3 TN IR I I EE I B I I N I I

e

TURBO-PASC’99

Copyright 1988 by
L. L. CONNER ENTERPRISE

Computer & Electronics

Turbo-Pasc’99 Reference Manual

L. L. CONNER ENTERPRISE
Computer & Electronics
1521 FERRY STREET e LAFAYETTE, INDIANA 47904

THIS PAGE IS BLANK

TABLE OF CONTENTS
introduction 1
Overview of Texaments Turbo-PasC'99................cceceeueerreereeeeeniereeeee e 1
USING This ManNUAD ..ottt ssesseses s e sasssssesesaesesnnens 1
Optional Related Materials1
Let’s Get Started 3
Files on the System DSkcccccovceieirinnincnicininieennisssneeeesessssesesssssesssssesens 3
Preparing for Operation With One Disk Drive.... 3
Preparing for Operation With Two or More Drivescccccovevectrenrreneerenennnennd 3
Starting the Compiler Systemc.cccevrueeninrenrenseseneseerennnes 4
The Command Interpreter 5
Overview Overview of Commands 5
Command Syntax ..®
Command Line Editing Functions 6
The Editor 7
Overview of FUNCHONS............cccocviiiiinineiecnciessessecessctsteesnesesenetensasssassesesens 7
Cursor Functions 7
Line Editing Functions.... 8
Text Editing Functions 8
Other FUnctions..........coecveeeenccnneennunccnnae 9
Special Features . 9
Saving Source Code to a File........ 9
Loading a File........................ 9
Deleting a File 10
The Search Function.................. 10
Display Available Memory 10
Clearing Editor Workspace...... 1
The Compiler 12
Lexical structure of the Turbo-Pasc'99 Language 13
Representation of Integer Constants 13
Representation of Real Constants................ccocvveerrnnecerncsnnnccsninesnnsesssesninnes 14
Representation of String Constants . 15
Identifierscocvceericnicirenncccnnnnene. 15
Special Symbols and Comparison Operators 15
COMMENLS..........coeeereerertereerresetens s enenassenene 15
Language Elements of TURBO-PASC'99 16
Program Structure . 16
Program Heading.. SRR 16
BIOCKereernererenririnnsieenans 16
Declaration Part........16
Label Declarations...............cceeveerieeceineesesereniesesessesnriesesessesessessessesscmssesesssseas 16
Turbo-Pasc’99 Reference Manual !

Constant DefiNioNS.oooiiiiei e

Variable Declarations .

Procedure and Function Declarations..............ccccceviiiiiiiniiiiiciiiiiceecen 19

The Statement Partcoooiiuiiiiiiii et 20
The Statement

Procedure INVOCAtIoONcccviveiiiiiiiiiiiicieie e
The GOto StatemMEeNtcovieiiiieeeeceee e
The Compound Statement .
The IF StatemMEeNt
The REPEAT Statementcccooveciiiieiiiieneeicceecrcnce e
The WHILE Statement.... .
The FOR Statementccooooiiiiiiiiiiieee e
The CASE Statement..............ooovviiiiiiieeeiiieeeieee e
Expressions .

Arithmetic EXPressionscocoiveiiiciiincitiicieecescine s 26

String EXPressions ..o 27

Logical Expressions.

Modularizing Programsccoceuiriiiiiniiiiiicie s .28
Main ModuIes.........cccooiiiiiiiiiiic .28
Library Modules.............ccccocviviiiiiniiiinnenns .28

Exporting Procedures and Functions.................ccccevieinine .28
Communication by Parameter Passingcccccoccvviicnnnnn. .29
Communication through COMMON Ranges.. .29

Scope of Identifiers..............cccoccniiiiiiiininnn. .30

Standard Procedures and Functions32

EOF (End of File)...... .
EOLN (ENd Of LIN€)oooooorreereseeeseeseseeeseseeeeeeeeeee .37

Turbo-Pasc’99 Reference Manual

The Linker 41

Loading the LINKErooiiiiiiiic e
Loader for Tagged Object Code
Program File Generator
Your First Linker EXercisec..cccucvvivieieevicieniiiiiceieeisesisnan

Starting User Programs 44

Starting from the Linker 44
Starting from the Editor/Assembler Menu 44

Appendix A - Reserved Words 45
Turbo-Pasc’@9 Key WOrdS............cc.cvuiiiviniiiiieceeecc ettt 45
Standard NAIMES ..ottt tes st ee e 45
Special Symbols and Operators.. ettt b bttt ettt as 45

Appendix B - Error Messages 46

L@XICAI ETTOISviiiiiiiiiecet ettt
Syntax Erors..........ccocoeevvevvrieeerercnenennn,

Semantic Errors
Run time Errors

Appendix C - Compiler Options 48

Option B: Boolean Expression Evaluation...............c..cccoueeeerecoinieennisiiescsessceeennns
Option E: Monitor Overflow/Underflow of Integers......

Option A: Monitor Array Index Overflow/Underflow
Option S: Assembler Source Code COmMMENtNGccoevvvevvveeeeereerennn.
Option I: Variable INtAliZAtION..................c.coiiviveriiiiceeeeeeeceeee et

Appendix D - Practice Session 50

Single Drive PractiCe SeSSIONc.cooveveviiieiiiicieteceeeeeeeeee et 50
Dual Drive Practice Session
Sample Practice Programi............ccccoeeuriiuiiicueeceeieseeeese e

Appendix E - Sample Programs 53

Turbo-Pasc’99 Reference Manual 1

1. INTRODUCTION

1.1. Overview

Turbo-Pasc'99 is a compiler package which sets itself apart from
conventional systems. Until now, generating high-powered programs on a
standard TI-99/4a Home Computer, with a 32K memory expansion and disk
drive, was a slow tedious process. And, unless a program was written
using the Editor/Assembler, a program's exection speed was generally
slow.

Tubro-Pasc'99 is an integrated system which combines an editor and a
compiler in one program. When programming, syntax errors are located
by cursor position (after a simulated compile is executed) in the
editor so that correction and new compilation are possible.

The Turbo-pasc'99 system disk also contains a linker. Programs can be
stored in separately compiled modules which can be linked together
before ruming. Using this method, libraries of various routines can be
established and easily linked together to form powerful applications.
The linker can also generate a memory image file which can then be
started independently from option 5 (Run Program File) of the
Editor/Assembler.

1.2. Using This Manual

This manual provides a basic introduction to Turbo-Pasc'99 and its software environ-
ment. This manual assumes that you are already familiar with the operating conven-
tions of the TI-99/4a home computer and that you have previous programming
experience with conventional PASCAL. It is recommended that you work through the
entire manual systematically from front to back to become familiar with the Turbo-
Pasc'99 language.

1.3. Optional Related Materials

Other optional related materials are available which will enable you to use and exploit
the power of Turbo-Pasc'99 beyond its original specifications. Additional documenta-
tion, including highly technical programming information, is also available for the
novice and advanced user. The following items are (or will be) available:

urbo-Pasc’ aining Guide - this comprehensive manual helps introduce,
teach, and relay a better understanding of the Turbo-Pasc'99 programming
language. Although the Training Guide was written with the novice user in
mind, advanced users will find its extensive explanations and examples to be
extremely helpful.

@ Turbo-Pasc'99 Guide to Assembler Interfacing - this manual provides the
advanced assembler programmer with the fundamentals and specifics of
interfacing assembly programs with Turbo-Pasc'99 programs. included are
the Turbo-Pasc’99 CPU and VDP RAM storage allocations, parameter passing,
and programming examples.

® Windows'99 - a supplementary library disk of object code routines which
allows windows to be used with Turbo-Pasc'99. Programs using Windows'99

Turbo-Pasc’99 Reference Manual

can be made more user friendly, easily managed, and given that "professional
look". Up to 20 windows can be displayed concurrently and up to two full
screens can be simultaneously processed. Included is a detailed manual of the
routines, their functions, and how to use them from within your programs.

© Graphics and Sound Toolbox - a supplementary library disk of object code
routines which allows graphic, sprite, sound, and speech commands to be
used with Turbo-Pasc'99. Included is a detailed manual of the routines, their
functions, and how to use them from within your programs.

Correction for Page 3, 2.1
Affix this label to page 2

TP99 Filename has been changed to:
UTIL1, UTIL2, UTIL3, UTIL4. This
makes the Compiler boot from Myarc
Disk Controller. You may load from
option 5 Editor/Assembler.

Also, the Compiler may now be run
from ramdisk.

Page 3, 2.2

The Two part assembler files are to
be copied form your Editor/Assembler
diskette Part A.

P52 Filename is the source code for
program Counter on page 52.

Turbo-Pasc’99 Reference Manual

2. LETS GET STARTED

2.1. Files on the System Disk

The following files are at your disposal:
® TP99 - the Turbo-Pasc'99 compiler system; it is started with the Run Program

File option of the Editor/Assembler. UTIL1, UTILZ, UTIL3, UTIL4.
® LK99 - the linker; it is likewise started with the Run Program File option of the
Editor/Assembler.

@ RUNLIB - the run time system; contains all standard routines and the
necessary initialization code for a compiled program.

@ RUNLIBEQ - run time system equates; necessary for assembling a compiled
program.
® ASSEM]1 - part one of the assembler; used by the Editor/Assembler for
assembling a compiled pascal program.)))
) Copy from your Editor/Assembler Diskette A
@ ASSEM2 - part two of the assembler.)

@ SIEVE1 - Erathosthenes’ Sieve; this is the widely known and used benchmark
test for computation of prime numbers. This program has already been
transformed into the executable image form by the linker and can be started
with the Run Program File of the Editor/Assembler.

® WURM?* - a simple game for two people; this program has not been linked and
will not start as Is. It serves as an example to help explain the linker and will be
linked as a practice exercise in Section 6.

® VDPLIB* - a small library with the monitor routines necessary for the program
WURM* to operate.

2.2. Preparing for Operation With One Disk Drive

If you have only one disk drive, it will be necessary to prepare a fresh working disk.
Format a new disk and copy the following files from the Turbo-Pasc’99 system disk to
it using any disk manager:

® ASSEM1
® ASSEM2
® LK99

® RUNLIBEQ
® RUNLIB

2.3. Preparing for Operation With Two or More Drives

If your have at least two disk drives, it will be necessary to prepare a fresh working
disk. Format a new disk and copy the following files from the Turbo-Pasc’99 system
disk to it using any disk manager:

® RUNLIBEQ
® RUNLIB

Turbo-Pasc’99 Reference Manual

2.4. Starting the Compiler System

Once you have prepared your disks as described in Section 2.2 or 2.3, you are ready
to put Turbo-Pasc'99 to work. Make sure you have your Editor/Assembler cartridge in-
serted into your console before attempting to use the Turbo-Pasc’99 system.

Place the Turbo-Pasc’39 system disk in drive one. From the Editor/Assembler menu,

select option 5 for Run Program File and enter the filename DSK1.TP99. The
editor/compiler system will then automatically load and run itself.

4 Turbo-Pasc’99 Reference Manuaf

3. THE COMMAND INTERPRETER

The compiler system is command oriented. All functions are selected by command ab-
breviations which, depending on the command, may require up to one parameter.

The cursor should be located at the lower left corner of the screen after loading the file

TP99. If this is not the case, your television or monitor cannot show the extreme left
column. Press the space bar a couple times and the cursor will appear.

3.1. Overview Overview of Commands

The following functions, listed alphabetically, can be selected with the command inter-
preter:

CQ : compile - activates the compiler without code generation. The source
program currently in memory is checked for syntax.

CQ <filename > : compile to a file - activates the compiler with code generation.
Syntax check is performed on the program currently in memory and the program
is translated into machine language. The result is written onto the file

<filename > .

D! <filename > : delete file - the Display Variable 80 file named in < filename >
is erased from the diskette.

ED : edit - activates the full-screen editor.

F!1 /< string > : find string - text search function for the editor which makes it pos-
sible to search for character strings in the text currently in the editor.

GO <line number > : goto - activates the editor and sets the cursor at the given
line number. This allows you to easily edit the line in which a run time error oc-
curred.

LO <filename > : load file - loads a Display Variable 80 file from disk. The format
is compatible with the Editor/Assembler, so that files created with Editor/As-
sembler Editor can be read.

PU <filename > : purge work file - deletes the current work file from memory and
makes approximately 14 Kbytes available.

Q! : quit - leave the compiler system.

SA _<filename > : save source file to disk - saves the file currently in memory to
disk in Display Variable 80 format. This file is normally a Turbo-Pasc'99 source
program. Both TI-Writer and Editor/Assembler files can be read, altered, and
saved to disk using the Turbo-Pasc'99 editor.

Sl : size - displays available programming space left. If there is no program in
memory, the display should read 13492 bytes available.

Turbo-Pasc’99 Reference Manual 5

3.2. Command Syntax

Each command consists of two letters and, depending on the command, possibly one
parameter. Acommand may be preceded by any number of blanks, but must be fol-
lowed by at least one blank. The parameter (if present) can be followed only by
blanks; no other character is permitted.

A violation of these syntax rules causes the command to be ignored and the typed
command line to be erased.

3.3. Command Line Editing Functions

The following editor functions keystrokes are available while entering data on the com-
mand line:

<ENTER> : causes the command to be analyzed and, if correct, executed.

<FCTN> S: (cursor left) deletes character left of the cursor.
<FCTN> 3: (erase) deletes the command line.
<FCTN> 8: (redo command) brings back the last command entered to the com-
mand line.
6 Turbo-Pasc’99 Reference Manual

4. The Editor

Turbo-Pasc'99 provides, in addition to a powerful compiler, an editor with con-
siderable capabilities. The most important functions of the well-known Editor/As-
sembler editor have been implemented. Other interesting and comfortable features
have been added to make programming with Turbo-Pasc’99 easier.

In the edit mode, the screen is 80 columns wide with three overlapping 40 column win-
dows available for displaying text. You start with the left window displaying columns 1
through 40; the center window displays columns 21 through 60, and the right 41
through 80.

4.1. Overview of Functions

The set of functions available in the editor can be divided into four distinct groups.
They include the following:

® Cursor functions: function keys that reposition the cursor.

@ Line editing functions: function keys that permit line-by-line editing.

® Text editing functions: function keys that permit editing of blocks containing
multiple lines.

® Miscellaneous functions.

4.1.1 Cursor Functions
Cursor functions serve to reposition the cursor in the text without altering the text in
any way. They include:

<ENTER> : moves the cursor to the beginning of the next line.

<FCTN> S (cursor left): moves the cursor one position to the left in the same
line. The cursor cannot be moved past the left margin.

<FCTN> D (cursor right): moves the cursor one position to the right in the same
line. The cursor cannot be moved past the right margin.

<FCTN> E (cursor up): moves the cursor one line up in the same column. The
cursor cannot be moved past the first line of text.

<FCTN> X (cursor down): moves the cursor one line down in the same column.

<FCTN> 4 (roll up): moves the cursor one screen down; the page of text is
rolled up.

<FCTN> 5 (next window): moves the cursor one window to the right; the text is
moved to the left. The current window is displayed at the lower right of the
screen (W1 = window 1).

<FCTN> 6 (roll down): moves the cursor one screen up; the page of text is
rolled down.

<CTRL> H (home): moves the cursor to the beginning of the current line.

Turbo-Pasc’99 Reference Manual

<CTRL> T (top): moves the cursor to the top upper of the first screen (column
1, line 1) of the text.

<CTRL> B (bottom): moves the cursor to the first column of the last line of the
text.

4.1.2 Line Editing Functions
Line editing functions serve to make changes in a line of text. They include:

<FCTN> 1 (delete character): the character under the cursor is deleted and all
remaining characters on the line are shifted one space left.

<FCTN> 2 (insert character): after this key has been pressed, characters are in-
serted and following characters are shifted to the right. Insert mode remains in ef-
fect until another editor function is activated.

<FCTN> 3 (delete line): the line in which the cursor is currently located is
deleted from memory, and following lines are shifted up one line.

<FCTN> 8 (insert line): a blank line is inserted at the current cursor position and
all following lines (including the one in which the cursor was located) are shifted
down one line.

4.1.3 Text Editing Functions
Text editing functions serve to make changes in whole blocks of text consisting of mul-
tiple lines. These include:

<CTRL> 1 (set first marker): marks the beginning of a block. "M1" (marker 1) is
displayed at the lower left of the screen.

<CTRL> 2 (set second marker): marks the end of a block. "M2" (marker 2) is dis-
played at the lower left of the screen. The second marker cannot appear before
the first.

After one or both of the markers have been set, functions which alter the text cannot
be executed. Only cursor functions can be executed. Text cannot be edited. if text is al-
tered, the markers are deleted and need to be reset.

After the block has been marked, the following functions can be executed in addition
to cursor movements:

<CTRL> B (délete block): deletes all text between markers.

<CTRL> M (move block): moves the block to the position in which the cursor is
located when the function is called. That is, after the markers have been set, the
cursor needs to be moved to the position where the block is to be moved before
the function can be activated. Cursor position within the block itself is not per-
mitted.

<CTRL> C (copy block): the marked block is copied onto the position of the cur-
sor. That is, after the block has been marked, the cursor needs to be moved to
the desired position before the function can be activated. Cursor position within
the block itself is not permitted.

8 Turbo-Pasc’99 Reference Manual

4.1.4 Other Functions
Two other functions are at your disposal:

<FCTN> 9 (back): exit the editor and return to the command interpreter.

<FCTN) = (QUIT): Keyboard input goes through a keyboard buffer which is
processed by the editor. With <FCTN> =, the keyboard buffer can be cleared
and further processing can be terminated. This can, for example, intercept the
loss of lines of text if <FCTN> 3 (delete line) has been pressed too often.

4.1.5 Special Features
In order to increase the comfort of structured programming, two additional features
were implemented:

Auto Indent: automatic cursor indentation. After <ENTER> has been pressed, the cur-
sor is moved to a new line and positioned directly under the beginning of the text on
the preceding line. If there is already text in the new line, the cursor is moved to the
beginning of the text.

Autokey: automatic recognition of reserved words of the Turbo-Pasc’99 programming
language. The reserved words are transformed into all capitals so that the program is
easily readable and the programmer immediately recognizes if he has used a reserved
word as a variable name. To make use of this function, you need to keep the <ALPHA-
LOCK > key released and use only small letters. The command interpreter (Section
3.4) also requires the <ALPHA-LOCK> to be released.

4.2. Saving Source Code to a File

The command SA <filename > allows you to save the text currently in memory to a
peripheral device other than cassette. Such devices include a disk and a printer. This
can be done from the command line by entering a command such as this one:

SA DSK1.MYPROGRAM
The entire work space is saved in Display Variable 80 format on disk. The format is
compatible with that of the Editor/Assembler, so that programs can be exchanged be-
tween the two packages.
The following commands would print the text in memory to a printer:

SA PIO

SA RS232.BA=1200.DA=8.PA=N

4.3. _Loading a File

The command LO <filename > allows you to load a file from a peripheral device
other than cassette (normally disk) into memory. This can be done from the com-
mand line by entering a command such as this one:

LO DSK1.MYPROGRAM

Turbo-Pasc’99 Reference Manual 9

If you currently have text in memory which has not been saved, you will receive a warn-
ing message. If you do not wish to save the text, ignore the warning and type Y, other-
wise type N or any other key.

Before loading, the screen will be cleared. If loading was successful, the first page of
the new text will appear on the screen. In an error occurs, an error message will ap-
pear on the screen and the contents of memory will remain unchanged; the text which
was in memory is still there.

In addition to file or device errors, the following errors could occur:
@ The file to be loaded is too large for the available memory (memory full).

@ There are control characters in the text to be loaded; all such characters are
removed during loading.

There are times when the loading process is not interrupted and only part of the file
will be loaded. The part that was loaded can be processed normally.

4.4. Deleting a File

The command D! < filename > allows Display Variable 80 files to be deleted from your
data disks. This can be done from the command line by entering a command such as
this one:

D! DSK1.MYPROGRAM
Be aware that a deleted file is permanently lost (unless you expend the work and

patience to try your luck with a disk editor). The exclamation mark which is part of this
command is ihtended to make it difficult to accidentally delete a file.

4.5. The Search Function

In order to search the text for a certain character string, leave the editor with <FCTN>
9 and enter a command such as:

FI /PROCEDURE Output

The forward search begins at the position where the cursor was before leaving the
editor. If the character string is found, the system automatically returns to the editor
and positions the cursor at the first character of the string. In order to continue search-
ing or start a new search, you must leave the editor again. There are methods of con-
tinuing with the same search:

® Press <FCTN> 8 - the command appears again in the command line.
<ENTER> activates the next search.

@ Enter Fl alone (without a parameter); the search continues for the string last
entered.

4.6. Display Available Memory

In order to determine how much memory is available for editing, you need to leave the
editor with <FCTN> 9 and enter the following command:

Si

10 Turbo-Pasc’99 Reference Manual

The available memory in bytes will be displayed on the screen. Pressing any key will
return you to the editor.

Note, however, that the size of available RAM is not the same as the number of charac-
ters which you can still type into the editor. Turbo-Pasc'99 reserved words, regardless
of their length, require only one byte; a string of repeated characters requires only two
bytes. Blanks following a text are ignored; however, each line of text requires two
bytes of information, so even blank lines would reduce available memory by two bytes.

4.7. Clearing Editor Workspace

In order to purge memory and restore the full work space, leave the editor with
<FCTN> 9 and enter the following command:

PU
If the memory contains text which has not been saved, a warning message will ap-
pear. If you do not wish to save the text, ignore the message by typing in Y; otherwise

type N or any other key.

After purging, 13492 bytes RAM will be available.

Turbo-Pasc’99 Reference Manual 11

-

5. The Compiler

This complete section is the most comprehensive of the entire reference manual. It is
important that you take your time to understand and digest the information presented
hereafter.

In order to present something as complex as the so-called grammar of a program-
ming language to you, we cannot get around certain formal definitions. We have tried,
however, to present these formal definitions in as readable and simple a form as pos-
sible without sacrifiicing the necessary explicitness.

Here is an example to help you understand the formal definitions:
Section 5.1.1 (Representation of Integer Constants) explains how we have to represent
whole numbers in our program so that the compiler recognizes them as such. The
definition looks like this:

< Integer constant >

<digit> ...

. <sign> <digit>...

<digit >

:0:1:2:3:4:5:6:7:8:9

<sign>
-

These few lines explicitly define the construction of an integer constant. The symbols
in the definition are to be interpreted as follows:

<_> The word within these brackets is to be replaced by the alternatives which
follow it before it can be put into the text of the program. The word between "<"
and " >"|s called a nonterminal symbol because It is not a word or character
which can be accepted by the program, but a new definition which must be fur-
ther refined.

: The text between this and the next ":" represents an alternative. When multiple
colons are at hand, any of the alternatives represented may be chosen. Such an
alternative should be resolved from left to right. If it contains nonterminal sym-
bols, it must be replaced by its alternatives before we can continue with the
original alternatives. In this way, we will come to the characters or words which
must be used Iin the programm text. These are called terminal symbols and are
underlined in the definition.

1. The symbol to the left of "...", whether terminal or nonterminal, can (but does
not have to) be repeated.

Turbo-Pasc’99 Reference Manual 12

Taking the concrete example of integer constants, the interpretation would look like
this:

<integer constant> has two alternatives:

one or more <digit>s
one <sign> and one or more <digit>s

In order to resolve the first alternative, <digit>, a nonterminal symbol, has to be
refined.

<digit > has ten alternatives:

Since all ten alternatives are terminal symbols, a character can be chosen and we
can continue with the first alternative for <integer constant> .

The first alternative is complete. Legal integer constants according to the first al-
ternative would be, for example: 1, 9548, 7872490370170242.

In order to resolve the second alternative, we must first resolve <sign >, then
<digit>. Legal integer constants according to the second alternative would be,
for example: -0, +8375, -6890106.

Legal integer constants considering both alternatives would be, for example: 0,
+98765445987, -0, -8765786447657.

Beyond formal definition, conditions which cannot be represented syntactically some-
times have to be set; these are called semantic conditions.

In the example of integer constants, a limitation is introduced stating whole numbers
may not exceed a certain range. According to syntax, a 20- digit integer constant
would be correct; however semantically legal are only those between -32768 and
+32767.

5.1. Lexical structure of the Turbo-Pasc’99 Language

This Section explains the lexicographic representation of integer, real and string con-
stants as well as of identifiers (names). In addition, special symbols and comparison
operators are briefly treated. You will also find out how to make comments (ex-
planatory documentation) in a Turbo-Pasc'99 program.

Blanks, comments, and end of line (< RETURN >) serve to separate the above objects.

5.1.1. Representation of Integer Constants

Integers (whole numbers) are processed directly by the CPU (central processing unit)

and must therefore match the word length of the processor. Since the TMS9900 (the

CPU of the TI-99/4a) is a 16-bit processor, only numbers between -32768 and + 32767

can be processed. The lexical structure of integer constants is defined as follows:
<integer constant >

: <digit> ...

1 <sign> <digit> ...

13 Turbo-Pasc’99 Reference Manual

L B B B B B

<digit>

:0:1:2:3:4:5:6:7:8:9

<sign>
-

In addition, the number must be in the range of -32768 to +32767.

5.1.2. Representation of Real Constants
The most important distinction of real constants as opposed to integers is that they
cover a much larger range, and so they can no longer be processed directly by the
CPU. This results in much longer computation time (even in the case of simple float-
ing point operations such as addition).
The legal range of real constants is as follows:
-9.9999999999999E127 .. -1E-128
0
1E128 .. 9.9999999999999%¢e 127
Real numbers must have either a decimal point, an "E", or both so that the compiler
can distinquish them from integers. Depending on the number of significant digits, a
real constant of either 4, 6 or 8 bytes’ length results (see Section 5.2.7 - Variable decla-
ration).
Real numbers can be represented in two ways:
Decimal representation - no exponent is used, making it easier to recognize the
actual size of the number. The lexical structure of decimal representation is
defined as follows:
<decimal real constant >
1 <sign> <digit> ...
: <sign> <digit> <digit> ...
: <digit> ...
: <digit> ... <digit> ...
Exponential representation - (scientific notation) the size of the number is deter-
mined by the exponent. This method may be less clear to the novice, but it has
the advantage of being able to represent very large (1E127) or very small (1E-
128) numbers.
< exponential real constant >

. <decimal real constant> E <sign> <digit> ...

: <decimal real constant > E <digit> ...

Turbo-Pasc’99 Reference Manual 14

5.1.3. Representation of String Constants

String constants must appear between quotation marks (") and can contain any
characters. If a quotation mark is desired in the string itself, then the quotation mark
must appear double.

A string constant may not go beyond the end of a line. In order to represent a longer

string, the concatenation (joining two strings) operator “&" is used. (See Section
5.2.9.10.2 - String expressions.) An empty string (") is also possible/valid.

5.1.4. Identifiers
In contrast to reserved words (see Appendix A), identifiers are names which are
chosen by the user to identify his objects (e.g., constants, variables). See Section
5.2.4 - Declarations.
Identifiers are formed as follows:

< Identifier >

. <letter >

. <letter> <character> ...

< character >

: <letter >

: <number >

: _ (underline character)
Although identifiers can extend up to 80 characters (the maximum length of a line), it
is recommended that they be limited to not more than 10 characters since all charac-

ters in the identifiers are significant and available memory of the T1-99/4a is limited.
Capital and small letters are not differentiated.

5.1.5. Special Symbols and Comparison Operators

In order that the compiler can recognize them, comparison operators which are made
up of two special symbols (e.g., "< =") may not be separated (e.g., "< =" would be
wrong). Appendix A gives a complete list of special symbols and comparison
operators.

5.1.6. Comments
A comment is any text contained in the special brackets “{ }*. Comments can be
nested to a maximum nesting level of 65535, for example:

{This is a {nested} comment}

Compiler options (see Appendix C) are also placed in comments (e.g., {$I+}).

15 Turbo-Pasc’99 Reference Manual

5.2. Language Elements of TURBO-PASC’99

5.2.1. Program Structure
A program is defined as:

<program> : <program head > < block > .

5.2.2. Program Heading

The program heading is declared as:
< program heading > PROGRAM program name ;

The program name Is an identifier and has no special meaning for the syntax analysis
of the rest of the program, but does have documentary value.

5.2.3. Block
The block is defined as:

<block > : <declaration part> <statement part>

5.2.4. Declaration Part
The declaration part of a block consists of the following objects:

< declaration part> :

<label declarations >

< constant definitions >

<variable declarations >

< procedure or function declarations > ...

It is to be noted that the object must be declared in this order. An identifier can be
used only after it has been declared in the program.

The exceptions to the preceding statement are the predefined standard names as
listed in Appendix A. Although these standard names can be redefined, we recom-

mend, for the sake of program clarity, that such redefinition be avoided by the
programmer.

There are also reserved words (key words) which cannot be used as identifiers. A list
of all these reserved words also appears in Appendix A.

5.2.5. Label Declarations
Label declarations can be omitted or defined as follows:

< label declarations >
: LABEL name ;

: LABEL <names> ... name ;

Turbo-Pasc’99 Reference Manual 16

< names >
: name ,
The "name" is an identifier.

it should be noted that the declared label must be set in the statement part of the
program.

5.2.6. Constant Definitions
These can be omitted or defined as follows:

< constant definitions >

: CONST < constant assignment > ...

< constant assignment >

: constant name = constant value ;
“Constant name" Is an identifier.
Constant names can be used in the program instead of constants; by changing the
constant assignment at the beginning of a block, the value changes throughout the
block. Examples of constants: 1.3434 (real), "hello” (string), etc.
Standard constants (P, E, etc.) are likewise listed in Appendix A. These can also be

redefined, but, for the sake of program clarity, its is recommended that you avoid such
redefinitions.

5.2.7. Variable declarations
These can be omitted or defined as follows:

< variable declarations >

: VAR <variable declaration> ...

. <variable declaration >
: variable name : <type definition> ;
. <variable names > ... variable name
: <type definition> ;
<variable names >
: variable name ,

"Variable name" is an identifier.

17 Turbo-Pasc’99 Reference Manual

p— pm——

< type definition >

: <base type >

: ARRAY [<index spec>] OF <base type >
: STREAM [integer constant]

: BLOCK [integer constant]

: RELATIVE [integer constant]

<index spec >
: integer constant

: <integer constants > ... integer constant

<integer constants >

: integer constant ,

<base type > :INTEGER
: REAL [integer constant]
: BOOLEAN
: STRING [integer constant]
All integer constants must be positive.

In the ARRAY declaration, the integer constants determine the dimensions of the array.
Dimensioning of the array always begins at 0.

In the FILE declarations STREAM, BLOCK and RELATIVE, the integer constant gives
the logical record length of the file. This length is limited to 255. The meaning of this
declaration is explained in Section 5.5.3 - File I/O. A file variable require s 2 bytes in
RAM.

The INTEGER declaration requires exactly 2 bytes in RAM. This data type can be
processed directly by the CPU.

The REAL declaration permits only the integer constants 4, 6 or 8. This determines the
size in bytes of memory allocation for the real variable. The smaller this value, the
faster the programs runs; however, the precision in significant digits is d iminished.

The BOOLEAN declaration requires 1 byte of memory allocation and can be
processed directly by the CPU.

Turbo-Pasc’99 Reference Manual 18

The STRING declaration limits the integer constant, and thereby the length of the
string and memory allocation, to 255. One additional byte of memory is allocated to
mark the length of the string.

5.2.8. Procedure and Function Declarations
This part can either be omitted or is defined as follows:

< procedure or function declaration >
: PROCEDURE procedure name <formal parameters> ; <body >

: FUNCTION function name < formal parameters > ; : <base type > ;
<body> ;

Procedure and function names are identifiers.

The formal parameter list can either be omitted or is defined as follows:
< formal parameters >
1 (<formal>)

: (<formals > ... <formal>)

<formals >

. <formal> ;

<formal >
: VAR <formal parameter spec >

: <formal parameter spec >

<formal parameter spec >
: parameter name : <type definition >

: <parameter list>...parameter name : <type definition >

< parameter list>
: parameter name ,
The parameter name is an identifier. Parameters can be used like variables.

The reserved word VAR in the formal parameter list means that the parameters which
follow are reference parameters, i.e., a pointer is passed for the respective parameter,

19 Turbo-Pasc’99 Reference Manual

]

not a value. As a result, every change in the formal parameter in the procedu re or
function (e.g., by an assignment statement) also changes the value of the variable in
the invoking program. This type of parameter is used in variable parameters.
If the reserved word VAR is not used, then the actual value of the parameter is passed.
When the formal parameter is changed, the value of the variable in the invoking
program is not changed. The procedure or function body can contain the following al-
ternatives:

<body >

: <block >

: EXTERNAL

: FORWARD
The keyword EXTERNAL tells the compiler that the procedure or function is to be
found in a MODULE. A module is a separate program file in which procedures or func-
tions are stored, comparable to a library. In-depth explanation can be found in Sec-
tion 5.3 - Modularizing programs.
The keyword FORWARD informs the compiler that the procedure or function is defined
in program text following in the same block. As a result, the formal parameter list can-

not be given again. The FORWARD declaration must be used in the case of indirect
recursion (two procedures which invoke each other).

5.2.9. The Statement Part
The statement part is defined as follows:

< statement part >

: BEGIN <instructions> ... END

<instructions >

. <statements> ;

< statements >
: label : <statement>
: <statement >

The label must be declared in the same block in which it is set (see Section 5.2.5 -
Label declaration). The statement can either be omitted or is defined as follows:

<statement >
: <assignment statement >

: <procedure invocation >

Turbo-Pasc’99 Reference Manual 20

. <goto statement >

: <compound statement >
: <if statement >

. <repeat statement >

: <while statement >

: <for statement >

: <case statement >

5.2.9.1. The Statement

< assignment statement >
: <variable > := <expression >

: function name : = <expression >

<variable >
: variable name

: array variable name [<index expression>]

<index expression >
: <expression >

1 <expressions> ... <expression>

<expressions >
. <expression> ,

Index expressions must be of the type integer. (More on expressions can be found in
5.2.9.10.) The following assignment statements are legal:

integer to integer

boolean to boolean

real[n] to real[m] n,mIN[4,86, 8]
real[n] to integer nIN[4,6,8]

integertoreal[n] nIN[4,6,8]

21 Turbo-Pasc’99 Reference Manual

T B B WE EE WN WE WM WN mm Em s W

_= - O =E EE BFN B E B BEBEaEAHMEBEm SsSm ==

string[n] to stringfm] 0 <=nm <= 255

Assignment statements can be made only with base types. The compiler fits the
length of string and real types to their assignment, i.e., if a longer type is assigned to a
shorter one, the longer one is truncated.

In assignments of real to integer types, run time errors can occur (see Appendix B) if
the real value is too large to be converted to an integer value.

Assignment to a function name can only occur within the function block. Thereby the
return value of the function is determined.

5.2.9.2. Procedure Invocation
< procedure invocation >

: procedure name (<actual parameter list>)

The actual parameter list (in the invoking program) must contain the same number of
parameters as the formal parameter list (in the declaration of the invoked procedure).

< actual parameter list >
: <actual parameter >

: <actual parameters > ... <actual parameter >

< actual parameters >

: <actual parameter > |

< actual parameter >

: <expression >

: <variable >
If a reference parameter (key word VAR) is declared in the formal parameter list, then
the corresponding actual parameter must be a variable and cannot be an arithmetic
expression.
In general, the types in actual and formal parameters have to match. As in assign-
ment statements, length adjustment is possible with real and string base types, but
only with parameters passed by value. Reference parameters and arrays require an
exact match, including length.
In passing an array, only the name of the array (without index values) is given as ac-
tual parameter. We recommend passing arrays as reference parameters in order to

save memory and run time.

File variables are likewise passed by simply giving the file name.

Turbo-Pasc’99 Reference Manual 22

5.2.9.3. The Goto Statement

<goto statement >

: GOTO label
The label must be in the same or in an hierarchically higher block. Since the language
Turbo-Pasc'99 offers elements of structured programming (e.g., WHILE, CASE,

REPEAT), so that the goto statement becomes superfluous in most cases since it
reduces the clarity and readability of a program.

5.2.9.4. The Compound Statement
<compound statement >

: BEGIN <statements> ... END

With the help of this statement, multiple statements can be combined into one.

5.2.9.5. The IF Statement

< if statement >
: IF <expression> THEN < statement>
: IF <expression> THEN <statement> ELSE <statement>
The expression must be boolean. No semicolon may appear before the ELSE. The

result would be that the IF statement would be concluded after the THEN branch and
the ELSE could be interpreted as a new statement, which would lead to a syntax error.

5.2.9.6. The REPEAT Statement

<repeat statement >
: REPEAT <statements> ... UNTIL <expression >
The expression must be boolean. The repeat loop is repeated until the boolean ex-

pression is TRUE. The repeat loop is executed at least one time because the condition
is tested at the end of the loop.

5.29.7. The WHILE Statement

<while statement >
: WHILE <expression> DO < statement>
The expression must be boolean. The while loop is executed until the value of the ex-

pression is FALSE. If the expression is FALSE at the beginning, the while loop is not
executed at all (in contrast to the repeat loop).

5.2.9.8. The FOR statement

<for statement >

: FOR variable : = <expression> TO <expression >
DO < statement >

: FORvariable : = <expression > DOWNTO <expression >
DO <statement >

23 Turbo-Pasc’99 Reference Manual

The control variable and the expressions must be integer types. The key word TO
means that the loop counts upwards; DOWNTO means that the loop counts
downwards. Both are in steps of 1.

In order to avoid logical program errors, it is urgently advised that control variables be
declared locally (see Section 5.4 - Scope of Identifiers) as simple integer variables.

5.2.9.9. The CASE Statement

< case statement >
: CASE <expression> OF <case body > END

The expression must be of the integer type.

<case body >
. <case alternative >

. <case alternative > ...

< case alternative >

. <case label list> : <statement> :

< case label list >
. <case label >

. <case labels> ... <case label >

<case labels >

. <case label> ,

< case label >
: integer constant

. <interval >

<interval > : integer constant .. integer constant

Case alternative are processed sequentially. An alternative is fulfilled as soon as the
value of the expression matches one of the constants or lies within an interval. As

Turbo-Pasc’99 Reference Manual 24

soon as this is the case with one alternative, the following statement is ex ecuted and
the case statement is concluded.

If none of the case alternatives is fulfilled, a run time error is produced. The following
trick might serve you as an error trap to catch all other alternatives. Let your last case
alternative be:

minint .. maxint : <statement >

These are standard constants (see Appendix A).

5.2.9.10. Expressions
Expressions consist of operands (constants, variables, etc.), operators (+ ,-,*/,etc.)

and parentheses. A type is always connected with an expression. Operators are
divided into the hierarchy levels 0, 1, 2, and 3.

Evaluation of expressions:
® Operators of a lower hierarchy level are evaluated before those of higher levels.
® Operators are evaluated from left to right.

® Parentheses override priority rules and are evaluated first.

Level 3:
<expression >

: <simple expression > <comparison operator > < simple expression >

< comparison operator >

<simple expression >

1 <sign> <term>

: <sign> <term> <additon> ...
L <term >

: <term> <additon> ...

< additon >

: <addition operator> <term>

25 Turbo-Pasc’99 Reference Manual

I
i

<sign>

Level 1:
<term>
. <factor>

. <factor> < multiplication> ...

< multiplication >

: <multiplication operator> <term>

< multiplication operator >

:*:/:DIV: MOD : AND

Level Q:
<factor >
. <variable >
. <constant >
: (<expression>)

: NOT <factor>

: function name (<actual parameter list>)

The same conventions count for invocation of a function as for a procedure (see Sec-

tion 5.2.9.2 - Procedure Invocation).

5.2.9.10.1 Arithmetic Expressions

Arithmetic expressions have a value of the integer or real type. The operators need to
be type compatible with the operands. The following rules of combination are in force:

Level 2:
integer + - integer —> integer
real[n] +,- integer —> real[n]

real[n] +,- real[m] —> real[max(n,m)]

Turbo-Pasc’99 Reference Manual

26

Level 1:
integer *,DIV,MOD integer — > integer
integer / integer —> real[4]
real[n] *,/ integer > real[n]

real[n] *,/ real[m] —> real[max(n,m)]

5.2.9.10.2 String Expressions
String expressions have a value of the type string. The following rules of combination
are in force:

Leve| 2:
string[n] & string[m] —> string[min(n +m,255)]

The operator "&" is the concatenation operator for strings.

5.2.9.10.3 Logical Expressions
Logical expressions have values of the base type boolean, i.e., either true or false. The
following rules of combination are in force:
Level 3:
integer =,<,< =,> =,< >,> integer - > boolean
real[n] =,<,< =,>=,< >,> Integer -->boolean

real[n] =,<,< =,>=,< >,> real[m] -> boolean

string[n] =,<,< =,> =,< >,> string[n] -> boolean

Leve| 2:

boolean OR boolean —-> boolean

Level 1:

boolean AND boolean --> boolean

Level O:

--- NOT boolean > boolean

27 Turbo-Pasc’99 Reference Manual

- EE U Uk EE B B EE B AR S BN B B B

5.3. Modularizing Programs

This section will explain how to reduce programs into smaller modules which can be
saved in separate files and independently compiled. In addition, the possible com-
munication mechanisms between modules will be discussed.

5.3.1. Main Modules

How to construct a main module is described in Section 5.2 - Language Elements of
Turbo-Pasc'99. Main modules must alway begin with the key word PROGRAM. Fur-
thermore, every program must contain such a module since the execution of any
Turbo-Pasc'99 program begins and ends within the main module.

5.3.2. Library Modules

Library modules are comprised of a collection of procedures and functions which
share a common characteristic (graphic utilities, file management utilities, etc.).
Though similar in construction to the main module, library modules contain no state-
ment part.

Construction syntax:
<module >
: <module head > <module declaration part >
<module head > : MODULE module name ;
The module name is an identifier whose sole purpose is documentation.
<module declaration part> :
< constant definitions >
< variable declarations >
< procedure and function declarations > ...
These objects are declared exactly as explained in Section 5.2 - Language Elements of
Turbo-Pasc'99. You should note, however, that variable declaration has a different

meaning here. It serves the purpose of communication with other modules in the
sense of COMMON ranges.

5.3.2.1. Exporting Procedures and Functions

The procedures and functions in the module declarative part are exported either to
other library modules or to the main module (i.e., made accessible to other modules).
This correspondence is given by the key word EXTERNAL.

The following precautions should be noted:

® In exporting/importing of identifiers, only the first six characters (excluding the
character "_") are considered.

@ Identifiers for procedures and functions must be unambiguous.

@ If an identifier is imported via EXTERNAL by a main module or a library
module, it must also be exported by a library module.

Turbo-Pasc’99 Reference Manual 28

® If a procedure or function in a declarative part of a module is declared
EXTERNAL, it can import but not export.

@ |f these precautions are not heeded, errors may arise in the linking of the
modules (see Section 6 - The linker).

5.3.3. Communication by Parameter Passing

Parameter passing occurs as described in Section 5.2.9.2 - Parameter Passing. It
should be noted that assignment compatibility is not tested, leaving the programmer
to assure that his list of formal parameters for the EXTERNAL definition corresponds
one to one with the formal parameter list of the module.

5.3.4. Communication through COMMON Ranges

Here, a variable declaration in the declarative part of the module resides in the same
central storage address as a variable declaration of the main program in the main
module. For example, if both modules declare an integer variable, this variable could
be assigned a value in the main program and the value could be changed in the
library module.

This type of communication is fast because, instead of parameters being passed,
reference is made directly to the storage cells. However, the COMMON approach
must be used with caution. In no case can more variables in the main module be over-
lapped than exist there. The program would subsequently crash.

The most infallible method is to employ the same variable declarations as in the
highest declaration level in the main module. Other names can naturally be used.
The important thing is that the type declaration and the order of declaration is the
same.

The following examples are intended to make the module concept clearer:
Communication by parameter passing:

PROGRAM Main; {main module}
VAR result: INTEGER,;
{ Procedures / functions imported from a library module. }
PROCEDURE add (a,b:INTEGER; VAR sum:INTEGER); EXTERNAL;
PROCEDURE sub (a,b:INTEGER; VAR diff:INTEGER); EXTERNAL;
FUNCTION mul (a,b:INTEGER) : INTEGER; EXTERNAL;

BEGIN
add (5,7 result);
sub (3,4,result);
Writeln(mul (3,4));
END.

MODULE maths; {library module}
{ Procedures / Functions exported to other modules }
PROCEDURE add (x,y:integer; VAR z:integer);
BEGIN
= x+y;
END;
PROCEDURE sub (x,y:integer; VAR z:integer);
BEGIN
Z:= X-y;
END;

29 Turbo-Pasc’99 Reference Manuali

FUNCTION mul (x,y: INTEGER): INTEGER,;
BEGIN

mul : = x*y;
END;

Communication through COMMON ranges:

PROGRAM main; {main module}
VAR n:integer,
arra: ARRAY [100] OF STRING[10];
i : INTEGER;
PROCEDURE outcom; EXTERNAL;

BEGIN
readin(n);
for i: =0 to n do readIn(arra[i%];
outcom;

END.

MODULE out; {library module}
{ The COMMON Variables must be declared in the same sequence as in the main
module. The names need not necessarily be the same.}

VAR k:INTEGER,; { k is superimposed on the variable n in the main module. }
f:ARRAY[100] OF STRING[10]; { fis superimposed on the variable arra in the main
module.}

PROCEDURE outcom;
VAR i:integer;
BEGIN
FORi: =0 to k do writeln(f[i]);
END; .

5.4. Scope of Identifiers

The scope of an identifier can be local or global. The following scope rules make the
use of identifiers clear:

1) An identifier may be used only in a procedure (function) in which it has been
declared (it is then local to that procedure) and in all procedures and functions
declared within that procedure (it is global to these procedures). The identifier is
not known to procedures outside the nesting level of the declaration.

Identifiers declared in the main program are known to all procedures and func-
tions.

Standard identifiers (see Appendix A) can be thought of as declared in an in-
visible block enclosing every program and therefore known to all parts of the
program.

2) When an identifier is declared anew in a subordinate procedure or function, it
is a distinct entity which only coincidentally has the same name. The scope of the
originally declared identifier does not extend into this block. Both rules 1 and 2
apply for the new identifier.

Turbo-Pasc’99 Reference Manual 30

-— E | W O 3 R S R SR &S| = =3 =|Es

Example:

PROCEDURE Levelt;
VAR ijk : INTEGER;

PROCEDURE Level2;
VAR ij,|: BOOLEAN;

BEGIN {Level 2}
{ valid: ij,l: BOOLEAN k : INTEGER }
END;

BEGIN {Level1}
{ valid: ijk:INTEGER }
END;

Turbo-Pasc'99 contains a so-called dynamic storage model. By clever arrangement of
a program in procedures and functions, considerable storage can be saved.

Since the scope of variables declared in a block does not extend outside that block,
the storage occupied by that variable is also freed (made available for other purposes)
upon leaving the procedure/function. Furthermore, this means that the variab le values
are undefined with each new invocation since another procedure might have used the
same storeage location and altered the values of the variables.

If a procedure or function requires a variable whose value is to be retained through
several invocations of this procedure/function, then the variable needs to be declared
in the outer block containing this procedure/function or in the main program itself as a
global variable.

31 Turbo-Pasc’99 Reference Manual

- aE - - E E EA E A A E A EaEaSs

5.5. Standard Procedures and Functions

This section explains all procedures and functions which are at your disposal in the
run time system (under RUNLIB on the Turbo-Pasc'99 disk). This run time system is
practically a just like a library (see Section 5.3- Modularizing Programs), yet it does not
have to be linked as module to your program. Since every program that you write will
use the run time system, Turbo-Pasc'99 saves you the trouble of linking it yourself.

As you may have realized, RUNLIB is a memory image file, which sets it apart from nor-
mal modules, which are Display Fixed 80 files created by the assembler. Memory
image files load faster than Display Fixed 80 files.

The run time system contains the following function groups:
® SCREEN - special routines for monitor control.
® CONSOLE |/Q - procedures for keyboard input and monitor output.
@ FILE I/O - procedures and functions for file management.
® MATH - mathematic functions.
® STRINGS - functions for manipulation of strings.
® CONVERSION - functions for comfortable conversion of data types.
® MISCELLANEQUS - other procedures and functions.

The following pages explain the declaration of standard procedures and functions and
provide short examples for each.

Certain standard procedures create a problem in declaration because, as so- called
generic procedures, they must accommodate any number of parameters of any type.

Example: Write(3.14); Is correct - but so is
Wirite("Hello", TRUE, 12, 3.14);

The parameter list for generic procedures is given as "GENERIC".

5.5.1. Screen

SCREEN contains procedures for organizing the screen. The screen in BASIC con-
tains 768 characters (24 x 32) and in the Editor/Assembler Editor, 960 (24 x 40). The
32 character display can assign one of 16 colors to character groups up to 8 bytes, but
less information can be displayed than on the other display. The 40 character display
offers only two colors to choose from, but can display text more clearly.

The following procedures were implemented in order to allow you to choose either a
32 or 40 character display.

5.5.1.1. Graphics
Declaration: PROCEDURE Graphics;

Explanation: Changes to 32 character screen; if the graphics screen is already ac-
tivated, the invocation is ignored, otherwise the screen is cleared.

Example: Graphics;

Turbo-Pasc’99 Reference Manual 32

5.5.1.2. Text

Declaration: PROCEDURE Text;

Explanation: Changes to 40 character screen; if the text screen is already ac-
tivated, the invocation is ignored, otherwise the screen is cleared.

Example; Text;

5.5.1.3. Cls

Declaration: PROCEDURE Cls;

Explanation: The screen is cleared, automatically matched to the activated 32 or
40 character screen.

Example: Cls;

5.5.1.4. Screen

Declaration: PROCEDURE Screen (foreground color, background color : IN-
TEGER);

Explanation: Sets the general foreground and background colors. On the 32
character screen, all character groups and the frame are set to this color combina-
tion; the 40 character screen receives the color combination as foreground/back-
ground. Both parameters must be in range of 1 through 16, and adhere to the
BASIC color.

Example: Screen (16,5);

5.5.2. Console I/O (Input and Output)

Console /O allows you to communicate with your program. The currently active
screen is matched automatically.

5.5.2.1. Cursor

Declaration: PROCEDURE Cursor (row, column: INTEGER);

Explanation: Positons the cursor for input/output operations; row must be in the
range 1 through 24; column mst be in the range 1 through 32 for the 32 character
screen or 1 through 40 for the 40 character screen.

Example: Cursor (12, 20);

5.5.2.2. Write

33

Declaration: PROCEDURE Write (GENERIC);

Explanation: Prints out desired text on screen. The output can also be formatted
with the following options:

integer: field width (1 format option)
boolean: field width (1 format option)
string: field width (1 format option)

real: field width (1 format option)

real: field width/accuracy (2 format options)

Turbo-Pasc’99 Reference Manual

Truncating (cutting off) options whose format option is too small is not possible.
Instead the format specification is ignored.

les (without { inal:

Wirite (12);
Output: 12

Write (1.23);
Output: 1.23E + 000

Write ("This is text");
Output: This is text

Write (true);
Output: TRUE

Examples (with formatting):
Write (12:4);
Output: 12

Write (-1.23:5:2);
Output: -1.23

Wirite (“Expansion*, 15);
Output: Expansion

5.5.2.3. Writeln
Declaration: PROCEDURE Writeln (GENERIC);

Explanation: Exactly as Write but with an additional carriage return to positon cur-
sor at the start of the next line.

Example: Writeln (1, 2.05, "three”, 20);

5.5.2.4. Read
Declaration: PROCEDURE Read (VAR GENERIC);

Explanation: Assignes values to identifiers as they are read from the keyboard.
The actual parameter list may contain only reference parameters.

Lexical correctness for integer and real constants is checked at input (see Section
5.1 - Lexical structure of Turbo'-Pasc’99). If an error occurs, the input value is ig-
nored and must be entered again.

A format option can be specified at input; it defines the length of the input field.

String constants - which are input without quotation marks - have an additional
condition in their format option: If no format option is given, all succeeding

blanks are ignored; if a format option is given, then blanks are added to the end
until the given length is achieved.

Every input must be confirmed with the <ENTER> key since this is the only
legal character for separating input. Three parameters, for example, would re-
quire the <ENTER> key to be pressed three times.

Turbo-Pasc’99 Reference Manual 34

Example: Read (name, address: 20, age 3);

Input: Meyer <ENTER >
123 Main St. <ENTER>
123 <ENTER>

5.5.2.5. ReadlLn
Declaration: PROCEDURE ReadlLn (VAR GENERIC);

Explanation: Operates exactly as Read, but with a carriage return after all
parameters have been input (cursor repositioned at start of next line).

Example: ReadLn (name, address, age);

5.5.3. File I/O (Input and Output)

File /O contains the routines that you will need for file management. Both sequential
(stream, sequential) and direct address (relative, DA - Direct Address) files are sup-
ported.

Declaring file variables in Section 5.2.7 - Variable Declaration. The meaning of the dec-
larations is as follows:

® STREAM - sequential file with variable record length. Logical record length is
set in the declaration in the form of an integer constant. Only string type
objects can be written on such a file. If you need to write arithmetic
expressions onto a stream file, they first need to be converted into strings with
the included conversion functions (see Section 5.5.6 - Conversion). Likewise,
only strings can be read form a stream file.

® BLOCK - sequential file with fixed record length. Logical record length is set in
the declaration in the form of an integer constant. Objects of all base types can
be written onto such a file. The value of the objects is stored in its internal
representation, so each object requires as much storage as given in its
declaration. Since the object type Is not stored in the file, it is up to the
programmer to ensure the compatiblility of data types. The system monitors
the logical record length and recognizes if too little or too much information is
read from a data entry. This would lead to a run time error.

® BELATIVE - DA file with fixed file length. The same conditions as with BLOCK
apply.

5.5.3.1. Open
Declaration: PROCEDURE Open (VAR FileVar : FileType;

) B BB B B B B B G SR G

FileName : STRING[n];
OpenMode : INTEGER,;

Explanation: Assignment of a physical file to a logical file definition of any type
and opening of that file.

FileVar is the logical file name and must be of the STREAM, BLOCK or RELATIVE
type (see Section 5.2.7 - Variable Declaration).

FileName is the physical file name and gives the name of the peripheral device
and the file located there.

35 Turbo-Pasc’99 Reference Manual

L BE BE BE B BF BN BN BN BN B By)

OpenMode gives the direction of data tranfer (INPUT, OUTPUT, APPEND). These
names are accessibie as standard constants (see Appendix A).

Example: VAR File1 : STREAM[80];

Open (File1, "DSK1.MYPROGRAM", INPUT);

5.5.3.2. Put
Declaration: PROCEDURE Put (VAR FileVar : FileType; GENERIC); {for STREAM}

PROCEDURE Put (VAR FileVar : FileType; VAR GENERIC); {for BLOCK, RELA-
TIVE}

Explanation: Output of expressions onto a file. All parameters are grouped
alongside one another and written as a logical record onto the file. STREAM files
add an automatic line feed if the logical record extend beyond the record length;
BLOCK and RELATIVE files generate a run time error.

Permissible parameter types depend on the file type:

STREAM - string only.
BLOCK - all base types.
RELATIVE - all base types.

In order to increase dependability in file communication, BLOCK and RELATIVE
files require that only variables be used as parameters. For example, in calculat-
ing record length, you reserve a field of the type REAL[8]; an attempt to store the
constant 3.1 in this field would lead to a run time error since the compiler assigns
this constant REAL[4].

Example: Put (File1,"This is great,","isn't it?");

5.5.3.3. PutilLn

Declaration: PROCEDURE PutlLn (VAR FileVar : FileType; GENERIC); {for
STREAM}

PROCEDURE PutLn (VAR FileVar : FileType; VAR GENERIC); {for BLOCK, RELA-
TIVE}

Explanation: The same conditions apply as with Put. The compiler also tests
whether the given parameters cummulatively make up exactly the established
record length for a BLOCK or RELATIVE file; otherwise a run time error appears
on the screen. Afterwards, the next record in the file is prepared for processing.

Example: PutLn (File1, "This is the end.");

5.5.3.4. Get
Declaration: PROCEDURE Get (VAR FileVar : FileType; VAR GENERIC);

Explapation: Reads desired values fron a file.
When the end of a logical record has been reached before all parameters have

been assigned a value, a STREAM file will automatically continue to read the next
record. BLOCK and RELATIVE files, however, will produce a run time error. A run

Turbo-Pasc’99 Reference Manual 36

time error will likewise occur if an attempt is made to read beyond the end of the
file. The function EOF permits checking to see if more records are available.

Permissible paramter types depend on the flie type:
STREAM - only strings.
BLOCK - all base types.
RELATIVE - all base types.

Example: Get (File1, Name, Address, Age);

5.5.3.5. GetlLn

Declaration: PROCEDURE Getin (VAR FileVar: FileType; VAR GENERIC);

Explanation: The same conditions apply as with Get. The compiler also tests
whether the given parameters cummulatively make up exactly the established
record length for a BLOCK or RELATIVE file; otherwise a run time error appears
on the screen. Afterwards, the next record in the file is prepared for processing.

Example: GetlLn (File1, NearEndd, Endd);

5.5.3.6. Seek

Declaration: PROCEDURE Seek (VAR FileVar : FileType; RecNum : INTEGER);

Explanation: Pprepares the record with the given record for processing. Seek can
only be used with RELATIVE files.

Example: Seek (DA Filet, 12);

5.5.3.7. EOF (End of File)

Declaration: FUNCTION EOF (VAR FileVar : FileType) : BOOLEAN;

Explanation: Determines whether the end of file of a sequential file (STREAM or
BLOCK) has been reached. The function is meaningful only for INPUT files since,
if EOF returns TRUE, the next attempted read would produce a run time error.

Example: IF EOF (File1) THEN

WriteLn ("All records have been read");

5.5.3.8. EOLN (End of Line)

Declaration: FUNCTION EOLN (VAR FileVar : FileType) : BOOLEAN;

Explanation: Determines whether the end of a logical record in a STREAM file has
been reached. This is particularly useful since STREAM files have a variable
record length. The function is meaningful for INPUT files only.

5.5.3.9. Close

37

Declaration: PROCEDURE Close (FileVar : FileType);

Explanation: Closes a file. If this procedure is not used, all files are automatically
closed at the end of program execution.

Turbo-Pasc’99 Reference Manual

Example: Close (File1);

Close (DA _File1);

5.5.4. Math

MATH contains the usual floating decimal functions as known from BASIC. The follow-
ing table shows which arguments are legal and what type of value they return. The ac-

tual meaning of these functions can be found in most any BASIC handbook.

Eunction Meaning Argument Returns
ABS Absolute Value INTEGER INTEGER
ABS Absolute Value REAL[N] REAL[n]
ARCTAN Arc Tangent INTEGER REAL[4]
ARCTAN Arc Tangent REAL[n] REAL[n]
COS Cosine INTEGER REAL[4]
COS Cosine REAL[n] REAL([n]
EXP Exponent INTEGER REAL[4]
EXP Exponent REAL[n] REAL[n]
INT Integer INTEGER REAL[4]
INT Integer REAL[n] REAL[n]
LN Natural Log INTEGER REAL[4]
LN Natural Log REAL[n] REAL[Nn]
SIN Sine INTEGER REAL[4]
SIN Sine REAL[n] REAL[n]
SQRT Square Root INTEGER REAL[4]
SQRT Square Root REAL[n] REAL[n]
TAN Tangent INTEGER REAL[4]
TAN Tangent REAL[n] REAL[n]

5.5.5. Strings

String functions provide diverse routines for handling character strings. Most of the

string functions listed operate just like their BASIC equivalents.

5.5.5.1. ASC
Declaration: FUNCTION ASC (CHARACT : STRING([1]) : INTEGER

Explanation: Returns ASCIl value of the character.

Example: WriteLn (ASC ("A")); {returns 65}

5.5.56.2. CHR
Declaration: FUNCTION CHR (CharCode : INTEGER) : STRING[1];

Explanation: Returns character whose ASClII value is given; inverse of ASC.

Example: WriteLn (CHR (65)); {returns A}

5.5.5.3. LEN
Declaration: FUNCTION LEN (StringA : STRING[n]) : INTEGER;

Explanation: Returns the length of the string.

Example: WriteLn (LEN ("Hello")); {returns 5}

Turbo-Pasc’99 Reference Manual

38

5.5.5.4. SEG
Declaration: FUNCTION SEG (StringA : STRING[n]; StartPos : INTEGER; Span :
INTEGER,) : STRING[n};

Explanation: Returns a segment (substring) which begins at the StartPos of the
given StringA and extends a Span characters.

Example: WriteLn (SEG ("Hello", 2, 3); {returns "all".}

5.5.6. Conversion

Conversion provides powerful routines for converting objects of various types. The con-
version of real or integer types to strings can be handled as described under format-
ting in Section 5.5.2.2 - Console I/O.

5.5.6.1. CIR
Declaration: FUNCTION CIR (WholeNum : INTEGER) : REAL[4];

Explanation: Converts an Integer expression to a Real expression with a length of
4.

Example: WriteLn (CIR (12));

5.5.6.2. CIS
Declaration: FUNCTION CIS (WholeNum : INTEGER) : STRING[n];

Explanation: Converts an Integer expression to a String with a length of n. A for-
mat can be specified (see Section 5.5.2.2 - Write).

Example: Writeln (CIS (12:4));

5.5.6.3. CRI
Declaration: FUNCTION CRI (RealNum : REAL[n]) : INTEGER;

Explanation: Converts a Real expression to an Integer with rounding if necessary.
A real number which is too large results in a run time error.

Example: WriteLn (CRI (1.2));

5.5.6.4. CRS
Declaration: FUNCTION CRS (RealNum : REAL[n]) : STRING[m];

Explanation: Converts a Real expression to a String n long. Format can be
specified as in 5.2.2.2 - Write.

Example: WriteLn (CRS (1.2:10:1));

5.5.6.5. CSI
Declaration: FUNCTION CSI (StringA : STRING[n]) : INTEGER;

Explanation: Converts a String expression n long to an Integer. The integer string
must be lexically correct (see Section 5.1.1).

Example: WriteLn (CSI ("12");

39 Turbo-Pasc’99 Reference Manual

5.5.6.6. CSR
Declaration: FUNCTION CSR (StringA : STRING[n]) : REAL[m];

Explanation: Converts a String expression n long to a Real expression. The real
string must be lexically correct (see Section 5.1.2).

Example: WriteLn (CSR (*-3.14"));

5.5.7. Miscellaneous
MISCELLANEOQOUS contains routines to directly read the keyboard and generate ran-
dom numbers.

5.5.7.1. Key
Declaration: PROCEDURE Key (KeyNum, VAR KeyCode, VAR Status : INTEGER);

Explanation: Reads one key from the keyboard.

Example: REPEAT Key (O, T, S) UNTIL S>0;

5.5.7.2. Randomize
Declaration: PROCEDURE Randomize;

Explanation: Seeding of the random number generator. if random numbers are

to be used, this routine should be called at the beginning of the program to
change the sequence of random numbers with each time the program is started.

Example: Randomize;

5.5.7.3. RND
Declaration: FUNCTION RND (Peak : INTEGER) : INTEGER;

Explanation: Generates a random number between 0 and the upper limit Peak
value.

Example: WriteLn (RND (32767));

Turbo-Pasc’99 Reference Manual 40

B

6. The Linker

Turbo-Pasc’99 package includes powerful program which is used as a loader for com-
piled modules and to generate program files.

The first component, a loader for tagged object code, can be compared to the LOAD

AND RUN option of the Editor/Assembler. And the second, the program file generator,
works similarly to the save utility on the Editor/Assembler disk.

6.1. Loading the Linker

Place the diskette Turbo-Pasc’99 system disk in drive 1. Select the option RUN
PROGRAM FILE from the Editor/Assembler menu and enter DSK1.LK99. The linker
will proceed to load and after a short period of time its title screen will appear.

6.2. Loader for Tagged Object Code

The blinking cursor should be located on the left edge of the screen. A complete line
editor with which you can enter your module names is at your disposal. The following
editing functions are available:

<ENTER>: The module name is selected and the respective module is loaded
from diskette.

<FCTN> S (cursor left): moves cursor one position to the left.
<FCTN> D (cursor right): moves cursor one space to the right.
<FCTN> 1 (delete character): deletes character under the cursor.

<FCTN> 2 (insert character): switches to insert mode; typed characters will be
inserted until the pressing of another function key overrides insert mode.

<FCTN> 6 (begin): positions cursor at start of the current line.

<FCTN> 8 (redo): all selected modules are ignored and the cursor is positioned
at the beginning of the first line.

<FCTN> 9 (back): exits the linker.

Two types of errors can occur during the loading process:
® Errors which require the last name to be re-entered (see Section 24.12.1 -
Input/Output Error Codes of the Editor/Assembler manual).

® Errors which require all modules to be re-entered. A Duplicate Symbol
message indicates a module was loaded more than once or modules have
identical external definitions. A Memory Fuil message is displayed if too many
modules were loaded and the available memory is exhausted.

After the desired modules have been properly loaded, the end of the link process is in-
dicated by pressing <ENTER> alone. This can lead to the following errors:

©® At Least One Module Must Be Loaded: the null entry was made before a valid
module name was entered.

Turbo-Pasc’99 Reference Manual M

® Main Module Not Loaded: only library modules were loaded; a main module is
missing. The cursor is positioned at the beginning of the first line to permit
input of the missing main module. !

® Unresolved Reference: one or more library modules were not loaded. The
cursor is positioned at the beginning of the first line to permit input of the
missing library module.

When module input has been properly completed, the second component of the linker
is activated.

6.3. Program File Generator

You will be asked whether you want to generate a program file. If you enter Y, the line
editor described above is again at your disposal so you may enter the name of your
program file. After the name has been input, memory image files are generated from
the original relocatable modules. These camthen be loaded from the Run Program File
option (#6) of the Editor/Assembler.

The generated program file is split into 8k files and the last letter of the file name is in-
dependently incremented (see the Save Utility in Editor/Assembler Handbook). |t is
therefore recommmended that the last character of your file name be a number (e.g.,
DSK1.MYPROGRAM1).

A program file is only generated if no run time errors occur (see Appendix B). If an

error does occur, the program must be corrected, recompiled, and relinked until it is
error-free.

6.4. Your First Linker Exercise

The Turbo-Pasc'99 diskette contains the two files WURM*, the main module of a gamr
program, and VDPMOD?*, a screen utility library module. In order to generate a ready-
to-run program from these modules, follow these steps:

1. Load LK99 as described in Section 6.1.
2. Enter one of the two module names along using the proper drive designation.

(DSK1.WURM* if the Turbo-Pasc'99 disk is in drive 1). The drive should be ac-
tivated and if loading has been successful the cursor will move to the next line.

3. Enter the name of the second module {BSK+VBPMOD2). (DSK1.VDPLIB*)

4. Since all necessary modules have been loaded, the null entry can now ter-
minate this phase. With the cursor on the third input line, press <ENTER>.

6. You will now be asked whether a memory image file is to be generated. Type Y.

6. Enter the program name (DSK2.WURMH1). Hf you are using a single disk system
you will have to replace the Turbo-Pasc'99 system disk with your working disk
and use DSK1.WURM1 as your filename. After this has been completed, the
program file generator will generate a memory image file.

7. When asked if you want to run the program, answer N. The cursor will be set

at the first input line ready to link more modules. Since we are done, press
<FCTN> 9.

42 Turbo-Pasc’99 Reference Manual

8. Select the Run Program File option from the Editor/Assembler menu and enter
the name of your memory image file (DSK1.WURM1, or DSK2 WURM1, depend-
ing on the drive it was saved on). The program should run and be now be at your

disposal.

Correction for Page 42
Affix this label

6.4. Your first Linker Exercise

3. (DSK1.VDPLIB*) not as shown

Turbo-Pasc’99 Reference Manual 43

7. Staning User Programs

Programs can be started using the linker or using the Run Program File (option #5)
from the Editor/Assembler menu.

7.1. Starting from the Linker

In order to use this method, you must first load the linker (see Section 6.1) and then
your compiled modules (see Section 6.2). You will have the option of generating a
program file (see Section 6.3). After these input prompts have been completed the
screen color will change to the color red. You will then be asked whether you want to
run your program. If you type in Y, the program is executed.

Be sure that a disk (like the Turbo-Pasc'99 system disk) is in drive 1 since it contains
the file RUNLIB. This is a memory image file which contains the entire run time sys-
tem of Turbo-Pasc'99 (all standard procedures, functions, initializing routines). If the
file RUNLIB is not in drive 1, the error message "Insert RUNLIB in Drive 1" will appear.
Insert the proper disk and press any key (other then <FCTN> 9 (back)) which will
return you to the Tl- 99/4a power-up screen) to continue.

7.2. Starting from the Editor/Assembler Menu

This method is without a doubt the easiest of the two. The prerequisite is that you
generated a program file (see Section 6.3) after having loaded the modules (see Sec-
tion 6.2).

Select the Editor/Assembler menu option (#5) Run Program File. Before selecting the
program name, make sure that the proper disk with your program is in drive 1. After
the program name has been entered, the program will start by itself.

Turbo-Pasc’99 Reference Manual 44

A. Appendix A - Reserved Words

A.1. Turbo-Pasc’99 Key Words

AND ARRAY BEGIN BLOCK BOOLEAN
CASE CONST DIV DO DOWNTO
ELSE END EXTERNAL FOR FORWARD
FUNCTION GOTO IF INTEGER LABEL
MOD MODULE NOT OF OR
PROCEDURE PROGRAM REAL RELATIVE REPEAT
STREAM STRING THEN TO UNTIL
VAR WHILE

A.2. Standard Names
abs append asc atn chr
cir cis close cls cos
cri crs csi csr cursor
e eof e oln exp false
get getin graphics input int
key len In maxint minint
open output pi put putin
randomize read readin rnd screen
seek seg sin sqrt tan
text true write writeln

A.3. Special Symbols and Operators
& . % . (
) + - * /
, : ; < =
> <= <> > = =

Turbo-Pasc’99 Reference Manual

45

B. Appendix B - Error Messages

B.1. Lexical Errors

1 Invalid numeric constant
2 String extends beyond end of line
3 Invalid character

B.2. Syntax Errors

11 'PROGRAM’ or 'MODULE' expected
12 identifier expected

13 '’ expected

14 invalid character after end of program
15 '='expected

16 constant expected

17 "’ expected

18 '’ expected

19 integer constant expected
20 '%'expected

21 'OF' expected

22 base type expected

23 ') expected

24 '('expected

25 ', expected

26 operand expected

27 ;" expected

28 'BEGIN' expected

29 'END’ expected

30 :='expected

31 'THEN' expected

32 'DO’ expected

33 'UNTIL’ expected

34 'TO'or 'DOWNTO’ expected

B.3. Semantic Errors

51 more than 9 procedures/funtions nested
62 identifier declared twice

53 FORWARD-reference not resolved
54 insufficient memory for program
55 declared label not set

56 incorrect array dimensions

57 invalid real type

58 invalid String type

59 identifier nott declared

60 constant not in valid range

61 conflict in types

62 identifier used incorrectly

63 integer expression expected

64 boolean expression expected

65 string expression expected

Turbo-Pasc’99 Reference Manual

67

69
70
71
72

integer oder real expression expected

simple expression expected

working range of compiler insufficient

label set more than once

assignment to function identifier not within function
loop variable not declared locally

invalid file type

B.4. Runtime errors

0-7
8
9
10
11
12
13
14
16
17
18
19
20

a7

standard file errors (see E/A Manual Section 24.12.1)
file not open

multiple assignment of a physical file logical file name
more than 10 open files

logical record length violated

division by 0

over/underflow in arithmetic calculation

error in mathematic function

incorrect Parameter in standard procedure

invalid format

array index outside limits

invalid CASE Alternative

stack overflow

Turbo-Pasc’99 Reference Manual

C. Appendix C - Compiler Options

With the help of compiler options, you can greatly influence the type of code
generated by the compiler. Employment of such options can be compared to setting
switches. In the text of a program, these switches can be turned on and off at will.
As explained in Chapter 5.1.6 - Comments - these options are located in the com-
ments. In the case of nested comments, only those compiler options residing in the
first nesting level can be recognized.
Rules for the construction of a compiler option:

<option> : § <letter> <sign>

<letter> :B:E:A:S:|

<sign> 4+ :-
If these rules are violated, the compiler option will not be recognized as such and is

treated as a normal comment. The letter indicates the particular compiler option. The
'+ activates the option; the -’ deactivates it.

C.1. Option B: Boolean Expression Evaluation

Option B: (default $B-)

$B + causes the evaluation of boolean expressions to terminate as soon as the value
is established.

Example:

{$B+}
IF (i>10) OR (f())< >0) THEN;

if (i> 10) is satisfied, then the second expression, (f(i) < > 0), is not evaluated since the
value of the IF expression is already established as true.

Activating this option can cause longer code generation in the case of complex expres-

sions. However, run time is shortened since the entire expression does not always
need to be evaluated.

C.2. Option E: Monitor Overflow/Underflow of Integers

Option E: (default $E-)
$E + causes overflow and underflow testing in integer addition and subtraction. Ac-

tivating this option causes longer code generation and should only be used if a strict
test of adherence to the valid range is desired.

Turbo-Pasc’99 Reference Manual 48

C.3. Option A: Monitor Array Index Overflow/Underflow

Option A: (default $A-)
$A+ monitors violation of indices with arrays. Although activation causes long code

generation and a slower run time, it leads to greater security. Deactivation of this op-
tion can, in the worst case, lead to an unrecoverable program crash.

C.4. Option S: Assembler Source Code Commenting

Option $: (default $S-)

$S + causes the Turbo-Pasc'99 source code line to be carried over as comment in the
assembler source code. This option has no infiuence on code length or on run time
performance. It does, however, cause a larger assembler source file and therefore a
longer assembling time.

C.5. Option I: Variable Initialization

Option I: (default $1-)

$!+ causes all variables to be initialized, depending on type, with 0, 0.0, false, or ™.
This has no influence on the code length. In the case of large amounts of variables,
especially large arrays, to be initialized, the run time can be slower since a procedure,
for example, requires the initialization with each invocation (based on the dynamic
storage model, Section 5.4 - Scope of identifiers).

49 Turbo-Pasc’99 Reference Manual

e Em = B e E N W W WEE W W WE W

D. Appendix D - Practice Session

This section runs you through a complete practice session to help give you a feel of
the Turbo-Pasc'99 system in action. Although the following practice sessions will give
you a better understanding of how to manipulate your system and working diskettes,
you are free to find more effective methods to suit your needs. Sections 2.2 or 2.3,
depending on your disk drive configuration, should be read before going through the
practice sessions.

Be sure to have your Editor/Assembler cartridge inserted into your console prior to
using the Turbo-Pasc’99 system.

D.1. Single Drive Practice Session

1. Place the TP99 system disk into drive one.

2. From the Editor/Assembler menu, select option 5 for Run Program File and
enter the filename DSK1.TP99. The editor/compiler system will then automatical-
ly load and run itself.

3. Replace the TP99 system disk with your working disk (that is used to store your
program files).

4. Enter the editor by entering ED on the command line.

5. Enter the program COUNTER listed at the end of this section. When you are
finished entering the program, depress the FCTN and 9 key at the same time to
return you to the command line.

6. Activate the compller by entering CO on the command line. Your program will
be checked for proper syntax, and if it was entered correctly no errors will have
been detected.

7. Enter SA DSK1.COUNTER/S to save your source code to your working disk.

8. Enter CO DSK1.COUNTER/O to activate the compiler and generate an assemb-
iy language source code file that can now be compiled using the Editor/As-
sembier.

9. Quit the editor/compiler system by entering Q! on the command line.

10. From the Editor/Assembler menu, select option 2 to load the assembler.

11. Enter DSK1.COUNTER/O when prompted for a source file name, and
DSK1.COUNTER/L when prompted for an object file name. Press enter for the
next two prompts until the 'assembler executing’ message appears.

12. From the Editor/Assembler menu, select option 5 for Run Program File and
enter the filename DSK1.LK99. The linker will then automatically load and run it-

self.

13. Enter DSK1.COUNTER/L when prompted for a module name, and press enter
when the cursor appears to the right of your module name.

Turbo-Pasc’99 Reference Manual 50

14. Enter yes (Y) when asked if you would like to generate a program file, and
DSK1.COUNTER when asked for a program name.

15. You may then run your program, or exit from the linker. The COUNTER
program that was generated by the linker may be run at anytime using option 5
(run program file) of the Editor/Assembler.

D.2. Dual Drive Practice Session

51

1. Place the TP99 system disk into drive one and your working disk into drive two.
Your working disk will be used to store your program files.

2. From the Editor/Assembler menu, select option 5 for Run Program File and
enter the filename DSK1.TP99. The editor/compiler system will then automatical-
ly load and run itself.

3. Enter the editor by entering ED on the command line.

4. Enter the program COUNTER listed at the end of this section. When you are
finished entering the program, depress the FCTN and 9 key at the same time to
return you to the command line.

5. Activate the compiler by entering CO on the command line. Your program will
be checked for proper syntax, and if it was entered correctly no errors will have
been detected.

6. Enter SA DSK2.COUNTERY/S to save your source code to your working disk.

7. Enter CO DSK2.COUNTER/O to activate the compiler and generate an assemb-
ly language source code file that can now be compiled using the Editor/As-
sembler.

8. Quit the editor/compiler system by entering Q! on the command line.

9. From the Editor/Assembler menu, select option 2 to load the assembler.

10. Enter DSK2.COUNTER/O when prompted for a source file name, and
DSK2.COUNTER/L when prompted for an object file name. Press enter for the
next two prompts until the 'assembler executing’ message appears.

11. From the Editor/Assembler menu, select option 5 for run program file and
enter the filename DSK1.LK99. The linker will then automatically load and run it-

self.

12. Enter DSK2.COUNTER/L when prompted for a module name, and press enter
when the cursor appears to the right of your module name.

13. Enter yes (Y) when asked if you would like to generate a program file, and
DSK1.COUNTER when asked for a program name.

14. You may then run your program, or exit from the linker. The COUNTER

program that was generated by the linker may be run at anytime using option 5
(run program file) of the Editor/Assembler.

Turbo-Pasc’99 Reference Manual

D.3. Sample Practice Program

PROGRAM counter;
{Counts integer numbers from 1 to 100 and display them on the screen}
VAR
i:INTEGER
BEGIN {counter}
cls;
i:=0;
WHILE i < 100 DO BEGIN
ii=i+1;
writeln(i);
END; {while i}
END. {counter}

Correction for Page 53
Affix this label

PROGRAM counter;
VAR

i:INTEGER;

BEGIN

clsy

i:=0;

WHILE i<100 DO BEGIN
is=i+1;
writeln(i);

END;

END.

Turbo-Pasc’99 Reference Manual

52

E. Appendix E - Sample Programs

E.1. Sieve
PROGRAM Sieve;
{ Eratosthenes’ Sieve for prime numbers }
CONST

Size = 8190,

Loops = 10;
VAR

i,

k,

lter,

Count,

Prime: INTEGER;
Flags: ARRAY[Size] of BOOLEAN;,

BEGIN {Sieve}
Cls;
Cursor(3,1);
WiriteLn("Eratosthenes’ Sieve”);
Cursor(7,1);
WiriteLn("Array Size : *,Size);
WriteLn("Number of Loops : *,Loops);
Cursor(10,1);
WiriteLn("Step Size : *);
FOR lter : = Loops DOWNTO 1 DOBEGIN
Cursor(10,19);
Write (iter:3);
Count : = 0;
FORi:= 0TO Size DO;
Flags[i] : = TRUE;
FORi : = 0TO Size DO BEGIN
IF Flags[i] THEN BEGIN
Prime:=1i +1 + 3;
k:=1i + Prime;
WHILE k < = Size DO BEGIN
Flags[k] : = false;
k:= k + Prime;
END;{ WHILE k }
Count : = Count + 1;
END;{ IF Flags }
END;{ FORi }
Screen (2, lter +6);
END;{ FOR iter }
Cursor(22,1);
WiriteLn(Loops," times ",Count:1," prime numbers found");
END.{ Sieve }

Turbo-Pasc’99 Reference Manual

53

E.2. Recursive Function

PROGRAM Recursive_Function;
{ Computation of n! (factorial) }

VAR Numb : REAL[8];

FUNCTION Fac(n : REAL[8]) : REAL[8];

BEGIN
IFn< =10THEN
Fac:= 1.0
ELSE
Fac : = n*Fac(n-1);
END;
BEGIN{main program}
REPEAT
Write("Enter a number :);
ReadLn(Numb);

WriteLn(Numb:4:0,"! = ",Fac(Numb));
UNTIL Numb < =0.0
END.

E.3. File Lister

PROGRAM File_Lister;
{ Output of VARSO files on printer;
PIO printer connection can be adapted}

LABEL Done;

VAR f: STREAM(80]; {file to be output}
outf : STREAM[80]; {output file}
c: STRING[1];
fnam : STRING[15];
Ic : INTEGER;

BEGIN
cursor(2,1);
writeln("* FILE-LISTER *");
open (outf, "P10", output); {PIO can be replaced
for other applications}
WHILEtrueDO BEGIN
cursor(12,3);
write("FILE TO LIST? ");
readin(fnam);
IF fnam = "" THEN
GOTO Done;
open(f,fnam,input);
lc : = 1;{line count begins at 1}
WHILE NOT eof(f) DO BEGIN
put(outf cis(ic:4)," "); {sends line count to printer}
WHILE NOT eoln(f) DO BEGIN{read & print text line }

54 Turbo-Pasc’99 Reference Manual

THE R T T - - S T S B - S e .

get(f,c);
put(outf,c);
END;
lc:=lc+1;
putin(outf); {printer line feed}
getin(f); {set file pointer to next text line}
END;
closef(f);
putin(outf,chr(12)); {printer page feed}
END;
. Done: {iabel to leave ioop}
END.

E.4. Wurm

PROGRAM Wurm;

CONST
right=3;
left=2;
limit=10;
up=5;
down =0,
sub =40;
slb=1;
zZlb=3;
zub =24;

VAR
dir,z,s : ARRAY[2] OF INTEGER,;
displa: ARRAY[2] OF STRING;
reply : STRING[1];
grad,point1,point2 : INTEGER,;
goof1,goof2: BOOLEAN;

PROCEDURE peekv(row,col : INTEGER; VAR byte : STRING[1]);
EXTERNAL;{ external assembler program }

PROCEDURE instructions;
VAR k,s: INTEGER,;
BEGIN
cls;
writeln("** SNAKES"); writeln; writeln;
writeln(*TWO PLAYERS ARE FIGHTING AGAINST EACH ");
writein("OTHER."); writeln;
writeln(* DON'T TOUCH THE BORDER, YOURSELF, OR ");
writeln("THE OTHER SNAKE."); writeln;
writeln("GAME ENDS AFTER " limit," MISTAKES.");
writeln;
writeln("LEFT PLAYER USES 'E','S','D",'X");
writeln("RIGHT PLAYER USES 'I','J','K',’"M™);
cursor(24,1);

Turbo-Pasc’99 Reference Manual

55

write("PRESS ANY KEY . ..");
REPEAT
key (0,k,s)
UNTIL SO;
END; { instructions }

PROCEDURE pokev(row,col : INTEGER; byte : STRING[1]);
EXTERNAL;{ external assembler program }

PROCEDURE score;
BEGIN
cursor(1,1);
write("**SCORE** A:",point1:1," B:",point2:1);
END;

PROCEDURE wait_till_players_ready;
VAR k,s1,s2 : INTEGER;
BEGIN
cursor(18,7);
write("BOTH PLAYERS PRESS ANY KEY!");
REPEAT
key(1,k,s1);
key(2,k,s2);
UNTIL (310) AND (s20);
cursor(18,7);
write("");
END;

PROCEDURE init;
VAR : INTEGER;
BEGIN
cls;
cursor(2,1);
write(" + +");
FORi: =3 TO 22DO BEGIN
cursor (i, 1);write("|");
cursor (i,40); write("|");
END;
cursor(23,1);
write (" + +");
displa[1] : = "A";
z[1] := 10;
s[1]:=5;
dir[1] : = right;
pokev(z[1],s[1],displa[1]);
displa[2] : = "B";
z[2] : = 10;
s[2] : = 36;
dir[2] : = left;
pokev(z[2],s[2],displa[2]);
END;

56 Turbo-Pasc’99 Reference Manual

S T R T D T s B D L B B BN . 0 0 e 0 J

PROCEDURE direction(sel : INTEGER);
VAR
i,k,s : INTEGER;
BEGIN
i:=0;
REPEAT
:=10+1;
key(sel k,s);
UNTIL (s>0) OR (i(grad-1)*10);
IF s>0 THEN
CASE k OF
left,right,up,down : dir[sel] : = k;
minint..maxint :
END;
END;

PROCEDURE player(sel : INTEGER; VAR goof : BOOLEAN);
VAR
byte : STRING[1];
BEGIN
goof : = false;
direction(sel);
CASE dir[sel] OF
left: s[sel] : = s[sel]-1;
right : s[sel] : = s[sel] +1;
up: z[sel] : = z[sel}-1;
down: z[sel] : = z[sel] +1;
END;
IF (s[sel] = slb) AND (s[sel] > =slb AND (s[sel] < =sub) AND
(z[sel] > =zlb) AND (z[sel] < =zub) THEN BEGIN

peekv(z[sel],s[sel],byte);
IF byte " " THEN
goof : = true
ELSE
pokev(z[sel],s[sel],displa[sel]);
END
ELSE goof : = true;
END;
BEGIN
instructions;
REPEAT
cls;

cursor(2,12);

write ("#### ######H#HHHHHE"),
cursor(3,12);

write("# #");

cursor(4,12);

write("#S N AK E S#");

cursor(5,12);

write("# #");

cursor(6,12);

write ("## ## # HH# #AF#HHH#H),
cursor(10,1);

Turbo-Pasc’99 Reference Manual

57

writein("ENTER LEVEL:");
writeln;
writeln("1HELL-SNAKER");
writeln("2TURBO-SNAKER");
writeln("3MASTER-SNAKER?");
writeln ("4AMATEUR SNAKER?");
writeln ("5SNOVICE SNAKER");
writeln("6GRANNY SNAKER?");
writeln; writeln;
writeln("WHICH NUMBER (LEVEL) DO YOU CHOOSE?");
REPEAT

cursor(10,14);

read(grad:1);
UNTIL (grad > = 1) AND (grad < =6);

point1 := 0;

point2 : = 0;

REPEAT
init;

score;
wait_till_players_ready;
REPEAT
player(1,goof1);
player(2,goof2);
UNTIL goof1 OR goof2;
IF goof1 AND NOT goof2 THEN
point1 : = point1 +1;
IF goof2 AND NOT goof1 THEN
point2 : = point2 +1;
score;
UNTIL (point1 = limit) OR (point2 = limit);
cursor(23,1);
write("ANOTHER GAME(Y/N) ?");
readin(reply:1);
UNTIL (reply = "N") OR (reply = "n");

END.

Turbo-Pasc’99 Reference Manual

- w U5 NS WE Tl @ - = W - e =

IMPORTANT NOTICE

This documentation and the software to which {t pertains to are the
licensed property of L L Conner Enterprise and are to be used only in
saccordance with the specifications set forth herein.

L L Conner Enterprise provides this manual "as is™ without any
warranty of any kind, either expressed or implied, including but not
limited to the implied warranties of merchentability and fitness for a
particular purpose. L L Conner Enterprise reserves the right to make
improvements or changes to this product at any time without notice.

All rights reserved, No part of this publication, or software
described herein, may be reproduced, stored in a retrieval system for
the intent of dupiication, transmitted in any form or by any means,
mechanical, photo copying, recording, or otherwise without the written
permission of L L Conner Enterpise. This product and its documentation
are protected by United States Copyright Law, Title 17 U.S. Code, and
are licensed for use on one computer per copy only. Unauthorized
duplication of this software violates U.S. Copyright Law and is a
federal offense,.

While every precaution has been taken in the preparation of this
documentation and software, L L Conner Enterprise assumes no
responsibility for errors or omissions nor any liability for any
damages resulting from the use of the information contained herein.

CUSTOMER SUPPORT

in order to take advaniage of the customer support program, you must register your
copy of Turbo-Pasc'99. To register, simply fill out and mail the enciosed registration
form to:

L. L. CONNER ENTERPRISE
Computer &3 Electronics
1521 FERRY STREET o LAFAYETTE, INDIANA 47904

The registration form must be filled out completely in order for you to be registered.
Once you have registered you will be eligible to receive support for your Turbo-
Pasc'99 compiler system. Please be sure to include the serial number of your copy of
Turbo-Pasc'99 with ali correspondence.

Because your compiler diskette is copy protected, a second compiler diskette has
been included in the event the first one fails to operate properly. If you try to change
the contents of either diskette in any way, whether by attempted copying (which is in
violation of the law and will be handled as such) or by saving other files on the disk; it
is possible that you may render the disk unusable. in the event either of the two com-
piler diskettes are damaged you may return the damaged original diskette(s) for re-
placement at a nominal charge of $5.00 each.

L. L. CONNER ENTERPRISE
Computer & Electronics
1521 FERRY STREET e LAFAYETTE, INDIANA 47904

1 This should of course be written
as several procedures!!!

59 FOR FILES.
L. USTING STREAM. . .

STREAM has the advantage that vou may output literals as well as variables.
Lsing BLOCE vou MUST use variables,

STREAM has the disadvanteage thalt datsa has to be read in one character at a
time, wusing the EDOLN function, and youw have to use a blanmk PUTLN in between
wach Jine.

The following code WORESDDY NOTE- if vou try to use a variable length less than
40, the File will be opened as DV4O anvway!

I have used & generic format which means that there are unused variables in
there and printed remarks you can leave out, but a very useful way of bebugging
programs in this language- putting in yvouwr own form opf TRACE to see where hang
ups ocour !

FROGRAM filesly

VAR mame: STREAME401;
inl,inZindontl,ont2,out3 s 8TRINGL L2
cneBTRINGDLI;
ag by INTEGERS

BEGIN

clasy

wrd te (M enter & string:");

readln{inl)g

Wil be (ernter an integer: ")y

readln dind);

wir i be (Y enter a LARGE whole number")g

readln {(ini);

writeln ("about to open file')y
open {nams, "DERL.FILE" joutput)
writeln{"file open');

putlndname,inlly
prat e Orvames) g
putlo name ,in)
putln {iname)
putln (name,ind)
putlniname) §
writeln ("3 records writ. now close)s
close {(name))

a2

writeln("file closed. now to reopen')s
open (name, "DERK1L.FILEY jinput) g
wrrdteln{("file open.now to read")
wiriteln ("reading string: ")

WHILE NOT soln(mname) DO RBEGIM

gelt (name,cn) g

wrrite{on) g

END

writeln (" First file read.now Z2nd")g

getlniname,cnly

WHILE MOT eoln(nams) DO BEGIN
get (name,cn)d g

wred e lon) g

END3g

writeln (" thats 2nd now Zrddyy

getln (name,cn)
WHILE NOT @olni{name) DD BEGIN
get (name,on) ;
wred e (o) g
ERNDy
wirdtelrn (" Yy
wrdteln ("THREE RECORDS WRITTEN AND
close (name) ;
REFEAT
ey (O,a,b)
UNTIL {00 g
END .

READ") 3

PROGRAM filesd;

VAR nams:BLOCKI[161;
nami:BLOCKLZ21;
namr:BLOCKIBI;
inl,outl:STRINGL15];
in2,o0ut2: INTEGER;
in3,out3:REALLB];
cn:STRINGLL1];

a,b: INTEGER;

BEGIN

cls;

write(" enter a string:");

readln{ini);

ar=len{ini);

writeln(" original length ",al);

FOR b:=0 TO 15-a DO BEGIN

int:=inl&" ";

END;
writeln(" string length:",len{ini));
writelnt(" enter an integer:");

readln(in2);
write(" enter a LARGE whole number")i
readln{ind);

uriteln("about to open file");
open{nams,"DSK1.FILES" ,output);
writeln("file open");
writeln{"sending string");
putlninams,ini);
putlni{nams,inl);

close{nams);

open{nami,"DSKI.FILEI",output);
writeln{"sending integer");
putln(nami,in2);
putlni{nami,in2);

close({nami)

writeln("OPENING real file ")j
openfnamr,"DSKL.FILER" ,output);
writeln(" sending real number");
putln{pamr,ind);

putlninamr,ind);

writeln{"Z records writ. now close");
close(namr);

writeln("file closed. now to reopen”);
openi{nams, "DSK1.FILES" ,input);
writeln{"file open.now to read");

writeln("reading string:");
getini{nams,outl);

writelnfoutl);

getln{nams,outl);

writeln{outl);

close{nams);
writeln(" first file read.now 2nd");

open{nami,"DSK1.FILEI",input);
getlninami,out?);
writeln(out2);
getln{nami,cut?);
writein{out);

close(nami);

writeln(" thats 2Znd now 3rd")j

openi{namr ,"DSKI1.FILER",input);
getln{namr,out3);
writelnfoutd);
getln(namr,outZ);
writelnf{outd);

writeln(" ");

closel{namr);
writeln("THREE RECORDS WRITTEN AND READ");
REPEAT

key{0,a,b);
UNTIL (B<:0)g
END.

g PO e PPﬁfﬁPﬁ nEsistonce. which 9ouve me EAACTLY

B w He i1t appears to be

to oma

o hhe =

e o lue

mor-standorad. mw b were mot much Relee

kol

where the humnber
chisved this

iol resuiremsnt iz
= unmbmowre on bohbh e
wicbhout cluimme

the File

P

i ~imd ho oloze

F1LD good wishesz, angd tThorks afain.

Sirnceral s,

FE

MHE FioTR

far
CHEE"

;
EHD
WHT I
Lo

IFEMHOF . "DERL - FREFI
F:

Notes on Turbo-Pasc'99
Reference Manual:

The manual was black plastic spine bound
Front and back were protected with a thick
highly static clear plastic sheet

Many pages were blank and NOT included
in the numbering. These blank pages
were all on the LEFT (<--) when the book
was open.

The totally blank and un-numbered pages
have not been scanned.

Looking at the numbers on the bottom of the
pages, the following pages are blank on

the back:

11, 40, 43, 44,45, 52

Private correspondence relating to
Turbo-Pasc'99 is included as an
appendix and contains help with
using data files.

