Utilities 1

Four Software Utilities for the Texas
Instruments 99/4 or 99/4A Home Computer.

T i N R S i i F il I 1 :, . T "% N N N e
e e e e
P A A A 4 [/ i 1 A\ T R, e e
//Z/ A AN Ja | VNN N NS \‘:
/// | T Y SR \\

i // \ NSNS

Includes:

DISASSEMBLER —

executes in Extended BASIC or in
console BASIC if the Mini-Memory
or Editor/Assembler is available.

POINT-PLOTTING

ROUTINES—

high-resolution plotting capability in
console BASIC, Extended BASIC,
and Assembly Language.

SCREEN DUMP
ROUTINES—

written in console BASIC, Extended
BASIC, and Assembly Language for

the TI 80-column printer and Epson
Printers with Graftrax or Graftrax
Plus.

SPEECH UTILITY —

allows the speech synthesizer to
speak any word you wish in your
Extended BASIC programs—
without TI's Terminal Emulator 11
or Text-to-Speech programs.

BERPUBLIG

UTILITIES 1

. Instruction Manual

REPUBLIC SOFTWARE™
Washington, D.C. 20024

UTILITIES 1

Table of Contents

INERODUCTION . o sovemin oo vesrownn su swas v 6
DISASSEMBLERc.cccovveonncssssanssvis 8
A FEW NOTES CONCERNING PLOTTING 11
A FEW NOTES CONCERNING SCREEN DUMPS 13
CONSOLE BASIC PLOT AND SCREEN DUMP 17
EXTENDED BASIC PLOT AND SCREEN DUMP 20

ASSEMBLY LANGUAGE PLOT AND SCREEN DUMP.. 22

SRR VN MITY ..osoiivnseias sm saisonion o 865 24

UTILITIES 1

Congratulations! You have just purchased a high-quality soft-
ware package that can adapt itself to your computer system’s
capabilities as your system grows, Each UTILITIES I disk or
tape contains programs that will execute on a Texas Instruments
99/4 or 99/4A Home Computer in console BASIC, as well as
programs and subprograms that take advantage of the greater
speed or capability provided by Extended BASIC, the expansion
RAM (Random Access Memory), the speech synthesizer, and the
RS232 interface with compatible printer. We believe that the
availability of all this programming power for one low price
makes UTILITIES I one of the best software values on the
market today.

Detailed instructions and equipment requirements for each
utility have been included in this manual, and we encourage you
to read these directions carefully before attempting to use any of
the UTILITIES 1 progams or subprograms. If you study the
instructions thoroughly and perform some of the suggested
practice exercises, you will find that this manual can be a helpful
guide to “getting the most™ out of your software.

INTRODUCTION

Each major section of this manual describes a utility, lists
required and optional equipment, and gives appropriate
directions for using the utility. However, some instructions and
procedures are common to all of the utilities and this section has
been included to provide that information.

Required Equipment

e Texas Instruments 99/4 or 99/4A Home Computer

e Texas Instruments monitor OR RF modulator and television
set

e Compatible cassette tape recorder and connecting cables OR
Texas Instruments Disk Memory System
The lists of required and optional equipment included in each

section are intended to describe hardware needed in addition to
the items listed above.

Getting Started

Listed below are the steps necessary for turning on a Texas
Instruments 99/4 or 99/4A Home Computer and a complete set
of optional equipment. Some of the information here may seem
trivial, but the order of the steps is important. Please execute
these procedures in order (ignoring any references to equipment
not used by your own system) before attempting to load any
UTILITIES I programs or subprograms.

1. Switch on the cassette tape recorder, and make sure that it
is connected to the console as CS1.
2. Switch on the disk drive(s).

3. Switch on the Peripheral Expansion Box and/or any
stand-alone peripherals you may have (e.g., Expansion
RAM, RS232, or Disk Controller).

4, Switch on the console.
. Turn on the monitor or television set.
6. Switch on the printer.

Ln

7. Insert any necessary modules into the console (e.g.,
Extended BASIC, Editor/ Assembler, or MiniMemory).

8. Insert the UTILITIES I cassette into the tape recorder with
the label facing out OR insert the UTILITIES I disk into
disk drive | and close the front cover of the disk drive.

9. When the computer’s title screen appears, press any key on
the keyboard.

10. Select the appropriate computer language: Extended
BASIC (if available) or console BASIC.

Loading Programs and Subprograms

The cassette-based UTILITIES 1 has the various programs and
subprograms recorded in the same order that the programs are
described in this manual. Each program is preceded on the tape
by a voice recording of its title. No “footage counter” indications
are given in this manual because the numbers vary so widely
from tape recorder to tape recorder that such recommendations
would be useless. However, we suggest that you reset the
“footage counter™ to “000™ on your tape recorder and listen to
the tape all the way through once, marking down the counter
settings as each program is announced. This will only take a few
minutes and will make it much easier to locate specific programs
in the future. You will probably need to unplug the “monitor™
(white) wire from your recorder in order to listen to the tape.
Don't forget to plug this wire back into your recorder before you
attempt to load any programs! To load any program or sub-
program, locate it on the tape. Listen for the announced title
to confirm its location. Then enter OLD CSI and follow the
loading instructions that appear on the screen, with the following
exception: Do not rewind the tape when the screen instructions
advise you to do so; you are already at the proper tape location.

The disk-based UTILITIES I has the programs and sub-
programs recorded in alphabetical order. The appropriate title
for loading the program is contained in parentheses following the
title of the section (e.g., DISASSEMBLER (DIS)). Unless
otherwise noted in the instructions for a utility, load any
program by entering OLD DSK I title (e.g., OLD DSKI1.DIS).

You are now ready to proceed with the utility of your choice.

(p——

DISASSEMBLER (DIS)

Required Equipment
e Extended BASIC OR Editor/ Assembler OR MiniMemory

Optional Equipment
e Expansion RAM
® RS232 Interface and printer

Preliminary Information

Disassemblers are designed to translate the on and off bits
(Machine Language) in a computer’'s memory into the pseudo-
English of Assembly Language. This disassembler is intended
primarily as a tool for Assembly Language programmers. It
should be especially useful to programmers using the cassette-
based assembler sold with the MiniMemory, who can use it to
print otherwise unobtainable listings of their own Assembly
Language programs.

However, if you are not already conversant with Assembly
Language. don’t despair. This program can be used to help you
learn more about the subject. A tutorial concerning Assembly
Language is beyond the scope of this manual, but the instruc-
tions below contain useful information for beginners, and
Texas Instruments now sells several manuals and texts that can
also be quite helpful.

The Texas Instruments 99/4 and 99/4A computers and this
disassembler are capable of directly “addressing” (see below)
65,536 (64K) 8-bit bytes of memory. In addition to the 64K of
directly addressable memory, the 99/4 and 99/4A computers can
use the 16K of Video Display Processor (VDP) Random Access
Memory (RAM) that is built into the console. The disassembler
is not designed to look into the 16K VDP RAM because this
area of memory cannot normally be used to store Assembly
Language programs.

Each byte of the 64K memory has an “address”, or number,
that designates that byte and that byte only. The first 32K
(32.768) bytes (called *low memory”) are numbered 0 through
32767. The second 32K bytes (called “high memory™) are

8

numbered (for reasons having to do with the representation of
numbers in computer memory) -32768 through -1. Zero is the
bottom byte of the 64K, and -1 is the top byte. Half of this 64K
area is the 32K Expansion RAM (8192 to 16383 and -24576 to
-32) and the rest is the console Read Only Memory (ROM),
cartridge memory, and peripheral device ROM. If the Expansion
RAM is present, the high end of it may contain a BASIC
program, but most of the rest of the 64K, RAM and ROM alike,
is used for Machine Language programs that you can translate
into Assembly Language by using this disassembler.

Instructions

Make sure that one of the required cartridges is properly
inserted into the console. Select Extended BASIC, if available;
otherwise select console BASIC. Load the program normally.
Enter RUN,

After the logo screen appears and clears, the program asks for
your printer characteristics. If you have no printer, just press the
“enter” key to proceed. If you do have a printer, enter its proper
title (e.g., RS232/2 or RS232.BA=4800.PA=N.DA=8). Quotation
marks are unnecessary. If your printer's description is lengthy,
don't stop typing when you reach the end of the input line—just
keep typing and your input will wrap around to the next line.
Don't press the “enter” key until you have finished the
description.

Next, the program asks for the starting address. This is just the
memory address of the byte at which you wish to start dis-
assembling. Since the 99/4 and 99/4A are 16-bit computers,
the computer and your disassembler expect to look at two bytes
at a time starting with an even numbered address. The computer
has firmware to keep it on track, but the disassembler gets its
direction from you. Please enter an even number for a starting
address. Negative 2 and 0 are even numbers.

The program will now ask you for an ending address. Please
enter an address that is numerically greater than the starting
address. An odd number will be accepted by the program as if
you had entered the next lower even number. Negative 2 is
greater than -4, and any positive number is greater than any
negative number.

As soon as you have entered the ending address, the dis-
assembling will proceed. Output will always be directed to the

screen. If you have described a printer to the program, output
will also be directed to the printer. If you wish to temporarily
stop disassembly at any point, press and hold the space bar until
printing halts. When you are ready to continue, press the “enter”
key. If you wish to stop during disassembly and enter new
starting and ending addresses, press the “E" key.

The output of the disassembler, whether on the screen or a
printer, consists of four columns. The first column contains the
decimal addresses of the area of memory you are disassembling,
starting and ending at the addresses you have entered. The
second column contains the hexadecimal representation of the
addresses. (Hexadecimal notation is merely a form of shorthand
used to describe the binary, or base 2, condition of each bit in
memory contents and addresses. It uses the single digits 0
through 9 and A through F to represent the numbers 0 through
15. Each digit represents 4 bits, two digits represent 8 bits or one
byte, and four digits represent 16 bits or two bytes. For a
complete explanation of hexadecimal notation, refer to the
Editor/ Assembler manual or another text concerning Assembly
Language.) The third column, separated from the second by a
colon (*:"), shows the hexadecimal representation of the contents
of the two bytes of memory found at each address. The fourth
column contains the Assembly Language translation of the
memory contents shown in the third column,

Let’s give it a try. Enter 0 as the starting address and 50 as the
ending address. As the program works, practice stopping (space
bar) and restarting (“enter” key) the data. When the program
stops of its own accord at 50, don't “PRESS ENTER TO
CONTINUE” yet. Look at the line that starts with 44. That’s the
decimal address of a byte in low memory. The hexadecimal
representation of that address is in the second column. (44
decimal=002C hexadecimal). With most 99/4A’s, the third
column will contain 020F, the hexadecimal representation of the
contents of the two bytes of memory found at address 44 and
address 45. Remember, we look at two bytes at a time, starting
with even numbers. The final column will contain “LI", the
Assembly Language translation of 020F. The “LI” stands for
“Load Immediate™, and instructs the computer to load into a
memory register the value immediately following—in this case
8C02, the memory contents found at address 46. Lines that lack
a fourth column, such as 46, describe memory addresses that
contain values (data) rather than Assembly Language statements.

10

When you are ready to proceed, press “enter” to continue, as
the program requests. The screen will clear and you will be given
the opportunity to enter new starting and ending addresses. Now
you're ready to load your own Assembly Language programs
into RAM and start disassembling them.

We have a few final suggestions. This program was intended to
let you explore the limits of your computer—it will not prevent
you from entering illegal values. If the program crashes while
attempting to read an illegal address (not a value between -32768
and 32767) or trying to open a printer illegally, merely enter
RUN and try again. There are also some locations (fortunately
only a few) that are legal addresses but that may cause a
program crash or even a system crash if you try to disassemble
them. Texas Instruments apparently does not want you to look
everywhere. We cannot tell you exactly where you should not
look, because the forbidden addresses vary from machine to
machine. However, even a system crash is not fatal. If the
computer locks up, shut off your equipment and then turn it
back on. (Do not leave a disk in the disk drive during this
process.) Then reload the program, making a note of the address
that caused the crash so that you can avoid it in the future.

Finally, please realize that a disassembler is a very obedient
and uncritical servant. It will cheerfully try to disassemble
anything it finds, starting wherever you tell it to, assuming that
you have sent it to an Assembly Language program. When it
finds 83EO0 as the first 2 bytes in the area of memory you have
told it to disassemble, it will tell you that that location contains
the Assembly Language statement “C" (“Compare Words"). If
you have sent it to a value instead of a statement, or have sent it
into a BASIC program, or have started it on an odd address, the
disassembler will be incorrect—it depends upon your direction to
start it off in the right place.

If you follow these suggestions carefully, you will find the
disassembler to be a valuable tool for learning more about your
machine—and the phrase “strolling down memory lane” will take
on an entirely new meaning for you.

A FEW NOTES CONCERNING PLOTTING

The Texas Instruments 99/4 and 99/4A Home Computers
have high-resolution screens which resolve 192 pixels
(pixel=picture cell—the smallest definable point on the screen)

11

vertically by 256 pixels horizontally. Unfortunately, neither
console BASIC nor Extended BASIC includes a pixel plotting
command. Instead, both BASIC's base their graphics on
character definitions—characters (letters, numbers, etc.) can be
redefined and then called to any location on the 24 x 32 position
character grid. As characters are redefined for graphics, no
reference is made to the 192x 256 pixel grid. Consequently,
plotting individual pixels or points at a precise location on the
screen is a laborious process. Extended BASIC provides some
relief from this dilemma—points can be plotted on the 192x 256
grid using sprites. Unfortunately, no more than 28 sprites can be
used at a time. 28 points is sufficient for a few plotting purposes,
but is not nearly enough for drawing.

Each of the three plotting programs or subprograms included
in UTILITIES I permits the plotting of up to several thousand
points. This is a very powerful capability, but it is important to
understand how it is achieved in order to make the best use of
the program. Each UTILITIES I plotter works by redefining
characters. Depending on the program, there are 110 to 126
redefinable characters. Each time a point is plotted in a
previously blank character position, one of those redefinable
characters is used. When a point is plotted in a character position
that has already been defined, that character is redefined and a
new character is not used. Consequently, if you plot points at
widely scattered locations on the screen, it is possible to run out
of characters after plotting as few as 110 points. On the other
hand, if you plot points in a very limited area, it is possible to
plot as many as 8064 separate points. Typical applications
usually permit 500 to 1,000 points to be plotted before all
redefinable characters are used,

When no additional redefinable characters are available, each
plotter continues to allow points to be called (requested by the
primary program). If a called point is in an undefined character
position, the plotter cannot plot the point on the screen. Instead,
it sounds a tone and returns control to the calling program or
routine. If the point called is in a previously redefined character
position, the point is plotted on the screen before control is
returned to the calling program or routine.

Because these plotters work by redefining characters, they may
interfere with regular characters that you have displayed on the
screen. If you plot a point inside the 8 x 8 pixel matrix of a
displayed character, the point will appear not only where you

12

have requested it, but also in the same relative position inside
every repetition of that character on the screen. (If you plot a
point in the center of a “C”, every “C" on the screen will show
that point.) Additionally, as the plotters use up redefinable
characters, they may take over and redefine characters you have
displayed on the screen. If this happens, your displayed
characters will begin disappearing or looking very strange. The
console and Extended BASIC versions start by defining
undefined characters, so they won't interfere with regular
characters until the supply of undefined characters is exhausted.
The Assembly Language version, for technical reasons, starts
using regular display characters immediately.

The TI computers measure X (vertical) values from the top of
the screen and Y (horizontal) values from the left of the screen.
We recommend that you use integer values when calling points to
the plot routines; you may experience difficulty if you fail to do
this. And if you use any of the plotters for line drawing,
remember that diagonal lines use up redefinable characters (and.
therefore, points) faster than vertical or horizontal lines.

Note that the screen resolution for monitors or television sets
is 192 x 256 pixels no matter how wide or tall the screen. All
screens will display more points horizontally than vertically;
however, most screens will display more points per inch vertically
than they do horizontally. As a result a circle, square, or other
uniform figure drawn on the screen will appear to be wider than
it is tall. The effect will vary from screen to screen, but if
uniformity in the vertical and horizontal dimensions of a
displayed figure is important, you may wish to compensate for
this distortion by making the figure taller (in number of plotted
points) than it is wide.

A FEW NOTES CONCERNING SCREEN DUMPS

All printers are capable of printing standard characters (letters,
numbers, etc.) as they are sent to it by your computer. You may
have noticed however, that the characters printed by the printer
do not necessarily look exactly like those displayed on the
computer’s screen. A lower case “a”, for example, may look like

13

Bl

a small capital “A™ on the screen, yet be printed looking like the
more traditional lower case “a’s” on this page. The reason for
this difference of appearance is that the computer is not sending
the printer a graphic description of the character to be printed;
instead, it is sending the standard character number (96=lower
case “a") of the character to be printed. The printer looks up this
number in its own internal tables, finds a graphic description of a
character that corresponds to that number, and prints that
character.

You can prove this to yourself by entering the following
program:

100 CALL HCHAR(1,1,65,768)
110 OPEN #1:*RS232.BA=4800.
PA=N.DA=8" —or whatever your printer
characteristics are
120 FOR I=1 TO 24
130 FOR J=1 TO 32
140 CALL GCHAR (I.],A)
150 PRINT#1:CHRS(A);

160 NEXTJ

170 PRINT #1:*"
180 NEXT 1

190 CLOSE #1

If you RUN this pseudo-screen dump program, it will fill the
screen with capital “A’s”, and then send the screen contents to
the printer. Try it. Looks pretty good, doesn't it? Unfortunately,
it will work only as long as standard character definitions are
used, If you enter the following line, which redefines character 65
(usually capital “A™) to look like a diagonal line, you will be able
to see the problem:

90 CALL CHAR(65,“8040201008040201")

When you RUN the program with this additional line, the
screen displays our new character definition, but the printer only
knows that the computer is repeatedly sending character 65, and
prints another batch of capital “A’s".

14

Use of this common method allows great standardization
among computers and printers. It also permits faster and more
economical exchange of information—the standard character
number itself contains only about one-eighth as many bits of
data as a complete graphic description of a character. However,
as we have seen, this standard method does not allow the
transmission of graphic data.

In order to take advantage of the superior graphics abilities of
state-of-the-art microcomputers such as the Texas Instruments
99/4 and 99/4A, many printer manufacturers are now including
special (and frequently dissimilar) graphics modes in some of
their products. All of the screen dumps included in UTILITIES 1
take advantage of the special graphics mode shared by the TI 80-
column printer and Epson printers with Graftrax or Graftrax
Plus. They may also work with other printers, but these instruc-
tions are limited to the requirements of the Texas Instruments
and Epson printers.

Your printer has a number of internal switches on its serial
interface (RS232) circuit board that control the baud (data
transmissior) rate, number of data bits sent with each
transmission, graphics capabilities, etc. The switch positions
usually set at the factory are not compatible with graphics; in
order to take advantage of the screen dump utilities in this
package, you will probably need to change some of the settings.

Consult your printer manual to find the appropriate procedure
for gaining access to these internal switches. Be sure to unplug
the printer before opening the case, and follow any other safety
precautions recommended by the manufacturer. Read the switch
settings. Slide switches are easy to read, but most printers have
small push-type switches. Remember that the little red markings
present on some of these push-type switches are not switch-
position indicators, but are intended to show the part of the
switch that must be pushed to change its setting; if read as switch
position indicators, they show the opposite of the true settings.
The side of the switch that is depressed (the down side) indicates
the side to which the switch is set.

It is possible to use the screen dumps without following all of
the recommendations below, but some are absolutely necessary,
and others will allow all of these instructions to apply uniformly
to TI and Epson printers. If you know what you are doing, you
may wish to modify your own procedures when you have
finished the practice exercises in this manual.

15

The Texas Instruments 80-column printer requires the
following settings:

SW I-1 OFF SW 2-1 OFF
SW 1-2 ON SW 22 ON
SW 1-3 OFF SW 2-3 OFF
SW 14 OFF SW 24 ON
SW1-5 ON

SW -6 ON

SW 1-7 ON

SW i-8 OFF

Most Epson printers require changes only in the single bank of
8 switches:

SI ON
S2 OFE
83 OFF
S4 OFF
S5 ON
S6 ON
ST E
S8 ON

These positions prepare your printer to send 8 bits of data for
each character at a rate of 4800 baud (bits per second), and
instruct it not to check for parity errors (essential for graphics).
This will let your printer and computer exchange graphic data
and do so at a faster rate than the factory settings allow.

Your printer may require different switch settings than those
shown here in order to allow it to receive 8 bits of data per
character at 4800 baud and to disable parity checking. If so,
consult your printer’s manual for further guidance. Those who
have connected their printers via the parallel port will also need
to deviate from these instructions. Parallel ports don’t allow baud
rate changes (they always go at top speed); they almost always
send 8 data bits; and they don’t usually permit parity checking.
Consult your printer’s manual to be sure, but you may not need
to make any switch setting changes. However, you will need to
make some software changes. Substitute the appropriate parallel

16

port description for RS232.BA=4800.PA=N.DA=8 in the example
programs in this book and in the console BASIC (line 1050) and
Extended BASIC (line 10020) screen dump routines,

Setting these switch positions will make some changes in your
life. Your printer's description is now RS232.BA=4800.PA=
N.DA=8. You must use this description instead of the shorter
RS232 whenever you OPEN your printer in a program or LIST
programs to it. That's really only a slight penalty to pay for the
increased capability and higher speed you now have available.

Please read the portion of the preceeding section (A Few Notes
Concerning Plotting) that pertains to the variations in vertical
and horizontal density of points. (It's in the last paragraph of
that section.) The same variations that affect screen displays may
be even more pronounced on a printer, and may necessitate
additional corrections in your plotting efforts if you wish to
simulate symmetry in vertical and horizontal dimensions.

CONSOLE BASIC PLOT AND SCREEN DUMP
(PLOTDUMP)

Required Equipment

® none

Optional Equipment

® RS232 Interface with compatible printer (required for screen
dump)

e Joysticks

Instructions

Select console BASIC. Load the program normally. Enter
RUN.

After the logo screen appears and clears, you are asked
whether you wish to use the joysticks or the keyboard to control
plotting. (The joysticks are a little faster, but the keyboard gives
more precise control.) After you enter your choice, the program
enters plotting mode. A one-pixel cursor now exists at position
96,128 (the center of the screen). although you cannot see it yet.

17

P

Three keys control the cursor’s condition. The “7" key turns the
cursor on. When the cursor is on, it plots a point wherever it is
located. If you move the cursor while it is on, it plots points
continuously, leaving a line in its wake. The “6™ key turns the
cursor oft. The “8" key puts the cursor into erase mode. In erase
mode, the cursor plots a one-pixel space wherever it is located. If
there is a point at that Jocation, the point is erased. Don't touch
the “9™ key. We will discuss its use a little later.

Go ahead and press the “7" key to make the cursor appear.
The program sounds a note to let you know that it has accepted
input from a key. Move the cursor with joystick #1 or the key-
board controls. Operation of the joystick controls is intuitive:
up, down, right, left, and diagonal positions move the cursor in
those directions. (If you are using a 99/4A, make sure the “alpha
lock™ key is in the up, or off, position.) The keyboard controls
are equally obvious. The “S”, “D", “E", and “X" keys control,
respectively. left, right, up, and down movement of the cursor.
The intermediate keys “W", “R", “C", and “Z" control diagonal
movement,

The program sounds a note every time the cursor is told, by
the keyboard or joystick, to move one pixel position, so you can
trace its approximate movement even with the cursor turned off.
To locate it exactly when it is turned off, press “7” to make it
appear. If it is not precisely where you want it. press “8" to erase
the unwanted point, and then “6" to turn the cursor off. (It is
better to leave the cursor off than in the erase mode if you wish
to move it without plotting—it will move faster and use up no
redefinable characters.) Then you can move the cursor to the
correct location, counting pixel positions, and repeating the “7",
“8", “6" (on, erase, off) procedure if necessary.

As you are plotting, cursor movement may stop for a few
seconds. This doesn't mean your computer has “locked-up” or
“crashed”. Instead, the computer is stopping momentarily for
what is termed “garbage collection™, or reallotment of memory
space. This program uses a large amount of memory space for
variables and then moves these variables around in memory as
characters are redefined; because so much data is being moved
from one place to another in memory, more frequent “garbage
collection” is necessary.

Pressing the “9" key tells the program to execute a screen
dump. If you do not have an RS232 Interface and printer,
pressing “9” will crash the program when the computer tries to

18

“
L=

“open” a non-existent printer. To avoid this problem, those
without printers should insert REM at the beginning of line 1840,
the line that “calls” the screen dump subroutine, and SAVE the
program with this change. If you acquire a printer at a later date,
deleting the REM will reactivate that line.

For those with RS232 Interface and
Compatible Printer

Once you have put something on the screen that you admire,
it's time to try the screen dump. Make sure the printer is turned
on and then press the “9” key.- When the screen dump is com-
pleted, you are returned to your plotting right where you left
off; if you wish, you can embellish the screen image and then
dump it again.

Why is the image printed sideways? Good question. Epson and
Texas Instruments printers define graphic characters as they
print: from left to right. The TI computers, on the other hand,
define graphic characters from the top to the bottom. Printing
the screen sideways allows the computer graphics to conform
more closely to the printer graphics and reduces the amount of
data manipulation necessary. As a consequence, printing the
screen sideways takes only about one-third of the time it would
take to print it “right side up”.

Additional Information for Experienced
Programmers Only

Console BASIC does not permit merging of subprograms or
subroutines into other programs. Additionally, console BASIC
does not support the CALL CHARPAT command which allows
Extended BASIC programs to directly read the character
definition tables in memory. These limitations necessitate the
complicated and memory-intensive practice of maintaining all
graphic character definitions in memory in two separate
locations: in the character definition tables where the screen
display can use them and in a string array (AS()) where the
console BASIC program can manipulate them. For these reasons,
this utility has been designed as a “stand-alone” program.
However, its primary plot and screendump routines can be
incorporated into your personal programs even though they were
not intended for this purpose.

19

The plotting routine extends from line number 130 to 1040. In
addition to these lines, line 110 must be included in your
program as a lower line number than the first line of the plot
subroutine, and line numbers 1530 to 1550 must be included in
your program and executed once before the first call of the plot
routine. To plot a point: have your program define the variable
*X" as an integer between | and 192 and the variable “Y™ as an
integer between | and 256; then set E$=*1" (or to “0™ if you wish
to erase a pixel). When vou GOSUB to the plot routine, it will
plot a point at the X.Y location your program specified.

The screendump routine extends from line number 1050 to line
number 1370. A GOSUB to the first line of this routine will
execute a screen dump. Remember that the screen dump gets its
graphic information from the A$() array, not from the regular
character definition tables, which are unavailable in console
BASIC. For a screen to be dumped to a printer without errors,
every character on the screen must be a space (standard character
number 32) or a character (with a standard number between 34
and 143, inclusive) that has been defined in the AS$() array.

Please ensure that your main program does not redefine any of
the variables used by the routines—except, of course, AS(), X, Y,

and ES.

EXTENDED BASIC PLOT AND SCREEN DUMP
(PLOT and SCREENDUMP)

Required Equipment
® Extended BASIC

Optional Equipment
e RS232 Interface and compatible printer (required for screen
dump)

Instructions

Make sure that the Extended BASIC cartridge is properly
inserted into the console. Select Extended BASIC.

20

Both of these routines are intended for use as subprograms
that can be incorporated into and called by your own primary
programs. Extended BASIC does not support the MERGE
capability for programs stored on cassette. For this reason, the
cassette-based versions of these routines have been combined and
saved as a single Extended BASIC program. Load this program
normally before entering your own program from the keyboard.
The disk-based versions of these routines are saved separately in
MERGE format. Before or after you enter your own program,
load these programs by entering MERGE DSKI1.PLOT and/or
MERGE DSKI.SCREENDUMP. Line numbers for PLOT and
SCREENDUMP start at 10000, so you should use lower line
numbers for your primary programs to avoid unintended line
deletions when these routines are MERGEd.

Enter NEW and then load the routine(s) as described above.
Enter the following lines:

100 CALL CLEAR:FOR I=1 TO 192 ::CALL
PLOT(LL*1")::NEXT 1

110 GOTO 110

RUN the program. Line 100 clears the screen. then draws a
diagonal line; line 110 holds it on the screen. You can now call
PLOT (or SCREENDUMP—see below) just as you would any
other Extended BASIC subprogram such as HCHAR or
CLEAR. It requires that three variables, separated by commas,
be passed to it in parentheses. The first two variables are the X
(integers from 1 to 192) and Y (integers from | to 256) coor-
dinates of the point you wish to affect. The third variable is
a string variable that determines whether the pixel at that
location will be plotted (1) or erased (*0™).

Break (“shift C" or “function 4") the current program and
enter the following program. (Just type over the previous lines
100 and 110. If you enter NEW, you'll have to reload the
utilities. Enter line 110 only if you have the RS232 interface and
compatible printer.)

100 CALL CLEAR : R=57.29578 :: FOR 1=0 TO 2*PI
STEP .0174524 :: X=INT(SIN(I)*R) :: Y=
INT(COS(I)*R) :: CALL PLOT(92-X,128+Y ,“17) =
NEXT 1

110 CALL SCREENDUMP
120 GOTO 120

21

If you have a printer, make sure that it is turned on at this
time. RUN the program. It will plot a circle on the screen and
then, if you have the appropriate equipment, it will dump the
screen image to your printer. This screen dump utility does not
require that any variables be passed to it from your primary
program.

That's about all that there is to it. The plot routine can be
combined with joystick or keyboard commands and used for
drawing (as in the console BASIC plot and screen dump pro-
gram) or combined with labels and mathematical algorithms
for scatterplots or other high-resolution plotting purposes. The
screen dump routine is always ready to transfer the contents of
any screen, no matter how created, directly to your printer. Other
possibilities are limited only by your imagination.

ASSEMBLY LANGUAGE PLOT AND SCREEN
DUMP (PDMLDISK)

Required Equipment
e Extended BASIC
® Expansion RAM

Optional Equipment

® RS232 Interface and compatible printer (required for screen
dump)

Instructions

Make sure that the Extended BASIC cartridge is properly
inserted into the console. Select Extended BASIC.

Both of these Assembly Language routines are combined into
one Assembly Language program; they are intended for use as
subroutines that can be loaded into memory and called by your
own programs. The cassette-based version is recorded as a
program that must be loaded and stored before you enter your
own Extended BASIC or Assembly Language programs. Load it
normally. Once it is loaded, enter RUN to store it correctly.
After the cursor returns, enter NEW. To load and store the disk-
based version, enter CALL INIT. Then enter CALL
LOAD(*DSKI1.PDMLDISK").

22

Once the Assembly Language program is properly loaded and
stored, entering CALL INIT will erase it from memory. Be
careful.

Enter NEW and then load the Assembly Language program as
described above. Enter the following lines:

100 CALL LINK(*PLOT",1,1,2)

110 FOR I=O0 TO 191 :: CALL LINK(“PLOT",LLI) =
NEXT I

120 GOTO 120

RUN the program. Line 100 initializes the plotter and clears all
character definitions; this statement must be executed to give the
plot routine its full complement of points for plotting. Merely
halting the BASIC program that calls it will not reset an
Assembly Language routine. Line 110 draws a diagonal line on
the screen; line 120 holds it there. You can now link to PLOT
(and the screen dump, called PRINT—see below) very easily.
PLOT requires that three numeric variables, separated by
commas, be passed to it in parentheses. The first two variables
are the Y (integers from 0 to 255) and X (integers from 0 to 191)
intersection of the point you wish to affect. (Note the reversed
order of X and Y). The third variable determines whether the
pixel at that location will be plotted (1) or erased (0).

Break (“shift C” or “function 4™) the current program and
enter NEW. Enter the following program, omitting lines 120 and
130 if you do not have an RS232 Interface and compatible
printer.,

100 CALL LINK(“PLOT",1,1,2)

110 R=57.29578 :: FOR 1I=0 TO 2*P1 STEP.0174524 ::
X=INT(SIN(I)*R) :: Y=INT(COS(I)*R) :: CALL
LINK (“PLOT™,128+Y,92-X,1) :: NEXT 1

120 P$§="RS5232.BA=4800.PA=N.DA=8.CRLF”

130 CALL LINK(“PRINT",PS)

140 GOTO 140

If you have a printer, make sure it is turned on. RUN the
program. It will plot a circle on the screen and then, if you have
the appropriate equipment, it will dump the screen to your
printer. (This screen dump prints right side up!) The screen dump
utility requires that the printer description be passed to it as a
string. Note that the printer description has CRLF appended to

23

f
I‘
|
[
y
A

it. If you do not include this in your printer description, the
computer will cause the printer to skip a number of extra lines
and introduce unwanted data as it prints the screen contents.

The Assembly Language program also supports saving screen
contents to disk and then reloading the data to the screen. If you
have a disk system, break (“shift C” or “function 4”) the program
in memory and add the following lines:

132 CALL LINK(“SAVE" “DSKI.PICTURE")
135 CALL CLEAR
133 CALL LINK(“OLD",“DSKI1.PICTURE")

RUN the program. It will now draw the circle, dump it to your
printer (if you have one), and save the screen image to disk drive
| as a file named PICTURE. (You can use any name you wish
for the file name.) It will then clear the screen and recall the
image from the file. This is a very useful capability.

Now you can write some programs of your own, and start
LINKing.

SPEECH UTILITY (SPEAKOUTI)

Required Equipment
e Extended BASIC
e Speech Synthesizer

Optional Equipment
e Speech Editor
e RS232 Interface and printer

Preliminary Information

Spoken English words are constructed of standard units of
speech called phonemes. Each phoneme represents a standard
pronunciation of a letter (such as a consonant or a long or short
vowel sound) or a common combination of letters (such as “ch”
or “ng”). The phonemes used to represent a word are not
dependent on the spelling of the word. The word “kite” has four
letters, but only three phonemes (“k”, long “i", and *“t") are

24

necessary to describe its pronunciation. “Tough™ has even more
letters, but requires only the phonemes “t", short “u", and “f” to
show its correct pronunciation. Dictionaries use letters and
special symbols (such as an upside down “e™) to represent the 45
standard phonemes in their pronunciation guides; to avoid the
difficulties involved in entering special symbols from your
keyboard, this program has assigned numbers to each of the
phonemes:

OO SNV) DI e

10.
11
1.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

a as in fat
a asin date
a asin bare
au as in auto
e asinten
e as in meet
¢ asin here
e(r) asin over
i asin hit
1 as in bite
o asin top
o asin go
o as in fork
oo as in tool
0o as in book
oi as in oil
ou as in out
as in up
as in cute

as in ago
as in bed
d as in did

u
u
u asin turn
a
b

24,
23.
26.
27.
28.
29,
30.
3
32.
33,
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44.
45.

-

= e

N ot @ a
'.:1‘3':':'0'%:?

as in fall
as in get
as in he
as in jump
as in kill
as in let
as in met
as in not
as in put
as in red
as in sell
as in top
as in vat
as in will
as in yet
as in zebra
as in chin
as in ring
as in she
as in thin
as in then
as in azure

This speech utility allows you to enter the phoneme numbers
that describe a word, listen to the word, improve its pro-
nunciation by the computer, and then print (on a printer or
on the screen) the speech data that tells your computer how to

25

pronounce the word. This speech data can then be incorporated
into your own Extended BASIC programs (or console BASIC
programs if you have the Speech Editor cartridge) for later
pronunciation by your computer.

Instructions

Make sure the Extended BASIC cartridge is properly inserted
into the console. Select Extended BASIC. Load the program
normally. Enter RUN. After the logo screen appears and clears,
you are asked to enter phoneme numbers. Referring to the table
above, enter these numbers, following each with a carriage return
(“enter” key) : 28, 29, 9, 41, 11, 31, and 39. Now enter a 99 (or
any number other than a correct phoneme number) to signal the
program that you are finished entering phoneme numbers. The
program generates the speech data for the word you have
created, says the word aloud, and displays the main menu.

The first choice on that menu tells the program to speak the
word again. Press the “1” key, then the “enter” key. The program
pronounces the word again and returns to the main menu. Note,
however, that your previous selection (1) is now displayed as the
default value for “Your Choice”. All entered choices are retained
by this program as default values. This enables you to repeat
actions merely by pressing the “enter” key, and prevents you
from having to re-key lengthy values such as printer description
(see below).

Press “enter” several times. The word sounds recognizably like
“Klingons”, the bad guys on the old science fiction television
show. You can make the word sound a little better, though.
When the main menu is displayed again, enter “2", to select
“SMOOTH WORD™. Smoothing a word consists of removing
speech data (measured in bytes) from between the component
phonemes to make the word “flow™ a little better. The number of
bytes to remove here is purely a matter of taste. Up to a certain
point, which varies from word to word, the pronunciation sounds
better as additional bytes are removed; beyond that point, it
begins to sound worse until it becomes unrecognizable. Try
several values, but 5 may be your best choice for this word.

You can skip over choice number 3 on the main menu for
now—you've already seen what it is like to enter phonemes. Try
number 4, and when its sub-menu is displayed, select 1, the
screen, as the place to list the phoneme numbers. You don't need

26

to know the phoneme numbers used for the word “Klingons™—
they're printed right in this manual. But if you enter a new word
and like the way it sounds, this listing quickly summarizes the
input data that created the word. It’s especially handy as a
heading for speech data listed on a printer. (See below). Press
“enter” to return to the main menu.

Enter number 5. You have the same listing choices for speech
data that you did for the phoneme numbers. Press “enter” to
choose the screen. To halt the listing press the space bar; to
continue it, press “enter”. That's a lot of data! When the listing is
completed, press “enter” to return to the main menu. If you don’t
have a printer, skip the next paragraph.

Press “enter™ again to return to speech data listing options.
Enter 3 as your choice, and then enter your printer character-
istics—an appropriate example is given on the line above the
cursor. (If you press “enter” without typing printer character-
istics, you are returned directly to the primary menu.) When
the listing is completed, you are automatically returned to
the primary menu.

If you have a disk drive, you can also save speech data on a
disk. Press “enter” one more time to return to the speech data
listing options, and enter 2 as your choice. Enter DSK1.FILE (or
another valid file name) as your disk name. (If you press “enter”
without typing a file name, you are returned directly to the
primary menu.) When file storage is completed, you return to the
main menu automatically.

The only choice left is number 6. Select 6. The screen you now
see is part of a fail-safe routine. Unless you change the default
*“N" to a “Y", you are returned to the main menu when you press
“enter”. Press the “Y" key and then press “enter™.

There are two ways to use speech data in a program. If you
have saved the data on a disk, it can be recalled by a program
and spoken. Here is a short example (Don't forget to enter NEW
first):

100 B$="": OPEN #1:“DSKI.FILE", INTERNAL,
VARIABLE 254 :: FOR I=1 TO 255 = INPUT
#1:AS :: B8=B$&AS :: IF EOF(1) THEN 120

110 NEXT
120 CLOSE #1 :: CALL SAY(,BS)

Whether you have a disk drive or not, the following method is
better for permanently including speech data as a part of your

27

programs. To keep this example short, we'll use the (un-
smoothed) data from only a single phoneme—number 28, the
initial “k™ sound from the demonstration word. Enter NEW and
then enter the following lines: '

100 FOR I=1 TO 17 :: READ A : B$=BS&CHRS(A) ::
NEXT 1

110 CALL SAY(,B§)

120 DATA 96,0,14,0,144,128,226,217,18,144,189,137,
3,114,80,126,234

Line 100 initializes B$ and then reads the speech data one data
element at a time—17 is the number of data elements in this
example. Each time it reads a data element, it adds its string
value to B$ with the CHRS command. When it is finished
reading, B$ contains the speech data necessary to say the “k"
sound.

There is a limit placed by the computer on the amount of
speech data that can be included in one word—255 bytes. If the
phonemes you enter generate too much speech data, the program
prints the message “WORD IS TOO LONG", shortens the
speech data and the list of phoneme numbers to the allowable
limit, and then proceeds normally.

The addition of new words to your speech synthesizer’s
vocabulary is a powerful capability. This program has been
carefully written to make the very complex speech creation
process as easy as possible. We hope this new power of speech is
both useful and enjoyable to you.

A Final Note From REPUBLIC SOFTWARE

We thank you for your decision to purchase UTILITIES I. We
have worked hard to make this software package useful to you as
well as easy to use, However, if you have any questions or
suggestions concerning the software or these instructions, please
feel free to contact us.

REPUBLIC SOFTWARE, INC.
P.O. Box 23042

L’Enfant Plaza

Washington, D.C. 20024

28

