: / B / GT / cond / carry / OVF /

Execution results: (RAND) ;= Random number in (OrIMM)

Application notes: Use RAND to generate random numbers. For
example, for RAND sprite motion the in
struction,

Op Code: >02

Format type: 2

RAND 3

would generate a random number between
o and 3 inclusive.
There is a useful way to generate
the initial seed for the random number:

LOOPl RAND
SCAN
BR LOOPl

This method generates a "random" number
of calls to RAND, depending on how long
it takes for a key to be pressed. All
subsequent calls to RAND will thus gene
rate unique random numbers every time
the program is run. It is good to use
this loop everywhere you do a scan if
you need really random ~umce:s.

4-53

4.5.6 SCAN KEYBOARD SCAN

Syntax definition: SCAN

Example: LABl SCAN SCAN KEYBOARD

Definition: Scans keyboard specified in >74 in CPU RAM. Returns
the keycode in location >75, the Y-position of the
joystick in location >76, and the X-position in
location >77. The CONn bit is set if a key is
found depressed; however, the keypad or keyboard
is "debounced" in the sense that if the same key
is found depressed as was depressed upon the previous
call to SCAN (on the same keyboard) , the proper
keycode is returned, but the COND bit is reset.

Status bits affected: (H (GT (cond / carry I OVF /

Execution results: >75
> 76
> 77

COND

:= KEY value
: = JOYY
: = JOYX

:= set if new key; reset if old key or
no key

Applications notes: See Appendix D for details on handsets and
keyboards.

Assembly Language:

Op Code: >03

Format type: 5

There is a keyboard scan subroutine that can
be called while executing 9900 Assemb ly
Language code. This subr outine is loc ated at
location >OOOE in the console ROM. The key
board number (CPU >74) sh ould be specified
before calling the subr outine. A BL t o this
subroutine will serve the same purpose as a
SCAN instruction in Graphics Language.

4- 54

)

4.5.7 EXECUTE MACBINE LANGUAGE XML
Syntax definition: XML IMM

Example: LABl XML > 05

Definition: Begin execution of 9900 machine language.
Use the IMM field to tell where.

Status bits affected: I B I GT I cond I carry I OVF /

Execution results: Execute 9900 machine language directly.

Application Notes: The immediate field of the XML instruction
is split into a left nybble (table number) and
a right nybble (index into table) . There are 16
table addresses defined in the CPO address space.
See Table 4 . 5.1 for a list of these hardcoded values
(note that they have been arranged so as to insure
that at least one table exists in any conceivable
plug-in fast ROM) . The left nybble specifies wh ic h
of the 16 tables to get the Branch address from.
The right nybble is then used to determine which
of the 16 addresses in the table to use. Each table
can contain up to 16 2-byte entry-point addresses.
Note that one can have less if one wishes. As an
example of XML,

XML >24
causes a branch to the address contained in the
fifth entry of Table 2.

Upon entry to a routine, the 9900 workspace
pointer is set to >83EO and the 9900 ST is set to an
unknown value. To return control t o the interpreter,
make sure WP is still >83EO and execute a "B *Rl l ft.
GPL execution will continue out of the GROM from
which he XML was seen, at the address specified by
the internal GROM address .

To do a keyboard scan in 9900 Assembly Language, do a
BL to a subroutine located at location >OOOE in con
sole ROM.

Op Code : >OF

Format type: 2

4- 55

TABLE 4.5.1
XML TABLE

TABLE t roN:TION IIDDRESS (»

0 FIDA= IOINT OCUTINES "FLTI'AB"

1 <nIIiERSICN l\NIl BASIC =NES "XTAB"

2 SYSI'EM EXPPNSICN ROo!/llA'I 2000

3 BASIC ENlL'NCEMENT 3FCO and "X'l'1\B3"

4 BASIC ENiAIO'MENT 3FEO an:l "XTAB2"

5 N:7l' A VAl IABLE 4010

6 N:7l' A VAl IABLE 4030

7 GR:M MC£XJLE ROo!/llA'I 6010

8 GRCM MJIXJLE RCM/RAM 6030

9 GR:M MC£XJLE RCM/RAM 7000

10 EUIURE EXPPNSICN 8000

11 roJURE EXPPNSICN ACOO

12 EUIURE EXPPNSICN BOOO

13 roJURE EXPPNSICN COOO

14 EUIURE EXPPNSICN DOOO

15 s::RA'ICII PIID RA'I 8300

4-56

)

4.5.8 EXIT GPL

Syntax definition: EXIT

Example: EXIT

Definition: Terminate GPL execution; return control to
the system monitor.

Status bits affected:

EXIT

Execution results: The monitor performs a restart sequence.

Application notes: All GPL programs that terminate should use
the EXIT command. See the Monitor Speci
fication for details on system restart.

Op code: >OB

Forma t type: 5

4- 57

4.5.9 I /O INSTRUCTION liD

Syntax definition: I / O GS,IMM

Example: I/O @BLOCK,2

Definition: This is an extended instruction in the sense
that the action that occurs depends up o n the value
of the IMM field. Specifically, this instruction
does SOUND, eRU input and output.

Status b i ts affected: I H / GT / c ond / carry / OVF (

Execution result: See below.

Applicat ion notes: See Appe ndix F f or currently supported
uses f or the I / O instructi on.

Op code: >F6

Forma t type: 8

4 - 58

)

)

4. 5 .10 BOME INSTROCTION

Syntax Definition: HOME

Example: HOME

Definition: SET XPT and YPT equal to zero

Status bits affected:

Execution results:

None

>7E (YPl'): • 0
>7F (XPl'): • 0

HOME

Application notes: The HOME instruction assembles the same as:

DCLR YPl'

4- 59

APPENDIX A - THE GPL ASSEMBLER

SOURCE FILE FORMAT

)

GPL source instructions are entered as card images to the

assembler in a free field format with the restrictions that LABEL

fields must begin in column 1 and Operand list fields must begin

before column 25. No imbedded blanks are permitted within an

operand list. Blank lines in the source are ignored.

The format of a typical instruction is:

(LABEL) (INSTRUCTION MNEMONIC) (OPERAND LIST) (COMMENT)

The LABEL field is always optional. It consists of an

alpha-numeric string of up to 6 characters the first of which

must be non-numeric. Up to 1000 LABELs can be defined in anyone

source file. Any label that is defined in a source file can be

referred to in t he OPERAND LIST of any other instruction in that

source file. Note that SYMBOLS (as defined using the EQU

directive) are exactly like LABELs and their usage is the same .

The INSTRUCTION MNEMONI C must be one of the valid mnemonics

as described in Section 4 of this manual. The OPERAND LIST

must be of the type required by that particular instruction. For

instructions that all ow OPERAND LISTs of arbitrary length, this

field may be conti~ued up to 16 lines by terminating an OPERAND

with a semicolon instead of a comma (the FMT is an example) .

The comment field must be separated from the OPERAND LIST by

at least one space.

line with a SCase

A comment cannot be placed on the same

macro instruction. In addition, GPL

instruction wnich have no oper a nd s (e.g. CARRY, GT, g, OVF, SCAN ,

) RTN, etc.) will only allow comments beyond column 25. A line of

source code should not consist of only a label and a comment.

A-l

ASSEMBLER DIRECTIVES

These directives have a format similar to GPL instructions;

they can include LABEL fields as well as comment fields.

DATA IMM,IMM,IMM, .•.

The DATA instruction is used t o generate a sequence of bytes

in the Graphics ROM. The address field contains a list of ,

immediate values or LABELS. In conjunction with the MOVE

instruction, the DATA statement provides a way to load up a

sequential block of CPU or VDP RAM. For example:

MOVE 10 FROM ROM (tLAB1) TO RAM (>300)

where later on in the source:

LAB1 DATA 0,1,2,3,4,5,6,7,8,9

TITLE XXXXXXXX

The TITLE directive provides an 8 character string that is

printed at the top of each page of listing and included in the

object file. It generates no code and should be placed at the

very beginning of the source file.

~D

The END directive may be used to separate blocks of code.

It also is required to terminate the source f ile.

(S YMBOL) EQU I~~

The EQU dir ective assigns t h e immediate field va:ue to the

symbol that starts in column one. A symbol may be a one or tw o

byte value.

A-2

GROM IMM

The GROM directive selects which GROM the assembled program

is to be in. In the current definition of the system the operand

must be less than eight and the maximum length of the program in

a GRCM is 6R. The GROM directive sets the assembler location

counter to the start of the selected ROM. Remember that if a

program is longer than 6144 (>1800) bytes it must be partitioned ,

into segments. The only way to transfer control from one GROM to

another is through the long Branch instruction. However,

references can be made to LABELs and SYMBOLs in different GROMS.

ORG IMM

The ORG directive sets the assembler location counter to the

displacement within the currently selected ROM specified by the

operand. This is useful for generating data in a different

section of the GROM than the program. IMM must be a value from

o to >17FF.

BASE IMM], IMM2, tMM3, IMM4, IMMs, IMM6, IM.M7

The BASE directive specifies the base addresses for the

various sub-blocks in VDP RAM. The seven operands are the base

addresses for the Pattern Name Table, Pattern Generator Area, the

Pattern Color Table, Sprite Attribute List, Sprite Descriptor

Blocks, Sprite Velocity Table, and Object code bias. The

default values correspond to the standard configuration and are

0, >800, >380, >300, >400, >780 and O. It is necessary to use a

BASE directive only if one wishes to use the special mnemonics in

the MOVE instruction, and base addresses other than the defaults

listed above are used.

A-3

PAGE

The PAGE directive causes the listing to continue on a new

page. The PAGE statement is not printed.

LIST

The LIST directive restores printing of the source listing.

This directive is required only when UNL directive is in effect, ,

to cause the assembler to resume printing. The LIST statement is

not printed.

UNL

The UNL directive inhibits printing of the source listing.

The UNL statement is not printed.

LISTM

The LISTM d i rective rest o res pr i nting of multiple lines of

Object code. Th i s d i rective is required only if a UNLM directi v e

is in effect. This statement is not printed.

UNLM

The UNLM directive inhibits printing of multiple lines of

object code. Th i s statement is not printed.

A-4

)

GPL MACROS

These macro instructions are designed to allow implementa

tion of control statements similar to those In high level langua

ges like PASCAL. Table A.I shows the GPL instructions which each

macro expands to. The mnemonics for the statements are:

Terminator for the $WHILE, SPOR, $IP, $ELSE, and $SELSE state-,

ments.

$SENO

Same as end SEND. When use~ as a terminator for $WHILE and $FOR,

it generates a BR instead of a B.

$WBILE GO .R. GS

Causes the following block to be executed as long as the

comparison is true. A list of valid relations is given below.

$REPEAT

Causes the following block to be executed until t h e comparison in

the terminating $UNTIL statement is true. The block is executed

at least once.

$UNTIL GO .R. GS

Terminator for the $REPEAT statement.

$FOR GO = GS TO GS BY GS

Causes the following block to be executed as a loop. The loop is

controlled by a counter specified by the first operand. ~he

counter is initialized by the second operand and incremented by

the optional fourth operand until it is greater than (arithmetic

compare) the third operand. The range of each GS operand an d the

GD operand is 0- >7F . If there is no fourth operand specified,a

default value of 1 is used to increment the second operand.

A-S

$FOR GO. GS OOWNTO GS BY GS

Same as previous statement except that the counter is decremented

by the optional fourth operand until it is less than (arithmetic

compare) the third operand.

$IF GO .R. GS GOTO LAB

The branch is taken if the comparison is true and otherwise

execution continues at the next line. N~ END statement is

required with this form of SIF. LAB must be a label in the same

GROM because the compare generates a BS or BR instruction.

$IF GO .R. GS THEN

The following block is executed if the comparis on is true. If

false it is s k ipped. An END statement must terminate the block.

If the "GOTO LAB" or "THEN" is omitted from a SIF statement, the

statement is treated as a SIF-THEN.

SELSE

Terminates a block following an SIF statement. If the comparison

was true causes a skip around the following block.

comparison was false the block is executed.

SSELSE

Same as SELSE, except it generates a BR instead of a B.

SeASE VAR OF LAB1, LAB2, ...

If the

Branches to the label in the list whose position corresponds to

the value of the operand. (If the value in VAl{ is 0, then the

program branches to LAB1; if the value is 1, then the program

branches to LAB2, etc.) All label s in the list must be contai:1ed

in the same GROM as the SeASE stacement.

A-6

)

)

~GOTO LAB

Branches to the label. Label can be anywhere in the program since

the SGOTO generates a long branch.

$CALL LAB

Calls the label as a subroutine.

The comparisons may take the following relations:

• R. • RE. • L • • GT • .GE . . LT. .LE •

• DR. • ORE • • DL • • DGT • • DGE. .DLT. • OLE •

• EO. • NE • .AND •

. DEO. • DNE. .DAND •

These rela ticns are used in the log ieal expressions. .B., .HE.,

.L., .DB., .DSE., and .Dt.. are LOGICAL comparisons .. GT., .GE.,

. LT., .LE., .DGT., .DGE., .OtT ., and .OLE. are ARITHMETIC

comparisons. The relations .AND. or .DAND. generate a CLOG of

the GS and GD. AdditionallY the relations .R., .GT. , .OVF.,

.CARRY. may be used without GS and GO arguments to test bits in

the STATUS byte. The negating prefix .NOT. may be used before

the relation or first argumen t t o reverse the sense of the test.

Individual bits may be tested by using the prefix .BITn or

.BIT {IMM) before the first argument ~here n is a bit number from

o to 7 or IMM is equated to a number from a to 7. Only the .EO.

and .NE. relations may be used and the second argument must be a

o or 1.

A-7

.B. B
.G!'. G!'
.OVF. CNF
.CARRY. CARRY

TEST RELATION OF GO "10 GS :

.m. em

.NE. em

.H. O!

.HE. CHE
• L. CHE
.GT. CG'I'
. GE. =
• LT. =
.IE. CG'I'
• AND. =
TEST RELATIa/ OF GO "10 0 :

.m. cz

.NE. CZ

All other relations of GD to 0

Tl\BLE A.l
MICR) EXPNlSICNS

BR as
BR as
8R as
BR as

BR as
BS 8R
8R BS
BR as
as 8R
BR BS
BR BS
BS 8R
IE 8R
BR BS

BR as
BS 8R

are tested as GO to GS,

BR BR
BR 8R
BR BR
BR 8R

BR BR
BS BS
8R 8R
8R 8R
IE IE
8R 8R
BR BR
IE as
IE BS
8R 8R

BR BR
as as

using Oas the GS.

Following are several MACRO instructions with their grap hics
language equivalents:

1. $REPEAT
$UNTI L GO .lOI'. • H. GS

2. $REPEAT
$UNTI L GD . HE. GS

3. $REPEAT
$UNTIL . 101'. GD .J>ND. GS

4. SREPEAT
$UNTI L • OW .

CH
as

mE
8R

= as

OVF
8R

A-8

GS,GD
(COde following SREPe-AT I

GS,GD
(COde following =TI

GS,GD
(COde fo110.ing SREPC-AT I

(COde following $REFEAT I

Page TWO
Ml\CR) EXPl\NSICNS - 'l'1IBLE 1..1

5. ~IEGD .NE. GS em GS.GD
as (axle following ~)

~ B swmIE

6. $WHUll .BITs GD . EO . 1 = >20.GD
as (axle following ~)

~ B swmLE

7. $WHILE .CMRY. CJ\RRY
BR (axle following ~)

~ B swmLE

8. $IF GO. .EO. GS '!HEN em GS.GD
BR (axle following $ELSE)

$"ELSE B (Code following ~)

~

9. $IP GO . lXiE. GS '!HEN = GS.GD
BR (axle following ~)

~

10. $IF GO .L. GS '!HEN OlE GS.GD
as (axle following ~)

~

11. $IF GO .1D1'. .l'ND. GS '!HEN = GS.GD
as (axle following ~)

~

12. $IF GO .GT. GS GOIO = <liT GS.GD
IE =

13. $IF .R. 'IIIEN R
BR (axle following ~)

~

14. $IF BIT? GO • NE. o '!HEN = >80 .GD
as (axle following ~)

~

15. $FOR GD = GSl TO GS2 BY GS3 ST GSl,GD
B $ + 6

$FOR+6 ADD GS3. GO
5+6 = GS2' GO

3S (Cede fo 110w ing =)
B $FCR+6

)

A-9

PCJ3e 'Itlree
M1Cro EXPANSICNS - Table A.l

16. $roR GO = 0 'II) GS ern GO
B $+5

$FOH5 INC GO
$+5 ror GS,GO

BS (Cbde following $END)
$END B $FCR+5

17. $FOR GO = GS ocwmo 0 sr GS,GO
B $+5

$FOR+6 D&: GO
$+5 = GS,GO

BR (OXle following $END)
$END B $FCR+6

18. $CASE VAA OF IABl, tAB2 CASE VAA
!R tABl
BR tAB2

19. $GO'!I) rABEL B =
20. $CAlL tABEL CAll. LABEl.

11-10

I,

)

APPENDIX B AUTOMATIC SPRITE MOTION

Any number of Sprites from 1 to 32 can be set into motion

in such a way that the direction and speeds of each Sprite are

constant, and independent of each other. The MOTION byte in the

STATUS BLOCK, which is normally 0, is set by the programmer to

the number of Sprites he wants to be governed by auto-motion .

If set to N, Sprite (0) thru Sprite (N-l) in the Sprite ,

Attribute List are set in motion . The Sprites are moved by

updating the Y and X pixe l positi ons f or each one in the Sprite

Attr ibute List.

A motion control block must be set up in VDP RAM prior to

making t he MOTION "byte non-zero. Th is control bl ock must begin

at >78 0 in the VDP RAM. Four bytes are required for each Sprite

to be controlled:

byte 1: velocity in the vertical direction~

byte 2: velocity in the horizontal direction;

bytes 3,4: reserved for system use.

The velocity bytes are scaled in such a way that a value of

1 causes the Sprite to move in that direction once every 16 f rame

refreshes (o r 16/60 second, about ~ second). A value of 16 in a

velocity byte causes a movement of one pixel eve ryo ne-sixtieth

of a second, or 60 pps. A positive Y velocity causes do n ard

motion, a positive X velocity causes horizontal motion to the

right. As an example, if the first t o bytes a re 1 and 8, then

every 16 frame refreshes the Sprite will move 1 pixel do n and 8

pixels to the right. The motion · ... il1 appear to be continuous .

For a complete example of Sprite auto-motion, see sample

program "SPRITES" on the following page.

B-1

TI990 GL ASSEMBLER SPRITES 04/12/79 07 ' 55 :35 PAGE

007A

0001

6000 AAOIOI
6003 000000
6006 6010
6008 000000
600B 000000
600E 0000
6010 0000
601~ bOIC
6014 075350
6017 524954
60lA 4553

bOIC BE7A20

601F CEA384
6022 0 1

6023 390001
6026 016045

6029 310080
602C A30060
602F 46

6030 310080
6033 A40Q61
6036 46

6037 310080
603A A78060
603D C6

603E 0720
6040 0401
6042 05.!J042
6045 62

I TITLE SPR ITES
• STATUS BLOCK LOCATION TELLING NUMBER OF MOVING SPRITE
"PC EGU >7A
• COLOR NUMBER OF BLACK .' .
BLACK EGU I

• , MAIN PR OGRAM

3
4
5
6
7
8
9

10

**** •• ****.*.****** •• ***~**~.*******~.**.*********~*** ••
. -11-. TELLS BEGINNIt~G LOCATION OF OBJECT CODE (>6000)

GROM 3
I I
12 ***
13
14
15
16
17
18
19 PRoGI
20
21

22 •••

ORG 0

DATA) AA, 1. 1
DATA 0.0.0
DATA #PROGI
DATA 0.0.0
DATA 0.0,0
DATA 0.0
DATA 0.0
DATA _START
DATA 7. : SPRITES :

HEADER GLOCK

STORE NUMBE.R OF SPR I 1 ES IN 1'1PC
23 ~, START ST 32, (!MPC "32 SPR iTE S I\LLDWED TO MOVE
24 .*"* LOAD COLOR TABLE THAT CONTAH~S THE SPACE
25

26 ***
27

29 ***
29

30
31

32 ·re
33

ST >0 1. RAMD38-l) . COLOR SPACE BLACK

LOAD VDP RECI STER FOR DOUBLE-SIZED SPRITES
MOVE 1 FROM ROM(ijVDPREG) TO VDP(l)

ESTADLISH SPRilE fHTRIn UTE I3i....OC I-\,
MOVE 128 FR O!'l Rm1<ffSALHH) TO RA!'i (>300i

ESTADLISH SPRITE OESCRIPTOR nLOC~

MO VE 128 FROM ROMe«SHAPE) TO RAM(~4QO)

ESTAI3LISH SPPITE \'ELOCITY DLOCI-\,
MOVE 128 FROM ROM ! ijSMOTAU) TO RA I1 (:-760)

rlA~E ALL PATTERN NAME TA~LE I3~AN~

35 ALL ~ 20
36 GACK DLACK "'GORDER IS GLACV.
37 13 $

38 VDFREG DATA)62

: - 2

TI990 CL ASSEMDLER SPRITES 04/12179 07 : 55 : 35 PAGE

40 ** ••••• **** •••••••• *** ••• *** •••••••••••••• + •• **** ••••• +.
~'. 41 • SPRITE ATTRIDUTE LIST 1 N 1 TI ALI ZA TI ONS .,. 4~ ••• * ••••••••••••••••••••••• ** ••••••••••• * •• * •••••••••••• ,

6046 000080 43 SAL/NT DATA >00.)00.)80,)2.)06.)08,)84.>3
6049 O;:t060B
604e 8403

DATA. >OC. > 10. >8e . >4 .'>12 ,) 18. >8e.) 5 604E oe1088 44
6051 041218
6054 g e0 5
6056 182080 45 DATA >18,)20.>80.)6.) IE .)28.) 84 .)7
60 59 061E28
605e 8 407
605E 243088 46 DATA) 24.) 30,) 88.)S.)2A.)38.>SC.)9
6061 082A38
6064 8e09
6066 304080 47 DATA) 3Q.)40. >80.>A,) 36.)48,) 84.) B
6069 OA3648
606e 840D
b0 6E 3C5088 48 DATA) 3C.) 50.) 88.)C.)42.)59.) 8C,) 0
6071 OC4258
6074 8COD ,
6076 4 86080 49 DATA >48.)6Q.)SO,)E.) 4E.) b8,)84.) F
6079 OE4E68
607C 840F
607E 547088 50 DATA) S4 .) 7Q .)68 .) 2.) SA.) 78.)8C.) 3
6081 025A78
6084 8 C03
6086 608080 51 DATA ~ 60.)80. >eO. >4 .)66,) 88.)84.) 5
6089 046698
608C 84 0 5
608E 6(9088 52 DATA) 6C.) 90.) 88 .>6,) 7 2 . >98, >8C .)7
6 0q l 067298
6094 Be07
60 q 6 78A08 0 53 DATA) 78.)AQ.) 80.) 8 .)7E.) A8.) B4.)9
6099 087EAB
60qC 84 09
609E 84n088 54 DATA) S4.) 00. >S8,) A.)SA.) 0 8. ~ OC .>O
60AI OAeA[3S
6 0 A4 8COD
60A6 90C080 55 DATA >90. >CO . >80.) C.) 96.)C8.)84.)D
601\9 OC96C8
60AC 8400
60AE 9CD088 56 OATA ~ 9C .> DO .)88.) E. >A2. ~ D8.) 8C.) F
6081 OEA2D8
600 4 8eOF
6006 A8EGGO 57 DATA >AB. >EO.)80.)2 .)AE.) E8 .)-84.) 4
60D9 02AEE8
60De 8404
60D E 34F088 58 DATA) B4. >FO, >SS,) 6 .>I3 A.) FS ,) 8C .)8
boe 1 O':'CAF8
~OC ~ 3c':e

8- 3

TI990 OL ASSEMBLER SPRI TIcS U4/1211'1 t"AGt:.

bO •• ++ •• +.+
bl • SPRITE NOTION TABLE
b;! .. ~

boeb 021000 b3 SMOTAS DATA 2.16. O. O. 2.14 . O. a
boe9 COO20E
boce 0000
bOCE o~ocoo b4 DATA 2. 12. O. 0. 2. 10. O. 0
6001 0OO20A
b004 0000
bOOb 020800 b5 OATA 2,8.0.0,2.~ , O.O

b009 000206
bODe 0000
bODE 020400 b6 DATA 2 . 4.0.0. 2 . 2. 0.0
bOEI 000202
60E4 0000
bOEb 040200 67 DATA 4.2.0.0. 6 .2.0.0
bOE9 000602
bOEC 0000
bOEE 080200 68 DATA 8.2.0,0.10.2.0.0
bOFI OOOA02
6 0F 4 0000
60 Fb oe0200 b9 D~TA 12.2.0,0.14.2. 0.0
60F9 OOOEO~
60FC 0000
60FE 100200 70 DATA 16.2.0 . 0 . 8 . 0.0.0
6101 000800
bl04 0000
610b 00F800 71 DATA 0. -8 . 0 ,0, -2 . -16.0 .0
bl09 OOFEFO
blOC 0000
610E FEF200 72 DATA -2 ,- 14 , 0,0 . -2,-12 . 0 ,0
6111 OOFEF .
6114 0000
6116 FEF 6 00 73 DATA -2 . -1 0.0 . 0. -2 . - 8,0,0
6119 COFEFS
611 C 0000
bIlE FEFAOO 7' DATA -2 . -6 .0,0, -2 . -~ .0 , 0

6121 OOFEFC
6124 OCOO
6126 FEFEOO 75 DATA -2.-2 . 0.0.-4 . -2 , 0 ,0
6129 OOFeFE
612C 0000
612E F"'FEOQ 76 DATA -6.-2.0.0. -8 . - 2.0, 0
6131 OOF8FE
6134 0000
6136 FoFEOO 77 DATA -1 0, -2 .0.0. - 12 . -2 , 0,0
bl39 aOF4FE
613C 0000
613E F2FE OO 78 DATA -14 , -2 , O. 0, - 16, .-2 , O. 0
6141 OOFCF;o
6~J...l oeoo

9-4
,

TI990 QL ASSEMDLER , SPRITES 04/12179 07 : 55 : 35 PAQE

,

'-
6146 FFFFCO
6149 COCOCO
614C COCO
614E COCOCO
6151 COCOCO
6154 FFFF
6156 FFFF03
6159 030303
615C 0303
615E 030303
6161 030303
6164 FFFF
616 6 010306
6169 OC1830
616C 60CO
616E C06030
6171 18"C06
6174 0301
61 76 80C 060
6179 30180C
617C 0603
617E OJ060C
6181 183060
6184 coeo
6186 071F3C

\ 6189 7060EO
618C COCO
618E COCOEO
6191 b0703C
6194 tF07
6190 EOF83C
6199 OE0607
619C 0303
619E 030307
611\ 1 060E3C
61A4 FeEO
blAb 010103
61A9 030606
blAC OCOC
61AE 181830
61Dl 306060
61134 FFFF
61 D6 808.JCO
6109 C06060
blBe 3030
613E 18180C
61 C: .JCDt:06
61C4 FFF ?=

ERRORS= 0

8 0
81
82
83
84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

•• ** ••••••
•
•

SPRITE DESCRIPTOR DLOCKS
(SQUARE. DIAMOND. CIRCLE. TRIANQLEI

••
SHAPE DATA >FF.)FF. >CO.)CO.)CO. >CO.)CO.>CO SQ'

DATA) CO.>CO. >CO.)CO.>CO.)CO.)FF.)FF

OATA >FF. :> FF .)03.>03 .)03,)03.>03.)03

DATA)03.:>03. >03.)03.)03.) 03,) FF .)FF

DATA) 01. >03.)06. >OC. > 18. :>30. >60 .) CO DIAl

DATA)CO.)60.>30.:>18.)0(.)-06.)03.)01

DATA) 80.)CO.) 60. >30.) 18 .) OC.)06 ,)03

DATA) 03,)06,)oe.:: 18 . > 30,)60. >eo, >80

DATA) 07,)lF.) 3C.)70,) 60,) EO.)CQ,)CO CI

DATA) CO, :>CO, ::EO, ::60,)70 .. > 3C, :>1 F . >07

DATA > EO,) FB.) 3C , ::OE,) 06, >07, >03 , >03

DATA >03 .)03.>07,)06,)OE,)3C.)F8 ,>EO

DATA > 01.)01. >03, > 03, :: 06, ;06 ,)OC, > OC TRJA

DATA) 18 ,> 18.) 30,)30 ,) 6 0, :>60,) FF ,) FF

DATA)80,)80.) CO.) CO,) 60.) 60,) 30.)30

DATA) 18, > 18,)OC.~ OC, >06 .)06.)FF .) FF

Et~D

LENGTH= 454 <)0 IC6)
" , 0- '

APPENDIX C AUTO-SOUND INSTRUCTION

The sound instruction allows the programmer to control the

S ound Generator Chip (SGC) in the system console by means of a

pre-defined table in GROM, or VDP RAM. Sound output is

controlled by the table and the VDP interrupt service routine. A

control byte at the end of the table can tell the interpreter to

end sound output, or can cause control to loop back up in the ,

table.

Table Forma t

The format of the table is the same regardless of where it

resides. The table consists of a ser ie s of blocks, each of which

contains a series of bytes which are directly output to the

SGC. The exact format of each block is:

(block size in bytes)

byte 1 to output t o SGC;

byte 2

Interrupt count (unsigned)

Since the VDP generates 60 interru?ts per sec ond I the

interrupt count is express ed in units of one-sixtieth of a

second. When the I/O instruction is called, upon the nex t

occurring VDP interrupt, the first block of bytes is output to

the SGC chip. The interpreter then 'Naits for the requested nurn-

ber of interrupts (for example, if interrupt c oun ts are 1, every

C-l

)

interrupt causes the next block to be output). Remember

that interpretation of GPL continues normally while the SGC

control is enabled.

The sound control can be terminated by using an interrupt

count of 0 in the last block of the- table. Alternatively,

a primitive looping control is provided by using a block whose

first byte is 0, and the next 2 bytes indicate an address in the

same memory space of the next sound block to use. If the first

byte is hexadecimal FF, the next two bytes indicate an address in

the other memory space. These allow switching sound lists from

GROM to VDP or VDP to GROM. By making this the beginning of the

entire table, the sound sequence can be made to repeat

indefinitely.

To initiate sound use the I /O instruction :

I/O GS, 0 for list in GROM

or I / O GS,l for list in VDP RAM, e.g. I /O @FAC, 1

The GS points to two-byte block in CPU RAM which contains the

address of the sound list.

GPL can also check for completion of an execut ing sound

list by testing whether location > 83CE (>CE in GPL) in CPU RAM

is equal to a (th i s byte is a down-counter and is a only after

table-dri v en execution is c omplete. Add itionally, the address of

the sound block current ly executing is in CPU RAM locati o ns >83CC

and >83CD.

Execut ing a sound list ~h:le table-driven soune cont=ol :5

already in progress (from a previous sound l i st) causes the old

C-2

sound control to be totally supplanted by the new sound

instruction.

Sound Generator CHIP (SGC) Control Summary

The SGC has 3 tone (square vave) generators - 0, 1, and 2 -

all of which can be working simultaneously or in any combination.

The frequency (pitch) and attenuation (volume) of each generator
•

can be independently controlled. In addition, there is a noise

generator vhich can output white or periodic noise.

Attenuation Control for generato rs 0,1,2 or 3)

One byte must be transmitted to the SGC:

+ + + + + + + + +

/1 / REGI /1 / A /

REG# = register number (0 ,1,2,3) ;

~ • attenuation/ 2

(e.g. A=OOOO = 0 db • highest volume;

A=lOOO = 16 db = medium volume;

A·1111 • 30 db • off .

examples: 1 10 1 0000: turn on gen . 12 t o highest volume;

1 11 1 1111: turn off noise generator (13).

You should no t use all three tone generators at ma ximum

volume at once.

Frequency Control (for generators 0,1,2)

Two bytes must be transmitted to the SGC t o control the

frequency of a given register. To c ompute the numbe r o f

counts from t he frequency f, use:

N • 111860 / f ;

C-3

byte 1: by te 2:

+ + + + + + + + + + + + + + + + + +

/1 /REGt / N (ls 4 bits) / / 0 0 I N (ms 6 bits)1

Note that N must be split up into its least

significant 4 bits and most significant 6 bits (10 bits

total) .

The lowest frequency possible is 110 Hz and the ,

highest is 55,938 Hz.

Noise Control

One byte must be transmitted to the SGC:

+ + + + + + + + +

/1 1 1 0 / 0 IT / S /

T = 0 for white, 1 for periodic noise;

S - Shift rate (0 , 1,2,3) =Erequency center of noise.

s ~ 3 = frequency dependent on the frequency

of tone generator 3.

For more information on controlling the SGC, see the

TMS9919 SGC Specification.

Creates a Palling Sound (High to Low)

SOUND EQU >00

DTEMPl EQU >02

TR EQU >79

MUSIC EQU >4.00

MOVE 8 FROM aOM (;DROP) TO RAM (MUSIC)

DST >0039, @DTEMPl >39 = Highest frequency played

@DTEMPl = 2-byte temp area

C-4

DST MUSIC,@SOUND (Music is a constant , of 400

could be anywhere in RAM

BOl DST @DTEMP1, RAM(MUSIC+l)

DSRC RAM(MUSIC+l),4

SRL RAM(MUSIC+l),4

OR &lOOOOOOO,RAM {MUSIC+l)

B02

I /O

CLR

cz

@SOUND ,l

@TR

@TR

BS B02

DINC @DTEMPl

DCGE >0200,@DTEMPl

BR BOl

DST iENDROP, @SOUND

I / O @SOUND, °
B $

DROP DATA 3,>00, >00, >92.1

ENDROP DA~A 1, >9F, 0

@SOUND • 2-byte area for AODR ,
@TR = Timing register (>79)

>0200 = Lowest frequency played

*Turns s ound off

A similar routine c ould be implemented to create a rising sound

by storing a low frequency in DTEMPI to begin with, do a DDEC to

DTEMP I and a compare l o w with a high frequency value.

CREATES AN EXPLOSION SOUND

CST ~EX PL, @SOUNO

I / O @SOUND,0

B $

C- 5

EXPL DATA 2 , >E4, >F2, 5

DATA 2, >1:4, >FO, 18

DATA 2 , >E4, >F 1, 16

DATA 2 , >E4, >F2, 14

DATA 2 , >£4, >F3, 12

DATA 2, >£4 I >F4, 10

DATA 2 , >ES I >F5, 9

DATA 2 , >£5, >F6, 8

DATA 2 , >E5, >F7, 7

DATA 2, >E5, >F8, 6

DATA 2, >£5, >F9, 5

DA TA 2 , >E6,>FA , 4

DATA 2 , >£6, >FB, 3

DATA 2, >E6, >FC, 2
)

DATA 2 , >£6, >FD, 1

DA TA 2, >E6, >FE, 1 , 1, >FF,O

C- 6

APPENDIX 0 HANDSET/KEYBOARD INTERFACE

As mentioned in section 4 of this manual, the SCAN

instruction is used to poll the state of the handsets and

keyboards on the system. The byte KEYBRD in the STATUS BLOCK is

used by the SCAN instruction to determine which peripheral device

to look at, as well as how to interpret the results. ,

Presently, the following peripherals are supported by the

SCAN instruction:

• 40-KEY KEYBOARD (KEYBRD • 0):

When scanning this keyboard, only the bytes KEY,

and the COND bit are affected. The layout of the keyboard

and the codes returned by each key are shown in Figures

0.1 and D.l.A. If more than one key is depressed at a

given time, only one key will be read .

• REMOTE HANDSETS (KEYBRD = 0,1,2,3,4)

See Figures 0.2, and D.2.A for keycodes assigned to

the Remo te Handsets. Note that if KEYBRD ~ 0 , aandsets 1

and 2 are assumed to be adjacent to each other and thus

simulate the 40-key keyboard. If KEYBRD = 1.2,3 or 4, the

corresp ondin gly numbered handset is scanned; in addition,

the joystick is scanned, and each of JOYY and JOYX wi l: get

a value returned in them ranging from -7 to +7, depending

upon the amount of deviat io n from the neutral position in

t he Y a nd X axes res~ectively.

0- 1

)

)

• REMOTE KEYBOARD (KEY BRO' 5)

Remote handsets 3 and 4 can be mapped into a 40 key

keyboard in the same manner as handsets 1 and 2 .

• WIRED HANDSETS (KEYBRD = 1,2):

See Table 0.3 for keycodes assigned to this type of

handset . The joystick behaves similarly to the remote

handsets except t hat the range of JOYY and JOYX is limited

to values of -4,0, or +4. These values were chosen to make

the remote and wired joysticks as compatible as possible .

Note there is a pushbutton mounted on the joystick . This

button is electrically and logically the same as the key

corresponding t o keycode >C. The console keyboard may be

used to simulate two 20-key keypads for the wired handsets.

Note that if t he joystick pushbutton is depressed, it will

always be recognized, as it has t he highest priority. The

depression of more than 2 keys causes undefined values to

be returned.

Since the GPL ·program is not immediately alerted that the

state of a handset has altered, it is necessary to regu larly scan

the handsets, if input from them is desired. The CONn bit in the

STATOS byte is set only the first time a given key is found

depressed . If the same key is found depressed on successive

scans, the successive calls t o SCAN reads the keycode properly,

but resets the COND bit. Thus in applicati ons like t~e above,

where we .",ish to recognize fresh keystrokes only, the following

} code sequence can be used:

0-2

toOPl SCAN

BR LOOPl

The above code causes GPL to loop until a fresh keystroke

is seen.

In order to debounce the Fire button a routine must

be implemented to make sure it has been lifted before it is

detected as being down again. An example of this routine would

be:

SCANIT SCAN

$IF @KEY .EO. @OLDKEY THEN

B SCANIT

$ELSE

ST @KEY, @OLDKEY

(operate on KEY)

$END

B SCANIT

D- 3

- O ---[JJ

. >-- '" '"

) [] Ql

"" - -Q U
~ W Q

'" x f5 ':: -~

I :; -! N M .

! - I

)

)
\

NIHE 1:

FIGURE 0.2

HANDHELD UNIT KEYBOARD

~<f-------- HORIZONTAL.--------....""

Q[]GJGJGJGJ
QJQJGJ[IJGJ

~~
~~

r;l
~

~~~ 
~ L::J ~ 

Hexadecimal numbers in parenthesis correspond to keycodes returned 

by cons01 e sys tern soft'~are. 

0-6 



"" 
N 

'" 

~ 
~ 

'" ~ 
'" '" U 

1- !I ~ 
[] 0Ju ~ '" 0 

"" '" A .,.~ ~ -

~ 
I 

~ I 
N I 

o - I 
<.:l~ 

- . - , 
I 

I ~-;:- I 
1 W - I 

:"'1 \, , - , , 
,~-

~ 

+ '" 
~ '" ~ A 

>- -

. ~ 
~ 4-

'" '" ~ A 

'" -
~ 

~ '" --~ A 

'" -

a: 4-

'" 0 ~ A 

~ -
1 _ 0 

'I : ';:: - -, 



) 

TABU! D.3 

JOrSTICK CXDES 

• 
IIEl.AIlEI:IMAL I'OSITICN Y I'OSITICN 

ODE (1DU1INTAL ) (vmTICAL) 

7 PUll Right PUll Up 

.' _11.111 Right _1 ... Up 

1 Near Right Near Up 

0 Center Off , center Off 

>FP (-1) Near Left Near IloIm 

>FC* (-4) _lUll Left _1 ... IloIm 

>P9 (-7) PUll Left PUll Down 

>F8 Illegal Illegal 

*These codes to be returned if joystick has only single bi t resolution in any 
direction. 

Example 

Pull Right and Med i UII Down 7. >FC 

l'}J' 
I -

I 

- 7 - 4 -I 0 1 4 7 

0-8 



APPENDIX E COINCIDENCE DETECTION 

The VDP provides a bit in the VDP status register that is set 

whenever any Sprites are in coincidence with one another (in this 

instance, coincidence means that they overlap by at least one 

pixel of foreground ) . From GPL, this bit is most easily checked 

by the instruction: 

CLOG >20,@VSTAT 

The VDP status byte in CPU RAM is copied from the VOP 

Status register every frame interrupt; the third bit is the 

sprite coincidence bit. 

The COINe instruction in GPL allo .... s the user t o c h eck f or 

coincidence bet .... een any 2 objects. These may be 2 Spr it es, a 

Sprite and another obj ect, or any 2 generalized objects . The 

strict def ini tion o f c oincidence can be dictated by a bit tab l e 

the user must provide in GROM; one might desire c oincidenc e to be 

true ~hen the objects just touch. or a on e dot overlap may be 

required. Or perhaps coincidence may be true only when object 1 

overlaps object 2 exactly. 

Coincidence statements must be followed by a one-byte 

mapping value, p lus a 2-byte address pointing to a table in GROM. 

Mapp ing = 0 g ives the hig hest resolut ion c o inc idence checking, 

but requires the largest table. Mapping = 1 yields a ta bl e of ~ 

the size; however, c oincidence error s of + 2 pixe ls are possible. 

Mapping = 2 yields one -sixteenth the table size but can have 

e:: ors o f ~4 ? i~ els. 

Let an ~ object type~ be a set of identical objects. Then 2 

sprites which have identical dot patterns are actually of the 

E-l 



) 

same object type. To detect coincidence between objects of 2 

types (may be the same type) a unique table for this type 

combination is necessary. 

Coincidence screening is done on 2 levels. The first, 

range checking, involves looking at the distance between the 

objects as well as their individual dimensions (in pixels). If 

they are out of range, coincidence is terminated by resetting the , 

condition bit and terminating. If in range, a table lookup is 

used to determine coincidence. The delta-y and delta-x are 

found: using them as indices, a bit is read from the table. If 

it is a 1, coincidence is true, and the cond bit is set; 

otherwise coincidence is false. Remember that a unique table is 

required for each combination of object types; e.g. for 2 object 

types, say girls and boys, three tables are required for complete 

coincidence detec tion: 

- girls: girls 

- girls boys 

- boys : boys 

Coincidence must always be called with its arguments in the 

same order that the table was c onstructed for. 

CONSTRUCTING COINCIDENCE TABLES FOR MAPPING = 0 

Let Vl and 81 be the dimensions of object type 1 in pixels 

( for irregular objects, these are the dimensi o ns o f the 

circumscribing rectangle ) . Likew i se, let V2 and H2 be t h e 

) vertical and horizontal dimensions of object type 2. Let YI, Xl 

E-2 



be the dot position of object type one, and Y2, 12 the same for 

object type 2 (the origin is at the t op left of the TV screen; 

object position is the position of the top left dot of the 

circumscribing rectangle ) . 

Then let OY be Yl - Y2, and ox be Xl - 12. Then DX, OY, 

VI' 81' V2 , 82' and the object shapes completely specify whether 

coincidence is true or not. See Figu re E.l ( page E-6 ). , 

Imagine object 2 fixed in one place on the screen, and 

Object 1 mobile. It is not hard to see that after object 1 is 

more than HI dots to the left of object 2, coincidence i s no 

longer possible . Similarly after it is more than H2 dots to the 

right of objec t I, co i ncidence i s not p o ss ibl e. Applying the 

same logic to the vertical axis, we arrive at the rules for the 

range c heck: 

-B1 ,LE. OX .LE. H2 

- V1 .LE . OY .LE. V2 

After finding DX and DY to be within this range, they are 

used to compute a uniq ue bit index into the bit tabl e : 

INDEX = ( OX + B1 ) + ( OY + V1)"(B1 + B2 + 1 ) . 

The bi t tab l e i s mo st eas ily visualized as seen in 

Figure E . 2 (page E-6 ) . This table is then encoded by bytes; 

start i ng at the t op left, working t o the r ight . then go ing t o the 

second row and repeat ing. 

Th e easiest way t o manually construct a bit - ta bl e is t o 

draw object 2 on grap h paper , letting each s qua re r e present a 

p i xe l . Then cut ou t obj ect 1 f rom anothe: sheet. Starting · ... ith 

object 1 at the t op l eft c orn er of obj ect 2 ( c ir cumscr ibin g 

E-3 



) 

rectangles just touching), move it to the right, generating a 1 

or a 0 each movement. An example is shown in Figure E.3 

(page E-7). Then repeat the same with object 1 down by one dot. 

This technique is repeated through the row In which object 1 is 

just touching the bottom of object 2 . 

The table in GROM requires a 4 byte header. The exact 

struc ture is: 

(label) DATA (vertical size of table less 1 ) 

DATA (horiz. • • • • . ) 
DATA ( V1 ) 

DATA (Hl ) 

DATA (bi ts , grouped in 8'5) 

In the example from Figure E.3, we have 

EXAMP DATA 4 

DATA 5 

DATA 2 

DATA 2 

DATA >73 .>FF .>FF .>FF (2 scrap bits at end ) ; 

HIGHER MAPPING VALUES 

By specifying MAPPING values greater than 0, one can make 

the bit table more compact; however , accuracy of detection 

su ffe rs. I n the case of MAPPING ""1, instead of a one- to-one 

mapping of OX,OY pairs onto bits of the table, 4 combinations of 

OX,OY all map into one bit. Thus the bit table is smaller, but 

it is necessary to lose detection resolution. 

E-4 



To con~truct a tab le for MAPPING = " con~truct a 

magn1f1cat1on 0 table rir~t ( ~ee Figure £.4 (page E-8 ) j note 

that . the object~ are not ~hown 1n this example ). Then draw 2x2 

boxe.s on the table, starting at the box corresp o nd in g to OX=O ,', 

DY=O,'. A new table 1~ then constructed; each group of 4 pixels 

in a box are compacted down to one pixel (V , and H1 are half 

the1r actua l ~ize). Note that: 

-small 2x' boxes on the edges reduce a single bit; 

-the single bit should reflect the pred o minant value of the 

cluster; 

-in the cases of 2 one3 and 2 zer03. the user has a choice, 

depending on if he wa nts coincidence to predominate . 

To make a table of MAPPING =2, do the same process, but 

make 4x 4 boxes on the 2 d im ensi onal table ( the f irst box is at OX 

; 0,1,2,3, DY :: 0,1,2 ,3 ) · Now V1 a nd H1 are one -f ou rth their 

actual size. Note that resolution of coincidence suffers greatly 

because now we have 16 comb i nations of OX and or mapping into one 

bit. 

The concept of MAPPING lends itself well t o changing the 

magnificat ion s of sprites. If a MAPPING:: a table is designed 

for tw o mag 0 sprites, the same tabl e can be usee for checking 

coincidence when mag:: " by merely calling COINC with HAPPING:: 

1 . Remem ber though that coincidence resolution goes down. 

Note that .!..!!.1. object can be used in coincidence detection; 

all t~at. is :"'equi:-ed is t.:'lat a 'f , X by~e pair ex:'st.s i:1 ::.::"l~ iJ'J ? 

RAM for that obj ect. Not.e also th~t the object can ~e pure:y 

flctitious as far as the TV screen is concerned. 

E-5 



) 

OBJECT 2 .----, , , 

OBJECT 1 - ~--'----' 

DY=-l 
DX=-2 
V1= 3 
H1= 4 
V2= 3 
H2= 2 

I 
... __ ..J 

-VI 
-V1+1 

-VI+Z 

-I 
a 

+1 

VZ-I 
Vz 

E- 6 

.... '" • • 
.:t-........ ~ .... ~ ........ . , . 
o 0 1 1 0 
1 1 1 1 1 
1 0 0 
o 0 1 
o 0 1 
o 0 
o 0 
o 0 
1 0 
1 1 
o 1 
o 1 

FIGURE E.1 

.... .... • 
.... c • ~rv ~rv • 

1 o 1 1 00 1 1 
0 o 0 000 1 1 

C 
1 

1 
0 

1 
1 

0 

FI GURE E. 2 



) 

1 ,.---+---, ___ )~ 1 

2 2 

> 2 

2 

1 

FI GURE E, 3 

E- 7 

GENERATED 0 1 1 1 0 

I 

GENERATED 1 1 1 1 1 

GENERATED 1 1 1 1 1 

GENERATED 1 1 1 1 

GENERATED 1 1 1 1 1 

DX 

· 2 - 10+1+2+3 

- 1 1 1 

a 1 1 

+ 1 1 1 
. ... , , 
T,- .1 .1 

1 -
1 

1 

1 
1 

" 

, 
l 

1 

1 

1 
1 
+ 

-
) 'J 

1 1 

1 
. 
1 

1 1 
1 1 
+ + 



) 

) 

) 

-6 
-5 
-4 
-3 
-2 
-1 
o 
1 
2 
3 

-3 -2-1 
0 o 1 
0 1 1 
0 0 1 
1 o 1 
1 1 1 
1 1 1 
0 1 0 
1 o 0 
0 o 0 
1 o 1 

012345 
1 0 1 0 1 1 

11 0 11 1 o 0 
1 1 o 0 o 0 
1 1 1 0 1 1 
1 1 o 1 1 1 
o 1 o 1 1 1 
o 1 o 1 1 1 
1 1 1 1 1 1 
o 0 1 1 1 1 
1 1 1 1 1 0 

FIGURE E. 4 

0 
11 
0 

I 1 
1 

I 1 
1 
1 
0 
1 

> 

E- 8 

0111 1 1 
1 1 101 1 
11111 1 
1 0 111 1 
101 1 1 1 

TABLE : DATA 4 
DATA 5 
DATA 6 
DATA 3 
DATA >7F, >BF, 

>EF, >BC 



APPENDIX F I/O INSTRUCTION 

The I/O instruction is used to control a variety of 

input-output devices including cassettes, speech, sound, and CRU. 

The f ormat of the I /O instruction is: 

where 

I /O GS. IMM 

GS is the address of a list wh ose format depends on 

the value of IMM. 

IMM specifies the type of input-output. Currently supported 

values of IMM are: 

o ~ Sound in GROM 

1 = Sound in VDP RAM 

2 = eRU input 

3 • CRU output 

4 = Cassette write 

5 = Cassette re ad 

6 = Cassette verify 

The f ormat o f the list specified by GS for sound I /O 

instructions is g iven in Appendix C. 

The format of the lists for CRU output is the same . GS 

po i nts t o a 4 byte block in CPU RAM . The f ormat of the block is: 

bytes 0 and 1 - eRU base addr ess . The in terp reter 

wi l l double this f or you since the 

9901 ignores the least sign ifican t 

bit of the base :eg i ster . 

oyte 2 - The number o f bi:s t ~ i~ p u t ur 

output (1 -16 ) 

F-l 



) 

) 

byte 3 - A pointer to a one or two byte area 

in CPO RAM to write from or read 

to. If the number of bits to read 

or write is greater than 8 then 

this address must be even. 

The CRU data to be written should be right justified in the 

byte or word . The least significant bit will output to or input 

from the CRU address specified by the CRU base address. 

Subsequent bits will come from or go to sequentially higher CRU 

addresses. If the CRU input reads less than 8 bits, the unused 

bits in the byte are reset t o zero. If the CRU input reads less 

than 16 but more than 8 bits, the unused bits in the word will be 

reset t o zero. 

The three different cassette I / O instructions use the same 

list format. This list must be in CPU RAM. 

bytes 0, 1 

by te s 2, 3 

- are the length of the data transfer 

(or the number of bytes t o verify). 

This length is rounded up t o the 

nearest multiple of 64. 

- are the source or destination 

address in VOP RAM or the addres s 

of the bytes to verify the tape. 

The read and write instructions physically perform I / O to 

the cassette. The verify instruction will read a tape and 

compare it, byte for byte, against what is in the specified VOP 

RAM area . It • ... ill set the status in CPU RAM loc atio n 7C if 

any differences are detected. 

F-2 



The I/O instructions for cassette will not generally be used 

by the application programs. There is a cassette program written 

in GPL that should be used by the application programs. This 

program will uniformly request the user to perform certain manual 

operations necessary to the operation of the cassette. This 

cassette program is described in Appendix I . 

F- 3 



) 

APPENDIX G TEXT AND MULTI COLOR MODE 

When the '1'ext" lIode' bit -(bit '4) · In VDP register 11 . Is set, 

40-character mode is selected. ' The screen is 40 :r: 24 Jcharacters 

with each character being 6 x ,8~ dots . The Pattern Name Table is 

now 960 bytes long and is In locations 0 .- ~_ 3BP -in VDP RAM. Each 

byte in the Pattern Name Table corresponds to a pattern position , 
on the screen (0 - 27, first row: 28 - 4F, second row; etc.). 

The pattern ' numbers "are still O. - 255;. corresponding to VOP 800 

. .- ' FFF, but in text mode the last , 2 btts of each .byte in the 

patterns are ignored -, making the .6.. x 8 dot ~ patterns. The only 

means of changing the screen in text ~ode is to write the pattern 

numbers to the Pattern Name Table position. There is not a color 

table to use with text mode. The only way to give color t o the 

patterns is by loading VOP (7) with the foreground /background 

combination desired . 

When the MeMO bit (bit 3 ) in VDP register '1 is set, 

the multicolor mode is selected. Each 8 x 8 dot pattern on the 

screen is now divided into four quadrants (4 x 4 dots each ) . Each 

quadrant must be given a nybble assignment -in the pattern 

generator block before you can use multicolor mode correctly. The 

nybble s used in the pattern generator block are from RAM 800 

th r u OFF. The ny bble ass ignments are made with a fo rrna t 

sta tement as follows: 

aOME 

FMT 4 ( , > 00 , >01, >02 ... >IF I ) , 4 ( , > 20, >21, >22 .. . > 3F' ) . 

4 ( , >40, >41, >42 .• . > SF I ) , 4 ( , >60 , > 61, > 62 • . . > 7F I ) , 

4 ( , >80, >81, >82 ... >9F' ) 4 ( ' >AO, >"1, >"2 ... >BF ' ) 

G-l 



This format statement puts 24 rows of 32 characters in the 

Pattern Name Table (VDP RAM >0 - >2FF), but it puts 48 rows of 

64 blocks on the screen (each byte in the PNT corresponds to a 2 

x 2 block of 4 x 4 dots on the screen) VDP RAM locations 0, 

>20, >40, and >60 all have the value 0, but RAM (0) uses the 

nybbles at >800 and >801, RAM (>20) uses the nybbles at >802 and 

803, RAM (>40) uses the nybbles and >804 and >805, RAM (>60) 

uses the nybbles at >806 and >807. 

The value in each byte of the PNT is the number of the 

character in the Pattern Generator. Although each character in 

the Pattern Generator consists of 8 bytes, the system has a 

painter for each byte in the PNT which tells it which two bytes 

of that charater it uses to color the quadrants. The nybbles in 

these two bytes are used as follows: 

The fi r st byte'S MSN describes t h e upper left qu adrant's 

color 

T he first byte'S LSN describes the upper right 

quadrant's color 

The second byte's MSN describes the lower le ft quad

rant's color. 

The second byte's LSN describes the lower right 

quadrant's c olor. 

Figure G.l shows the ranges of XPT and YPT and t he VDP 

nybble assignments. As you can see fr om th i s drawing there is a 

type of indexing of t he !Jytes in an 8 - byte pat.te:-:1 gene:-at o r 

block ~hich corresponds t o YPT. For example: 

G-2 



) 

) 

Index into Pattern Generator 

o 
1 

2 

3 

4 

5 

6 

7 

YPl' Values 

0, 8, 16, 24, 32, 40 

1, 9, 17, 25, 33, 41 

2, 10, 18, 26, 34, 42 

3, 11, 19, 27, 35, 43 

4, 12, 20, 28, 36, 44 

5, 13, 21 , 29, 37, 45 

6, 14, 22, 30, 38, 46 

7, 15, 23, 31, 39, 47 

When XPT is even, then MSN of each byte 

XPT is odd, the LSN of each byte is used. 

is usedj and when 

After the screen has been initialized with the format 

statement as described above, bit 1 of CPU RAM location >FD must 

be set. Once this bit is set, you cannot use format statements 

to change the screen. All changes to the screen must be done by 

setting XPT and YPT to specific values and storing the color you 

wish for that block in the character buffer (CB = CPU RA,.\1. 70). 

For example, the instructions: 

ST 37,@XPT 

ST 13,@YPT 

ST 4,@CB 

would put a 4 x 4 dot block of color 'blue 2' at the specified 

place on the screen and also put a 4 in the right nybble o f VDP 

RAM ( >995 ). A st o re in CB does not affect the PNT si nce the 

values from the initial format statement are the only ones which 

allow MeMO to work correctly. 

G-3 



The ALL inst ruction may be used in this mode to change the 

screen. For example: 

ALL >24 

will look at VDP RAM (>920->927) and fill the screen with these 

colors in 2 x 8 blocks of 4 x 4 dots. It will also store >24 in 

VDP RAM (O -> 2FF). Since the ALL instruction changes the values 

in the PNT, before successful use of MeMO can be made, the 

programmer must reset bit I of CPU RAM location >FO and 

re-initialize the screen with the format statement above. ' Then 

set bit I at location > 'F'O ' and proceed as above with a store to 

CB of a color. 

G-4 



, 
w 
Cl 
o 
~ 

, ! I 

, , 

, ' 

; , 

! , I 

, , 

, , , 

,. 

>- =- ...... 

, I 

~ , 

f 

I I 
I 

I I 

I I 

I ' 
I I 

I , 

, 

, ' I 

, , 
, 

, 

, 

, 

I , 

I , 
I 

, ' 

' T 

I 
I , 
I , 

, ' 

" , 

; , 
I , 

I , , , 
I , , 

I ' 

, , ' . 
I 

, , 

, ' 

I 
, , . 

, , 
, I I 

I I ! 

, , 
I I 

I " , , 
--'- I; 

I I 

i I I 

I i 

: I j ; , , 
, I 

, I 

I I, I 

'. i' 
, I 

I I I 
: I I I 

: I I 
I 

, I 

, 
, , , 

, , 

, 

-, , 

, 

, 
, 

, " , , 
I I ! : , , 
, - -:- . I 

, , 
, I , 

, , 
, ' 

, 

, I , 

: 

I i :.-
. . .!... 

-, 
, , 

:- _ ~ i 

" , 

.- - ----, 
_. 

-, 
"' __ .J 

, 

. i 

.. J 
I 
I 

- -I 

, 
. .. , 

-

, 



APPENDIX H DEVICE I/O 

Each GROM or ROM that contains programs that may be accessed 

by programs outside of that ROM or GROM need a header. There 

are 6 types of programs currently defined. They are power up, 

user application, device service, subroutine links, BASIC sub

program libraries, and interrupt service ,programs. Every type of 

program except user application programs, BASIC subprogram 

libraries, and interrupt service routines can be in either ROM or 

GROM. User application programs and BASIC subprogram libraries 

can only be in GROM. For every type of program in a GROM or ROM, 

t here is a chained list of program headers. The first program 

header of each type is pointed to by an entry in the GROM / ROM 

header. GROM/ ROM headers must be l ocated at the beginning of a 

GROM or ROM. Program headers can be located any .... here. Wi th i n a 

multi-GROM package the GROM headers and program headers may be i n 

the same or different GR0r>1s. Table H.l sho .... s a GROM/ ROM header 

and Table B.2 shows a program header. 

MONITOR FUNCTIONS 

1. SYSTEM INIT! ALI ZATION 

The monitor will start every application program with al l of 

RAM in a defined state. CPU RAM will be zer o ed except for 

>70 through >81. Location >70, >71 contains the highest 

address in VDP RAM. Location >72 will contain >9F and is the 

data stack pOint'!!'. Locat i on >73 ( t he su!n out in e s tac :< ? oi:1 t ': r ) 

is initial i zed t o >72. Locat io n >74 i s :e: o . :,~e o tne: 

loca t ions ( >75 t o >81 ) have undefined values . 

H-1 



) 

LOCATION SIZE 

xooo byte 
XOOl byte 
X002 byte 
X003 byte 
X004 word(2 by tes ) 
X006 .... ord 
X008 word 
XOOA word 
XOOC word 
XOOE word 

TABLE S.l 

GROM HEADER 

CONTENTS 

>AA valid identification 
version number 
number of program 
reserved 
address of first rpo .... er up routine header 
address of first ~ser program header 
address of first nSR header 
address of first stibrouti ne link header 
address of first ~n terrupt link 
address of first . BASIC subprogram 
libraries 

The address of any program types should "be 0 in the GROM / ROM 
header if there are no programs of that- type. The number of 
programs and verisan number are not curr~ently being used but 
should be used for future expansion. 

SIZE 

word 

word 
byte 
N. bytes 

TABLE H.2 

PROGRAM HEADER 

CONTENTS 

pointer of next pro~ram headec "'of the same progr am 
type (0 if end of 11St ) 
entry address of program 
number of characters in pr ogram name (N) 
ASCII character representation of pr ogram name 

B-2 



YDP RAM will have the 6 X 8 character set loaded. Th e YDP 

registers will be set f or th e standard locations (s ee Table 3.4, 

pag e 3 - 10. The screen will be blanked and the color table will 

conta i n all >17. All the rest of VDP RAM will be zeroes . 

2 POWER-UP RO UTINES 

The monitor initializes the 5ystem by calli ng p ower - up 

r outines. The console power-up rout ine executes f irst. This 

r ou tine puts up the in itial screen and menu and calls the 

selected program. Next. the moni t or :searches peripheral ROM and 

GRaM headers for power - up routine addresses and executes them as 

it finds them . After each power - up routine is execut ed, a search 

is made for the next one. When there are no mor e power - up 

routines found. the selec ted program is started with t he system 

initialized as desc ribed in Section 1. 

Each ROM power-up can use RO - Rl0, but cannot use >55 and 

>6D l.n CPU RAM. R12 will be :set up with the proper CRU address 

to address the attached peripheral's eRU. The ROM power - u;> 

r outine should end with a B - Rl l to return to the system. 

GRaM power-up routines are ca~le d fr om CPL. They can be 

located 1n any sl ot of the library peripheral. They may not use 

subroutine links or call DSR 's. The return is ac co~plished by 

moving 2 bytes f ro m the data stack t o the subroutine s:.ack, 

decrementing the data stack poi nter by 2, and then doing a ret urn 

in :struct:'o n. 

?o;.rer- u;l :'0'..: :'i:::es ca:l :.JSC: C?U ;1:A:~ > ... co >71 :'~r '.l:::ate':,?:, 

they need. The y may a l so use al l of VDP RAM, They must no:. 

H- 3 



change the data or subroutine stack pointers upon return to the 

monitor. 

3. GENERAL SUBROUTINES PROVIDED BY THE MONITOR 

The monitor provides a group of subroutines that are of 

general use in many applications. These include mathematical 

functions, character sets, certain sounds, and application exit. 

The mathematical functions are described ' in Appendix K. 

There are two routines to load VDP RAM with either a 6 x 8 

or 5 x 6 character set. They are called by: 

CBRl 

CBR2 

EQU >16 

CALL CHRl 

EQU >18 

CALL CIlR2 

( 6 x 8 char,acters ) 

(5 x 6 characters ) 

When they are called, CPU RAM location FA C should be 

pointing to the VDP RAM location of the first character ( space ) . 

There are two routines that give positive and negative 

acknowle dge tones. These are used primarily for acknowledging 

good and invalid key pushes. The two routines are called by: 

TONl EQU >34 

TON 2 

CALL TON 1 

EQU >36 

CALL TON2 

EXIT - RETURN TO MONITOR 

(positive acknowledge ) 

( negative acknowledge ) 

An applicati on program may exit and return t o the monitor 

oy: 

EXIT 

H- 4 



This instruction causes a software reset of the system. All 

power-up routines are executed and the initial screen displayed. 

This should not be confused with a hardware reset. 

BIT REVERSAL ROUTINE >3B 

Purpose: 

Input: 

Call: 

Output: 

Excepti ons : 

Provide a quick way to form mirror image bytes 

in VDP RAM 

FAC address of data in VDP (CPU RAM 

location >4A) 

FAC+2 number of bytes to reverse 

BITRVR EQU >3B 

CALL BITRVR 

Every byte in VDP RAM fr om t he first 

address pointed t o by FAC to the byte 

pointed t o by the addre ss + numbers of 

bytes in FAC+2 is bit reversed. "!'his 

means bits 0 and 7 are exc h anged , 

bits I and 6 a re exchanged, bits 2 and 

5 are exchanged, a nd bits 3 and 4 are 

exchanged to give a mirror image of the 

by te. 

None 

Side Effects: CPU RAM from >00 t o 

destroyed. 

> 4 0 will be 

H- 5 



) 

) 

) 

WRITING I/O ROUTINES 

1. SUBROUTINE AND DSR CALLS 

Subroutines and DSR's may be called through the monitor. 

The monitor is passed the name of the routine in VDP RAM. The 

name location in VDP RA .... "" is pointed to by a 2-byte value in CPU 

RAM >56. The VCP locations contain a one-byte count of the 

number of characters in the name followed by the ASCII , 

representation of the name ~ith a "." (period) and s o me more 

characters. This may be repeated any number of times. The 

routine name the monitor uses c onsists of the string up to the 

first period , if any. The routine itself is called by 

CALL LINK LINK EQU >10 

DATA BYTE 

where byte is 8 for a DSR and > A for a subroutine link. The 
, 

subroutine or DSR should re turn by 

CALL RETN EQU > 12 

If the routine is in ROM. Rl will c o nta in a version number 

starting with 1. Eve ry t ime a r o utine is f ound with the right 

name, RI is incremented. This enables a r ou t ine to determine its 

positio n re l a tive to oth e r routines of t he same name. If the 

versi o n number is wr ong , t he r ou tine should B *R II without 

changing any registers. If t he routine is execu ted , i t shou l d 

return by incrementing RII by 2, and branching indirect on RII. 

Reg i ste rs RO - RIO can be used, as well as CPU RAM locations 4A 

th:u GD. Rll has the r et'Jrn address fo~ ROM c ode and R1 2 '", i :: 

be pointing to the peripheral C~U space. 

H-6 



For GROM programs, the subroutine or DSR may reside in 

another library peripheral slot. The subroutine or DSR calls may 

be nested. Each GROM subroutine or DSR call takes 4 bytes of 

subroutine stack. ROM subroutines and DSR ' s called through the 

monitor may not be nested. 

2. INTERRUPT ROUTINES 

Interrupt routines may only be in peripheral ROM. Inter rupt 

routines may not use R9 or the subroutine stack. R8 must be 

cleared before returning if the interrupt uses it. Every 
, 

interrupt that is not recognized as being a console interrupt 

causes the interpreter to execute every interrupt service routine 

that it can find in a peripheral ROM. These routines may use 

RI-R8 and RIO. Rll has the return address and Rl2 must be 

returned wit h t he same value . If the DSR enables the interrupt, 

it should wait for all processing to be complete before disabling 

the interrupt and returning to the application program. 

Because o f the execution of an interrupt routine only as 

part of a DSR, the DSR and interrupt routine can split the 

allocation of CPU RAM from >4A to >6D. Interrupt routines that 

service interrupts in any other way may only use RI-RlO. All 

interrupt routines end by a RT instruction. 

8-7 



) 

APPENDIX I CASSETTE DSR 

DEFINI nON 

A file con~lsts of a collection of data groupings called 

l ogical reco r ds . This division of the file into logical records 

does not necessarily correspond to the physical division of data 

00 the medium (like a block on a d~sk ) . 

types of records: 

Thus I there are tw o 

• Logica l records - the data gr oupi ng of a file as seen by 

the BASIC interpreter or other application programs. 

• Physica l records - the buffers physically transferred 

between memory and medium. 

File I /O from a program 13 done on a logical record basis. 

The manipulation o f physical records 1s done by the DSR. 

All cassette files are sequential and allow variable length 

logical reco r ds. When a file is created, the 10g1ca1 record size 

must be specif ied . F or sequential files the specif icatio n is 

optional. If specified, the logical rec ord s i ze is used as an 

upper li mit f or any logical record s ize o f that file. 

The physical record size for any med iu m is specified w i t hin 

the DSR and is i mpl ementation dependent. 

PATTERN NAME TABLE 

When t he cassette DSR is used, the PATTERN NAME TABLE !!l ust be 

located at address 0 1n VDP RAM. 

I - 1 



MODE OF OPERATION 

A file is opened for a specific mode of operation, specified 

1n the OPEN I /O call. The three modes of operat ion are: 

• INPUT - the contents of the file may be read, but they 

may not be altered. 

• OUTPUT - the file is being created . It ls contents may 

be written but not read. 

e APPEND - new data may be added at the end of the file, 

but the contents o f the file may not be read. 

This is the same on the cassette as output mode. 

Each DSR decides whe ther or not a specific mode f or an I/O 

operation can be accepted by t he corresponding device . 

IMPLEMENTAT ION 

As ment ioned, the DSR ' s should present a uniform interface 

between the F ile Management System and the peripherals . This 

section will give implementation details on this interface. 

PERIPHERAL ACCESS BLOCK DEFINITION 

All DSR 's are accessed through a so called Peripheral Access 

Bloc k (PAB ) . The definition for t hese PA3's is the same for 

every peripheral. The only difference between peripherals is 

t hat some peripherals will not support every option provided for 

in the PAB. 

All PAS' 5 a=e ph:,sically loc~t.ed i:1 VDP RA:1. Tr.ey 3:-e 

created before the O?E':'1 call, anc are not to be releasee until 

the I /O has been closed for that device or file. 

1-2 



) 

) 

Figure I.1 (page 1-6) shows the layout of a PAS. The PAS 

has a variable length, depending upon the length of the file 

descriptor. 

The meaning of the bytes and bits within the PAS is: 

BYTE BIT MEANING 

o I /O opcode - contains opcode for the current 

I/O-call. See Table 1.2 for available , 

opcodes. 

1 Flagbyte/ statu5 - all the information the system 

needs about file-type, mode of operation, and 

data-type, is stored in this byte. The mean-

ing of the bits within this flagbyte is (bi t 7 

is most significant bit, b it 0 is least 5i9ni-

ficant bi t). 

o Filetype - indic ated file-type 

o = Sequential file 

1 = Relative record file 

(Cassettes are always sequential. ) 

1-2 Mod e of operation - indicates operation mode file 

has been opened for: 

00 = UPDATE 

01 = OUTPUT 

10 = INPUT 

11 = APPEND 

Cassette DSR does not support updatp. or 

append . 

I - 3 



BYTE 

2-3 

4 

5 

BIT 

3 

HEANING 

Datatype - indicates type of data stored in the 

file. DISPLAY type data comprises standard 

ASCII data. INTERNAL type data is imple

mentation dependent . 

o = DISPLAY 

1 = INTERNAL 

4 Recordtype - indicates type of record used. 

o = Fixed length records 

1 = variable length records 

5-7 Errarcode - these three bits indicate, in 

com,bination with the I / O opcode, the error 

type that has occurred (0 = no err o r ) . 

Data buffer address - address of the data buffer 

the data has to be .... ritten to or read fr o m. 

The buffer is al~ays in VDP RAM. 

Logical record length - indicates the logica l 

record length for fixed length rec o rds, or the 

maximum length for a variable l ength rec o rd 

(see flagbyte ) . It is rounded up to the next 

highest multiple of 64. 

Character count - number of characters t o be 

transferred in write mode, or the number o f 

bytes actually read in read mo de. It is used 

by the cassette DS~ only f o r ::ead s and ' .. ;r i tes. 

1-4 



BYTE BIT 

) 6-7 

8 

) 

9 

10+ 

I 

MEANING 

For cassettes, the record number is used for the 

number of bytes to load or save. This number 

must be larger than the number of bytes o n the 

cassette record. This number is rounded up to 

the nearest multiple of 64 by the cassette DSR. 

Screen offset - offset of the screen characters 

in respect to their normal ASCII value. This 

is used if your characters ace not at the 

default positions in VDP RAM. It enables the 

cassette DSR to use your character set for 

messages. The cassette DSR messages look best 

using the small character set. 

Name length - length of the file descriptor 

following the PAB. 

File descriptor - devicename. The length of this 

descriptor is given in byte 9. There are two 

valid names for cassettes: 

CSI - cassette unit 1 

CS2 - cassette unit 2 

1-5 



*----------------------------------------------------* 
1 0 1 1 1 
1 I / O OPCODE 1 FLAG / STATUS 1 
1 1 1 
1----------------------------------------------------! 
1 2- 3 1 
1 D A TAB U F FER ADD RES S 
1 
1------- ---- - ------------------- ------- --------------1 

4 1 5 1 
LOG ICAL RECORD LENGTH CHARACTER COUNT 

1----------------------------------------------------! 
1 6-7 
1 RECORD NUMBER 
1 
1----------------------------------------------------1 

8 ! 9 
SCREEN OFFSET NAME LENGTH 

!-- ------------------- --------------- ----------------! 
10 .. . 

FIGURE 1.1 PAB LAY OUT 

1- 6 



) 

I/O OPCODES 

This section describes the valid opcodes that can be used in 

the PAS. These valid opcodes are shown in Table 1.2 (page 1-6 ) 

The following section will describe the general actions 

caused by an I /O-call with each of the I /O-opcodes . Each 

I/O-call returns any err or-codes in the FLAG/STATUS byte of the 

PAB. 

OPCODE 

00 

01 

02 

03 

04 

05 

06 

07 

08 

09 

TABLE 1.2 

MEANING 

OPEN 

CLOSE 

READ 

WRITE 

RESTORE/R~dIND (not supported ) 

LOAD 

SAVE 

DELETE FILE - NO OPERATION 

FOR CASSETTE 

SCRATCH RECORD - NO OPERATION FOR 

CASSETTE 

END OF FILE TEST (not supported ) 

I / O OPCODES 

1-7 



The OPEN operation should be performed before any data 

transfer operation. The file remains open until a CLOSE 

operation is performed. The mode of operation for which the file 

has to be OPENed should be indicated in the flag byte of the PAB. 

In case th is mode is OUTPUT, APPEND or INPUT, the record length 

(64) is returned in byte 4. 

An OPEN operation must be performed before any other 

operation except LOAD or SAVE. Consistent use of OPEN and CLOSE 

is recommended Eor all files and devices; howeve r, neither the 

OPEN nor the CLOSE operation is required for devices. 

Close 

The CLOSE operation informs t h e DSR that the current I/O 

sequence t o that DSR has been completed. 

After the CLOSE operation, the PAS i.s no longer needed, so 

it can be released. As long as no CLOSE operation is performed 

on a n actille PAS, this PAS has to be preserved. 

Read 

The READ operation reads a record from t he selected device 

and stores the bytes in the spec ified buffer. The buffe~ address 

is specified in PAB entry 2 and 3, and the buffer size is 

specified in PAB entry 4. If the length of the input record 

exceeds ~;,e :,uffe: s i ze, t~e record is not ~e2d and 2:"1 e::!':l: :S 

returne': . 

I- B 



Wr i te 

The WRITE operation writes a record to the specified device 

from the buffer specified in the PAS. The number of bytes to be 

written is specified in byte 5 of the PAS . 

Restore/Rewind 

The RESTORE/ REWIND operati on repositions the file read 

pointer to the beginning of the file. 

A RESTORE can only be used if the fi Ie is opened for INPUT 

mode . RESTORE itself does not perform any READ operati on . 

Load 

The LOAD opera tion loads an entire program from an external 

device or file into program memory. All the control information 

for BASIC is contained in t he load file. Since all information 

is directly written to pr ogram memory without intermediate 

buffering, no buffer memory needs to be assigned. 

The LOAD ope rat ion is a stand alone operation , i.e., the 

LOAD operation can be used without previous OPEN operation. 

For the LOAD operation, the PAS needs to contain the 

following information: 

Bytes 2 and 3 sho uld contain the start address of the 

prog ram memo ry. 

Bytes 6 and 7 should c on ta i n the maximum number of bytes 

available for the ?~ogram. 

Aside from the I / O opcode and the file descriptor, no more 

) information is required fo r the LOAD operation. 

1-9 



Save 

SAVE is the complementary operation for LOAD. Instead oE 

loading a program from a device or file, it writes a program from 

program memory to a device or file. Again, only a small part oE 

the PAB is used. Aside from the usual information ( I /O opcode 

and file descriptor ) , the PAB should contain the start address of 

the program to be SAVEd in bytes 2 and 3, and the number of bytes 

to be SAVEd in bytes 6 and 7. 

BASI C automatically saves all the control informati on 

necessary for reloading of the program, together with the program 

code. 

Delete 

The DELETE operation deletes the specified file fr om t he 

specified device . Th is operation also CLOSEs the I / O sequence. 

The DELETE operation can only be used in UPDATE, APPEND or OUTPUT 

mode. (No operation for cassette.) 

scratch Record 

The SCRATCH RECORD operation scratches the specif ied record 

from the specified (rel ative reco rd ) file. The record t o be 

scratched is specified in byte 6 and 7 o f the PAB. This 

operation wil l cause an error for sequential files and devices . 

(No operation f o r cassette . ) 

VERIFY 

The VERIFY command all ows the record on tape to be c ompa red 

against what is in VDP RAM. It will return an error code if the 

1-10 



) 

record is unreadable or if there is a difference between the 

tape's data and the VDP data. 

ERROR CODES 

The F ile Management System shall support the following 

error codes: 

1. BAD DEVICE NAME 

the device indicated is not in the system. 

2. ILLEGAL OPERATION 

either an invalid operation was specified, 

or a conflict with the OPEN mode has occurred. 

3. DEVICE ERROR 

covers all hard device errors, such as parity and bad 

medium errors. 

ISSUING THE COMMAND TO THE CASSETTE DSR 

After the PAB is set up, the cassette DSR is called by 

putting the address of the name length ( byte 9 of the PAB ) in CPU 

RAM location >56 and then calling a subroutine at location >10 

in GROM O. This is illustrated as follows for a save routine: 

DSR EQU >10 

NAMLEN EQU >56 

Address of sub routine 

Address of byte 9 of PAa 

1-11 



MOVE 13 FROM ROM(tPASCAS) TO R~~ ( 500) 

DST t >509, @NAMLEN Address of byte 9 of PAS in VDP 

CALL DSR 

DATA 8 *Tells subroutine this is a DSR 

PASCAS DATA >06 Ope ode for save 

DATA > 02 Sets output status f or save 

DATA 1>600 Address in VDP of data buffer 

DATA >40 Fixed record leng th size f or cassette 

DATA >00 Character count f o r casse tte 

DATA t > 6FO Number of bytes to be read 

DATA >00 Bias f o r ASCII characters 

DATA >03 Length of name of device 

DATA :CS1: Name of dey ic e* 

* For cassettes t he name of the d ev i ce is predefined as CSl or 

CS2 and these a re the only names you a r e allowed to use. 

AUD IO GATE 

eRU bit 24 is t h e a udio gate bit wh ich allows data being 

read t o be heard. If t he bi t is set t o 1, t he data being read is 

heard, a nd if the bit i s set to 0, t he data is not heard. 

Set ting this bi t t o a 0 or 1 is done wit h an I / O ins t ruction. 

:-!O':'OR CON':'ROL 

There are t· ... o CRU bits ( 22 a nd 23 ) used t o control cassettes 

1 and 2, re spectively. When t here is no Cassette I / O being done, 

1-12 



) 

both motors remain on. When Cassette I/O is specified, the DSR 

will control the data being read. If there are two motor uni ts 

connected, the data will be read simultaneously, or you may have 

the option of reading data from one motor unit and playing the 

recorded voice from another motor unit through the TV speaker. 

1-13 





srA'lUS 
~IC OFCODE (» FOR-IAT AF1"EL"lfD INSTRUCl'Ioo =00 

DIV }C 1 AIL DIVIDE 4.4.4 

EX CO 1 NONE EXOIRlGE 4.4 .17 

EXEX: II 5 AIL !lI\S I C EXro1I'E 

EXIT OB 5 NONE EX IT PRCXiRJ>M 4.5.8 

FmOl 88 6 N:NE FE:"rCH ERCM CAlL 4.2.6 

EMT 08 7 EOIMAT &:REEN 4.5.4 

GT OA 5 = GRFATER $TA'lUS TO = 4 .1.2 

H 09 5 = BIG! srA'lUS TO = 4 .1.1 

INC 90 6 AIL IOCREMENr !r{ CNE 4.4 . 5 

INCT 94 6 ALL INCREMmT !r{ '!WO 4.4.6 

I /O F6 8 N:NE SPECIAL I/O 4.5.9 

INV 84 6 NONE INVERT (CNE'S CXMPLEMENT) 4.4.11 

M:lVE 20 9 N:NE M:lVE DATA 4.4.20 

M A8 1 NONE MJLTIPLY 4.4.3 

MJL A8 1 N:NE flJLTIPLY 4.4.3 

NEt; 82 6 NONE NEXiATE ('!WO' S CCMPLEMrnT ) 4 . 4.10 

CR 64 1 AIL r.a:;ICA!. OR 4.4.13 

OVF 00 5 = o.JERFI.aoI STA'lUS TO = 4.1.4 

PARSE DE 2 AIL !lI\SIC PARSE 

pugj 8C 6 NONE FUgj DATA STACl< 4.4.18 

RAND 02 2 N:NE RANCCM NU1BER 4.5.5 

RB BO 1 ALL RESE."rBIT 4.3 

R'IN 00 5 = R!:JUm rn<M SUBRCUTINE 4.2.7 

.;:em :2 5 AU.. CAS! C RE':"..J'"R'J 

R'INC 01 5 N:NE R!:JUm !RCM SUBRCUTINE 4.2.8 

S A4 1 ALL SUBI'RJCr 4 .4.2 

J-2 



SfA1US 
MNEM:NIC Oro::JDE(» FOR1AT Al''F'EC'IEO INSTruJC!'ION =00 

58 B4 1 ALL SEI' BIT 4.3 

SON 03 5 enID SON KEYBJARD 4.5.6 

SIL EO 1 N:NE SHIFT LEFT LCX;ICAL 4.4.21 

SRA DC 1 NJNE SHI FT RI QlT I\R I'lHIo!EI'I C 4.4.22 

SOC E8 1 !OlE SHIFT RIQlT C IRCllLAR 4.4.24 

SRL E4 1 roNE SHIFT RIQlT LOGICAL 4.4.23 

Sf B: 1 !OlE S'ImE 4.4.16 

SUB A4 1 AlL &JE!l'RJ'CI' 4.4.2 

TIlR D8 1 CIJND TEST BIT RESE:r 4.3 

XML OF 2 NJNE = Ml>D!INE U\NGUta: 4.5.7 

XOR B8 1 ALL LCX;ICAL EXCWSI \IE OR 4.4.14 

The following instructions are used to access BASIC 

Language: 

EASIC COntinue 

PARSE B.aSIC Parse 

RINB &.SIC Return 

BASIC Execute 

J-3 



o 

l 

) 
., 
.0 q 
.0 ,., 
Z 

5 
~ 

<. c 
, m 

u 6 
~ .~ 

~ 

c 7 
m 
.~ 

~ 

~ 
U 

~ 
0 

:;: 9 

A 

U 

C 

11 

F 

PAIl! 2 INSTRUCTION MAP 
Leas t Si9n if icant Nybble 

U 1 2 ) 4 5 6 7 0 9 A 0 C D E f 

"-;~ lln_~~J _ ~'A;'~1 5_r~AiL um1~~ CALLI AI LI~-;-j II GT L.:0jCARRVI ovr I PARSE I XML 

I liNT EXEC, RTllU UNUSED 
- -- -- ---- -------.-.- -- -----------------------~ 

I·IOVE 

------------_._-----_._-------------- ,,---------
UR 

-----------. ---- ---------------- -

OS 

· ~u;-_: I~ ~,[G __ r-,N-V--I-- CLR b TCll1 I CASE I I PUSII I CZ 

INC DEC IN CT DECT UNUSED UNUSED 
- - -. I -

SUO Mill 
- . - _. - ______ . ____ • _____________ __ 1 , DIV 

1-
AOIl 

Mil) OR XO R ST 
.- --------- ---- --- -~--.--

(X CII I (lIE CGT 

- -:~: -:~:-=:: :~--~~:--==~ ~-:-:~~~~=r-=-- C~: ---- ;~s~D10 1-~~~USE-D 
--U-t~,~,~;) - . - -- -- ~ - _-_::~ -~~ -_- ~II-/~I-~_~ _~~-__ -._-_____ . ___ UN-U=SE:~_-__ ~: . __ _ 



APPENDIX K FLOATING POINT OPERATIONS 

There are several subroutines in the monitor which can be 

called from a GPL program. These subroutines are described in 

this appendix. It is important the progranuner realize that when 

one of these subroutines is called the contents of CPU RAM 

locations >4A through >6F may be used, a~d VDP RAM locations >3CO 

through >3DF will be used for rollout. 

The mathematical function subroutines provided in the 

monitor include convert number to string, greatest integer, invo

lution, square root, exponential, natural log, c osine, sine, 

tangent, and arctangent. The CPU RAM locations used by these 

routines are: 

FAC is CPU RAM >4A (8 bytes) 

ARG is CPU RAM >5C (8 by tes) 

STATUS is CPU RAH >7C 

SGN is CPU RAM >75 

EXP is CPU Rk'l >76 

IlSPTR is CPU RAM >6E ( 2 bytes ) 

FPERAD is CPU RAM >6C 

FLOATING POINT ERRORS 

When err o rs occur during the execution of floating point 

routines, they are indicated by a non-zero value being placed in 

CPU RAM location FAC+10 . If an error has occured, the user 

?rog:a~ is t~e~ :esp onsi~~e ~~: clea:ing ~~~s ~=:c: ::~g 

location. 

K-l 



) 

) 

Error Codes: 

WRNOV >01 - warning, overflow 

DIVZER >01 - division by zero 

ERRSNN >02 - syntax error 

ERRIOV >03 - integer overflow on cohversion 

ERRSQR >04 - square root of negative number 

ERRNI P >05 - negative number to non-integral power 

ERRLOG >06 - log of negative number or zero 

TRIGER >07 - invalid argument in trig functi on 

CNS - CONVERT NUMBER TO STRING 

Purpose: 

Input: 

Convert a floating point number to an ASCII 

string. 

FAC The f loating point value. 

FAC+ll If set to 0, the output string will be 

in BASIC format. If greater than 0, 

represents output in CALCULATOR mode. 

The contents are the effective 

calculator ... idth, exclusive of dec imal 

po i n t . The f ollo wing tw o cells are 

also required in CALCULATOR mode. 

FAC+12 If zero, express overflow from 

calculator range by .. or - EE ... E. 

Underflow is ex?ressed as O. If 

positive, under- or o ver-:~o'''' f ::-cm 

calculator range is expresse d in 

E-format using the number of 

K-2 



CALL: 

Output: 

significant digits specified by this 

cell. 

FAC+l3 The number of digits t o fix to the 

right of the decimal pOint. A 

negative value disables the FIX mode. 

CNS 

CALL 

FAC 

EQU 

CNS 

>14 

The FAC contents will be modified due 

to rounding performed for display 

purposes. 

FAC+ll Points to the beginning of the result 

string. The string will be entirely 

contained within the floating point 

sc ratch area between FAC and FPERAD. 

FAC+l2 The length of the string, in bytes. 

Except ions: None 

INT - GREATEST INTEGER FUNCTION 

Purpose: 

Input: 

compute the greatest integer contained in a 

floating point value. 

FAC 

!NT 

The fl oating point va:ue. 

EQU > 22 

K-3 



) 

Call : 

Output: 

Exceptions: 

CALL 

FAC 

INT 

The greatest integer contained in the 

floating pOint value. For positive 

numbers the integer is the truncated 

value. For negative numbers the 

integer is the truncated value plus 

one. 

STATUS The status byte is set according to the 

contents of FAC after the operation. 

None 

PWR - INVOLUTION ROUTINE 

Purpose: 

I npu t: 

Call: 

Output: 

Raise a number, B, to a specified power, E 

FAC 

STACK 

PWR 

CALL 

FAC 

The exponent, E. 

The base, B. 

EQU >24 

PWR 

The result, B**E. The result is c om-

puted as EXP I E * LOG (ABS ( B »)) . If B 

is negative and :c: is an odd integer, 

the result is negated. 

K-4 



Exceptions: 

STATUS The status byte is set according to the 

contents of FAC. 

Negative number to non-integer power. 

Zero raised to a negative power. 

Overflow if result greater than maximum 

value . 

K-4 

Side Effects: SGN and EXP are destroyed. The 

prev ious FAC contents are destroyed and 

the contents of VSPTR are decremented 

by 8. 

SQR - SQUARE ROOT ROUTINE 

Purpose: 

Input: 

Call: 

Output: 

compute the square r oo t of a number. 

FAC 

SQR 

CALL 

FAC 

The input value. 

EQU >26 

SQR 

T~e square r oot of the number. 

STAT~S Set accorc~n9 t o the contents of FAC. 

K-S 



) 

) 

Exceptions: 

Side Effects: 

If the input value is negative, the 

ERRSQR condition results. 

SGN and EXP are destroyed. The con-

tents of VSPTR are unchanged. 

EXP - EXPONENTIAL ROUTINE 

Purpose: 

Input: 

Call : 

Output: 

Exceptions: 

Side Effects: 

Compute the inverse natural logarithm. 

FAC 

EXP 

CALL 

FAC 

STATUS 

The input value. 

EQtJ >28 

K-S 

EXP 

The inverse natural logarithm. 

Set acco rd i ng to the con ten ts of FAC. 

Overflow of the result causes the WRNOV 

condition. 

SGN and EXP are destr oyed . The 

contents of VSPTR are unchanged. 

LOG - NATURAL LOGARI~~ ROUT!NE 

Purpose: Compute t he natural log of a number. 

K-6 



Input: 

Call: 

Output: 

FAC 

LOG 

CALL 

FAC 

The input value. 

EQU >2A 

LOG 

The natural log of the number. 

STATUS Set according to the contents of FAC. 

Exceptions: If the input value is zero or negative, 

the ERRLOG condition results . 

Side Effects: SGN and EXP are destroyed. 

contents of VSPTR are unchanged. 

The 

COS - COSINE ROUTINE 

Purpose: 

I npu t: 

Call: 

Output: 

Compute the cosine of a number ( in radians ) . 

FAC 

COS 

CALL 

FAC 

The input value. 

EQU >2C 

COS 

The cosine of the number. 

STATUS Set according to the contents of FAC 

E;{cept ions : :~o~e 

K-7 



) 

) 

) 

Side Effects: SGN and EXP are destroyed. The 

SIN - SINE ROUTIN E 

Pu r pose: 

Input: 

Call: 

Output: 

contents of VSPTR are unchanged. 

Compute the sine o f a number (i n radians ) 

FAC 

SIN 

CALL 

FAC 

The input value. 

EQU >2E 

SIN 

The sine o f the number. 

STATUS Set acc o rding t o the contents of FAe. 

Excepti ons: None 

Side Effects: SGN and EXP are destroyed. The 

c ontents o f VSPTR are uncha nged. 

TAN - TANGENT ROUTINE 

Purpose: 

I npu t: 

Call: 

Output: 

compute t h e ta ngen t of a numbe~ ( i n radians ) . 

FAC 

TAN 

CALL 

The input va l ue. 

EQU 

TA.'1 

>30 

lAC The ta ng ent of the number (i n radians ) . 

STATUS Set according to the contents of FAC. 

K-8 



Exceptions: If the input value causes an overflow 

the WRNOV condition results. 

Side Effects: SGN and EXP are destroyed. The 

contents of VSPTR are unchanged. 

ATN - ARCTANGENT ROUTINE 

Purpose: 

I npu t: 

Call: 

Output: 

compute the arctangent of a number (in radians ) 

FAC 

ATN 

CALL 

FAC 

, 

The input value. 

EQU 

ATN 

>32 

The arctangent o f the number. 

STATUS Set according t o the contents of FAC. 

Except ions: None 

Side Effec ts: SGN and EXP are destroyed. The 

contents of VSPTR are unc hanged . 

The floating point routines provided in ROM are convert 

string to number, convert floating t o integer, floating add, 

floating subtract, floating multiply, floating divide, f loating 

compare, stack add, stack subtract, stack mu ltipl.y, stack di'Jide, 

and st3ck com?a:e. All numbers a:e 8-bits. 

As a number is usee on the val~e stack, t;,~ stac :< poi:1te: is 

incremented by 8. All errors a:e returned in location FAC + 10. 

K-9 



) 

Only overflow errors are detected and the code is 1 f or a 

floating point overflow and 3 for integer overflow. 

CSN - CONVERT STRING TO NUMBER 

Purpose: 

I npu t: 

Call: 

Output: 

Convert an ASCII string t o a floating pOint 

number. 

FAC 

CSN 

XML 

FAC 

Address of the string. 

EQU >10 

CSN (The instruction FLTPT will 

generate the same code as 

XML) 

Number returned here. All numbers are 

returned in internal format which is 

radix 100. CPU RAM space FAC thru 

FAC.9 should be reserved for the 

answer. 

Error code ( >01 - overflow ) 

CFI - CONVERT FLOATING POINT TO INTEGER 

Purpose: 

I npu t: 

~ rounded conversion of a floating point num ber 

to an intege r. 

FAC Floating point numbe: 

CFI EQU >12 

K-10 



Call: IML CFI 

( 

Output: PAC Integer value returned in first two 

by tes. 

FAC+10 Error code ( >03 - overflow) 

Excepti ons : Range of integer must be -32,768 t o 32,767 , 

FADD - FLOATING POINT ADDITION 

Purpose: Perform addition in ba se 100. 

Input: ARG Left-hand term 

FAC Right-hand te rm 

FADD EQU > 06 

Call : XML FADD 

Output: FAC Result of addition problem. 

FAC +10 Error code ( >01 - overflow ) 

• 

FSUB - FLOATING POINT SUBTRACTION 

Purpose: Perfo rm subtracti o n in base 100. 

I npu t: ARG Left-hand term 

FAC Right-ha nd term 

FSU3 £QU >07 

K- ll 



) 

Call: XML FSUB 

Output: PAC Result of subtraction problem. 

FAC+IO Error code (>01 - overflow) 

FMUL - FLO~TING POINT MULTIPLICATION 

Purpose: 

Input: 

Call: 

Ou tpu t: 

Perform multiplication in base 100. 

ARG 

F~C 

FMUL 

XML 

PAC 

FAC+10 

Multiplicand 

Multiplier 

EQU > 08 

FMUL 

Result 

Err or code ( >01 - Overflow) 

FDIV - FLO~TING POINT DIVISION 

Pu rpose : 

I npu t: 

Call: 

Output: 

Perform d ivision in base 100. 

ARG Dividend 

FAe Divisor 

FDIV 

XML 

F~C 

F~C+10 

EQU >09 

FDIV 

Result 

Error code ( >01 - Overflow ) 

K-12 



FCOMP - FLOATING POINT COMPARE 

Purpose: 

Input: 

Call: 

Output: 

Compare two base 100 numbers. 

ARG First argument to compare 

FAC Second argument to compare 

FCOMP EQU >OA 

XML FCOMP 

STATUS Bits set according to the c ompa re -

High bit is set if ARG is logically 

higher than FAC, greater than bit is 

set if ARG is arithmetica lly 

greater than FAC, condition bit is 

set if ARG and FAC a:e equal. 

SADD - VALUE STACK ADDITION 

Purpose: 

Input: 

Call : 

Perform base 100 addition of the top value on 

the value stack in VDP R~~ with another value . 

ARG 

FAC 

SADD 

XML 

Top number on t he value stack (VDP RAM. 

address pointed to by V5PTR ) is left 

hand term. 

Right-hand term 

EeU >08 

SADD 

R-13 



) 

) 

) 

Output: FAC Result 

FAC ·HO Error code ( >01 - Overflow ) 

SSUB - VALUE STACK SUBTRACTION 

Purpose : 

Input: 

Call : 

Ou tpu t: 

Perform base 100 subtraction of a number from 

the top of the value stack. 

ARG TOP number on the value stack is 

left-hand term 

FAC Right-hand term 

SSUB 

XML 

FAC 

FAC+10 

EQU >OC 

SSUB 

Result 

Error code ( >01 - overflow ) 

SMUL - VALUE STACK MULTIPLICATION 

Purpose: 

Input: 

Call : 

Perf o rm base 100 multiplication of a number 

from the t op of the value stack with another 

number. 

AHG TOP number on the value stack is 

multiplicand. 

FAC Multiplier 

S11uL ECU >OD 

XML SMUL 

K-14 



Output: FAC 

FAC+IO 

Result 

Error code ( >01 - Overflow ) 

SDIV - VALUE STACK DIVISION 

Purpose: 

Input: 

Call: 

Output: 

Perform base 100 divis io n of a number from the 

top of the value stack by another number. 

ARG Top number on the value stack-dividend 

FAC Divisor 

SDIV EQU >OE 

XML SDIV 

FAC Result 

FAC+ IO Error code { >01 - overflow} 

SCOMP - VALUE STACK COMP&qE 

Purpose: 

I npu t: 

Call : 

Out?ut: 

Compare the t op n umber on the value stack to 

anothe~ number 

ARG TOP number on the value staCK - first 

argument 

FAC Second argume nt 

SCOMP 

XML 

Sl'.;TtiS 

EQU 

SCOMP 

>OF 

ARG is c ompared to FAC and the ~!gh, 

greater t han, and condition bits are 

set accordingly. 

K-1S 



) 

RADIX 100 

The internal format for floating pOint numbers is Radix 100. 

Each number c onsists of 8 bytes - an exponent followed by a 

7-digit Radix 10 0 mantissa. A single Radix 100 digit has a range 

in decimal value from a to 99. Thus, a 7-digit Radix 100 numbe r 

~ill correspond to decimal precisi on of 13 to 14 digits. The 

exponents range i n value from -64 to +63, which corresponds t o a 

decimal range of 10-128 t o 10+126 . The result is an equivalent 

decimal range from -9.999999999999 X 10+ 1 27 throug h 

-1 . 000000000 0000 X 10 - 128 ; zero; and then +1.0000000000000 X 

10-128 throug h +9.9999999999999 X 10+127 . 

The firs t byte of the eight byte number is the exponent , 

biased by >40. The remaining seven bytes contain the seven-digit 

mantissa, with the most significant digit first. The number is 

normali zed s o that the decimal point is immediatelY after the 

most significant Radix 100 digit. If the number is negative, the 

first two bytes are complemented. 

Examples : 

1) Decimal value = 12543 

Floating point value = >42, >01, >19, >28, >00, >00, >00, >00 

2) Decimal value = 0.5294 

Floating point value = >3F, >34, >5E, >00, >00, >00, >00, >00 

3 ) Decimal va lue = 23.75 

Floating poin t value = >40, >17 , >48, >00 , >00, >00, >00, >00 

4 ) Decimal value = -2 3.75 

Floating po in t value = >3F, >E9, >~B, >00 , >00, >00, >00, >00 

K-16 



APPENDIX L 9900 ASSEMBLY LANGUAGE 

The VDP chip is accessed by writing to the appropriated 

memory mapped location (see Borne Computer system Memory, CRU, and 

Interrupt Mapping Specification ) . First, the VDP address pointer 

is loaded by writing out, sequentially, two by tes ( low byte 

first ) to the VDP address l ocation. (If the full operation is to 

be a WRITE data to VDP, then the 2 byte address must be ORe a with 

4000 ). 

Because of timing considerations on the VDP, there should be 

a delay of at least 6 usee between a read or write ope rati on and 

loading the address pOinter (or between any two VDP operations ) . 

Data may then be moved from ( to ) the VDP r ead- { wr i te ) -data 

address which will contain the content of VDP memory pointed t o 

by the VDP address register. After each operation the VDP address 

pOinter auto~atically increments and points t o the next locati o n. 

Therefore, the address pointer d o es not have t o be reloaded t o 

move blocks of VDP memory. 

Rl = @MSB ( LSB) two byte VDP address 

R2 = @VDPWA I / O write address 

R3 = @VDPWD address to writ e data 

R4 = @VD PRD address t o read data 

ORI Rl .>400 0 wr i te option 

MOVB @R1LSB.*R2 

MOVB Rl,*R2 

SLA R8.6 delay 

:-IOVB *R4,@LO:: read ca ta ;<4 = .~\iDPR!) 

MOVB @LOC .*R3 write R3 = @VDP\;D 

L- l 



) 

GROM is accessed by ~riting a two-byte address (high order 

byte first) to the appropriate memory-mapped GROM ~rite address 

location. Data may then be moved from (to) the GROM read (write) 

data address which will contain the contents of GROM memory 

pointed to by the GROM address location. After each operation, 

the GROM address po inter automatically increments and points to 

the next location. Therefore, the address pointer does not have 
, 

to be reloaded to move blocks of GROM data. 

Rl = @MSB(@LSB) two-byte GROM address 

R2 = @GRMWA - GROM write address 

R3 = @grmwd - address t o write GROM data 

R4 = @GRMRD - address containing current GROM data 

MOVB Rl, *R2 

MOVB @R1LSB, *R 2 

SLA R8,16 

MOVB *R4,R6 

MOVB R6, *R3 

delay 

move data from GROM address to R6 

move data f rom R6 to GROM address 

To create sound in an Assembly Language program, you create 

a sound list exactly as you .... ould in Graphics La nguage. The 

address of this sound list should be stored in locaion >83CC 

which is CPU RAt'!. locati o n >CC. If this address is in VDP RAM, 

the low order o f R1 4 sh ould be a 1; if t he address is in GRCM , 

the low order bit should be a O. Location >83CE (CPU RAM >CE -

number of sound bytes ) should contain a 1. To a llow for 

interrupt detection, you should do tw o LIMI instructions about 

every 400 i~structions . 

R14LB EQU > 83FD 

ONE BYTE >01 

L-2 



SOUND DATA 

MOV 

MOVB 

SOCB 

>700 ·Sound list in VDP RAM 

@SOUND,@>83CC 

@ONE,@>83CE 

@ONE,@R14LB 

(400 - 500 Instructions ) 

LIMI 2 

LIMI 0 

Sees interrupts greater or equal to 2 

No interrupts except reset or load 

L- 3 



) 

) 

APPENDIX M PROGRAMMER/PLAN~ER STANDARDS 

1.0 PURPOSE 

The purpose of this notebook is two fold. First, it 
is designed to set f o rth the conventions to be applied 
across all Home Computer software in orde r to minimize 
custome r confusion. Our software should be viewed as being 
of the utmost quality, and one way t o accomplish this is t o 
make the interface between the customer and the Home Compu
ter as much the same as is possible, regardless of which 
package he is using. Secondly, it is designed to help re
duce our development cycle time. One way t o accomplish 
this is through the use of common subroutines and functions 
These can be coded and checked out only once . 

This guide is meant to be an evolutionary document, 
therefore , your inputs are requested and updates made to it 
from time t o time. 

M-l 



2.0 SCREEN PROCESSING AND FUNCTION KEY USAGE 

The Primary interface between our s o ftware and the 
customer is through the mo nitor. This occurs with four 
basic types of screens: 

o MASTER MENU - tells user basic package options and 
requires one user response. 

o SUBMENU - used when a gi ven option in turn has 
several suboptions, requires one user 
response. 

o PROMPTS - used to get necessary data from t he 
user to process currently selec ted o p
tions, may be one or more screens, 

o DISPLAYS - provides user with result of selected 
option. 

The interface between these screens can lead to a 
very large c on f usion factor if not handled properly. 

2.1 MASTER MEN U 

Example format would be: 

I INVEST~ENT ANALYSI S I 
I 

l. STOCKS 
2. BLACK-SCHOLES OPTIONS PRICING 
3 . OPTION WRITING 
4. OPTION SPREADS 
s. BONDS 
6. BASIC FINANCIAL TOOLS 

I , 
, 

YOUR CHOICE? I , 
- I 

The usee · .... ould !:'lake !'lis se::"~c:i o n ':> y \;. eying i :"l a :"-6 
anc press ing wT;:?; a!i.] O;:.1er :,es~ on se ·",ou 1. d ca",Se a n e ( =0 : 
tone. 

:-\-2 



) 

) 

2.2 SUBMENU 

If option "l't .... as selected in 2.1, the follo ..... ing 
submenu would appear: 

STOOlS 

1. STOCK PERFORMANCE 
2 . THEORETHICAL STOCK PRI CE 

USING REQUIRED RETURN 
3. EXPECTED RETURN WITH THE 

CURRENT STOOl PRICE 

YOUR CHOICE? _I 

The users now have 2 possible paths to ta ke. The 
normal path is to select a 1 - 3 on the keyboard ( any other 
entry produces an error t one) . The second path is to re
turn to the menu that got them here ( in th is case the 
Master Menu). The SH IFT-Z or BACK key should be used to 
accomplish t his . The SHIFT-W or BEGIN key CQuid also be 
useci . 

2.3 PROMPTS 

For example, if "1" is selected in 2.2, the following 
prompt screen might appear: 

STOCK PERFORM~~CE 

INC014E TAX BRACKET ( % J? 

CAPITAL GAINS TAX RATE (%)? 

TO'!'AL DIVIDEND PER IODS? 

!)IVID E:1i) P£R.! ODS ?::~ YEA..q? 

M-3 

I 
I 



The cursor is located at the first prompt. Here t he 
user has 3 options: 

1. He can key in the requested value, press ENTEF 
and move to the next prompt . 

2. If a "NULL" response is acceptable and the user 
wishes not to enter a value, he can simply press 
ENTER and move to the next prompt. 

3. The user can decide that "STOCK PERFORMACE" wa s 
not really what he wanted t o do. He can press 
the SHIFT-Z key and return t o the menu that g ot 
him here ( in this case t h e "STOCK" submenu ). 

The last pr ompt on the screen is a special case . 
Here again, the user keys in the reque s ted value an d 
presses ENTER. At this p o int, rather than automatical ly 
going to the next logical pr ocess, the following should 
appear at t he bottom of the screen: 

SCREEN IS COMPLETE 
PRESS PROC 'D, REDO, ERASE 

Whe r e: 

PROC 'D means that the us er is read y f or t he prog~am 
to accept t he data just g iven it and it s hould procee d to 
the next logi ca l function - i.e., pr ocess data, a sk for 
more pr ompts , etc. 

REDO means that the user wants t o change s ome of the 
da ta just input so t he p rogram s ho u ld i n effect move the 
cursor b a ck t o the first entr y ( still sho~ing or 
re-d i splaying t he user's las t responses ) and let the user 
mov e thr o ugh the p rompt s vi a the ENTER key chang ing the 
ones he wa nts to. 

ERASE means t hat the use r doesn't want the program to 
use any data just given it - i.e., abort. I n t hi s case, the 
pr ogram sh ould era se t he screen and start it over, thus 
wiping out the use r 's last respon ses. 

The user can also press BACK (SHIFT- Z) - it has the 
same c onota tion as ERASE, in t ha t a ll data input on current 
screen is los t, but it t akes t he us e r back t o the menu that 
lead him to this prompt screen . 

There are se veral special cases that aris~ ~~ 
?rocess:r.~ ~ sc:~=n o f ?r~m?ts : 

REQUIRED A:.JD O~I ONAL PROHP1'S: 

Whe re at a ll po ss ible , a ll required p rom?ts ( pr ompts 
that must be ans .... ered t o solve the p roblem), should come 

M-4 



) 

first and be grouped together. While the user is in the 
required prompt area, the only valid function keys are: 

ENTER - to get to the next prompt 
ERASE - erase screen and start it over 
REDO - change a previously entered value on 

BACK 
BEGIN 
QUIT 

current screen 
- takes user back t o the 
- takes user back to the 
- takes user back to the 

last menu screen 
Master Me nu 
color bar screen 

When the user has completed all required prompts and 
is in the optional prompt area, the above keys a re valid 
with the addition of: 

PROC'O - takes user immediately t o the screen 
complete line. 

REDO CYCLE: 

If the user has c ompleted all required prompts and 
then presses REDO, he is reviewing previ ously entered data 
on the current screen. Once he has made corrections, he 
can press PROC'D which will automatically take him to t he 
"SCREEN IS COf.IPLETE" line . This allows him to bypass 
entries that require no changes rather than having to press 
ENTER to get to t he bottom o f the screen. 

W<lAT-IF MODE: 

Sometimes the WHAT-IF mode of pr ocessihg is 
desirable. This occurs when the user has input a series of 
prompts and upon ob taining the results, wishes t o vary one 
or more parameters and see the resultant change. 

The last ans~e r display screen should end w~th the 
following : 

PRESS REDO, BACK, BEGIN 

Where BACK would take t he user backward to t he first 
prompt screen redisplaying previous answers to the prom?ts, 
BEGIN would take the user back t o the Master Menu, a nd REDO 
'Nould take t:'e user back to the prior screen (i f there is 
one) . 

While processing in the WHAT-IF mode, you can run 
into the situati on where a var iable number of parameters 
can be supplied. For example, t !1e first t im e t !lrough a 
va:~a~le cash fl o~ ana:73~s t~e use: ~~ght h~v~ se:2cte~ :3 
o : :ferent cas:' flo· . ."s . :~ h 2n he e nters t ;,e ~';::.~.:'-!:: :noce, he 
may only want to use 5 cash flows but is redisplayeo the 10 
he previously input. 

M-S 



The 'Way to terminate such a string of data would be 
for him to press ENTER after inputing the 5th item. The 
curs or then moves to the 6th item and the user would press 
CLEAR to put nulls in the field and then press ENTER. The 
curs or then moves to the standard message at the bott om of 
the screen and when PROC'D is pressed, it would disregard 
items 6 through 10. 

The user also requires a certain amount of latitude 
'While dealing with one specific prompt. If he wishes to 
clear a field and start over, he presses CLEAR (SHIFT-C) 
which clears the field and moves the cursor back t o the 
first position in the field. The user also needs t o move 
the cursor either left or right ,t o make c orrections. This 
should be done with the LEFT and RIGHT keys (SHIFT-S and 
SHIFT-D respectively). 

2.4 DI SPLAYS 

Displays are t o ta lly package dependent. Some will 
have headings because t hey are displaying answers or data 
and some will not because they are games, pictures, etc. 

The key, though , is that the user needs to know 
what to do when through with t h e display. 

If a display is multiple screens of data, t he f O:'mats 
should be: 

DATA 

TO CONTINUE, PRESS PROC'D 

DATA 

SCRE~ I S CO~l?LET:::: 

PRESS REDO, BACK, BEGIN 

M-6 



) 

FI RS'I' SCREEN: 

The last line "TO CONTINUE PRESS PROe'On tells the 
user that there is more data t o follow, and to see it they 
must press PROe'D. The only other valid keys at this 
pOint are QUIT, BACK (WHAT- IF mode) and BEGIN. 

SECOND SCREEN: 

The next to last line "SCREEN IS COMPLETE " tells the 
user that there is no more data to be looked at. The next 
line "PRESS REDO, BACK, BEGIN" tells t he user his options 
at this time. 

REDO would take the user back to 
screen prior to this one, if there were more 

the display 
than one. 

BACK would put the user in the WHAT-IF mode and take 
him take him back to the first series of prompts red is
playing previous entries. 

BEGIN would take the user back to the Master Menu. 
Of course, QUIT is also valid at this point. 

If it is necessary to look at data that is wider than 
will fit on the screen, then sideward scrolling is 
required. This should be accomplished with the LEFT and 
RIGHT keys . The LEFT key moves the data t o the left, i . e., 
allows the user t o vie'''! the right hand side of the data, 
and the RIGHT key moves the data to the right, i . e., 
allo ws the user t o view the left hand side of the data. 

M-7 



.. . ~ 'I.I"""V" '~ '-' 

SQ • QUIT 
SW • BEGIN 
"7 • BACK 
.( • REDO 

ST = ERAS E 
SV = PROCEED (PROC ' D) 

E = ENTE R 
SC = CLEAR 
SS = LEFT ARROW 
SO = RIGHT ARROW 

K = SINGLE KEY STROKE 

. , 
! 
! 

SW 

SZ 

~.." " ,n", 

COLOR BAR 

ANY KEY 

GRDM MENU 

K 
1 ___ _ 
2 __ _ 
3 

j sv ! 
DISPLAY 

L~, '---"--. 
I 

I SV 

DIS?L,Y 

M-e 

• 

SC. SS, SO 

SR , ST 

I 
• 

SR 
! 



3.0 
) 

3.1 

SCREEN FORMATS 

If the format the user sees is basically the same in 
any package he uses, he will feel much more comfortable and 
we will project the idea of coherent, well designed 
so f tware. 

MENUS, SUBMENUS 

These categ o ries are for the most part single 
response screens and upon keying in a number followed by 
pressing ENTER takes the user immediately t o the option he 
has selected. 

The first menu the user sees should be the MASTER 
MENU for the package he is running. It should lead him to 
ALL options in the package. The format should be: 

PACKAGE NAME 

1. OP':'ION - 1 
2. OPTION - 2 
3. OPTION - 3 

• 

YOUR CHOICE? 

The number of characte:s in an o pti on has some 
limitati ons . See t he discussion on t he size of a prompt ir. 
Section 3.2. 

The color of the blocks can be left to t he planner's 
discretion, but s hould be consistent throughout c package. 
A suggestion would be: packag~ na~e, opt!on block and 
c~o~=e ~l~c~ 3~O~!~ h a7e t~~ S3~e ~~d ~ ~rn :e~ ~ac~g ~ ou~~; 
wi~h t~ E backg~o~nd ou ~s~ ~e o! t ~~ ~ : ~c~s being cy~n . 

Submenus ~ave the same formats as the m3ster me nu . 

M-9 



3.2 PROMPTS 

The format of a prompt depends entirely up o n the 
question being asked and the age of the expected user. In 
general, the y ounge r t he user, t he mo re explicit the pr ompt 
has t o be. 

The format f or a pr ompt screen sh ould be: 

SCREEN TITLE 

PROMPT' ? 

PRQ.'1PT? 

PROMPT? 

The backgound colors are left up to the p lanner ' s 
d iscret ion . As a suggestion , the background Eor t he 5cre'?r. 
title block and t he p~ompt block should be t he same color 
as t ha t of t he pac kage name block in the menu screen 
(medium red ) , a nd t he main background color ( outsice t ~e 
blocks ) should be cyan (same as menus ) . 

As a rule of thumb, th e prompt a:1o its anst ... er should 
fit on one l i n e of the screen (28 characters ) . Each 
question should be fo llowed by a "?" and underscores to 
represent the maximum size of the ans~e:. For exam?le : 

~~OUNT INVESTED? 

The cursor a nd the underscore should be t he same color, and 
that color should be the light version of the backgrounc. 
As suggested above, the background around the pro~?ts wou:d 
be medium red; t herefore , t he cursor and t h e underscore 
, ... oule be light rea, 

The cursor is a 7X8 dot character, and t he underscore is a 
lX4 dot character. 

~o fac~! i tat! ~ he CC~V!:3~~~ o~ ~u : ?ac~a;!s :ro~ ~ . S . : 0 
an o ther :'anguc:;,ge, 'Ne s;-:CJ:': :<ee? : :-: e ?: orr.;: :3 0.=.5 .5:-: C:: .3.3 
possi':l i e. As a rule 0: tt:um!:l . i t ,., ill ta:';e 25:S more r-::>om 
t o say the same thing in a f orei gn language t ~an in 
Eng lis h . We nee d to keep t h is:' n mine, because we '''' ou le 
also like f or t he prom?t and answer t o still fit on one 
li ne after it is conver~ed to another lar.guage, 

M- IO 



) 

) 

If we will leave a blank line following each prompt, 
then the answer can be mov ed to that line, if required, 
when we translate. For example in U.S. we might say: 

IS THIS CORRECT (YIN)? 

and when translated t o French they might say: 

EST-CE CORRECT (OUI = llNON = 2 ) 
? 

The YES/NO pr ompt is a special type. In the U.S. the 
term (YIN) is acceptable, but as illustrated above "yes " in 
a foreign language does not start with a "Y" . Since we do 
not know what languages we will be t ranslating to, we will 
use "1" for YES and "2" for NO in the f oreign language . 
Therefore, all of our packages should accept a "Y" or "1" 
f or YES and a "N" or "2" for NO. 

Another 
attenti on t o is 
U.S., thinks of 

type of prompt we need t o pay special 
the "DATE" pr ompt. Every o ne, except the 
cates in DAY / MONTH/ YEAR format. 

Fo r ease of processing, all packages should process 
dates only in one format---MONTH/ DAY / YEAR. Therefore, each 
package must check a language flag (se e MULTI-:"INGUAL 
PLANNING ) to determine t he format and if non-U.S. t h en it 
must reverse t he order when accepting or displaying dates . 

The format for the date prompt will depend upon the 
age of the expected user , but if at all possible shou!.d be 
as foll ows: 

TODAY'S DATE? I I 

People in the u .s. wil l automatically input M!1/ DD/ YY 
and else .... here, they .... i ll inpu t DD/MM/ YY. We can determine 
order by kno .... ing if the package is u.s. o r not. 

If t he planne:: feels that the date need s to be mo:e 
explicit, then the f ollowing format should be used: 

TODAY'S DATE : 

MONTH? DAY? YEAH.? 

Note that the prefix "19" is be i ng dropped f rom the 
year. With the underscore it is obvious t hat t he last t .... o 
digits are all that is requir~c, pl u s it 9!Ve us 2 extra 
charac~e:s on ~~e !~~~. 

In packages that require data logic ( difference 
bet .... een two dates, etc.) the second f or mat should be used. 
This is especially true if a package like this is t o be 
marketed in the U.K . or Canada .... ith no changes fr om the 

M-ll 



U.S. version. In this case, we need it absolutely clear 
that the date order is MM/DD/YY, as .... e have no way of 
telling whether the package is being run in the u.s. or 
U.K. 

4.0 MULTI-LINGUAL PLANNING 

In designing packages that will be translated from 
U.S. to a foreign language there are several items that 
must be taken into consideration. Some of these have 
already been discussed under PROMPT FORMATS (3.2.) The 
f ollowing items are also required to make the conve:sion as 
easy and inexpensive as possible: 

1. All text must be located in one GROM. If this is 
not possible, then a concerted effort should be 
made to reduce the amount of text so it will fit. 
Only after all possibilities have been explored, 
should .... e go to 2 GROMS for text. 

2. If the package uses the cassette DSR, then in the 
text GROM we must leave 400 bytes of free space 
to alIa .... for the inclusion of an override DSR . 
This is the only way the DSR text can be 
translated from u.s. to a foreign language. 

3. We must also leave 150 bytes of free space t o 
allow for t h e inclusion of an ov erride p owerup 
program so that the in t roduc t o r y ( col or bar ) 
screen can be trans l ated. 

4. Most foreign languages take mo re root:! than U.S . 
As a rule of t humb . '<I e need to ta ke the t o tal 
numbe: of characters we have in U.S . te x t and 
leave 25% of this number as free space to a llo' .. ' 
for the translati on . For example, if '<Ie have 
2000 characters of U. S. text, the n we need 25% o f 
2000 or 500 bytes of free space. 

5. The use of ~eys which re late to English should be 
avoided. For example: 

PRESS P TO PRIN"!' 

Instead. we should use numbe:s. For exa~ple: 

PRESS 1 TO PRIN"!' 

6 . 7he entry paint to all packages sh oulc be in the 
:e x ~ GRO~ a~j 3 ho~:~ set 
:~ h at :".i r.g:.J .3.S= ': :"; ~ ?3..: ~<a-;:o: 
sh ould be us~d for U.S. 
tested in t he ma inli ne 
formats. This same flag 

11-12 

3. : an; "J age ::",;.~ :?:'~::1S 
is i~ . ~ ?3 : ~~ J~ =2:: 
This flag t:,en C.3.n be 

program to tel l datE 
can a ~so be use d by t he 



) 

text formatter to tell which language is being 
used if t he package contains several languages at 
one time. 

7. All text should be stored in the text formatter 
along with the cursor position for prompts. 

This cursor position will be returned to the 
mainline program which can use it to call the 
AC C E PT sub r 0 uti net 0 get the an s w e r tot h e 
prompt. 

8. As mentioned in 3.2, prompts should be as short 
as possible s o t ha t the pr o mpt and answer, when 
trans lated, can still fit on one line . 

If the prompt wil l be too large t o meet the one 
line requirement when translated, then a blank 
line must be left directly under the pr o mpt so 
that the answer can be mov ed t o this line whe n 
translati on is done . 

M-13 



: 

CI'U -RM III\IH 

00 

01 

01 

0] 

M 

05 

116 

0' 
08 

O~ 

0. 

00 

OC 

011 

ilL 

Of 

10 

11 

11 

13 

14 

15 

16 

11 

18 

19 

" 111 

1C 

111 

If 

" 

70 

21 

21 

2J 

24 

25 

16 

21 

28 

29 

. 1. 
20 

2C 

FIGURE ... 2 
'Ulllllack} 

41 

42 

4] 

:; ------ ---- 1-:;-.---.---- A2 

6J .. 64 .. _---
45 1 65 ___ . - I ______ _ _ ____ .. __ • • .. _. _ _ . __ 

46 

41 

48 

49 

4A 

48 

66 

61 

68 --------
69 _ _ _ 

6A 

68 ______ _ 

. 4C ___________ '--1 6C ______ _ 

8J __ . ______ 1_ AJ ... ----
84 __ ____ LM 
85 ___ _ AS 

Ai -- --_ .. 86 _____ _ 

81 M - ---_ .. 
88 AS _._ -_._--- ------.-----.--
89 A9 ___ . __ _ 

8A AA: _______ . 

B8 A~B------. 
8e A . ..oC _ ____ _ 

20 . ___ . ___ ______ .1 _ 4" _ _ ______ L6~_ 80 AO 

2E 

2f 

]0 

11 

]2 

11 

14 

15 

16 

]) 

18 

]~ 

]. 

]11 

]e 

111 

:It: 

]f 

4E 

4f 

50 

51 

52 

5] 

6E 8E AE 

6f 8f Af 

90=---____ _ 

91 _____ ~ 

11 O'TS_T_KJ.:,A_O_I __ . _. 92 _ ____ _ 

._m).. RAM SlZE----
71) 

-----,----

80, ______ _ 

Bl 
B2 

1J SUOSTK (-801 91 BJ _____ • _____ • - I __ _ _ __ _ _ ___ . ____ . _ _ _ _____ _ 

- - ---

54 )4 KEYOnn 94 84 
.. _ .. - -- - ---- - -- -_. ---- - ---- - -

55 15 KEV 95 B5 

56 

5) 

58 

59 

" !.III 

5C 

511 

5> 

5f 

-_. _--------- - ------- - -- --------
16 JOVV 96 B6 -_._-- - ---_ .. - - - ._- -_ . .. _ -- - -- ------ - -~--
11 JOV X 

18 HANOUM 

HI lIM£n 

1/\ MOTION 

70 vupsn 
Ie S'Al1fS 

111 I:U 
-@VI" ---

)f XPT 

9' 81 --------- ----.--
98 88 

99 _ __ _ . __ I _B~, ___ . __ 
9. 1 OA 

98 I 80 

9C I BC 

911' _____ _ 

9E ® - -----
BO 

DE 

Of 
_ J 



FIGURE M.3 

SPRITE TABLE VOP REG 11 I -

TE: YF'T XF'T CHAR CD L. VElD· Y X SPRITE : YF'T XPT CHAR. CO L. VElD· Y X 
CITY CITY 

0 >300 >7811 '6 >340 >7 C11 , >lQ4 >764 17 >l44 >7 C4 

Z > 308 >788 18 >348 >7 Ca 

l >30C >78C ,9 > 34C >7 CC I 
4 > 31 0 >790 ZO > 350 > 700 

5 >314 >794 Z, >lS4 >704 

6 >3 18 >798 22 >JSa > 70 8 

7 >l ' C >79C ZJ >lSC >7OC 

8 >l20 >7AQ Z4 >l60 > 7E O 

9 > 324 >7 44 Z5 >l64 I >7E4 

'0 >l 28 I >7A8 Z6 >l68 I >7E3 

" >lZC I >7AC 27 >l6C I >7EC 

'2 >3JO > 780 28 > 370 > 7FO I 
'l l >lJ4 1>784 Z9 >374 >7F 4 I ,. > 338 I > 788 lO > 378 >7FB 

'5 >33C I I > 7BC I l' >17C I > 7FC 

CHAR·I RAM I DAT,.\ CHAR RAM I OA7A CHAR. I RAM I DATA CHAR. RAM I O~TA 

:0 I >.l00 >"18 I >.lCO >BO >5,0 t >C3 ! > 640 I . >8' ==,408 I ><1 9 >.lC8 >B' >58 8 > C9 >648 I 
>'2 I >"0 >"IA >'00 >82 > 590 >CA >650 I 

>8l >"8 >9 B >'08 >B3 > 538 >CB I >m I 
>84 >'20 I >9C >'EO >,4 >oAO I >CC I > 660 I 
>85 >'28 >'30 >4 E! I >SS I >;AB I >CO I > 668 I 
>86 I >430 >9E I >'FO I >8S >;ao I > CE 1>070 I 
>87 I >438 >'3 F >'F8 > B7 >;88 I >CF I >678 I 
>BB I >440 >A O >~oo > B8 >5CO I > 00 1 >630 I 
>89 I >448 I >A' >008 >a9 >oC8 I >0' I > 638 I 
> 8A >450 I >A2 >5 10 >aA >000 I >02 I >690 I 
>8S >4S' I >A3 1>518 >BB I >;08 I >03 1 >631 I 
>8C >4S0 I > A4 >520 >BC I >;EO I >04 I >6AO I 

>.0 >'SB I > A5 >528 I >,0 ! >; E3 I >05 I >5A8 I 
>8E I >470 I >AS nJO I >9E I >5FO I >06 I >6ao : 
>8F I >478 I >A7 > 538 I >BF I >0,9 I >07 I >o5S I I 
>90 I >480 I > A8 I >o4ll I > CO I >600 I >08 I > 6;:0 ! 
>~ l >.!S8 • >.9 I > 5.l8 I >C~ , >?ua >as , >'; C3 

>:2 i .>olg a I > .l.':' ! >::\1 · >C:! :::-610 I j > G..l. . >; ;:JO , 
• 

>93 I >498 I >A8 > 558 I >C3 I >618 
. 

>OB : >5u s ; I 

"4 I >lAO I > .1.C I >560 >C' >020 I >OC I >5E o ! 
>95 i >4A8 I >AO I >568 I >Cs 1>628 I >00 I >iE. I 
>96 I >4ao I >AE > =70 I >CS I >6~O I >OE I >;;:0 I • 
:>9; I >l88 I >AF >575 

I 
>C7 1>038 

I 
>oF I>m I 

:1-15 



TITLE __ 
SE TO SE I I 

flAM ~ 8UO IIAM .· 11 

[III.{I II : 1:1)11111 : 

, ·no 

~ nl 

.:- 0 ] 

> 0) 

> 1JlI 

> U~ 

> llIi 

.. III 

!;IIII SEII ~ 

11M .. ,·1\1:0 IIAM ..... 11 

1:11 1 1111 : r.n l HIl 

x :..- 5" 

.~ I V ::;.. !.o!J 

l~ I , IA 

-- !.oil 

, I 1 'f ~ , , 

.... to II 
, I I 

:~~I 

.- tof -- 1--. '.- _ 
Sf I V 

....... - , -
SET 2 

~o 11l\M > 8DO 

Clllon : 

> U8 > 10 

;.. II!I > 11 

.:- 111\ > 11 

::> un > 11 

::> ut: > 14 

> nll > 11 

:.. 111 :.. Hi 

,- III > 11 -
SF. T 1 J 

10 11Mb 1140 

1:111011 : 

·IiU :... till 

;.. Ii I > fi!.J 

;. fi1 ;.. Ijl\ 

.... Ii ·' :.. Ii II 

-. Ii·' ;.. (j r: 
_ li~1 : .. lill 

:> fili ::.. lil 

... Ii I ;:> jjl --- - .. - - -. 
I !I t "1 111 

III\M "·lIlIn 

Sll 1 , 

IlI\M .. I 

CIIIIIII : 

11:0 IIIIM ;. I UU 

1;1111111 : t:flllIll: 

·1111 · ' IUI ... r:u 
..... 111 ;.. /I!I __ f: I 

.... 11 / . • 1\ /\ .... 1:1 

.... /11 .. liII :... 1:] 

.... 11 ., ·-IIt: > 1:4 

;.. II !. .... 1111 ," 1: !J 

."" lit· .... [Ii .. , 

-

I' I lJ lli i t ' I 

- -, - , -.-- -
SET 3 SET 4 SET 5 -- _. , 

nI\M > 8CO IlI\M > !JOO nAM > !J40 

COlOIl : COLOII : Clilon , 

>18 5" > 10 I > 18 

>19 , > /1 I > 19 

;..11\ .. > 12 • >21\ 

> 111 • > 1) I > 10 

>I~ S :;..24 , >2r. 

> 111 " > / 1 - > 211 .. 
:..H • >2li > 2E -
> 11 

, 
> 11 / '"11 

SE r 14 SE T I!. SEl 16 
flAM :-. 1100 nAM > 111:0 nAM ;...[00 

r.UlIlIl : I:OI.UI1 : ~(fllln : 

:> III :.. /11 > UU 

;.. II > )g > 81 

> 11 ;.. 11\ > 81 

> 7l ::.. IU > 81 

~H > 1C: :>o U~ 

> f!.! ;.. 11) ;.. n ~ 1 

:.. /ti ;... 7F ;. Hli 

, /I .. n- ~" - -- -- - -- . ..... ' 
SF r 2~i SE T ~ Ii ~ l r "2 7 
II /1M : .. Lo1U IIAM :,.. (011 flAM :,.. HU 

till 1111 : CUllin : 1: 01.111" 

> rH ... IJIJ :-118 

... f.!J .. III :... II!I 

;:.. 1: 1\ > 11 1 >11/\ 

: . f: II ;.. 11 ] > 1111 

;. 1:1: >u., >i ll: 

..... 1:11 > lIfl ;:.{ III 

.... 1:1: :> 111; ;.111' 
. "' '. " . . ... 

-
SET 6 SE T 7 SET 8 SET 9 SET 10 " ____ 0-- .. -_.-. - -- .. -.-_._ .. ._----- ---_._ . . 
RAM > 980 nAM> 9CO nAM>AOO nAM >A40 nAM > AIO 

- - - - --- .. - , --... _ ..... --_._-- - - _ .. - - ---
COlon, COlon, COlon, COlon , COlon, 

-. - - - -- _ .. -- - . -- . - - - -
0 >10 8 '"18 @ >40 II > 48 P >50 - - -- _. - .. .. .. .. 
I >11 9 '"19 A >41 I > 49 0 >1 1 - - - . __ . -- •. . - - -
1 >11 , >lA B >41 J >'1 A n '" 51 -- .- -- . . --
) >ll , '"10 C >41 K >4 n s > 5) .. - , - - - -
4 > )4 < >lC II >44 l > 4C T > 5" . - -- ... ---
\ >35 • :» 1) E >45 M >'10 U :..55 

-- , -- - - .. 
r. >31; > >JE F >46 N '"4E V :> 56 

- - - .. .. .. - -- -.- - .... 
1 '" )1 1 '")' G >41 0 > 41 W ;.. 51 - -
SET 17 SET 18 SET 19 SET 20 SET 2 1 - - _-0. _ ... - - - " - - .. - - -
RAM :;>o C4 0 "AM >C80 nAM '" C~O nAM >UOO RAM :> U40 - . - - ~ .. --- - - - - -- -_. . 
Clilon, COlon , COlon : COlon, COlon , - .. . -, .. . ,. - - - .. ..-. . 

>08 > gn ;;.. !l8 > An >.0 - - - - - --- -- - - .. -- .. 
>89 >91 >99 I . >A I 

I-
>AU - f--

> BA >92 > OA > Al >AA - - - _ .. _ . .. - , .. . _ .. - -- - . 
'" 8U >!IJ > go >Il l >AO - - - -- . - - -- -- - -- - .. - - -- -- - ... -
>8(; > !1<1 > 9C >M >IIC - . -- - - - --- .. -- -
>811 ::.. 9!i . > 911 >AI >i\n 

- , - - - -
>8£ >96 > !Jl > M > A( 

> 8( > g, > !J r > A I >., --
SEl 21l :in 29 SET 30 SET 31 ... - --- -- -
I1AM :> ruu IlAM > r40 "AM ;:.. ruo RAM > feD .... -- .. ---
efll nn : I:OlllO , Cll llln , CliLO n , 

-- -- _ .. 
> EtI > [8 >(0 > r8 I - , - - - .. _ .. 
> U > E9 > FI >(g 

- - - -
> (] > fA > f1 :.o Ff\. -- - --
> 0 > EO > Fl >f ll 

- - - --- -- -
> [4 >EC > fo1 >re - .-. - .. . - -
> E!J > £11 > F5 > FO 

- - ... . - . - - -
> E6 > EE > r6 -, 

- - - - - - , -- - - -_ r oo ' . r:r -" 



riGIi RE M.S 

~ TEXAS,!,~_~!.':,~.M EN TS _____ ~ _ __,H::Oc::M_:E::C_:::O-M-P-UT-E-R-.. G-R-O-'.-,.·-D-EV-E-cO-P_M_E_NT 

PROJECT: 

F- ' 

E 
! I I I I I I I I I IT I I I I I I I I I 
I I I I I I I I I I I I I 

. 
I I I I I I 

I I I I I I I I I I I i I I I I I I I I I I , 
I I I I I I I I I I I I I I I I I I I I i I I 
I I I I I I I I I I I I I I I i I I I I I I I I 
I I I I I I I , I I I I I . I I I I I , 

I I i I I I 
, I I I I I I I I 1 I , 

I I I I I I I I I I 1 I I I I I I I I I I I 
I I I ! I I I I I I I I I 1 I I I I I I I I 

, 
I , , I 

I I I i I I I I I I I I 
, 

I I I I I I I 
, 

I I 
I I 

, 
I I I i I I I I I I I I I 

, 
I I i I I I , 

I I I I I I I I I I I I I I i I ! I 
I I I I I I I I I I I I I I I I I I ! I 1 
I I I i I I I I I I I I I I I I I I I i I , I I , , 
I 

, I I I I I I I I I I I I I I I , I ! I , I , , , , 
I 

, 
I i I I I I I I I 

, 
I I I I I ! I I ! b n , • I , 

! I I , I I 1 I I I I I I I I I I 
, 

I 
, 

I I I 

E:. --=: 1 
. I , 

~ I i ! i i I I I I I I ; I I I I I . I 
. I , , , 

I 

. i I , i , I I I I I , 
I I 

, I I I ! i , ! I I . , , , , I 
I : , 

I ! I I I I I I I ; I I I I 
, 

I I I I I I , . , I 
, , 

; , , I 
I I I I! I I I I 

iii I I I \ ~ I I , i 
I! I I i , I 

I . I I I , . 
I I I I . , I I 

V1C EC iCQ ?Y 

).t.:OI Oi TCNES · 



ALPHA BETICAL INDEX 

Addressing Hodes 
Direc t 

Imm ed ia te 

Inde xed 

Indexed Indirect 
Indirect 

Top of Stack 

ASCII Character Sets 

Bit Reversa l 

Casse tte DSR 

CPU RAM 

Destination Address 

Floating Point Subroutines 
A TN 
CFI 
CNS 
COS 
CSN 
EXP 
FA DD 
FCOMP 
FDIV 
FMUL 
FSUB 
INT 
LOG 
PWR 
SADD 
SCO:1P 
SD!V 
.:: : :; 
':: '.("'-... . ,, -
SQR 
SSUB 
TAN 

Page 

3-5 , 
3-7 
3-2, 
3-7 
3- 5, 
3-7 
3-7 
3- 5, 
3- 7 
3- 4 

3- 1 3 , 
H-3, 
H- 4 

H- 5 

I - I 

2- 9, 
2 - 10 
2 - 1 1 

1 - 1 I 

3 - 4 

K- I 
K - 9 
K- IO 
K - 2 
K-7 
K - I 0 
K- 6 
K - , 1 
K- 13 
K- 12 
K - 12 
K - 1 1 

K- 3 
K -6 
K-4 
K - 13 
K - 15 
!{ - , 5 

K- 5 
K- 14 
K-8 



) 

ALPH ABETICAL INDEX 
Page 2 

Funct ion Keys 

GPL As sembler 

GPL Directive s 
BASE 
DATA 
EN D 
EQU 
GROM 
LIST 
LISTM 
ORG 
PAGE 
TITLE 
UNL 
UNLM 

GPL Instructions 

A 
ABS 
ADD 
ALL 
AND 
B 
BACK 
BR 

BS 

CALL 
CARRY 

CASE 
CEQ 

CGE 

CGT 

CH 

CLOG 

CLR 
COING 

M-2. 
M- 8 

A-2 
A-3 
A - 2 
A-2 
A-2 
A-3 
A-4 
A-4 
A- 3 
A- 4 
A- 2 
A- 4 
A- 4 

4 - 1 . 
J - 1 I 

J - 4 
4 - 23 
4- 31 
4 -2 3 
4 - 49 
4- 34 
4-15 
4- 48 
4 - 111 I 

A- 8 
11 - 13 , 
A- 8 
4 - 17 
4- 4 . 
A-8 
4 - 16 
4 - 6, 
A- 8 
4 - 10, 
A- 8 
4- 9. 
A- 8 
4- 7, 

..! - 5, 
A- 8 
4 - 11 , 
A- 8 
4_ 37 
4- 47 , 
E- 1 



ALPHABETICAL INDEX 
page 3 

GPL Instructi ons (Cont.) 

o 
DA 
DABS 
DADO 
DAND 
DCASE 
DCEQ 
DCGE 
DCGT 
DCH 
DCHE 
DC LOG 
DCLR 
DCZ 
DD 
DDEC 
DDECT 
DDIV 
DEC 
DECT 
DEX 
DINC 
DINCT 
DINV 
DIV 
OM 
DMUL 
D~EG 
DOR 
DS 
DSLL 
DSRA 
DSRC 
DSRL 
DST 
DSUB 
DXOR 
EX 
EXIT 

FETCH 
FMT 
GT 

HOME 
I / O 

4- 26 
4-23 
4-31 
4-23 
4-34 
4-16 
4- 6 
4-1 0 
4-9 
4-7 
4-8 
4-11 
4-37 
4-12 
4- 26 
4 -29 
4- 30 
4-26 
4- 29 
4- 30 
4- 39 
4-27 
4- 28 
4- 33 
4- 26 
4-25 
4-25 
4-32 
4-35 
4-24 
4-43 
4-44 
4-46 
4- 4 5 
4-38 
4- 24 
4- 36 
4- 39 
4-57, 
8-4 
4-18 
4- 50 
4-3, 
A- 3 
..: -2, 
A-8 
4- 59 
4- 58, 
F-l 



l 

ALPHABETICAL INDEX 
Page 4 

GPL Instructi ons (Can t. ) 
INC 
INCT 
INV 
M 
MOVE 
MUL 
NEG 
OR 
OVF 

PCP 
PUSH 
RAND 
RB 
RTN 
RTNC 
S 
SB 
SCAN 
SLL 
SRA 
SRC 
SRL 
ST 
SUB 
TBR 
XML 

XOR 

GPL Macro Instr uct io ns 
SCALL 
SCASE 
SELSE 
SEND 
SFOR - TO 
SFOR - DO~-J;J70 

SGOTO 
SIF - GOTO 
SIF - THEN 

. --. --
.:0 ':':'_':':' 

S.SZ:-;i) 
$UNTI L 
SWHgE 

4-27 
4-28 
4-33 
4-25 
4-42 
4-25 
4- 32 
4-35 
4- 5, 
A-8 
4-41 
4-4 0 
4-53 
4-21 
4-19 
4- 20 
4-2 4 
4- 21 
4- 54 
4-43 
4- 44 
4-46 
4-45 
4- 38 
4-24 
4-2 1 
4- 55, 
H-3, 
K-l, 
L-1 
4- 36 

A-7 
A-6 
A- 6 
A- 5 
A- 5 
A-6 
A-7 
A-6 
A-6 

:~'. - .; 
A-3 
A- 5 
A-5 



ALPHABETICAL IN DEX 
Page 5 

GPL Timing 

Hand se ts 
Joystick Codes 
Remote 

Wired 
Ins truction Formats 

Keyb oards 
40-Key 

Remote 
Label 
Moni t or 

Multic olor Hade 

Pattern Color Table 

Pattern Generator Sets 
Mult ieolar Mode 
Normal Mode 
Text Mode 

Patte rn Na~e Tab l e 
Mult ieolor Mode 
Nor ma l Mod e 

Tex tHod e 

Patte rns ( Characters ) 

Peripheral Access Block ( PAS ) 

Radix 100 Numbers 

Page 

1-2 

0-8 
0 -1 , 
0- 6, 
0-7 
0-2 
3-9, 
3-10 
3-11 

0-1, 
0-4, 
0-5 
0-2 
3-5 
1-3, 
H-4 

2- 6, 
G - ~ 

2-2, 
2-3 , 
2-4 

G-2 
2- 2 
G-1 

G-2 
2-2, 
3-1 
G- 1 

2 - 1. 

1-2 

:!- : . 

K-16 



) 

ALP HABETIC AL INDEX 
Pag e 6 

Reference Documents 
Sample Pr ogr-am 
Sound 

Source Operand 

Sprites 
Sprite Attribute Block (SAB) 
Sprite Descriptor Block (SOB) 
Sprit e Velocity Block (SVB) 

Block 

.... ation 

a t ion 

Control Registers 

1- 4 
B-2 
C- l , 
H- 5 

1 -1 , 
3- 3 

2- 3 
2-3 
2- 6 
2 - 7. 
3 - 1 , 
B-1 

3- 17 I 

3 - 21 , 
H- l 

H - 1 , 
H- 2, 
H-3. 
H- 5 

2 - 1 

2 - 8, 
G - 1 

2 - 1 , 
2 - 9, 
2 - 12 

3 - 14 , 
3 - 15 , 
3 - 16 , 
H- 3 



USER'S RESPONSE SHEET 

Graphics Programming Language User's Guide 

December 3, 1979 

User I S Name, __________________ 'l'e lephone, _____ _ 

COMPANY __________________________________ Date, _____________ _ 

Please li st any discrepan cy found 
paragraph, figure, or table number 
there are any o ther suggesti o ns that 
to include them. Thank you. 

LOCATION IN MAN UAL 

in ' this manual by page , 
in the f o llowi ng space. If 
you 1M ish to make, feel free 

COMMENT/SUGGEST ION 




