GEMNERAL DESCRIPTION DF THE PREP SUBPROGRAM

The PREP subprogram is a subroutine resident in the Personal Record
Keeping and Statistics command modules. When the command module iz
plugged in, this routine can be called from a BASIC program. It is used
to define a fixed length data area in the VDP RAM. This area can then be
used by the other subprograms to manipul ate data files. The CALL
statement is used to execute the routine and takes the following form:

CALL P (V)

where V = number of bvtes to reserve {numeric expression’}

Vis a numneric constant, variable, or expression which spacifies the
prumber of bytes to be reserved for the data area. The maximum size for a
Personal Record Keeping file is 12048 bytes. However, the disk
controller reserves some VDF RAM for disk 1/0. When a disk controller is
attached to the system, the mazimum size for a PRK file drops to 10000
bytes. For a Statistics file the maximums are 7440 bytes without the
disk controller and 5392 bytes with the disk controller. When using the
PREP subprogram to allocate a data area, the maximum values are as
follows: '

With no disk controller or
After CALL FILES(0).....13820
After CALL FILES(1).....12768
After CALL FILES(2).....12250

For each additional file subtract 518 bytes.

I+ V evaluates to a value greater thaﬂ“fﬁbdépprnpriatﬂ maximum, a “NOT
ENOUGH MEMORY" error will occur. - o |

In order to avoid problems with variables that may have already been
allocated, a call to PREP should always be done imperatively, and should
be followed by a NEW command to avoid unpredictable results. If PREP is
called with a BASIC program residing in VDP RAM, an "ILLEGAL CALL" arror
will occur.

Unce a data area has been allocated with the PREP subprogram, that
area will remain allocated until BASIC is exited through a BYE command or
by pressing FCTN E.

LA]

GENERAL DESCRIPTION OF THE LOAD SUBFROGRAM

The LOAD subprogram is a subprogram resident in the Personal Record
Keeping and Statistics command modules. When the command module is
plugged in, this routine can be called from a BASIC program. It is used
to load a data file from an external device into the data area reserved
by the PREP subprogram. The CALL statement is used to exacute the

rocutine and takes the following form:
CALL L {(V$,V)
where
Ve = file—name {string expressionl’

V = return variable {numeric variable?

V$ is a string constant, variable, or expression which specifies the
file to be loaded. V is a numeric variable in which the LDAD routine
returns a code to indicate whether the LOAD was or was not successful.
V=0 indicates that an error occured. Any other value indicates that the
LOAD was successful. The following conditions will cause a LOAD
faitlure. -

1. The specified file and/or device does not exist.
2. No data area has been allocated.

S. The defined data area is too small for the data to be loaded.

4. General 1/0 errors.

CAUTION

Personal Record Keeping, Statistics, and the LOAD and SAVE
routines use "program" type files. This means that 256 byte
records are used. Thus the "effective" sizre of a file is the
true size of the file rounded up to the nearest multiple of 256.
For this reason it is possible to save a file which cannot be
reloaded into the same size data area.

GENERAL DESCRIPTION OF THE SAVE SUBPROGRAM

The SAVE subprogram is a subprogram resident in the Perssonal Rezcord
Heeping and Statistics command modules. ihen the command module i=
plugged in, this routine can be called from a BASIC program. It is used
Lo =ave a data file from an external device into the data area reserved
by the PREP subprogram. The CALL statement i= used to execute the
~outine and takes the following forms

CQLL L{VS, V)
where
Ve = file—name {string expression’}
. V = return variable fnumeric variable?}

V¢ is a string constant, variable, or expression which specifies the
file in which to save data. V is a numeric variable in which the SAVE
routine returns a code to indicate whether the SAVE was or was not
successful. V=0 indicates that an error occured. Any other value

1ndicates that the save was successful. The following cenditions will
cauvse s SAVE failure.

1. The specified file and/or- device does not e:ist.
2. No data area has been allocated.

3. General /0 errors.

CAUTION

Personal Record Keeping, Statistics, and the LOAD and SAVE
routines use "program" type files.” "This means that 255 byte
records used. Thus the "effective" size of a file is the
true size ot the file rounded up to the nearest multiple of 25&.
For this reason it is possible to save a file which cannot be
reloaded into the same sire data area.

GENERAL DESCRIFTION OF THE ACCEPT SUBFROGRAM

The ACCEPT subprogram is a subroutine resident in the Personal
Record Keeping and Statistics command modules. When the commanmd module
1s plugged in, this routine can be called trom a BASIC program. It is
used to accept data entry from the console kevboard, and scho that entry
on the screen at a specified location. The CALL statement ig used to
execute the routine and takes one of the following forms:

1. CALL ACY,X,W,C,V, L. H)
2. CALL AC(Y,X,W,C,V)
3. CALL AC(Y,X,W,C,V,F)

. 4. CALL A(Y, X,W,C.Y$)

where

Y = Y—scrnen-pﬁsitinn {numeric expression>
X = X—screen position {numeric expression’
W = field width {numeric expression?
C = return code {numeric wvariable

V = return variable {numeric variablel
V= return variable {string variablel}

L = low value {numeric expressionl
H = high value {numeric expression?
F = field number {nUTﬁriFLERPFEEEiEH}

£

Y specifies the vertical position on the screen. The range is from
1 for the top line of the screen to 24 for the bottom line of the screen.
X specifies the horizontal position on the screen. The range is from 1
for the left most position to 28 for the right most position. If the
value of either of these parameters exceeds the maximum position, then
the position is calculated minus the ma:imum position. Thus, if Y = 34
and X = 60, the data will be displayed at ¥ = 10 and X = 4. If either
position parameter is less that 1, it is set to 1. Thus, Y = O and X =
~S would give the position Y = 1 and X = 1.

-'\.r

ACCEFT SUBPROGRAM (CONTINUED)

W specifies the field width. If jits value is greater than the |
remaining number of spaces on the specified line, the field is truncated

at the right edge of the screen.
C is a numeric variable in which a code is returned. The code

returned is an integer from 1 o 7 as follows:

1 = valid non—empty data was entered

2

an ampty field was enteread

(d
H

FCTN 7 was pressed
4 = FCTN 8 was pressed

S = FCTN &4 was pressed

1
|

FCTN S5 was pressed

7 = FCTN 9 was pressed

This return code makes it possible to process "missing" data (i.e.
null entries) and the five special function keys listed. The most common
method of handling these is to follow the CALL. A() statement with an
ON-G0TO statement, for exampl e:

ON € G60TO 580, 620,920,720, 680, 800, 100

Thus control can be passed to the proper location depending on thea
action taken in the ACCEPT roeutine. If only one or two of the 7 listed
actions are allowed from a given CALL, the transfer of control may be
better handled by one or two IF-THEN statements in place of the CN-GOTO

statemant, for example:
e

IF C = 5 THEN &80
IF € > 1 THEN 420

V or V$ is the variable in which the data entered ig returned.

L and H are optional low-high value parameters. They establish a
range which the ACCEPT routine will use to check the validity of the data
entered. If an attempt is made to enter a value outside the specifisd
range, an error beep is given, and the cursor returns to the beginning of
the field. If these two optional parameters are not specified, no range
check will be performed.

The parameter F isg only valid when there exists a completely defined
Personal Record Keeping of Statistics file header. In this esvent, F
specifies the field number of the data being entered. The ACCEPT routine
will retrieve the field characteristics (type, width, number of decimal
places, etc.), and verify that the data entered 1s valid.

ACCEPT SUBPROGRAM (CONTINUED)

For example, a decimal point will not be alleowed if the field is integar
type; scientific notation will not be allowed if the field is integer or

decimal type; or 3 decimal places will not be allowed if 2 decimal places
are specified.

WARNING

If a valid Personal Record Keeping or
Statistics file header does not exist,
the results of using this field parameter
are totally unpredictable.

GENERAL DESCRIPTION OF THE DISFPLAY SUEPROGRAM

The DISPLAY subprogram is a subroutine resident in the Perzonal
Recording Keeping and Statistics command modules. When the command
module is plugged in, this routine can be called from a BASIC progranm.

It is used to display numeric values, character strings, or special
characters (if previously defined) on the screen at a specified location.

The CALL statement is used to execute the routine and takes one of the
following forms:

1. CALL D(Y,X,W,V)
2. CALL D{(Y,X,W,Vs)

3. CALL D(Y1,X1,W1,V1,Y2, X2, W2,V28,Y3, X3, W3, V3. etc.)

oy
J

Y—-screen position {numeric expressionl

X = X~screen position {numeric expressionl

W = field width {numeric expression?
V = display value {numeric euxpressiocn?}
V$= display value {string expression?

Y specifies the vertical position on the scresn. The range is from
1 for the top line of the screen to 24 for the bottom line of the screen.
X specifies the horizontal position on the screen. The range is from 1
for the left most position to 28 for the right most position. If the
value of either of these parameters exceeds the ma:imum position, then
the position is calculated minus the maximum value. Thus, if ¥ = 3I4 and
X = 60, the data will be displayed at ¥ = 10 and X q. If either
position parameter is less than 1, it is sat to 1. Thus, ¥ = 0 and X =
~3 would give the position Y = { and X = 1.

W specifies the field width. If its value is pcsitive, the field is
cleared before the new value is displayed. I¥f W is negative, the
absolute value is used as the field width, but the field is not cleared.
If the specified field width 1s less than the width of the data to be
displayed, the data is truncated. I¢ the specified field width is
greater than the remaining number of spaces on the specified line, the
field is truncated at the right edge of the screen.

DISPLAY SUBFROGRAM (CONTINUED)

V is any type of numeric expression. The expression will be
evaluated, and the result will be displayved. Similarly, V$ is an

string expression, it will be evaluated and the resulting string

y type
displ aved.

plays may be done with one DISPLAY call (form
S above). The pesition, field width, and display values are simply
listed in the sequences desired. The cnly limit here is the length of the
line in BASIC.

GENERAL DESCRIPTION OF THE GETPUT SUBPROGRAM

The GETPUT subprogram is a subroutine resident in the Personal
Record Keeping and Statistics command modules. When the command module
l1s plugged in, this routine can be called from a BASIC program. It is

used to write data to and read data from a file which has been defined
using the PREP and HEADER subprograms. The CALL statement is used to

execute this routine and takes one of the following forms:
1. CALL G(R/W, REC, FLD, W)
2. CALL G(R/W, REC, FLD, Ve)
S. CALL G(Rs/W, REC, FLD, MIS, V2)

4. CALL G(R/W, REC, FLD, MIS, V2$)

where
R/W = read/write code <{numeric e:pression?
REC = record number {numeric euxpression?
FLD = field number inumeric expression?
\ = numeric value {numeric expression?
V$ = string value {string expression?
MIS = return code {numeric expression?
V2 = return variable {numeric variable}

V2% = return variable {string variable?

The value of R/W determines whetRér a read or write is done. The
values are: -

O

i

write valid data ¢o the file

1 read data from the file

i

2

indicate missing data in file

ANy other value for R/W will cCause an error.
REC is the record number. In Personal Record Keeping this is
referred to as pagae number, and in Statistics as observation number.

GETPUT SUBPROGRAM (CONTINUED)

If the value is higher than the highest poscible record number. an error
occurs. If a write is done to a higher record than the highest

previocusly defined record, the higher record number is stored in the
header as the new highest record number. If a read is done from an

undefined record, the results are unpredictable. Therefore, it is
important to create records sequentially without skipping anv. A
nagative number or zero also yields unpredictable results.

FLD is the field number within the specified record. In Personal
Record Keeping this is referred to as item number, and in Statistice as
variable number. Each record has the same defined fields. If the field
number is higher than the highest defined field number an error will
occur. A negative or zero value will generate unpredictable results.

V and V$ are values to be written to the field. If they are
expressions. the result of evaluating the eupression is stored. If the
value is incompatible with the definition of the specified field, the
results are unpredictable. . For example, if a field is defined to be
decimal type with a width of & and 2 decimal places, both 7454 and 7.454
are incompatible values. (7654 has 1 too many digits to the left of the
decimal point, and 7.454 has 1 too many digits to the right of the
decimal point.}? When tndicating missing data in the file, V or VY% must
be included in the CALL parameters. However, the value of V ar Vs is
1gnored., *

MIS is a numeric variable in which a code is returned to indicate
normal versus missing data. This parameter must be included when reading
from the file, but must not be included when writing. After a read MIS =
0 indicates data found, MIS = 1 indicates missing data.

V2 is a numeric variable in which the numeric value being read frem
the file is returned. V2% is a string variable in which a string value
18 returnad. If a numeric variable is used when reading a string item,
Cr a string variable is used when reading a numeric item, an error will
occur. If missing data is found by the-read, the return variable is not
changed. -

-10—

GENERAL DESCRIFPTION OF HEADER SUBPROGRAM

The HEADER subprogram is a subroutine resident in the Personal

Hecord Keeping and Statistcs command modules. When the command module is

plugged in, this routine can be called from a BASIC program. It is uced
to write and/or read the information in the file header. The CALL

statement is used to execute the routine and takes one of the following
forms:

1. CALL H(R/W, INFO, FLD, V)

2. CALL H(R/W, INFO, FLD, vs)

where

' R/W = access code {numeric expression?
INFO = header item number <{numeric expressionl
FLD = field numbér. {numeric expression)
Vv = variables name {numeric expression’
VE = variable name {string expression?}

R/W is the read/write code as Fnlluws:

O = write information in header

read information in header

INFD contains a value from 1 to {4 which specifies which item of
header information is to be read/written. The item structure of the
header is as follows: : . o

1. File name
O to 9 characters

<. Day of mnﬁth

Integer from 1 to 31
Month

Integer from 1 to 12
Year

Integer from QO to 99

HEADER SUBFPROGRAM (CONTINUED)

-. MNumber of fields per record

This item ig automatically updated by the HEADER rcutine esach
time a new highest numbered field 1s detined. |

&. Number of records

This item is automatically updated by the BETPUT routine sach
time a new highest numbesred record is written.

7. Langth of header in bytes
This item is automatically maintained ov the HEADER rcutine.

8. Length of each record in bytes
This item is automatically maintained Dy the HEADER routine.

?. Name of field
O to 9 charaters

10. Tvpe of field

1 = characters
2 = integer
- = decimal

4 = scientific notation

11, Width of field

character = 1 tp 15

1nteger : 1 to 10
decimal : 2 to 1t L
scientific notation = 8 to 13 twidth of sclentific nmotation

field is automatically handled by
HEADER routins)

12. Number of decimal places for fisld
character : 0 {(handled by HEADER routine)
integer : O (handled by HEADER roautine)
decimal : 1 to width -t

scientific notation : O to S

HEADER SUBPROGRAM (CONTINUED)

12. Amount of storage for field in bytes
This item is automatically maintained by the HEADPER routine.

14, Position of field in record
This item is automatically maintained by the HEADER routine.

NOTE

Items 9 through 14 are repeated for each
field definead.

FLLD specifies the field number. This parameter is ignored for items
1 through 8 but must be included in the parameter list for the CALL
statement. C

When writing information to the header, V and/or V% are constants,
variables, or expressions containing the information toc be stored in the

header. When reading information from the header, V and/or V$ are the
variables where the information is returned.

-1 =

SOME SAMPLE BASIC PROGRAMS
The Personal Record Keeping and Statistics command modules do not

store their data in the standard BASIC format for numerics and strings.
The following BASIC program converts a Personal Record Keeping +ile into

two standard BASIC files. The first is a MHEADER file and the cecond is
the DATA fila. This program assumes that the files ars on disk.

¥ Execute the following three BASIC commands imperatively.

> CALL FILES (1)

> CALL FP{10000)

= NEW

¥ Run the following program. E£ach line is preceded bv a comment about
the purpose of the statement.

¥ Locad the data file into the reserved area.

100 CALL L(“DSHI.PRKFILE“;C)

¥ Check error indicator. O = failure, non QO = success.
110 IF € = 0 THEN 430

¥ Open HEADER file.

120 OPEN #1:"DSK1.PRKHEADER" ,RELATIVE, INTERNAL ,OUTPUT, FIXED
¥ Read internal file name.

130 CALL H(1,5,0,F%)

X Read number of fields per record.

140 CALYL H{(1,5,0,F) | e T

X Read number of records.

1350 CALL H(i,é,Q,R)

X Print information to Header file.

150 PRINT #1:Fs,F,R

X Print information on screen.

g

170 PRINT F$,F.R

X* Set up a loop to read field definitions.
180 FOR I=1 TO F

X Read field name.

190 CALL H((1,9,1,.F%)

X Read field type.

<00 CALL H(1,10,1I,T)

¥ Read field width.

210 CQLL H(1,11,1I,W)

X Check type of item.

220 IF T<>1 THEN 250

tField is alpha so add width + i.
230 S = S + W + 1

ISkip arscund.

240 6OTO 260

2 Field is numeric so add 9.

230 S = § + 9

¥ Read number of decimal places.
260 CALL H(1,12,1,D)

IPrint information to Header file.
270 PRINT #1, REC I:Fs$,T,W,D

X Print information to screen.
280 PRINT F$;T:W;D

1End of loop.

290 NEXT I

XClase Header file.

S00 CLOSE #1

XOpen DATA file.

<10 OPEN#1:"DSK1.PRKDATA", RELATIVE,IMfEHNAL,DUTPUT,FIXED S+2
¥Set up loop to read records and print them to DATA file.
I20 FOR I=1 TO R |
XPrint record number to screen.

ZZ0 PRINT I

ASet up loop to read fields for each record.

40 FOR J=1 TO F

¥Read field tvype.

3350 CALL H((1,10,0,T)

XCheck field type.

260 IF T=1 THEN 43¢

¥Field is numeric so read into numeric Qariabla.

370 CALL B(1,I,J3,€£,D)

¥Check missing data code.

80 IF C=0 THEN 400

IMissing numeric data so store negative infinity. (How missing data is
handled is a matter of personal choice.)

290 D=-9.9999999999999E+127

¥Data found so print it.

400 PRINT#1:D,

iIPrint data to screen.

410 PRINT Dj;

170 PRINT F$,F.R

X Set up a loop to read field definitions.
180 FOR I=1 TD F

X Read field name.

190 CALL H(1,9,1.F%)

¥ Read field type.

200 CALL H(1,10,1I,T)

X Read field width.

210 CALL H(1,11,1I,W)

2 Check type of item.

220 IF T<>1 THEN 250

3Field is alpha so add width + 1.
230 S =S + W + 1

¥ISkip around.

240 GOTO 260

¥ Field is numeric so add 9.

290 § =8 + 9

¥ Read number of decimal places.
260 CALL H(1,12,1,.D)

IPrint information to Header file.
270 PRINT #1, REC I:Fs$,T,W,D

X Print information to screen.
280 PRINT F$;TsW:D

tEnd of loop.

2920 NEXT I

*Close Header file.

SO0 CLOSE #1

¥Open DATA file.

210 OQPEN#1:"DSK1.PRKDATA", RELATIVE, INTERNAL , OUTPUT,FIXED S+2
*Set up loop to read records and print them to DATA file.
20 FOR I=1 TO R |
¥XPrint record number to screen.

A ERINT X

ISet up loop to read fields for each record.

=40 FOR J=1 TO F

XRead field tvpe.

=30 CALL H(1,10,J,T)

¥Check field type.

60 IF T=1 THEM 430

tField is numeric so read into numeric variable.

270 CALL B¢1,I,3,C,D)

XCheck missing data code.

=80 IF C=0 THEN 400

IMissing numeric data so store negative infinity. (How missing data is
handlad is a matter of personal choice.)

290 D=-9.999999999999%E+127
XxData found so print it.
400 PRINT#1:D,

IPrint data to screen.

410 PRINT Dg;

¥Skip around.

420 GBOTO 400

¥ Field is alpha =0 read into string variable.
430 CALL G(1,1,3,C,.F%)

¥ Check missing data code.

440 IF C = O THEN 3440

¥ Missing string data =o store a space character. (How missing datsa is
handled is a mattor of personal chaoice.)

430 Fé = Mo

X Data found so print it.

450 PRINT #1:Fs,

X Print data to screen.

470 PRINT F$; " v .

Y End of field lcop.

480 NEXT J

¥ Finish printing the record.
490 PRINT #1:v ©

X Finish pending screen print,
300 PRINT

¥ End of record loop.

=10 NEXT 1

¥ Close the Data file.

S520 CLOSE #1

X When the file is closed then stop.
séo STapP

¥ Indicate an error in trying to load PRK file.

S40 PRINT "ERROR IN LOADING PRiK FILE"

X Stop tﬁe praogram. .

oS0 STOP

The results of running this program are:
1. A. HEADER file containing -

a. the PRK file name, number of fields per PRK record, and
number of PRK records in record »

b. and the definition (name, type, width, decimal places)
of field #n in record n.

2. A DATA file containing PRK record #n in record rn—1.

The following BASIC preogram takes the HEADER and DATA filec
Created in the previous example and converts them into a PRK file which
Can be saved by the SAVE routine.

¥ Execute the following three BASIC commands imperatively.

> CALL FILES(1)
> EBALL P 10000)
> NEW

¥ Run the following program. Each line is preceded by a camment about
the purpose of that statement.

¥ Open. the HEﬁDER.fiIE.

100 OPEN #1:"DSK1.PRKHEADER", RELATIVE, INTERNAL, INPUT, FIXED
¥ Read file name, number of fields per re:brd, and number of recocrds.
110 INPUT #1:F$.F.R

X Print information to screen.

120 PRINT F$,F,R

X Write file name to PRK header.

150 CALL H(0,1,0,F%$)

* Read number of fields per record.

140 CALL H(D,S5,0,.F)

X Read number of records.

150 CALL H(D,56,0,R)

¥ Set up loop to create remainder of PRK header.

160 FOR I=1 TO F |

¥ Read field name, type, width, and decimal places.

170 INPUT #1, REC I:F$,T,W,D

XPrint information to screen.

180 PRINT Fe;T: WD

I Write field name to PREK header.

190 CALL H(O,9,1,.F%)

¥ Write field type to PRK headear.

200 CALL H(0,10,1,.T)

X Che;k tvpe. For scientific notation do not write width.
210 IF T=4 THEN 240

X Write field width to FRK header.

220 CALL H(O0,11,1,W)

X wripe number of decimal places to PRK header.

230 CALL H(0,12,1,D)

X Check type. For character and integer fields do not write decimal
places.

240 IF T < 3 THEN 250

¥ End of loop.

230 NEXT 1

¥ Close the Header file.

2560 CLOSE #1

X Open the Data file.

270 OPEN #1: "DSK1.PRKDATA", RELATIVE, INTERNAL, INPUf, FIXED
¥ Set up loop to read data records and write them to PRK file.
280 FOR I=1 TO R .

¥ Print record number to screen.

290 PRINT I

X Set up loop to read fields for each record.

S00 FOR J=1 TO F

X Read field type.

310 CALL H(1,10,J,T)

X Check field type.

"'" ﬁ

320 iF T=1 THEN 400

¥ Field is numeric so read intoc numeric variable.
=30 INPUT #1:D,

¥ Print data to screen.

340 PRINT Dj

¥ Check whether this should be representad as missing data.
290 IF D=-9.999999999%9399E+127 THEN 380

¥ Normal data so writelit to PRK file.

360 CALL G(0,I,Jd,D)

¥ Continue loop.

70 GOTO 440

¥ Indicate missing numeric data.

>80 CALL 6(2,1,J3,D)

X Continue loop.

=90 GOTO 440

¥ Field is alpha so read into string variable.
400 INPUT #1:F%

X Print data to screen.

410 PRINT Fg; * v ; 3 w e e
¥ Check for missing data.

Q20 IF F%=" " THEN 450

¥ Normal data sa write it to PRK file.

430 CALL G(O,I,J, F%)

X 'Continue loop.

440 GOTO 440

¥ Indicate missing string data.

450 CALL G(2,1,d,F%)

¥ End of field loop.

450 NEKT.J

¥ Finish the record.

470 INPUT #1:F$,Ds%

¥ Finish pending print to screen.

480 PRINT F$,D%

¥ End of record loop.

450 NEXT !

X Close the Data file.

=00 CLOSE #1

X Save the PRE file.

SIOICALL S("DSK1.FRKFILE" C)

X Check error indicator. 0O = failure, non-0 = success.
220 IF C THEN S40

¥ Indicate an error in trying to save PRE file.
=230 PRINT "ERROR IN SAVING PRK FILE"

¥ Stop the program.

5S40 STOP .

