TEXAS INSTRUMENTS

INCORPORATED
DALLAS. TEXAS

16

Printed in U.S A,

Copyright - 1981, Texas instruments Incorporated

1041361-3

IMPORTANT PRODUCT INFORMATION
FOR TI EXTENDED BASIC

T1 Extended BASIC has been enhanced and modified for use with
both the TI-99/4A and TI-99/4 Computers. Several important product
differences should be noted in relation to the type of computer you
have. Please read this folder and mark the appropriate changes in
your copy of the TI Extended BASIC owner’s manual.

Although the TI-99/4A and T1-99/4 Computers are similar, the
TI-99/4 A is easily recognizable by its standard typewriter keyboard
which returns both upper-case (large capital) and lower-case {(small
capital) alphabetical characters. Depressing the ALPHA LOCK key
locks the alphabet keys in upper-case mode. To release ALPHA LOCK,

press the key again,
When the TI Extended BASIC module is in place, both the TI-99/4A
and TI-99/4 Computers share several enhancements. However, each

computer also has its own unique features. These features are
discussed in the following paragraphs.

AUTO REPEAT FEATURE

When using TI Extended BASIC on either computer, holding down a
key for more than one second automatically causes its symbol to be
repeated on the display until you release the key.

()

-

SPECIAL FUNCTION KEYS

The TI-99/4A Computer has the same special computer functions as
the TI-99/4. However, these functions are frequently assigned to
different keys on the TI-99/4A Computer. The following chart
compares the keystroke sequences for the function keys on the two -

units.

Function Keys

Key T1-99/4 TI-99/4A

Name Keys Keys
AlID SHIFT A FCTN 7
CLEAR SHIFT C FCTN 4
DELete SHIFT F FCTN 1
INSert SHIFT G FCTN 2
QuIT SHIFT Q FCTN =
REDO SHIFT R FCTN 8
ERASE SHIFTT FCTN 3
LEFT arrow SHIFT $ FCTN S
RIGHT arrow SHIFT D FCTND
DOWN arrow SHIFT X FCTN X
UP arrow SHIFT E FCTN E
PROC'D SHIFT V FCTN 6
BEGIN SHIFT W FCTN 5
BACK SHIFT 2 FCTN 9
ENTER ENTER ENTER

in addition to these functions, the TI-99/4A Computer has functions
represented as symbols on the fronts of the individual keyfaces.
These functions may be accessed by pressing FCTN and the
appropriate key simultaneously.

CONTROL KEYS

The TI-99/4A Computer also has control characters which are used
primarily for telecommunications. To enter a control character, hold
down the CTRL key and press the appropriate letter, number, or
symbol key.

|

()

EXPANDED CHARACTER SET — TI-99/4A

As explained in your T1 Extended BASIC manual, codes 32-95 are
the predefined standard ASCII characters on the TI-99/4 Computer.
The cursor and edge characters, ASCII codes 30 and 31, are assigned
to character set Q. The undefined character codes (128-135 and
136-143) are assigned.to sets 13 and 14, respectively.

These codes and the corresponding characters are listed in Appendix
C ot the manual. The CALL KEY character codes are also listed in
Appendix C. Appendix E in the manual lists the 15 character code
sets which may be used for color graphics.

Due to the inclusion of the lower-case character set, the defined
characters on the TI-99/4A Computer are the standard ASCII
characters for codes 32 through 127. The following chart lists these
characters and their codes.

ASCH ASCII
CODE CHARACTER CODE CHARACTER
30 8 (cursor) 55 7
31 (edge character) 56 8
32 {(space]) o7 9
33 ! (exclamation peoint) 58 : (colon)
34 " ([quote) 09 ; (semicolon)
35 # (number or pound sign) 60 < (less than)
36 S (dollar) 61 = (equals)
37 % (percent) 62 > (greater than)
38 & (ampersand) 63 ? {question mark)
39 ' (apostrophe) 64 @ (at sign)
40 ((open parenthesis) 65 A
41]) (close parenthesis) 66 B
42 * (asterisk) 67 C
43 + (plus) 68 D
44 , (comma) 69 E
45 — (minus) 70 F
46 . {period) 71 G
47 / (slant) 72 H
48 O 73 I
49 1 74 J
50 2 75 K
51 3 76 L
52 4 77 M
53 5 78 N
54 6 79 O

e

ASCII

CODE CHARACTER

2(1) 5 ig‘; f}) ’) 143 and the control character codes 1 through 31 are also active,
82 R 106 The key-unit D maps the TI-99/4A Computer in the BASIC mode.
83 S 107 k Both upper- and lower-case characters are active. The active function
84 T 108 1 codes are 1 through 15, and the active control character codes are
8 U 109 m 128 through 159 (and 187).
86 Vv 110 n
87 W 111 o Displaved In addition, codes are assigned to the function and control keys so
88 X 112 P on Ecrgen that these can be referenced by the CALL KEY subprogram in T1
89 Y H3 a4 7 .5 small Extended BASIC. The codes assigned depend on the key-unit value
90 Z 114 r capitals. specitied in a CALL KEY program statement. The following tables
91 | (open bracket) 115 s show typical code assignments.
92 \ (reverse slant) 116 ¢t
93] (close bracket) 117 u FUNCTION KEY CODES
94 Alexponentiation) 118 \ Codes
gg r{[gl;zz] }ég v TI.99/4 & Pascal Function Function
Q7 PN 121 y BASIC Modes Mode Name Key
98 b , 122 z 4 1 129 AID FCTN 7
99 C Displayed 123 { (left brace) Y, 130 CLEAR FCTN 4
100 d | onscreen 124 1 (vertical line) 9 131 DELete FCTN 1
101 e | assmall 125 } (right brace) . 129 NSert FOTN 2
02 [| capias 126 ~ (tilde] 5 133 au; FCTN =
103 127 DEL (appears on
g . oreer o 6 134 REDO FCTN 8
blank) 7 135 ERASE FCTN 3
8 136 LEFT arrow FCTN S
CALL KEY SUBPROGRAM 9 137 RIGHT arrow FCTND
The information given on the KEY subprogram in Chapter 4 of the TI) &) 10 138 DOWN arrow FCTN X
Extended BASIC manual is accurate for the T1-99/4 Computer. The 11 139 UP a";“‘" FCTN E
values of 3, 4, and 5 are not accessible as key units. 12 140 PROC'D FCTN 6
| 13 141 ENTER ENTER
However, the TI-99/4A maps key units O through 5 to specitic modes ' 14 142 BEGIN FCTN 5
of operation. If the key-unit is O, the keyboard is mapped in 15 143 BACK ECTN 8

ASCIT

CODE CHARACTER

e

A key-unit of 4 places the computer in Pascal mode with both upper-
and lower-case characters active. The function codes 129 through

whichever mode was specified by the previous CALL KEY program

line.

If the key-unit is 1, input is taken from the lett side of the keyboard.
If the key-unit is 2, input is taken from the right side of the

keyboard.

A key-unit of 3 maps the computer into the standard TI-99/4
keyboard mode. Both upper- and lower-case characters are returned
as upper-case characters only. Function codes 1 through 15 are

active, but no control characters are returned.

— g ‘
e T | e —————

R

CONTROL KEY CODES

Codes

BASIC Pascal Mnemonic,

Mode Mode Code Press Comments
129 1 SOH CONTROL A Start of heading
130 2 STX CONTROL B Start of text
131 3 ETX CONTROL C End of text
132 4 EOT CONTROL D End of transmission
133 5 ENQ CONTROL E Enquiry
134 6 ACK CONTROL F Acknowledge
135 7 BEL CONTROL G Bell
136 8 BS CONTROL H Backspace
137 9 HT CONTROL | Horizontal tabulation
138 10 LF CONTROL J Line feed
139 11 VT CONTROL K Vertical tabulation
140 12 FF CONTROL L Form feed
141 13 CR CONTROL M Carriage return
142 14 SO CONTROL N Shift out
143 15 Sl CONTROL O Shift in
144 16 DLE CONTROL P Data link escape
145 17 DC1 CONTROL Q@ Device control 1 (X-ON)
146 18 DC2 CONTROL R Device control 2
147 19 DC3 CONTROL § Device control 3 (X-OFF)
148 20 DC4 CONTROL T Device control 4
149 21 NAK CONTROL U Negative acknowledge
150 22 SYN CONTROL V Synchronous idle
151 23 ETB CONTROL W End of transmission block
152 24 CAN CONTROL X Cancel
153 25 EM CONTROL Y End of medium
154 26 SUB 'CONTROL Z Substitute
155 27 ESC CONTROL . Escape
156 28 FS CONTROL ; File separator
157 29 GS CONTROL = Group separator
158 30 RS CONTROL 8 Record separator

159 31 US CONTROL 9 Unit separator

You may also obtain detailed CALL KEY subprogram information,
including keyboard diagrams, in your User’s Reference Guide tor the
TI-09/4 A Computer.

CALL VERSION SUBPROGRAM

The VERSION subprogram (discussed in Chapter 4 of your TI
Extended BASIC manual) now returns a value of 110 on both

computers. 6

[N

'

DATA STATEMENT

The computer reads any information entered after a DATA statement
as a part of the DATA statement. Therefore, in a multi-statement
program line, a DATA statement should not be tfollowed by another

statement.

SCIENTIFIC NOTATION

Whenever you use scientific (or exponential) notation, be certain that
the “E” is an upper-case (large capital) character. A lower-case "¢’
may cause your program to function improperly.

PRE-SCAN — 1@P- and 1@P+

After you enter RUN to start a program, you may notice a pausc
before the program actually begins. This pause is the time the
computer takes to “pre-scan’’ your program to establish memory
space for variables, arrays, and data. Then the computer proceeds
through each instruction, performs the appropriate functions, and
establishes variable values. Since the time required to pre-scan
depends on the length of the program, you may want to decrease the
pre-scan pause, particularly if you have a long program.

TI Extended BASIC’s new pre-scan commands, !@P - and !@P +.
allow you to control which instructions will not be pre-scanned.
Because the purpose of the pre-scan is to set memory space for
variables, only those instructions which contain the first reference to
the variables need to be pre-scanned. Therefore, many other
instructions in your program do not require a pre-scan.

Careful program planning is required to minimize the statements
that need the pre-scan. When certain types of statements (as
explained here) are used in your program, the procedures listed
below should be included in the pre-scan.

m Enter your first DATA statement within the pre-scan.

m Include the first use of each variable and/or array. (Also,
include the OPTION BASE statement, if used.)

m Include the first reference to each CALL statement of any
subprogram.

m Include all DEF statements for user-defined functions.

@ Include all SUB statements and SUBEND statements in the
pre-scarn.

i "I M

Note that a variable in a user-defined (SUB) subprogram is | Examples:
considered to be unique from any other variable used elsewhere in
your program, even though the name and value may be the same.

Therefore, each variable used irr a user-defined subprogram must be Y) 100 CALL CLEAR
included in the pre-scan. 110 CALL CH.AH(QE),“FFFFFFFFFFFFFFFF”)

120 CALL CHAR(42,'‘OFOFOFOFOFOFQFQF’")

Original program:

| To use the pre-scan option, first be certain that your completed 130 .

program runs successfully. Then, at the beginning of a group of n 140 .
;;: function statements, use the !@P - command to *‘turn off” the pre- 150 .

?. scan. The following statements will not be pre-scanned, allowing the ‘ 160 CALL HCHAR(12,17,42)
! execution of your program to begin more quickly. Any statements 170 CALL VCHAR(14,17,96)
| 180 DELAY=0

related to variable names (not previously referenced during pre-scan)
return a syntax error if the pre-scan is “'off.”” Note that !@P - cannot
be followed by another statement in a multiple statement.

190 FOR DELAY=1 TO 500
200 NEXT DELAY

210 DATA 3
To resume the pre-scan, simply enter the command '@P +. This 220 .
command causes the pre-scan to “‘turn on” and memory space for 230 .
variables may be set. Remember to use the !@P + command before a With pre-scan control added:
SUB or SUBEND statement and do not incorporate this command as
a part of a multiple statement. 10 DATA

100 CALL CLEAR
You may choose to use the pre-scan feature several times throughout 110 CALL CHAR(96," ' FFFFFFFFFFFFFFFF")
your program. By turning the pre-scan on and off, your program can 120 CALL CHAR(42,''0FOFOFOFOFOFOFQF'")
begin to execute more efficiently. The effectiveness of the pre-scan is 125 1€P-
more noticeable in large programs than small programs. Note that 130 .
when using the TI-99/4A Computer, the commands, !@P - and 140 .
'@P +, may also be entered with a lower-case ""p’’ character. izg : 6P+
The following examples illustrate how to include the pre-scan 160 CALL HCHAR(12,17,42)
statements in an existing program. The final example demonstrates 170 CALL VCHAR(14,17,96)
the most efficient use of the pre-scan feature by making use of a 180 DELAY=0
GOTO statement.) ") 185 1ep-

- 190 FOR DELAY=1 TC 500
200 NEXT DELAY
210 .
I 220 .
230 .
l Notice that the first DATA statement has been moved to the

': beginning of the program so that it is included in the pre-scan. By

| including statements 125, 155, and 185, the pre-scan is turned off
and on and off again. This causes the program to begin to execute
more quickly.

m %

With GOTQO added: | PROGRAMMING WITH LOWER-CASE LETTERS

You have the added ability to “‘trick” the computer into establishing Device names must be entered in upper-case (large capital) letters
memory space for CALL statements, as well as variable-related ‘y) only. For example, ""DSK1” is a correct device name, but *“Dskl" is
statements, without actually performing those statements. To do not. Any reference to a device name spelled in lower-case (small

this, simply use a GOTO instruction in your program. The following capital) letters results in an error message.
example demonstrates the original program adapted with a pre-scan

File names are also very specific. Not only are thev exact as to the
and a GOTO statement. e Yy Sp y y

correct spelling, but they are also specific as to the use of upper- or

10 DATA 3 lower-case letters. For example, the file name, MYFILE, is not the
<0 GOTO 100::DELAY::CALL CHAR::CALL CLEAR::CALL HCHAR::CALL | same file as Myfile (a combination of large and small capital letters).
VCHAR: : ! @P- - Any file name listed in part or whole by lower-case letters is not

100 CALL CLEAR | accessible by the TI1-99/4 Computer. Only the TI-99/4A Computer can
110 CALL CHAR(96,"FFFFFFFFFFFFFFFF") access a program named or called in lower-case letters.
120 CALL CHAR({42,'0FOFOFOFQFOFOFQOF"")
130 . Lower-case letters in DATA statements or quoted strings funection
140 . correctly and offer a wide variety of programming techniques on the
150 . , TI-99/4A Computer. However, lower-case quoted strings and data are
160 CALL HCHAR(12,17,42) - not displayed if you run the program on a TI-99/4 Computer. If you
170 CALL VCHAR(14,17,96) plan to run your program on both the TI-99/4A and T1-99/4
190 FOR DELAY=1 TO 500 | Computers, take special care when using lower-case letters.
200 NEXT DELAY | ,
210 . | To display the lower-case letters in your TI-99/4A Computer program
220 . when the program is run on a TI-99/4 Computer, simply include the
230 . following statements. Small capital letters are created similar to those

. of the TI-99/4A. Be sure to allow adequate memory space and
execution time.

100 FOR I=65 TO 90

Note that the GOTO method causes the necessary memeory space to
be reserved in line 20. However, the statements in line 20 do not
execute until they are encountered further on in the program. Thus, 110 CALL CHARPAT(T,A$)

as shown in the preceding and following examples, you can put all of 120 B$=“OODD”&SEG$J(A$,1,4)&SEGS(AS,7,4) 4SEGE(AS, 13,4)
your variable references together and your subprogram calls do not 130 CALL CHAR{I+32, B$)j ’

have to be syntactically correct. This can be the most efficient use of)) 140 NEXT I

the pre-scan option. |

Insertion of the above program lines into your TI-99/4A program

| 100 GO0 180 :X, Y, ALPHA, BETA, Z=DELTA: : DIM B(10,10) allows pre-programmed lower-case characters to be displayed by the
4 110 CALL KEY::CALL HCHAR::CALL CLEAR::CALL MYSUB ' TI1-99/4 computer.
120 DATA 1,3,STRING
130 DEF F(X}=1-X*SIN(X) SIZE COMMAND
':'1 iég ' The SIZE example, using the Memory Expansion unit discussed in
l‘ 160 . Chapter 4 of your TI Extended BASIC manual, now informs you that
170 18P | you have 24488 “BYTES OF PROGRAM SPACE FREE".
‘ 80 | | TAIL REMARKS
= 120 ,
m 200 . If you previously programmed a TAIL REMark that is identical to the |

pre-scan instructions (!@P + or !@P -), your program will no longer
! function properly. These groups of characters are now considered to
| be "'reserved words'’ for the operation of the computer.

10 11
e —— ey

E

CORRECTION TO APPENDIX C

ASCII code 12 in Appendix C of your TI Extended BASIC manual
should be stated as the “PRpQ’D” character rather than as the
“"CMD"” character.

LARGE PROGRAM FILES

Some programs written with TI BASIC may be too large to run with
TI Extended BASIC because TI Extended BASIC reguires more
system overhead than TI BASIC. If you attempt to load such a
program, your system will lock up. Before you can continue, you
must turn your computer off, wait several seconds, and then turn it
on again.

Entering a CALL FILES{1) or CALL F ILES(2) command before
loading your program may free enough Imemory to run the program
with TI Extended BASIC. (A full explanation of the CALL FILES
command can be found in the Disk Memory System manual.)

If a CALL FILES command does not free encugh memory, you must
shorten your TI BASIC program by deleting statements until the
program fits in the memory available with TI Extended BASIC,
However, if you have a Memory Expansion unit, you can run the
entire program by using the following procedure:

1. As a safety measure, make a backup copy of your TI BASIC
program on a cassette tape or diskette.

2. With the Memory Expansion unit attached and turned on, load
your program with Tl BASIC. Next, delete several statements, and
save the shortened program on cassette tape or diskette. Then try
to load this shortened program with TI Extended BASIC.

3. Type the deleted statements back into the proper places in your
program.

4. Save your program on a diskette only. You are now ready to run
your program with TI Extended BASIC and the Memory
Expansion unit,

Note: Programs converted in this fashion can only be run with TI

Extended BASIC and with the Memory Expansion unit attached and

turned on. They are not stored in PROGRAM format.

12

m

MEMORY EXPANSION UNIT AND CASSETTE-BASED
PROGRAMS

The Memory Expansion unit adds 32K bytes of Random Access
Memory (RAM} to the built-in memory of the computer. However,
even with the Memory Expansion unit available, the largest TI
Extended BASIC program that can be stored on a cassette tape is
12K bytes in size. Note that, although the length of the actual
program is limited, utilizing the Memory Expansion unit provides
other advantages. For example, with the unit attached and turned
on, your program (which can be up to 12K bytes in length) is stored
in the expansion RAM. The numeric data generated by the program
is stored in the Memory Expansion unit and the string data is stored
in the computer’s built-in memory. Without the unit, the program
must be shorter so that both it and the generated data can be stored
in the computer’s built-in memory.

CONTINUE COMMAND

A CONTINUE command is used to resume your program when you
break by using a BREAK command or by pressing CLEAR. However,
it your last command (before the CONTINUE command) results in a
error, the program may not continue properly. Your final command
to the computer before the CONTINUE command must be correct. If
you receive an ERROR message, be sure to enter a correct command,
such as a PRINT command, before resuming program execution.

MANUAL ERRORS

Page 39

The second sentence in the third paragraph of the “*“Numeric
Constants™ section should be corrected to read ““...number is greater
than 99 or less than - 99, then”

Pages 79 and 150

The string used in a string-expression with the DISPLAY ... USING
and PRINT ... USING statements may be more general than shown in
the examples in the manual. For example, both of the following are
valid statements.

PRINT USING A$:X,Y
DISPLAY USING RPT$('#,5)&V$:A{12)

Pages 89, 133, and 135

The GOSUB, ON GOSUB, and ON GOTO statements should not be
used to transfer control to and from. subprograms.

13

m

Page 114

If you press CLEAR when using the LIST command, the listing stops
and cannot be restarted.

Pages 118 and 119

The graphic figures at the bottom of page 118 and the top of 119
should be reversed.

Page 185

The TAB function cannot be used in the PRINT ... USING or
DISPLAY ... USING statements. Also, the second paragraph of this
explanation should be corrected to read as follows: *'If the number of
characters already printed on the current record is less than
numeric-expression, the next print-itemn is printed beginning on the
position indicated by numeric-expression. If the number of
characters already printed on the current record is greater than or
equal to the position indicated by numeric-expression, the next
print-item is printed on the next record beginning in the position
indicated by numeric-expression.

Page 200

In Appendix H, Color Combinations, the color codes for the last two
listings in the ‘Best™ category should be as follows.

14, 10 Magenta on Light Red
3,16 Medium Green on White

L}

In the “Fourth Best” category, the third combination in the second
column should read:

6, 2 Light Blue on Black.

14

m

Format Lines

The following list gives corrections that should be made to the
indicated formats and also shows the present format information.

DIM Statement (page 76)

Correct Format: (integerl|,integer2]...[, integer7ill,...]
Present Format: (integerll.integer2|...[,integer7i|,...])

DISPLAY Statement (page 77)
Correct Format: [SIZE [numeric-expressiﬂn}l:]print-list
Present Format: [SIZE (numeric-expression)):jvariable-list

DISPLAY ... USING Statement {page 79)

Correct Formats: USING string-expression|:print-list]
USING line-number|:print-list}

Present Formats: USING string-expression{:variable-list]
USING line-number|:variable-list]

LINPUT Statement (page 113)

Correct Format: #file-number([,REC record-numberj:
Present Format: [[#file-number][,REC record-number}:]

PRINT ... USING Statement (page 150)

Correct Format: {#file-number[,REC record-number],]
Present Format: [#file-number{,REC record-number]]

SPRITE Subprogram (page 173)

Correct Format: dot-column|,row-velocity,column-velocityll[....])
Present Format: dot-column.|.row-velocity,column-velocity][,...])

15

5 ' —
.

. —

N [2

ADDENDUM TO TI EXTENDED BASIC

SYSTEM LOCK-UP WITH SUBPROGRAMS

A syntax error in a subprogram statement (IE. SPRITE, DELSPRITE, POSITION,

COINC, MAGNIFY, MOTION, LOCATE, PATTERN, DISTANCE, SAY, SPGET AND CHARSET) may

cause your system to lock-up. Turning the computer console off and on is the
only way to restart your systenm.

INCORRECT ERROR MESSAGE FOR SUBPROGRAMS

The error messages from a CALL Subprogram statement (IE. SPRITE, DELSPRITE,
POSITION, COINC, MAGNIFY, MOTION, LOCATE, PATTERN, DISTANCE, SAY, SPGET and

CHARSET)) are inappropriate. Use the following reference for error messages
from the subprograms:

"Syntax Error® means "String~-number Mismatch™
"Bad Argument" means "Bad Value"
M"Bad Value" means "Tncorrect Argument List™

MANUAL ERROR

The 'program listing on page 153 in the manual is incorrect. Line 110 should
read. |

OPEN #1: "D3SK1.RNDFILE",RELATIVE, INTERNAL

