
EDITOR/ASSEMBLER

USER'S GUIDE

A SOLID STATE SOFTWARE™ PROGRAM

FOR THE

TEXAS INSTRUMENTS

COMPACT COMPUTER 40

J IJn
J
EH
0
0
a
a-

1
fl

Q
fl
0
a
a
a
a
a
a
a

This book was written by:
Bill Brewer

Editor/Assembler package was written by:
Bruce Donham
Jim Hammerquist
Karl Heichelheim

With contributions by:
Bud Gerwig
Steven W. Smith
Robert E. Whitsitt, II

IMPORTANT NOTICE REGARDING PROGRAMS AND BOOK MATERIALS

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
PARTICULAR PURPOSE, REGARDING THESE PROGRAMS OR BOOK MATERIALS OR ANY PROGRAMS
DERIVED THEREFROM AND MAKES SUCH MATERIALS AVAILABLE SOLELY ON AN "AS IS"
BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR SPECIAL,
COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING
OUT OF THE PURCHASE OR USE OF THESE BOOK MATERIALS OR PROGRAMS AND THE SOLE
AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS OF THE FORM OF
ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THE CARTRIDGE. MOREOVER, TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER AGAINST
THE USER OF THESE PROGRAMS OR BOOK MATERIALS BY ANY OTHER PARTY.

Copyright c 1983, Texas Instruments Incorporated All rights reserved.

Table of Contents

CC-40 EDITOR/ASSEMBLER USER'S GUIDE

CHAPTER 1—CC-40 ASSEMBLY-LANGUAGE PROGRAM DEVELOPMENT WITH THE

EDITOR/ASSEMBLER: AN INTRODUCTION

AN INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING X

Execution of Commands •2-

Two Programming Techniques 3
ASSEMBLY LANGUAGE AND THE E/A PACKAGE 3

THE "BEEP" DEMONSTRATION PROGRAM S

Preparing the CC-40 for "BEEP" Program Development
Editing the "BEEP" Program t
Assembling the "BEEP" Program $

Linking the "BEEP" Program $

Loading and running the "BEEP" Program 1

Using the DEBUG Monitor

ADVANCED PROGRAM DEVELOPMENT ON THE CC-40

CHAPTER 2--TMS7OOO ASSEMBLY LANGUAGE

TMS7OOO-FAMILY PROCESSING OVERVIEW

Processing Operations

Data Storage

General-Purpose Register File

Peripheral Register File

Other Memory Addresses

Processor Registers j।

md/UUU AbbtMBLY-LANbUAbt INilKUbIlUNb

Instruction Types

Arithmetic Instructions

Branch and Jump Instructions

Compare and Test Instructions

Control Instructions

Load and Move Instructions

I 3
I Q
/ b

/?
' 7

Logical Instructions

Rotate Instructions

Addressing Modes

Implied Addressing r

Register Addressing '
. 22 IImmediate Values in Register-Addressing Instructions ’

Single-Register Addressing I

General-Purpose Register Addressing

Peripheral Register Addressing 2.2.

Program-Counter Relative Addressing 3

Memory Addressing 2. 3

Direct Addressing

Indirect Addressing ■_

Indexed Addressing --- ---------------------- ------------------- 2 3

Trap-Instruction Addressing

INSTRUCTION SYNTAX

Instruction-Line Entries: Makeup and Sequence 2.^
Labels 2^

Op Codes and Operands a. C

Comments X b
EXPRESSION-FORMATION RULES 2 b

Constants 2-

Numbers
c. . -2 U
Sinng. a y

Variables and Labels

Expressions

THE OP CODE MAP

CHAPTER 3—CC-40 OPERATION WITH THE E/A PACKAGE

CC-40 ASSEMBLY-LANGUAGE DEVELOPMENT CONFIGURATION
Minimal E/A Hardware Configuration 5

Enhanced E/A Hardware Configuration 3 ft

CONSOLE DEVICES 3 I

Console Keyboard I

Power-Control and Execution-Control Keys
Keyboard Uppercase-Shift Operations ^0-
Keyboard Control-Character Entry 3 3

Display-Editing Keys

Cursor-Positioning Keys

Insert-Mode Key

Character-Delete, Erase-Field, and Display-Clear Keys 3
Liquid-Crystal Display (LCD) 3^

The Character-Display Line

Indicators 3^
HEX-BUS™ DEVICES

CHAPTER 4—THE LINE AND SCREEN EDITOR

SYSTEM REQUIREMENTS

RUNNING THE EDITOR

Line Editing: "L" Option

Screen Editing: *S* Option

Screen Definition: "D" Option

Uncrunched Format Text: "U“ Option

Crunched Format Text: "C" Option

Quitting the Editor: “Q" Option

37

32

33

32
3^

LINE-EDITOR OPERATION

Text Lines and Line Numbers 4/

Line Editing Commands H I

New Text Entry H

Editing Previously Entered Lines

Using the Display Buffer
Clearing the Display Line 44

Using the Playback and Recover Buffers

Line-Number Display Commands

Cursor Control
Deletion of Text in the Display 7

Insertion of Characters into Displayed Text 3

Insertion of Single Lines of Text

Insertion of Multiple Lines of Text

Text Line Replication

SCREEN-EDITOR OPERATION
Screen-Editing Commands $ I

Text Entry
Cursor Positioning S H

Display Paging Control

Screen Refresh (View)

Line-Number On/Off Toggle
Text Deletion 5

rg
Text Insertion 0

r q
Screen-Editing Keyboard and Display Definition

Keyboard Selection

Selection of Device and Data-Transmission Characteristics
Command Keystroke Definition G I

Function-Key Definition 6 2.

Default Values for Command and Display-Function Keys G 3

Definition of Required Display-Control Information

Definition of Optional Display-Control Information foS

Default Values for Display-Control Characteristics

Using or Saving the Definition Table
LINE AND SCREEN-tDITOR COMMAND DESCRIPTIONS 7

AUTO: Automatic Line Nunfoer Command ^7

COPY: Copy (Load) a File into Text Area of Memory fa 7

DELETE: Delete Line or Block of Lines

EDIT: Display a Line for Editing
FIND 7^

FORMAT: Prepare New Mass-Storage Medium 7|
HELP: Show Commands and Display Functions "7 I

JUMP: Move the Cursor (or Screen) to Another Point in the Text
LIST: Display or Print Lines of Text 72-

MOVE: Move a Line or Block of Text "7^

QUIT: Return to the E/A Menu 7^

REPLACE: Find One String and Replace It with Another 7 5
SAVE: Write the Text to a Mass-Storage File lb
TAB DEFINE: Set Display Tab Stops Other Than as Defined 7 7

UNDO: Cancel the Last Modification, Deletion, or Replacement 12
VERIFY: Compare the Text with a Mass-Storage File 7 8

SUMMARY COMMAND DESCRIPTIONS

CHAPTER 5—THE ASSEMBLER

SOURCE AND OBJECT FILES ? 1

Source Files 7^
Object Files 7*1

RUNNING THE ASSEMBLER

SOURCE FILE STATEMENTS
<3 1

Assembly-Language Instructions 0 *
Pseudo Operations $ I

Numeric-Data Pseudo Operations $ I

ASCII (Character-String) Data-Storage Pseudo-Ops I

n
n
n
n
n
n
n
n

Fl
fi

n

Assembler Directives
Code and Data Location Instructions $-2.

Symbol Value Equating Directive

End of Source Statement $ 3
Linking Information Directives £

Source File Copy (Include) Directive 8 ̂ 3

Assembly-Listing Control Directives £ 3

Assembler Option Directive 1

Pseudo Operations in Detail

Numeric Data-Storage Instructions: BYTE and DATA ^4
ASCII Data-Storage Instructions: TEXT AND RTEXT

Assembler Directives in Detail

Code- and Data-Location Instructions: AORG, RORG, BSS, BES

Value-Assignment Instruction: EQU £ 7
Linking Directives: DEF and REF $7
End-of-Assembly Instruction: END £7

Multiple Source File Directive: COPY 3 7

Listing Directives: IDT, TITL, PAGE, LIST, and UNL $2

Listing Format Directives
Directives to List or Not List Lines j?*!

Option Directive: OPTION C|

ASSEMBLY ERRORS AND ERROR MESSAGES Cf

CHAPTER 6—THE LINKER

RUNNING THE LINKER q 3
LINKING COMMANDS 3

Input-File Commands
Absolute-Output Command ^7

Output-File Format Command

The END Command

LINKER COMMAND TEXT AND LISTING

LINK MAP FORMAT

LINKER INPUT AND OUTPUT FORMATS ^7
HEADERS, MEMORY-IMAGES, AND RELOCATION-TABLE RECORDS CT7

n
n

HEADER RECORDS

File-Type Word

Flag Byte qq
Maximum Relocation Table Length

Block Size 191
Length of Memory Image /

Absolute Load Address or Minimum Relocation Table Length

ERROR MESSAGES

CHAPTER 7—E/A UTILITY PROGRAMS

HEXADECIMAL DUMP UTILITY (HEXDUMP)

Running the HEXDUMP Program

Use of HEXDUMP

HEXDUMP Error <

OBJECT-FILE LOADERS

Saving and Loading ABSLOAD and CARTLOAD

Absolute-Code Loader

Cartridge Loader 10 b
The CARTINIT Subprogram j
The CARTLOAD Subprogram /0g

CARTRIDGE-SAVE PROGRAM (MEMSAVE) /07
FILE CONVERSION AND TRANSFER UTILITIES I

Multiple- to Single-Record File Conversion Utility (CONVERT)

File Transfer Utility (TRANSFER)

Text Transfer from One Device to Another lift
Text Transfer from an External Computer / / /

TI-990 Tagged-Object File Transfer

Transfer Utility Errors

BASIC to E/A Text Utilities (SAVEA AND COPYA) f

E/A FILE-TRANSFER AND CONVERSION SUMMARY .

II?

CHAPTER 8—DEBUG MONITOR

RUNNING THE DEBUG MONITOR

MONITOR COMMANDS

Display-Memory Command: D

Memory-Modify Command: M । / ■y

Processor-Register Modify Command: P

Copy-Memory Command: C 11$
Execute Command: E [| $
Breakpoint-Modify Command: B /I#

ROM-Page Modify Command: R (

Single-Step Command: S

The Quit Command: Q
The Help Command: ? j

DEBUG MONITOR OPERATION CONCEPTS
DEBUG MONITOR USE WITH AN E/A-DEVELOPED PROGRAM 12 I

Entering the Machine-Language Program

Testing the "BEEP" Program

Modifying "BEEP" Program Machine Code

u
11
Q
Q
0
0
0
0
0
0
If
0
H
0
11
11
0
11
0

CHAPTER1
CC-40 E/A PACKAGE

Editor/Assembler User’s Guide Chapter 1

This chapter introduces assembly-language programming and
assembly-language program development with the CC-40
Editor/Assembler (E/A) package, an assembly language program
development system. The chapter also includes a detailed
description of the development of a small program through use of
the E/A package.

The Editor/Assembler cartridge for the Compact Computer 40
(CC-40) contains two major programs, an editor and an assembler,
which perform major tasks in development of programs written in
assembly language. In addition, the cartridge contains other
programs which support assembly-language program development
All of these programs are integrated into a system designed to aid in
the development of software which uses the maximum capabilities
of the CC-40.

The most popular method of programming the CC-40 involves
writing programs in the language called BASIC (Beginner’s All
purpose Symbolic Instruction Code). The BASIC language is the>
easily learned programming code supported by the firmware
(programs in read-only memory) in every CC-40 console. It permits
rapid development of programs, and it is “friendly” in pointing out
programming errors.

Despite its advantages and popularity, BASIC cannot be used as the
programming language for the development of some important
applications programs. Programs which require fast execution and
maximum efficiency in the use of memory space cannot be written
in BASIC. For these reasons, word-processing, spreadsheet, data-
communication, and many other valuable programs are usually
written in a language other than BASIC, usually in “assembly
language.” Assembly-language programs run up to 200 times faster
than BASIC programs which perform the same tasks, and they
require as little as one-tenth the memory-storage space.

BASIC
niiink rquick program writing

easy to learn to use
y^^^easy error checking

ASSEMBLY LANGUAGE

faster program execution

more efficient use of available
memory

-Programs in BASIC and programs in assembly language can be
combined in program development. Programs written in BASIC can
use subprograms (subroutines) developed in assembly language

V' f whenever speed and memory economy are important. A video
display, for example, can be driven by a subprogram developed in
assembly language and called by a BASIC program. Additionally,
many of the existing machine-language subroutines in CC-40
BASIC firmware can be used to simplify assembly-language
programming. The CC-40 liquid-crystal display, for example, is
easily controlled through assembly-language “calls” to the display
subroutines that are used by BASIC.

I

CHAPTER 1
CC-40 E/A PACKAGE

An Introduction to Assembly-Language Programming
Assembly language permits direct control of computer-processor
operations. Through assembly-language programming, each step of
processor operation is specified by a machine-language program
stored in CC-40 memory. Because of such comprehensive program
control, programs written in assembly language can be executed
faster and provide much more computing power per unit of memory
than programs written in any other programming language.
Assembly language provides the means for using the CC-40 at its
maximum capability.

Assembly language is a “command and control” language
specifically created for use with individual computer processors.
The assembly language for the CC-40 is created specifically for use
with the TMS7000-family microprocessor which controls all CC-40
operations.

Operation of the CC-40 is controlled by a program stored
electronically in memory. The program is read from memory one
step at a time by the CC-40 processor. The processor interprets
what it reads into electronic control signals which guide processing
operations, as shown below. In this manner, the CC-40 proceeds
through many program steps to execute a program.

Program in Memory -* Processor Interpretation -* Data Processing

Eight data lines carry the electrical signals from each program
memory storage location to the processor. Binary voltage states
(High/Low or ON/OFF) of these eight lines correspond to “bits”
(binary digits) of information which compose an eight-bit
information unit called a “byte” (binary term). When a byte of
program information stored in program memory is present on the
data-bus lines of the processor, the processor interprets the byte to
be one of the following.

• A command code which directly controls processor operation

• A data byte

• An address byte

The way the processor interprets the electrical signals from program
- memory is incorporated into the “machine-language” design of the

processor. The relationship between machine language and
assembly language is described in chapter 2 of this guide. Individual

- assembly-language instructions are described in detail in chapter 7
of the CC-40 Editor/Assembler Reference Manual.

: Execution of Commands
t Bit combinations in the command code cause the processor to

perform a certain operation according to processor machine
*; language. If the command code contains certain bit combinations, it
* ; causes the processor to add. Other bit combinations cause it to
' w \ subtract, output a byte, jump to another program memory address,

" . or perform other processing operations. Unless the processing of a
• ‘ * command (such as a jump, subroutine call, idle, or similar

instruction) determines otherwise, the processor always executes
commands in the sequence in which they are stored in program

. 7 : memory.

CHAPTER 1
CC-40 E/A PACKAGEn

n
fi
n
fi
n

fi
fi
fi
Fl
Fl
Fl
fl
fl
fl
fl
Fl

In addition to guiding the processor by specifying the type of
operations to be performed in a program step, command codes
identify any bytes which must follow the command code to produce
a complete machine-language command. If a command code so
specifies, the processor considers a subsequent byte to be a value
to be used in an addition operation. Similarly, if another command
code specifies it, the next byte is read by the processor as an
address in memory from which the processor is to read data for a
subtraction operation.

Two Programming Techniques
Programming the CC-40 consists of storing appropriately encoded
command codes, data values, and address values into program
memory. The CC-40 permits the storage of such machine-language
codes by two methods.

The first method is a primitive (but workable) one. Numeric values
which correspond directly with the electrically stored command-bit
combinations are entered into the CC-40 keyboard for memory
storage by the CC-40 DEBUG Monitor program. Such programming
is called “machine-language programming” (see chapter 8 of this
guide).

The second method is much more sophisticated and practical. It
demands less time, effort, and patience of a programmer, because it
uses the computing capabilities of the CC-40 to replace the
laborious tasks of command-table lookup, unautomated
computation, and copious note taking. This method uses the
programs in the Editor/Assembler cartridge. The editor, the
assembler, the linker, and the various utility programs are
themselves machine-language programs which make the
computing power of the CC-40 available for program development.

Assembly Language and the E/A Package
In programs stored directly into CC-40 memory by the DEBUG
Monitor, commands are represented by hexadecimal (base 16)
numbers. Commands with hexadecimal numbers in the series >18,
>28,... >78, for example, direct the processor to add numbers from
various storage locations in CC-40 memory. Subsequent
hexadecimal numbers in the commands identify the storage
locations for the values to be added and the sums of those values.

Hexadecimal numbers which represent commands are difficult to
remember during programming, and remembering memory
addresses is tedious. Hexadecimal command codes are not like
words: “add,” “subtract,” “compare,” and so on. The command to
“add the number in register 12 to the number in register 49,” for
example, is the following sequence of numbers: >48 X)C >31. With a
substantial program, a programmer could spend a lifetime
remembering—and misremembering and correcting—such
numbers. Short of spending such a lifetime, a programmer can use
the E/A program called the assembler to perform these tedious

; tasks.

. The E/A assembler is a translation program which is conceptually
the central program in the CC-40 Editor/Assembler package.

j^^Problems in machine-language programming are solved by the
assembler by translating English words or mnemonic expressions

^7- into machine-language commands. The sequence of numbers for
the command listed above, >48 >0C >31, results directly from

1 assembler translation of the simple statement ADD R12,R49. (The
assembler is described in detail in chapter 5 of this guide.)

3

CHAPTER 1
CC-40 E/A PACKAGE

~ - Other programs in the E/A package are designed to support the work
j ~ done by the assembler in its production of processor commands

from mnemonic English words and phrases. Programs other than
: the'assembler—the editor, the linker, the DEBUG Monitor, and the

utility programs—provide for text entry of assembly-language
programs to the assembler and process the machine-language
output of the assembler for specific uses in the CC-40.

- The E/A editor provides a means for entering and revising assembly-
. language commands for subsequent translation by the assembler.

Through the editor, entire programs can be written before they are
assembled. An editor option provides for viewing either single
program lines on the CC-40 console display or a multiline program
segment on a CRT terminal connected to the CC-40 through an
RS232 input/output device. (The editor is described in detail in
chapter 4 of this guide.)

The E/A linker further translates the numbers produced by the
assembler into an executable machine-language program for the
TMS7000-family processor (much as the DEBUG Monitor does for
numbers entered at the CC-40 keyboard). The linker performs the
necessary tasks of adding memory-addressing information to the
assembled program and converting machine code into a memory
image of what it must be in order to run on the CC-40. (The linker is

^described in detail in chapter 6 of this guide.)

The E/A utility programs are a group of special-purpose E/A
programs which further support editing, assembling, and linking.
The utility programs include the following.

• A file-dump utility, a program which prints the contents of any file
stored on mass-storage media.

• Loader utilities: two programs which bring E/A-developed
programs into memory for execution.

• A save utility: a program which saves E/A-developed programs in
RAM to mass-storage media.

• A file-conversion and transfer utility: a program which enables
communication between the CC-40 and external computers used
to develop assembly-language programs.

• BASIC editing utilities: two programs which permit the E/A screen
editor to be used for development of BASIC programs.

The DEBUG Monitor, in addition to its memory-access functions
described above, provides for controlled execution of programs
being developed. Loaded programs can be started, stopped,
examined, and changed as they are executed in order to detect and
eliminate programming errors. (The DEBUG Monitor is described in
detail in chapter 8 of this guide.)

Chapter 2 of this guide describes machine language and assembly
language in detail, and chapter 7 of the CC-40 Editor/Assembler
Reference Manual describes each assembly-language instruction
used with the E/A package. Chapters 4 through 8 of this guide
describe the uses and operation of the editor, assembler, linker,
utility programs, and the DEBUG Monitor. The remaining parts of
this chapter provide instructions for using the E/A package to
develop a small program without such detailed knowledge.

u
u
0
u
0
u
0
0
u
0
u
0
u
u
0
u

u

CHAPTER 1
CC-40 E/A PACKAGE

The “BEEP” Demonstration Program
Use of the E/A package to develop CC-40 programs is simple and
straightforward. The E/A programs are run in a sequence that

„ processes an assembly-language program into a completed,
working machine-language program. The following pages of this

-5^ chapter show how each program is used in the development of a
x short program which emits a “beep” from the CC-40 beeper.

Th® instructions provided below for development of the beep-
emitting program are complete, and when they are followed with
exacting care they result in the completely developed program
which demonstrates all of the major features of the E/A package.

\ Many problems, however, can result from seemingly trivial mistakes
; - in programming when any programming system is used, particularly
Cwith a system such as the E/A (with its being more resourceful but

' mote “unforgiving” than, for example, BASIC). As with even BASIC,
4- thorough understanding can easily uncover mistakes which are not

even noticed in the careful following of directions. If the following
instructions do not produce the expected results at any stage,
consult the appropriate chapter of this guide to find the solution to
the problem.

Figure 1-1 shows a small program called “BEEP,” which is written in
assembly language. After the program is processed by the E/A
package into machine language and executed, it activates the
beeper in the CC-40. Activation of the beeper requires that electrical
pulses be sent to the CC-40 beeper which transforms electrical
pulses into sound waves, and this short program provides 1024 such
pulses to produce a single “beep.” The “BEEP” program causes the
processor to alternately turn on and turn off electrical current to the
beeper a total of 1024 times in order to produce the pulses that emit
a tone.

Figure 1-1. The “BEEP” Assembly-Language Program

00001 COUNTER EQU >5D COUNTER MEMORY LOCATION
00002 BEEP MOVD %>400,COUNTER SET CYCLE COUNT TO 1024
00003 BEEP2 MOVP %1,P21 TURN ON THE BEEPER
00004 MOV %29,B DEUY COUNT FOR ON PERIOD
00005 0NL0P DJNZ B.0NL0P LOOP BACK FOR COUNT
00006 MOVP %0,P21 TURN BEEPER OFF
00007 MOV %32,B DEUY COUNT FOR OFF PERIOD
00008 0FFL0P DJNZ B,0FFL0P LOOP BACK FOR COUNT
00009 DECD COUNTER COUNT OF CYCLES DONE
00010 JC BEEP2 LOOP BACK UNTIL ALL DONE
00011 RETS RETURN TO CALLING PROGRAM
00012 NAML0W
00013 RTEX1? 'BEEP1 PROGRAM NAME (REVERSE CAPS)
00014 BYTE NAMHGH-NAML0W NAME LENGTH
00015 NAMHGH EQU $-1 FILE STORAGE SPECIFICATIONS
00016 DATA BEEP PROGRAM ENTRY POINT
00017 DATA 0000 NEXT SUBPROGRAM
00018 DATA NAMHGH-$+l OFFSET TO NAME
00019 BYTE 0,>44 HEADER INFORMATION

The function of each line of the program in terms of CC-40 operation
is explained in the comment phrases printed to the right of the
assembly-language instructions. More exact meanings of the
instructions and each element within them are given in chapter 2 of
this guide and in chapter 7 of the CC-40 Editor/Assembler Reference
Manual.

CHAPTER 1
CC-40 E/A PACKAGE

Development of the “BEEP” program requires only the CC-40
console with the Editor/Assembler cartridge installed and a single
mass-storage device.

Preparing the CC-40 for “BEEP” Program
... Development

The “BEEP” program is complete and ready for entry into the E/A
editor as the first step in transforming the assembly language into
the machine language which controls CC-40 beeper operation. The
following instructions describe how to prepare the CC-40 for
program development.

? ? STEP 1: Ensure that the mass-storage device is connected to the
CC-40 by a HEX-BUS™ connecting cable and that AC-
adaptor cables are connected or batteries are installed

Zil? in each unit.

7 * STEP 2: Insert the Editor/Assembler cartridge into the cartridge
port of the CC-40.

, STEP 3: Turn on the mass-storage device, and then press the
[ON] key at the upper right of the CC-40 keyboard.

STEP 4: Press the [ENTER] key when the BASIC cursor, the
System initialized message, or the message
Memory contents may be lost appears.

STEP 5: Insert a blank medium into the mass-storage device.

STEP 6: If the storage medium requires formatting type in
FORMAT n(substitute for n the device-cumber of the
storage device) and press [ENTER] to initialize (prepare)
the medium for writing and reading files.

STEP 7: If a message containing the phrase I/O error appears
in the display, the mass-storage unit or medium is
malfunctioning. Check the HEX-BUS™ cable, check for
both units receiving power, and try a fresh medium to
correct the malfunction. See the storage device Owner’s
Manual for additional details.

STEP 8: Enter run “ALDS” (note the double Quotes surroundinc
the word “ALDS”). The message
© 1983 Texas Instruments momentarily appears;
then the E/A main menu E)dit A)ssemble L)ink
B)asic? appears.

When these steps have been followed, the CC-40 is ready for editing
the “BEEP” program.

Editing the “BEEP” Program
The editor is a program which accepts both characters and text
formatting commands from the keyboard. The CC-40 console
functions much like an electronic typewriter which allows for
correctable typing of program text into memory. From characters
and commands typed into the keyboard, the editor composes the
text of the assembly-language program in CC-40 memory, and it
saves the file on a mass-storage medium for later use by the
assembler.

4.

CHAPTER 1
CC-40 E/A PACKAGE

The following steps enter the program text into CC-40 memory from
the keyboard and save the text onto a mass-storage medium.
(Chapter 4 of this guide contains a detailed description of editor
operation.)

STEP1: .The display shows E)dit A)ssemble L)ink B)asic?
Press the E key to start the editor program. .

STEP 2: When the display shows L) ine S)creen D) efine
Q)uit, press the L key to permit use of the CC-40
console keyboard and display for editing.

STEP 3: When the Copy file prompt appears, press [ENTER].
(If a file were to be reloaded for editing, the filename
would be typed in following this prompt.)

STEP 4: In response to the editor “>” prompt, enter AUTO to
have the E/A automatically provide line numbers for
each program line.

. . STEP 5: In response to each line number displayed, type in
each line (followed by [ENTER]) exactly as it is shown
in Figure 1-1. Where several spaces are used to keep
columns of the text in line, however, only one space
is required. Proofread each line carefully and make
any changes to the line before pressing [ENTER],
using the *- key to backspace the cursor for

: correcting characters and [SHIFT] *- for deleting and
closing-up characters. Use *- and to move the
31-character display “window” over longer lines
during proofreading and correcting.

\ STEP 6: With all text entered, press [BREAK] to stop
automatic line numbering after line 19 has been
entered.

STEP 7: As a special precaution against mistakes, review the
lines that have been typed by entering LIST when the
“>” cursor appears. Read through and verify each
line, pressing [ENTER] when a line is verified to be
correct. If a line must be corrected, use the *
correction keys described in step 5 to correct it.
Press [ENTER] when the line is correct, and check the
next line. When all lines have been verified, press
[BREAK].

STEP 8: When the cursor appears, enter SAVE n.SRC
(substitute for n the device number of the mass
storage device you are using). Wait for the program
to be saved (indicated by the reappearance of the
cursor in the display).

STEP 9: In response to the cursor, enter the word QUIT. After
the message Are you sure (Y/N)? appears in the
display, press Y to leave the line-edit mode.

STEP 10: In response to the edit menu, L) ine S) creen
D) efine Q) uit, press Q.

When step 10 has been completed, the assembly-language source
program is stored. Now the assembly-language instructions must be
converted into processor commands by assembling the source
program.

CHAPTER 1
CC-40 E/A PACKAGE

Assembling the “BEEP” Program
The assembler converts the assembly-language program stored on
mass-storage medium into a machine-language program which can
subsequently be processed to run from CC-40 memory. (Chapters
of this guide contains a detailed description of assembler
operation.)

The following steps assemble the “BEEP” program into machine
language.

STEP1: With the E/A menu, E)dit A)ssemble L)ink B)asic?
displayed, press A to start the assembler program.

STEP 2: With the display showing the prompt Source file,
enter the name by which the source has been stored
on tape: n.SRC (substitute for n the device number of
the storage unit).

STEP 3: With the display showing the prompt Obj ect file,
enter the name by which the machine-language
object code is to be stored on tape: n.OBJ.

STEP 4: When the CC-40 display shows the question In
memory assemble (Y/N)?, press Y for YES.

STEP 5: With List file in the display, press [ENTER] (or enter
the device number and other data for a printer to
produce an assembly listing).

STEP 6: Wait while the program is displaying the message
Assembling... until it displays Write object file
(Y/N)? Answer Y to the question in order to direct the

, assembler to write the machine-language program to
tape.

— STEP 7: The display should contain the message NO
-x ~ errors NO warnings. Press [ENTER] to return to

4^ : ■ the main E/A menu. If the display contains some
- £ C other message, refer to chapter 5 of this guide for a
' ' description of assembly errors. When assembly

„ errors are present, return to the instructions in the
section on Editing the “BEEP” Program to answer

‘ n.SRC to the Copy file prompt, and follow the
"V -' remaining editing steps to correct the errors in

source-file statements. Then the error-free source file
- can reassembled.

> . With the main E/A menu in the display, assembly of the program is
complete. The program can now be processed into executable

A, * object code by the linker.

Linking the “BEEP” Program
The linker converts the assembler-output code into comrpands
which can be executed in random-access memory (RAM) from the
BASIC interpreter. (The linker, In addition, performs many other
tasks, as explained in chapter 6 of this guide.)

The following instructions link the “BEEP” program to run it from the
BASIC command level of the CC-40.

STEP 1: After the assembler has written the object program
onto mass-storage media and the display once again
shows the E/A menu, E)dit A)ssemble L)ink
B)asic?, press L to start the linker.

STEP 2: When the linker asks Is there a control file
(Y/N) ?, answer N for NO.

8

__ CHAPTER 1
CC-40 E/A PACKAGE

STEP 3: When the linker prompts with Enter line:, enter
I n.OBJ to tell the linker which file it is to include in the
linking process from mass-storage media.

STEP 4: When the linker again prompts with Enter line:,
enter E for END to tell the linker to begin execution of
the instruction provided in step 3.

STEP 5: When the linker requests Linked output file,
respond with n.BEEP, the name of the executable
machine-language program which is to be run under
BASIC.

STEP 6: When the linker requests List file, press [ENTER] to
indicate that a listing is not wanted. The display then
shows Linking...

STEP 7: When Write linked output file? appears in the
display, press [ENTER].

STEP 8: When LINK COMPLETE is displayed, press [ENTER] to
return to the E/A main menu. If any other message
appears, refer to chapter 6 of this guide for an
explanation of linking errors and correct them
accordingly.

STEP 9: The program is complete and ready to test. Press B
from the main E/A menu to return to BASIC for
testing the program.

Loading and Running the “BEEP” Program
Although various utility programs are provided for such special
purposes as loading Constant Memory™ program cartridges (see
chapter 7 of this guide), the “BEEP” program has been linked to be
loaded and executed as a BASIC subprogram. The steps required for

~ loading and executing the program as it has been linked above are
listed below.

STEP 1: When the BASIC cursor appears in the display, enter
CALL LOAD (“n.BEEP”) to load the assembled and
linked program as a BASIC subprogram into memory.

'" STEP 2: When the BASIC cursor again appears, enter the
-- BASIC command CALL BEEP to execute the BEEP

. subprogram.

STEP 3: Listen to the “beep” made by the program developed
using the E/A package, and compare the results of
running it with the results of the beeper command

r -. normally used by the BASIC statement DISPLAY
; BEEP.

*. Using the DEBUG Monitor
After the machine-language program is loaded into memory, the

z DEBUG Monitor program can be used to (1) monitor the execution of
" the “BEEP” program or (2) alter the program as it is being run.

Chapter 8 of this guide provides instructions for using the DEBUG
Monitor to perform both of these tasks.

Advanced Program Development on the CC-40
The steps listed above develop the small “BEEP” program for
execution as a BASIC subprogram and demonstrate the use of each
E/A program. Much larger, more sophisticated, and more powerful
programs can be developed with the E/A package. The following
chapters of this guide describe in detail the full complement of
techniques and tools provided by the E/A package for program
development.

9

CHAPTER 2
TMS700Q ASSEMBLY LANGUAGE

Editor/Assembler User’s Guide Chapter 2, Part 1

This chapter contains a description of the TMS7000-family assembly
language as it is implemented in the E/A package. Data processing
and storage, classifications and addressing modes of assembly
language instructions, and instruction syntax are described.

TMS7000-Family Processing Overview
Machine-language, and therefore assembly-language, instructions
for the CC-40 represent the capabilities of the TMS7000-family
processor. The instructions are a direct reflection of the way the
processor manipulates, stores, inputs, and outputs data.

Representation of data in this chapter is in conventional binary,
hexadecimal, decimal, and binary-coded decimal (BCD) number
systems, as reviewed in appendix A of the CC-40 Editor/Assembler
Reference Manual. The special symbol “>” preceding a number
indicates that it is a hexadecimal or BCD number, and the special
symbol “?” preceding a number indicates that it is a binary number.
Numbers prefaced by no symbol are decimal numbers.

Processing Operations
The TMS7000-family processor performs all customary operations
on eight-bit units (bytes) of data. As described later in this chapter, it
performs arithmetic operations (including multiplication),
comparisons, logical operations, bit “rotations” or shifts, jumps,
calls, control operations, data moves, and similar operations.

Data Storage
Processing done by TMS7000-family processors is performed
entirely on data stored within the 65,536 addresses it can directly
access.

General-Purpose Register File
There are 128 general-purpose registers within the processor; these
registers are accessed at addresses >00 to >7F. Within this general-
purpose register file, a stack can be implemented to store, in a last
in-first-out manner, data and addresses.

Peripheral Register File
An additional 256 addresses from >100 through >1FF provide for
data input and output (peripheral) registers. Not all addresses within
this peripheral-register block are used in the CC-40.

Other Memory Addresses
Addresses above >1 FF are used in the CC-40 for system firmware,
console random-access memory (RAM), cartridge RAM, and
cartridge read-only memory (ROM). Fewer instructions are available
to access memory in this block than are available to access general-
purpose and peripheral registers.

CHAPTER 2
TMS7Q0Q ASSEMBLE LANGUAGE

In addition to being accessed by fewer instructions than registers
are, memory is accessed by instructions which produce longer
machine-language commandsland which take more processor time
for execution. General-purpose and peripheral registers have an
advantage over memory-addressing commands: they are accessed
by commands which use less program memory and consume less
processing time.

Chapter 2 of the CC-40 Editor/Assembler Reference Manual
contains detailed information about register and memory usage and
conventions in the CC-40, and chapter 6 of the manual contains
detailed information about hardware implementation of registers
and memory.

A map showing TMS7000-family memory usage is shown below.

>0000

>0001

>0002

>007F

>0080
>00FF

>0100
>01 FF

>0200
>FFFF

A register

B register

Register file
(R2-R127)
and Stack area

UNUSED

Peripheral
file (P0 - P255)

Other
Memory

Processor Registers
Three additional registers are internal to the processor chip: a 16-bit
program counter (PC), an 8-bit status register (ST), and an 8-bit stack
pointer (SP). The program counter contains the address of the next
machine-language command which the processor executes after it
finishes the command currently being executed. This address is
computed from the address and length of the current command
unless the current command is a branch or jump command. A
branch or jump command causes the program counter to be loaded
with a new value for out-of-sequence command execution.

The status register contains four single-bit flags in the four high-
order bits. One of these flags describes the status of processor
interrupts (enabled or disabled). The remaining three flags describe
whether the execution of a command has (1) resulted in a value of
zero, (2) resulted in a negative value, or (3) resulted in a carry-out of
an eight-bit value. The table below shows the assignment of flag bits
in the status register.

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

FLAG BITS IN THE STATUS REGISTER

Carry Negative Zero Interrupt Unused Unused Unused Unused

7 (MS) 6 5 4 3 2 1 0(LS)

The stack pointer can be set to addresses >00 through >7F in the
general-purpose register file. The pointer is incremented before a
byte of data is “pushed” onto the stack, and it is decremented after
a byte is “popped” off of the stack. Similarly, the stack pointer is
incremented once before each byte of a two-byte return address is
pushed onto the stack by a subroutine call command (high byte
first). The stack pointer is decremented once after each byte is
popped off by a return-from-subroutine command. The stack pointer
is usually set to >01 or greater to avoid conflict with registers A and B.

Chapter 6 of the CC-40 Editor/Assembler Reference Manual
contains further details about processor-hardware operation.

TMS7000 Assembly-Language Instructions
TMS7000 assembly-language programs consist of line-by-line
instructions provided to the processor after the E/A package
translates them into machine-language commands. These
mnemonic instructions, in general, are related to machine-language
commands as described in chapter 1 of this guide.

The basis for classification of instructions is twofold: (1) instruction
function in the operation performed by the processor, and (2) source
and destination of data which is processed. The function of an
instruction determines its type. The source-and-destination of data
for an instruction determines its addressing mode.

Instruction Types
If an instruction adds bytes of data, it is of one type; if it stores bytes
of data, it is of another type.

Sixty-five processing operations can be performed by a
TMS7000-family processor. These 65 operations, however, are of
only seven general types, as shown in the following table.

u
u
u
u
u
u
u
0
u
0
L!
U
[I

u
U !
u
u
u

TMS7000 ASSEMBLY LANGUAGE

INSTRUCTION TYPES

INSTRUCTION TYPE PROCESSOR OPERATION

ARITHMETIC Process values arithmetically

BRANCH AND JUMP ' Control command-execution
'sequence

COMPARE AND TEST Compare and test values in
registers, memory

CONTROL Set conditions for subsequent
processing

LOAD AND MOVE Transfer values between registers,
memory, and input/output devices

LOGICAL Perform logical operations on bits
in registers

ROTATE Rotate bits in registers

The most significant part of an assembly-language instruction is an
operation code (“op code” for short). Op codes are mnemonic
representations of operations which the processor can perform.

Brief descriptions of each instruction type and of each op code
within the classification are presented below.

More detailed descriptions of each op code (including addressing
modes, resulting machine-language commands, command
execution times, and other relevant information) are given in chapter
7 of the CC-40 Editor/Assembler Reference Manual.

Arithmetic Instructions
Instructions related to numeric computation (addition, subtraction,
and multiplication) are classified as arithmetic commands. Eleven
instructions, as shown in the table below, belong to this
classification.

ARITHMETIC INSTRUCTIONS

FUNCTION MNEMONIC OP CODE
ADD... ADD
ADD WITH CARRY .. ADC
DECIMAL ADD WITH CARRY... DAC
DECIMAL SUBTRACT WITH BORROW.................................. DSB
DECREMENT.. DEC
DECREMENT DOUBLE... DECD
INCREMENT.. INC
INVERT... INV
MULTIPLY... MPY
SUBTRACT... SUB
SUBTRACT WITH BORROW... SBB

The binary-addition and -subtractions instructions ADD and SUB
add or subtract single-byte values. The operations they produce set
or reset the carry flag so that subsequent operations can be based
on overflow or underflow occurring during the operation.

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

The binary-addition and -subtraction instructions ADC and SBB
produce the same operations as the ADD and SUB instructions
except that they account for the conditions of the carry flag set (by a
carry in a previously performed ADD or ADC instruction) or reset (by
a borrow in a previously performed SUB or SBB instruction).

The decimal-addition and -subtraction instructions DAC and DSB
add and subtract register or immediate values according to binary-
coded decimal (BCD) arithmetic. In BCD arithmetic, as explained in
appendix A, each nibble (half-byte) of the sum or difference is
considered to be a binary representation of a decimal number
(ranging from 70000 to ?1001 or >0 to >9).

The multiply instruction MPY multiplies two single-byte values to
form a two-byte product in the A and B registers.

The increment and decrement instructions INC and DEC increment
or decrement the value in a register by one.

The decrement-double instruction DECD decrements the value of a
register pair by one. There is no corresponding increment double
instruction for TMS7000-family processors.

The invert instruction INV inverts or complements each bit in a
register. The result is the one’s complement of the value before the
operation: each ONE bit is changed into a ZERO bit, and each ZERO
bit is changed into a ONE bit.

Branch and Jump Instructions
Instructions that can determine the sequence in which program
commands are executed are members of the branch and jump
classification, as shown in the following table.

BRANCH AND JUMP INSTRUCTIONS

FUNCTION MNEMONIC OP CODE
BRANCH................................. BR
BIT TEST AND JUMP IF ONE... BTJO
BIT TEST AND JUMP IF ONE—PERIPHERAL....................... BTJOP
BIT TEST AND JUMP IF ZERO ... BTJZ
BIT TEST AND JUMP IF ZERO-PERIPHERAL........................BTJZP
CALL... CALL
DECREMENT REGISTER AND JUMP IF NON-ZERO............. DJNZ
JUMP... JMP
JUMP IF CARRY.. JC
JUMP IF EQUAL....................... JEQ
JUMP IF HIGHER OR THE SAME... JHS
JUMP IF LOWER.. JL
JUMP IF NEGATIVE .. JN
JUMP IF NO CARRY.. JNC ,
JUMP IF NOT EQUAL ... JNE.
JUMP IF NOT ZERO .. JNZ
JUMP IF POSITIVE .. JP
JUMP IF POSITIVE OR ZERO... JPZ
JUMP IF ZERO.. JZ
RETURN FROM SUBROUTINE... RETC
RETURN FROM INTERRUPT... REh
TRAP... TRAP

n
Fl
Fl
Fl
Fl
Fl
Fl
Fl
Fl
Fl
Fl
fl
Fl
Fl
Fl
Fl
fi
Fl
Fl

CHAPTER2
TMS7000 ASSEMBLY LANGUAGE

Instructions of the branch and jump type produce commands that
change the value In the program counter so that the next command
executed Is out of the normal sequence of program execution.
These Instructions produce either simple operations, or they
produce operations that combine a jump with a previous test for a
condition.

The BR, JMP (including conditional jumps, such as JC, JEQ, and
JHS), TRAP, CALL, RETS, and RETI Instructions alter the sequence
of execution of program steps (either unconditionally, or
conditionally based on the state of the zero, carry, or negative flags).
The decrement and jump on non-zero (DJNZ) and the bit-test-and-
jump (BTJO, BTJZ, BTJOP, and BTJZP) instructions first perform an
arithmetic or logical operation and then alter the sequence of
execution based on the result of the arithmetic or logical operation.

The unconditional Instructions In the branch and jump classification
are BR, JMP, CALL, RETS, RETI, and TRAP. These instructions
always alter the value in the processor program counter for
execution of the subsequent Instruction.

The branch instruction BR loads the program counter with a two-
byte value which becomes the address of the next command
executed.

The subroutine-call instruction CALL saves the current program
counter value on the stack and then loads the program counter with
a two-byte value, providing a return address at the end of subroutine
execution.

The TRAP Instruction Is a special one-byte “call” instruction to one
of 24 addresses stored at the top of memory. The processor
“branches” to the appropriate address for the completion of the
subroutine call. In programming terms, the addresses are “vectors”
which are accessed by an economical, single-byte command. In
execution, the TRAP instruction saves the current program-counter
value on the stack and then loads the program counter with one of
the 24 two-byte values which are stored in a table In firmware from
>FFD0 through >FFFF. Functionally, when the table has been
appropriately set up with subroutine addresses, the TRAP
instruction is essentially a CALL instruction that produces a single
byte machine-language command.

The return-from-subroutlne instruction RETS loads the program
counter with a two-byte value from the top of the stack, effectively
restoring the program counter with the value saved by the last CALL
or TRAP Instruction.

The return-from-interrupt Instruction RETI is the same as the RETS
Instruction, except that it restores both the program counter and the
status register from the stack. The RETI instruction Is intended to
restore all three registers In the processor to the state that they were
in prior to the processor’s responding to a hardware Interrupt signal
(see chapter 6 of the CC-40 Editor/Assembler Reference Manual}.

The unconditional-jump instruction JMP loads the program counter
with a value displaced from the current program-counter value after
the two bytes of the jump instruction are read; this displacement
must be within a range of -128 through +127.

The conditional jump instructions—JC, JEQ, JHS, JL, JN, JNC, JNE,
JNZ, JP, JPZ, and JZ—are all the same as the JMP instruction, with
the exception that their alteration of the value in the program
counter Is conditional on the state of status flags specified by each
instruction. If the zero flag, for example, is set prior to the execution
of a JZ instruction, then the JZ instruction produces the same
processor operation as the JMP instruction; If the zero flag Is reset,
the JZ instruction has no effect except to Increment the program
counter to the next instruction in sequence and to expend processor
time.

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

The combination jump instructions all function similarly to the
conditional jump instructions, except that they perform an operation
before they test for a condition required for a jump.

The decrement-and-jump-on-non-zero instruction DJNZ first
decrements the value in a register. If the result of the decrement is
non-zero, the condition is met for the DJNZ instruction to function as
a JMP instruction. If the result of the decrement is zero, the
condition for the jump is not met and the next instruction in
sequence is executed.

The bit-test-and-jump instructions perform logical tests on the bits in
a byte in order to determine whether conditions for executing a jump
are met.

The bit-test-and-jump-on-one instruction BTJO performs an AND
operation on bits of a general-purpose register and bits from another
byte and then discards the resulting byte. The other byte specifies
the bits of the register to be tested by the bits within it being set to
ONE. If the result of the AND operation on any bit is ONE, conditions
for executing the jump are met and the value in the program counter
is altered. The bit-test-and-jump-on-one-peripheral instru :tion,
BTJOP, performs an identical operation except that the register
tested is from the peripheral register file instead of the general-
purpose register file.

The bit-test-and-jump-on-zero instructions BTJZ and BTJZP perform
operations which are the same as those performed by the BTJO and
BTJOP instructions except that the bits in the byte being tested are
inverted before the test. If any of the register bits being tested
were—before being inverted—ZERO, conditions are met for the
jump.

Compare and Test Instructions
Compare and test instructions produce operations similar to the
first simple operation in a bit-test-and-jump instruction. They
perform an operation and discard the resulting byte (they do not
write the result into a register or memory). The operation results in
the setting of status flags which can determine the execution of
conditional jump instructions.

The operation performed by compare instructions is binary
subtraction. One byte is subtracted from another with the the result
affecting status flags.

- The operation performed by test instructions is a logical OR.

The four compare and test instructions and the corresponding op
codes are listed in the following table.

COMPARE AND TEST INSTRUCTIONS

FUNCTION MNEMONIC OP CODE
COMPARE... CMP

. COMPARE A TO MEMORY..CMPA
TEST A REGISTER.. TSTA
TEST B REGISTER.. TSTB

The register-compare instruction CMP subtracts the value in a
register or the value in an Immediate operand from the value in
another register.

The memory-compare instruction CMPA subtracts the value in
register A from the value stored in a memory location.

TMS7000 ASSEMBLY L^GUAGE

The test instructions produce the same results as performing a
corresponding logical OR of the A register (for TESTA) or the B
register (for TESTB) with itself. The test instructions, however,
translate into single-byte machine-language commands, while OR
instructions which have the same results produce two-byte
commands.

Control Instructions
Control instructions are miscellaneous instructions that set the
state of either the processor or the registers for subsequent
operations. The functions of the control instructions are listed in the
table below.

CCNTnOL INSTRUCTIONS

FUNCTION MNEMONIC OP CODE
CLEAR... CLR
CLEAR CARRY FLAG.. CLRC
DISABLE INTERRUPTS.. DINT
ENABLE INTERRUPTS.. EINT
IDLE UNTIL INTERRUPT.......................... IDLE
NO OPERATION.. NOP
SET CARRY FLAG.. SETC

The clear instruction CLR writes binary ZEROS into a register. It also
resets the carry and negative flags and sets the zero flag.

The clear-carry instruction CLRC and the set-carry instruction SETC
respectively reset and set the carry flag.

The disable-interrupt instruction DINT and the enable-interrupt
instruction EINT determine whether processing can be interrupted
by a hardware-interrupt signal to the processor. After an EINT
command is executed, the processor can respond to interrupts.
After a DINT command is executed, the processor ignores
interrupts. With interrupts enabled, the processor’s responding to an
interrupt causes further interrupts to be ignored until interrupts are
again enabled by an EINT or a RETI command.

The processor-idle instruction IDLE halts processing. Only hardware
reset or interrupt signals to the processor can cause processing to
resume with a reset or an interrupt routine.

The no-operation instruction NOP causes the assembler to insert a
byte containing binary ZEROs (the NOP command code) into the
machine-language program. The NOP command has no effect on
processing except to expend processing time, but it does provide a
location in program memory where a byte of a “patched-in”
machine-language command can be inserted.

Load and Move Instructions
Load and move instructions are data-transfer instructions which
copy the values from one register or memory location to another.
The following table lists the functions of the load and move
instructions.

<7

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

LOAD AND MOVE INSTRUCTIONS

FUNCTION MNEMONIC OP CODE

LOAD A REGISTER.. LDA
LOAD STACK POINTER... LDSP
MOVE .. MOV
MOVE DOUBLE... MOVD
MOVE TO OR FROM PERIPHERAL FILE REGISTER............... MOVP
POP FROM STACK.. POP
PUSH ONTO STACK.. PUSH
STORE A REGISTER.. STA
STORE STACK POINTER... STSP
SWAP NIBBLE...SWAP
EXCHANGE WITH B REGISTER.......... XCHB

The load-A-register instruction LDA copies the value in a memory
location into the A register. Similarly, the store-A-register instruction
STA copies the value in the A register into a memory location.

The load-stack-pointer instruction LDSP copies the value in the B
register into the single-byte stack pointer. The store-stack-pointer
instruction STSP copies the value in the stack pointer into the B
register.

The move instruction MOV copies a byte into a register.

The move-double instruction MOVD copies two bytes into a register
pair.

The move-peripheral instruction MOVP copies a byte into a
peripheral-file register, or it copies the value from a peripheral-file
register into register A or B.

The push-onto-stack instruction PUSH increments the stack pointer
and copies either the value in a general-purpose register or the
status register into the register-file location pointed to by the stack
pointer. The pop-from-stack instruction POP, conversely, copies the
value pointed to by the stack pointer into either a register or the
status byte and decrements the stack pointer. The PUSH and POP
instructions are used together to effect last-in-first-out storage in the
register file.

The swap-nibble instruction SWAP exchanges the high and low
nibbles (half-bytes) stored in a register. The instruction is useful for
conversion between BCD, binary, and ASCII representations of
values.

The exchange-with-B instruction XCHB exchanges the contents of
the B register with the contents of another register.

TMS7000 ASSEMBLY LANGUAGE

Editor/Assembler User’s Guide Chapter 2, Part 2

Logical Instructions
Logical instructions, listed in the following table, provide operations
on individual bits within a byte stored in a register.

LOGICAL INSTRUCTIONS

FUNCTION MNEMONIC OP CODE
AND.. AND
AND PERIPHERAL FILE REGISTER... ANDP
EXCLUSIVE OR.. XOR
EXCLUSIVE OR PERIPHERAL FILE REGISTER..................... XORP
OR.. OR
OR PERIPHERAL FILE REGISTER... ORP

The AND and ANDP instructions produce a logical AND operation
on the bits in a byte and the corresponding bits in a general-purpose
or peripheral register. The resulting byte is stored in the general-
purpose or peripheral register. '

The OR and ORP instructions produce a logical OR operation on the
bits in a byte and the corresponding bits in a general-purpose or
peripheral register. The resulting byte is stored in the general-
purpose or peripheral register.

The XOR and XORP instructions produce a logical EXCLUSIVE-OR
operation on the bits in a byte and the corresponding bits in a
general-purpose or peripheral register. The resulting byte is stored in
the general-purpose or peripheral register.

Rotate Instructions
; 7 Rotate instructions transfer bits in a register to either higher- or

‘ lower-order bit locations. The following table lists rotate
instructions.

, -

ROTATE INSTRUCTIONS .

' - FUNCTION MNEMONIC OP CODE
-A- ROTATE LEFT.. RL

■-1 ROTATE LEFT TH ROUGH CARRY... RLC
' ROTATE RIGHT.. RR

ROTATE RIGHT THROUGH CARRY... RRC

The rotate-left instruction RL and the rotate-right instruction RR
respectively transfer register bits into higher- and lower-order bit
positions. Bits which are transferred “out of the byte” are “rotated”
respectively into the lowest- and highest-order bit positions in the

7s register (the bit position emptied by other bit transfers). The bit
rotated out of the byte is also copied into the carry flag.

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

The rotate-left-through-carry instruction RLC and the rotate-right-
through-carry instruction RRC produce essentially the same
operation, except that they treat the carry flag as a single-bit high-
order extension of the register. Bit rotations therefore occur through
the cam/ flag.

Addressing Modes
The sot.: ? md destination of data processed by each instruction
determines its addressing mode.

Some commands contain no explicit source or destination
addresses: they use the “implied” addressing mode. These
commands, such as NOP, consist only of op codes.

Other commands have data source and destination addresses
explicitly designated in operands, expressions which follow op
codes in instructions. The instruction which decrements the A
register, for example, includes a single operand as follows.

DEC A

TMS7000-family processors use the following five modes of
addressing.

• Implied Addressing

• Single Register Addressing

• Dual Operand Addressing

• Program-Counter Relative Addressing

• Memory Addressing

• Trap-Instruction Addressing

Implied Addressing
When an instruction uses implied addressing, it has no operand to
specify a source or destination for data. Source and destination are
uniquely assigned to the instruction by the op code alone.

The following twelve instructions use implied addressing.

u
u
u
u
u
u
0
u
u
u

CLRC IDLE RETI STSP
DINT NOP RETS TSTA
EINT LDSP SETC TSTB

Single-Register Addressing
When an instruction uses single-register addressing, a single
operand which specifies a register follows the op code. Fourteen
commands, listed below, use single-register addressing.

CLR DJNZ POP RLC SWAP
DEC INC PUSH RR XCHB
DECD INV RL RRC

All of these instructions take A, B, or a numbered register from the
file (R2 through R127) for an operand. The PUSH and POP
Instructions, in addition, take the status register, ST, for an operand,
as shown in the following examples of single-register addressing
instructions.

CLR R58
PUSH ST
DJNZ R58,LABEL0

The second operand for the DJNZ instruction uses program-counter
relative addressing, described below.

0 ® u

n
n
n
n
n
n
n
n
n
n
R
R
R

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

Dual Operand Addressing w.
Instructions using dual operand addressing can use immediate
values, peripheral file registers, and general-purpose registers for
their operands. Every dual operand instruction has at least two
operands—a source and a destination. The three types of operands
can be mixed with some restrictions. Each of these operands and
the restrictions for mixing them are discussed below.

Immediate Values
When an instruction uses an immediate value, the source value is

insbuchcnraHver n * raster
0/Jala locouoo >m^8dLt;c vaiucs cun oe me source
operand whenever a general-purpose or a peripheral register is
specified in the destination operand. The value specified in the
source operand must be । lefaced by a percent symbol. as in
th^ fnUh
MOV %128,A

Twenty-one instructions, listed below, use immediate values.

ADC BTJO CMP MOVD ORP XORP
ADD BTJOP DAC MOVP SBB
AND BTJZ DSB MPY SUB
ANDP BTJZP MOV OR XOR

Four specific combinations of source and destination operands use
immediate values. The combinations are the following, with “N”
representing any valid register number (RO through R127) or
peripheral register number (PO through P127) or single-byte value (0
through 255) and a percent-symbol prefix indicating an immediate
value.

%N,A %N,B %N,RN %N,PN

An immediate value is not always a single-byte value. In the special
case of the move-double instruction, an immediate value is a two-
byte value, as in the following example.

MOVD %>3FFF,R0

In a variation of this same special case, the MOVD instruction can
also combine an immediate value and a source-register value. The
sum of the immediate value and the contents of the B register are
moved into the destination register pair. In the following example,
the byte in the B register is added to 1024, and the sum Is stored in
R31 and R32.

MOVD $1024(B),R32

R
R
R

General-Purpose Registers
When an instruction uses general-purpose register addressing, two
operands with a comma separating them follow the op code. The
source of data is specified in the first operand. The destination of
data is specified by the second operand.

The source operand can be any general-purpose register (RO through
R127), or it can be an immediate value.

The destination operand is always a register.

Fifteen instructions, listed below, use register-file addressing.

R ADC BTJO DAC MOVD SBB
ADD BTJZ DSB MPY SUB
AND CMP MOV OR XOR

Sil

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

Seven specific combinations of source and destination operands
are permitted with all of these op codes. The combinations are the
following, with “N” representing any valid register number (RO

, through R127) or single-byte value (0 through 255) and a percent
symbol prefix indicating an immediate value.

RN,A RN,B B,A RN,RN %N,A %N,B %N,RN

. The MOV instruction has three special operand combinations.
These combinations are the following.

MOV A,B
MOV A,RN
MOV B,RN

For bit-test-and-jump instructions, an additional operand follows the
first two. This operand uses program-counter relative addressing
(see below) to specify a jump destination.

The move-double-register instruction, MOVD. is a special two-byte
instruction which transfers two bytes from one pair of registers to
another. The higher-addressed register in the source pair is the first
operand, and the higher-addressed register in the destination pair is
the second operand. Registers must be specified within the range
R1 through R127. In addition to register-file addressing. MOVD uses
a special combination of immediate value and register addressing

Peripheral File Registers
When an instruction usus nufirbcral-f: addr-' osin/:. in r-jivnal. t'.v'

Peripheral File Registers
When an instruction uses peripheral-file addressing, in general, two
operands follow the op code. For most of these instructions, the
source operand for all instructions can be register A, register B, or
an immediate value (see immediate value addressing, below). The
destination operand can be a peripheral-file register from P0 through
P255.

Six instructions, listed below, use peripheral-file addressing.

ANDP BTJOP BTJZP MOVP ORP XORP

Three specific combinations of source and destination operands are
permitted with all of these op codes. The combinations are the
following, with “N” representing any valid peripheral register
number (P0 through P127) or single-byte value (0 through 255) and a
percent-symbol prefix indicating an immediate value.

A,PN B,PN %N,PN

Additionally, the MOVP instruction (but not the logical or bit-test-
and-jump instructions) can have a peripheral register as the source
operand and either register A or register B as the destination
operand, as shown below.

MOVP PN,A MOVP PN,B

In bit-test-and-jump peripheral-file instructions, an additional
operand follows the first two. This operand uses program-counter
relative addressing as described below to specify a jump
destination.

CHAPTER 2
TMS7000 ASSEMBLY LANGUAG En

n
n
n
n
n
n
n

n
R
R
Fl
R
R
R
R
R

Program-Counter Relative Addressing
All jump instructions use program-counter relative addressing. The
operand used in this addressing mode has the value of a program
address within the range of -128 through +127 bytes of the
“current” program-counter value after the jump command is read by
the processor. The assembler computes a single-byte displacement
value by subtracting the current program-counter value from the
value of the jump operand.

The instructions that use program-counter relative addressing are
listed below.

BTJO BTJZP JEQ JMP JNE JPZ
BTJOP DJNZ JHS JN JNZ JZ
BTJZ JC JL JNC JP

The program-counter relative operand is the only operand for the
JMP and conditional-jump instructions; it is an additional operand
for the DJNZ and bit-test-and-jump instructions, as the following
examples show.

JMP LABEL1
DJNZ R5,LABEL2
BTJO %>AA,R43,LABEL3

Memory Addressing
Five instructions can address all memory (including the general-
purpose and peripheral register files). These instructions are the
following.

BR CALL CMPA LDA STA

In addressing memory, the instructions use direct, indirect, and
indexed addressing modes.

Direct Addressing
When dime! ad-dissing is used b . instructions. :?>• scume of n
value is a doun.e-cvto .alee obtained ch *» ••€!!/ ^cm ’ro i” i
language imdiucb n S'mhar to imned.afe acdr«-.s»rg uSn ct
addressing uis slhis 16b«f value asthe address tcrbrartrrj,
calling. or storing. Through direct

' i - aUmer

Direct addresses must be expressed in operands that contain the
"at ‘ s»gn (®) as a prefix, as shown in the Allowing submetme call
instruction (also see the “Instruction Syntax4 section below).

Indirect Addressing
When indirect addressing is used, the source of the value is a
register pair specified in the operand as the higher-addressed
register.

Indirect addresses must be expressed in operands that contain an
asterisk (*) as a prefix, as in the following example.

STA *R44

23

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

Indexed Addressing
When indexed addressing is used, the source of the value is a
combination of a direct address and the value the B register
contains at the time of command execution. The direct-address
value and the value in the B register are added by the processor to
obtain the address used in the instruction.

Indexed addresses are expressed in operands that contain the direct
address (prefixed by “@”) followed without comma or space by
“(B)”, as shown in the branch instruction below.

BR @>1000(B)

Trap-Instruction Addressing
Addressing used with a TRAP instruction is similar to that used by a
memory-addressing instruction which obtains a value indirectly. The
operand for a TRAP instruction, however, is not a register pair.
Instead, the operand for a TRAP instruction is a value from 0 through
23 which is in inverse correspondence with the 24 pairs of bytes at
the top of memory from >FFD0 through >FFFF. A TRAP 0
instruction references the pair of bytes at >FFFE and a TRAP 23
instruction references the pair of bytes at >FFD0.

In the CC-40, values referenced by TRAP instructions are part of
firmware, and they cannot be changed. The values for TRAP 9, TRAP
10, and certain other TRAP instructions, however, point to system
RAM within which branch instructions can, under certain conditions
be stored (see chapter 3 of the CC-40 Editor/Assembler Reference
Manual).

Instruction Syntax
An assembly-language program for the CC-40 consists of a
sequence of instructions. Each instruction is expressed in the form
of a single displayed or printed line. The CC-40 assembler translates
the sequence of instructions expressed in assembly or “source”
code into numeric machine-language instructions (in “object” code)
for later execution by the CC-40 processor.

An instruction line contains one or more entries which cause the
assembler to produce the intended machine-language commands or
provide better program readability. These entries—by the way they
are made up and the combination and sequencing which is required
of them—are in accordance with the instruction-line syntax that the
assembler is designed to recognize.

Instruction-Line Entries: Makeup and Sequence
The following figure shows a 19-line segment of a CC-40 program
written in assembly language. The segment, a subroutine which

' performs a “bubble sort” to arrange 50 one-byte values in memory
into ascending order, Is typical of the assembly or source code used
with the CC-40.

u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u

CHAPTER 2
TMS7000 ASSEMBLY LANGUAGE

*

BSORT CLR
MOV

P.58 INITIALIZE: clear swap fls.’
Sort ccmt cr.tr.us 1

*
BSLP1 LDA ©TAsi^;aJ byte pvlr

CHPA (B) ..re te- low byte
THS NOSWP Skip J* h;. right orJtr
PUSH A Save nigner oyre on stack
LDA
STA

gTABLE-l(B)
@TABLE(B)

Swap lower byte to higher

POP A Restore used-to-be higher
STA gTABLE-l(B) And store in lower
INC R58 Set flag to show swap made

*
NOSWP DJNZ B,BSLP1 Continue through all 49 pairs
*

BTJO
RETS

£>FF,R58, BSORT Do table again if swap made
Return to calling routine

A line containing an assembly-language instruction consists of four
fields. The fields are separated from each other by one or more
spaces, and they appear as follows.

LABEL OP CODE OPERAND(S) COMMENT

Each field in an instruction line has a particular purpose.

Labels
Labels, called “symbols,” can be used in any instruction line. A label
is a “word” which identifies or names a line so that it can be
referenced by name in other lines in a program. In general, the E/A
assembler identifies the word in the label field with the memory
address of the machine-language command produced by the line.
Other instructions, such as those requiring a jump to the labeled
instruction, can therefore refer to the instruction by name rather
than by memory address.

Labels consist of either an initial uppercase or lowercase alphabetic
character or the symbol “$” and any number of subsequent
alphabetic or numeric characters. Only the first eight characters of a
label are significant: for example, the assembler considers a label
“SPECIFIC1” to be the same as “SPECIFIC2”.

The assembler interprets any character which is placed in the first
column of the line to be the first character of a label. Therefore, if no
label is used in an instruction, the first character position in the
instruction line must be a space.

A label can be the only item on a line. In such a case, the program
address to which the assembler evaluates it is the next address in
the program.

Op Codes and Operands
An op code is required on each assembly-language instruction line
which, through assembly, produces a machine-language command.

In an instruction line, op codes follow labels (with at least one space
between the two). If there is no label in a line, an op code on that line
must be preceded by at least one space.

Operands follow op codes on instruction lines, and they must be
preceded by one or more spaces. When multiple operands are
required, they are separated by commas.

Single-or multiple-operand fields must not contain spaces.

TMSyJ^OASSEIVIBLY LANGUAGE

Comments
Comments can be written in an optional field following the operand
field (or the op code field in instructions in which no operand is
required). At least one space must precede a comment. Any
printable (ASCII) characters can be used in a comment. When
comments are printed in an assembly listing (see chapter 5 of this
guide), characters in a comment past the 60th column are not
printed.

Comments must not directly follow labels on a line, or they are
interpreted as erroneously formed op codes and operands. If the
dummy directive and operand EQU $ is, however, inserted between a
label and a comment, assembly proceeds without error.

Comments can use the entire length of an instruction line if they are
preceded by an asterisk (*) in the first column of the line. Comments
are ignored during assembly: they produce no machine code.

Editor/Assembler User’s Guide Chapter 2, Part 3

Expression-Formation Rules
Expressions that have a value which is not changed by assembly are
called constants. In their simplest form, they are numbers, such as
those providing immediate values to commands. They can also be
the ASCII values that represent alphabetic, numeric, and control
characters. In addition, constants can also be represented by'
symbols defined elsewhere in the program (see discussion of the
EQU directive in chapter 5 of this guide). The definition must be in
accordance with the conventions described below.

Expressions that are assigned a value by the assembler are called
assembly variables. In assembly language, these variables are
represented as symbols that are defined numerically at the time of
assembly by labels.

Additionally, expressions can be formed from mathematical
combinations of two or more constants or variables.

Constants
Constants can be expressed by numbers or strings of alphanumeric
characters.

Numbers
Constants specified by decimal, hexadecimal, or binary numbers are
used primarily as immediate operands.

TMS7000 ASSEMBLY LANGIJAGEn
n
n
n
n
n
n
n
n
n
n
n
n
Fl

IF
Fl
Fl

If a constant is not prefixed with a special symbol, the assembler
evaluates it as a decimal number. The number 1000, for example, is
translated into the two-byte binary number “0000 0011 11101000”
(>03E8). If a constant is prefixed with a “>” (greater-than) symbol, it
is evaluated as a hexadecimal number. The number >1000 is
translated into the two-byte binary number “0001 0000 0000 0000.” If
a constant is prefixed with a “?” (question-mark) symbol, it is
evaluated as a binary number. The number ?1000 is translated into
either a single-byte binary number *0000 1000° or the iwo-byie binary
number ‘0000 0000 00001000.”

The “precision” with which a number is evaluated (whether it is
translated into a single-byte or double-byte number by the
assembler) depends on the instruction in which the operand occurs.
A constant in the first (source) operand of a MOV instruction is
always translated into a single-byte number; a constant in the first
operand of a MOVD instruction is always translated into a double
byte number. If, however, a constant with a value too large for
representation in a single byte (that is, a number greater than 255 or
>FF) is used as an expression the assembler evaluates into a single
byte, the assembler flags the instruction with a warning message.
Similarly, a double-byte operand must not contain constants greater
than 65,535 or >FFFF, or the instruction which contains the operand
is flagged with a warning.

The assembler evaluates negative numeric constants in 16-bit two’s
complement form within the modulus or precision appropriate to the
instruction operands in which they occur.

When numbers are used in operands, they must be prefixed by an
additional symbol which identifies them as appropriate for particular
commands in accordance with the following rules.

Numbers used to identify general-purpose registers must be
prefixed by an “R” symbol. General-purpose registers can also be
specified as memory addresses by use of an “@” symbol (press
(CTL] 2 on the console keyboard) as described below. The register
names “B”, “R1”, and “@1” all designate the same register in all
commands in which a register operand is appropriate. Register
numbers can be expressed in either decimal or hexadecimal; “R>A”
specifies, for example, the same register as “R10”.

Similarly, numbers used to identify peripheral-file registers must be
" prefixed with a “P” symbol. Hexadecimal or decimal numbers can

be used: the same peripheral register, for example, is designated by
“P>D”and “P13”.

Immediate values (single- or double-byte) for use in all operands
except those specifying memory addresses must be prefixed with a
“%” (percent) symbol. Numbers used to specify direct addresses
must be prefixed with an (at) symbol.

Strings
Printable ASCII (American Standard Code for Information
Interchange) characters with values between >20 (32) and >7F (127)
are evaluated into single-byte binary values when their assembly
language representation is placed in single quotation marks. The
letter ‘A’ is translated into >41, the space into >20, and the underline
character into >5F. The correlation between string-characters and
hexadecimal and decimal values is provided in a table in appendix H
of the CC-40 Editor/Assembler Reference Manual.

CHAPTERS
TMS7000 ASSEMBLY LANGUAGE_______

Two-character strings are similarly translated by the assembler
when they are present in an instruction operand evaluated into a
two-byte machine-language value. The operand %‘AB’ in a MOVD
instruction produces the two-byte number >4142. Strings longer
than two characters can be used as data for storage in memory by
the assembler (see TEXT and RTEXT directives, chapter 5 of this
guide).
Single quotation marks can be included within a string constant by
writing two such marks adjacent to each other. The string
represented by ”” has a value of >27, and the string ””” (six single
quotes) has a value of >2727.

Variables and Labels
Variables assigned during assembly have values related to memory
locations determined during assembly. Variables used as operands
are assigned the values of corresponding “labels duri। ig asueiebly.

At the time of assembly, the assembler assigns a label to the
address value of the memory location containing the command
code which is assembled from the instruction. Any operand which
uses the same sequence of characters is thus translated into a
command as if the numeric value were in the operand. The following
instruction, therefore, forms an “infinite loop” regardless of where it
is assigned to memory. (Note that the “@” character must be used
with the direct memory-addressing instruction.)

L00P1 BR @LOOP1

Operands of jump or conditional-jump instructions, however, are
evaluated differently. The assembler evaluates a label in such an
operand as the difference in value between the label and the
memory address following the jump instruction. Thus, the second
byte of the “infinite-loop” jump command assembled from the
following instruction is - 2 (>FE).

L00P2 JMP L00P2

The memory location at which an instruction currently being
assembled begins Is maintained by the assembler at all times as the
symbol “$” (dollar sign). If a dollar sign is used in an instruction
operand, the assembler assigns the value of the address of the
initial byte of the current command. The two “infinite-loop”
instructions listed above are equivalent to the following instructions
containing a dollar sign.

L00P1 BR @$ A three-byte command
L00P2 JMP $ A two-byte command

Expressions
" Four symbols (+, -, and /) provide for arithmetically combining

the values of multiple constants and variables in operands by,
respectively, addition, subtraction, multiplication, and division.

In evaluating expressions, the assembler first evaluates each term.
Then the specified operations are performed to arrive at an overall
value for the expression. Thus, the value of the expression ‘A’ - >40,
which combines the values of an ASCII character with a value
expressed in hexadecimal, is >01.

Addition, subtraction, multiplication, and division operations are
performed in left-to-right order with no order of precedence assigned
among operations. Fractions are truncated to integers after each
operation (for example, 17/3-1 is evaluated to be 4).

CHAPTER 2
_ TMS7000 ASSEMBLY LANGUAGE

The following examples show the manner in which the assembler
evaluates expressions.

1 +1*2-1 =3 = >0003

1000 + 3/2-1*5 = 2500 = >09C4

Precedence can be assigned through conventional use of
parentheses within expressions. Elements of an expression
enclosed in parentheses are evaluated before elements outside of
parentheses. In contrast with the examples listed above, the
following examples show the use of parentheses.

1+(1*2)-1=2 = >C002

1000 + (3/2) - (1*5) = 996 = >03E4

Any combination of constants and variables defined within a
program, except as noted below, is allowed in an expression.

The following table identifies legal combinations of absolutely
evaluated constants and relocatable variables, and it identifies the
result of the combination after linking as absolute or relocatable.

X Y X + Y X-Y X*Y X/Y

ABS ABS ABS ABS ABS ABS

ABS RELOC RELOC ILLEGAL ILLEGAL ILLEGAL

RELOC ABS RELOC RELOC ILLEGAL ILLEGAL

RELOC RELOC ILLEGAL ABS ILLEGAL ILLEGAL

Absolute and relocatable values can be added to produce a
relocatable value. An absolute value can be subtracted from a
relocatable value to produce a relocatable value. One relocatable
value can be subtracted from another to produce an absolute value.
No other combinations which contain relocatable values are valid
expressions.

When multiple-program modules are assembled and linked (see
chapters 5 and 6 of this guide), externally referenced symbols are
subject to certain restrictions.

Externally referenced values are like relocatable values except that
an expression which contains an external reference has two
restrictions. An instruction can contain only one external reference.
An expression such as X -1,1 + X, or X +1 (where X is externally
referenced) is a valid expression; however, X - X is invalid. In
addition, an expression cannot contain both an externally
referenced value and a relocatable value. The expression X - Z,
where X is an externally referenced value and Z is a relocatable

—- value, Is invalid.

The Op Code Map
The relationships between op codes, addressing modes, and
command codes (first bytes of a machine-language instruction) are
shown in complete detail in the TMS7000-family op code map which
follows.

CHAPTER3
CC-40 OPERATION WITH THE E/A
PACKAGE

Editor/Assembler User’s Guide Chapter 3

This chapter describes the use of the CC-40 console and peripheral
units with the E/A package. Use of the keyboard and display units in
the console and operation with the HEX-BUS™ is described.

CC-40 Assembly-Language Development Configuration
Greater system hardware capability permits use of more powerful.
E/A programming features. The CC-40 console with a single mass-'
storage device is sufficient for development of small programs (or
large programs with the exercise of considerable patience and
forbearance). In a minimal configuration, the E/A package provides
convenient development of small assembly-language programs
through use of the single-line display and the compact keyboard in

. the CC-40 console. Further expansion of the CC-40 system permits
’ use of advanced E/A features. In a fully expanded system, the E/A

package provides much more convenient and rapid development of
large programs through the use of full-screen external-display
editing and an external full-size keyboard.

Minimal E/A Hardware Configuration
The minimal device configuration consists of the CC-40 console
with an Editor/Assembler programming cartridge and a mass
storage device installed. The programming cartridge contains the
editor, assembler, linker, and utility programs in read-only memory
(ROM).

The following illustration shows the minimal CC-40 configuration
for assembly-language program development.

Enhanced E/A Hardware Configuration
The device configuration required for convenient development of
longer programs consists of the CC-40 console with an
Editor/Assembler programming cartridge, several mass-storage
devices, an RS232 device for a video terminal or a video interface,
and another RS232 device for a full-size line printer.

Additional peripheral units for E/A operation provide for faster, more
convenient, and more powerful programming. These units are
connected to the CC-40 by an eight-wire cable which carries the
signals on the HEX-BUS™ interface (an intelligent-peripheral
interface bus).

Additional peripheral devices which augment E/A operation through
the bus include the following.

• One or more additional mass-storage devices to minimize media
“swapping” during programming and to provide storage for
development of larger programs

CHAPTER 3
CC-40 OPERATION WITH THE E/A

PACKAGE

• One or more RS232 interface devices to permit interface of
standard serial and parallel peripherals (such as a display device or
a line printer) to the HEX-BUS™

• A four-color printer/plotter to provide hardcopy output of programs,
text, and graphics

• A video-interface device to provide multiple-line display of source
files during editing

Use of RS232 interface devices, in turnr permits connection of a wide
variety of additional input/output devices to the CC-40 system with
(1) a standard Electronic Industries Association (EIA) serial data
interface and (2) a conventional transistor-transistor logic (TTL) level
8-bit parallel output port with handshaking to control character
transmission. Additional I/O devices include the following.

• A video-display device or video-display terminal with a full-sized
keyboard to aid in program editing

• A line printer connected to the CC-40 via a serial or parallel
interface device to permit hardcopy examination of program
listings and dumps

• A modem to permit data communications over telephone lines

The following figure shows the use of the HEX-BUS™ and the RS232
interface to provide enhanced performance in assembly-language
development by the CC-40 system.

Console Devices
In the minimal hardware configuration, the CC-40 keyboard
provides input to all E/A programs. A 31-character liquid-crystal
display provides for horizontally scrolled line-by-line listing of
programs and messages.

Console Keyboard
The CC-40 console keyboard provides for keystroke entry of
characters in accordance with the American Standard Code for
Information Interchange (ASCII). Both printable characters and
ASCII control characters can be entered.

Keys are arranged in the conventional typewriter layout (called
“qwerty”—according to the arrangement of the top, leftmost
alphabetic keys). An additional pad of 20 keys to the right of the
“qwerty” keys provides for single-key CC-40 control-character entry
and 10-key numeric-character entry. Four keys which control
console power and program execution are located at the upper right
of the keyboard area.

A reset button is located immediately to the right of the (SPACE BAR]
on the “qwerty” keyboard. This button should not be used when E/A
programs are running. The button causes all E/A programs and data
to be lost and the BASIC operating environment to be reinitialized.

With one exception, all printable characters are input from clearly
labeled keys. There is no key labeled for the “at” symbol (@). This
symbol is entered by pressing JCTL] 2.

A detailed hardware description of keyboard operation appears in
chapter 6 of the CC-40 Editor/Assembler Reference Manual.

31

CHAPTERS ,_lr_^fA
CC-40 OPERATION WITH THE E/A
PACKAGE

Power-Control and Execution-Control Keys
Four keys in the upper right of the keyboard area control power to
the console and provide for convenient entry into and exit from E/A
programs.

The Editor/Assembler cartridge must be inserted in the console
before the CC-40 is turned on. Pressing [ON] powers up the console
and executes the BASIC interpreter. Entering RUN “ALDS” with the
Editor/Assembler cartridge in the console begins execution of the
E/A package. * -

While any program in the E/A package is running, pressing [OFF] has
no effect. Control must be returned to BASIC from the E/A main
menuE)dit A)ssemble L)ink B)asic? before [OFF] can remove
power.

Automatic powerdown (as if [OFF] had been pressed) occurs after
the CC-40 has awaited input to a BASIC program for approximately
eight minutes. The automatic powerdown feature, however, is
disabled during E/A operation.

Pressing [RUN], followed by typing ALDS inside quotation marks and
[ENTER] can be used for entering the E/A package from BASIC after
power-up. The effect of pressing [RUN] is the same as typing [RUN]
and a space. During E/A operation, [RUN] has no effect.

The break key, [BREAK], is used more extensively to return to the E/A
main menu from the editor, the assembler, and the linker. During any
input/output operation while the CC-40 is running under E/A control,
pressing and holding [BREAK] interrupts the operation and provides
an opportunity to discontinue it by answering the prompt BREAK,
Continue (Y/N) ? with N.

Keyboard Uppercase-Shift Operations
The shift key [SHIFT] preconditions the CC-40 to input the next
character as an uppercase alphabetic character or one of the
symbols listed above the number keys.

The shift key operates as a toggle, the ON state of which is
indicated by the appearance of SHIFT in the upper-left corner of the
LCD display. When [SHIFT] is pressed successively, the SHIFT
indicator alternately appears and disappears to indicate whether the
next character pressed is in uppercase. Holding down [SHIFT] while
simultaneously typing characters causes the indicator to disappear
from the display after the first character is typed; all characters
typed until [SHIFT] is released, however, are entered as uppercase
characters.

The sequence [SHIFT] [CLR] locks the keyboard for uppercase
character entry. During uppercase-lock operation, all alphabetic
characters from the keyboard are entered in uppercase. Numeric,
punctuation, and symbol characters, however, are unaffected.
Uppercase-lock operation, sometimes called “alpha-lock” operation,
permits entry of uppercase characters into a program without the
requirement of toggling [SHIFT] to enter numbers. Regardless of
whether uppercase lock is in effect, toggling [SHIFT] provides single
character entry of punctuation and symbol characters listed above
the numbers on the “qwerty” keyboard.

u
u
L!
U
U
u
u
u
u

u
0
u
u
LI
0
0
0

CHAPTERS
CC-40 OPERATION WITH THE E/A

PACKAGE

The uppercase-lock key, [UCL], also operates as a toggle, the ON
state of which is indicated by the appearance of UCL in the upper
right corner of the LCD display. When [SHIFT) [CLR] is pressed
successively, the UCL indicator appears and disappears alternately
to indicate whether alphabetic characters pressed are in upper case.

Keyboard Control-Character Entry
The control key [CTL] conditions the CC-40 to accept the next
alphabetic character pressed as a corresponding ASCII control
character. The sequence [CTL] a or [CTL] A enters ASCII “SOH,” a
hexadecimal value of >01. The sequence [CTL] z or [CTL] Z enters
ASCII “SUB,” a hexadecimal value of >1A. Other ASCII control
codes with values between hexadecimal >2 and >1A are entered by
pressing [CTL] and a corresponding alphabetic key in the range of
“B” through “Z.”

Six ASCII control characters which cannot be entered through the
sequence [CTL] ALPHABETIC CHARACTER can be entered through the
sequences listed in the following table. The sequence for entering
one unlabeled printable character, is also listed in the table.

ASCII CHARACTERS FROM
NON-ALPHABETIC KEYSTROKE SEQUENCES ♦

ASCII CHARACTER HEXVALUE KEY SEQUENCE
NULL >00 [CTL]0
ESC >1B [CTL] [CLR]
FS >1C [CTL] =
GS >1D [CTL];
RS >1E [CTL].
US >1F (CTL1.
& >40 [CTL] 2

Like [SHIFT] and [UCL], [CTL] operates as a toggle, the ON state of
which is indicated by the appearance of CTL to the left of center in
the top row of the display. When [CTL] is pressed successively, the
CTL indicator appears and disappears successively to indicate
whether subsequent character keys pressed enter control codes.

Display-Editing Keys
Three groups of keys control text entered into the display buffer.
Cursor-positioning keys control the point of text entry by positioning
the cursor among the columns of the display. An insert-mode key
determines whether a character being entered overwrites the
character currently at the cursor or is inserted in front of it. Deletion
keys erase characters, groups of characters, or all characters from a
line.

Cursor-Positioning Keys
During editing, the cursor can be moved to various columns
(character positions) in the line of text being entered or modified.
This positioning requires cursor-control keys to be used.

The key moves the cursor (column position pointer) one character
position to the right. When the cursor is advanced past the 31st
character position in the line, the line scrolls to the left so that the
cursor is always visible. Pressing -* when the cursor is in the 80th
(last) character position of the line has no effect.

CHAPTERS
CC-40 OPERATION WITH THE E/A
PACKAGE ____

The key moves the cursor one character position to the left. When
the cursor is positioned at the leftmost character of the display and

is pressed, the line scrolls to the right so that the cursor is always
visible. Pressing *- when the cursor is in the first character position
of the line has no effect.

The tab keys, entered by the sequence [CTL] -* for forward tab and
[CTL] *- for back tab, cause the cursor to be positioned at the next
tab stop to the right or left. After a tab operation, the display window
on the line moves so that the cursor will be at the tab in the leftmost
position of the display. Tab stops for line editing are fixed at the 1st,
25th, and 50th character positions.

The home key, entered by the sequence [CTL] t, moves the cursor to
the first (leftmost) column of the display.

Insert-Mode Key
The insert-mode key, actually the sequence [SHIFT] sets up the
CC-40 to enter characters from the keyboard beginning at the
current cursor position. Characters at the current cursor position
and in any positions following it are shifted to the right with each
character insertion. Every character entered is inserted into the line
until another editing key (a cursor positioning or delete key, for
example) is pressed, after which characters entered overwrite any
characters at the current cursor position.

Character-Delete, Erase-Field, and Display-Clear Keys
Three keys are used to delete characters from a displayed line. One
deletes a single character, another deletes all characters from the
current cursor position to the end of the line, and the third deletes
the entire line of characters.

The delete key, effected by the sequence [CTL] causes the
character in the current cursor position to be deleted. Characters
following the cursor on the line are then shifted to the left one
character position in order to close up the line.

The erase-field key, the sequence [CTL] I, causes the character at the
cursor and all characters to the right of the cursor to be erased from
the line.

The clear key, [CLR], causes the entire line of characters to be
erased.

Liquid-Crystal Display (LCD)
The liquid-crystal display (LCD) unit located above the CC-40
Keyboard consists of a 31-character display surrounded by
indicators. The LCD unit, with all character positions and indicators
activated, is shown in detail in the following figure.

CHAPTER 3
CC-40 OPERATION WITH THE E/A

PACKAGE

The Character-Display Line
The display line shows up to 31 characters of a command or
program line which can be as long as 80 characters. The display
provides a “window” which can be positioned over any 31
characters of a longer line. Positioning of the window is performed
by movement of the cursor “against” the left or right side of the
window. As the cursor is moved to a character position which would
be beyond the window, the character at that position is scrolled into
the window.

A description of display hardware appears in chapter 6 of the CC-40
Editor/Assembler Reference Manual.

Indicators
Above and below the 31-character display are indicators which
display various kinds of information about the CC-40. Keyboard
entry status is displayed by SHIFT, UCL, and CTL indicators. That a
CC-40 input or output operation is in progress is shown by the I/O
indicator.

Six additional indicators which can be turned on and off under
program control are located below the 31-character display. These
downward-pointing arrows can point to messages on keyboard
overlays or templates especially prepared for application programs.

HEX-BUS™ DEVICES
Devices other than the console keyboard, display, and beeper are
included in the CC-40 system through use of the HEX-BUS™
interface. The management of input/output operations carried out
through the HEX-BUS interface is software-based. The processor
and peripherals coordinate the transfer of data by messages, rather
than by many dedicated electronic control lines.

Software control of the interface uses a standard message-and-
response format. Data sources and destinations, including devices
and files, are designated in CC-40 commands by device number and
any device-particular parameters. The number and parameters are
used by software to “open” the data source or destination by
standard-format bus communications. The same format is used by
mass-storage devices, printers, and external display units. Chapter 2
of the CC-40 Editor/Assembler Reference Manual contains a
detailed description of the HEX-BUS™ communication format and
the methods used to communicate with HEX-BUS devices in
programs developed by the E/A package.

CHAPTER 4

THE LINE AND SCREEN EDITOR

This chapter provides an overview of the editor and the two ways it is used.

Line-editing operation, screen editing operation, and editing command

descriptions are discussed in detail.

The editor is the E/A program which provides for the entry and storage of

text. The editor accepts keystroke entry and modification of lines of text

which compose, for example, assembly language programs or linker commands, and

it stores the lines in internal random-access memory (RAM). The text in

memory can be written to a file on an external mass-storage device.

Conversely, a file from such a device can be read into the CC-40 for editing.

The editor provides two methods of editing: line editing and screen editing.

Line editing uses the 31-character LCD display and keyboard in the CC-40

console, and it provides single-line display for line-number oriented text

entry and display. Screen editing uses a terminal or a CRT display device
connected to the HEX-BUS™ interface through an RS232 device or a Video

Interface peripheral to provide cursor-oriented screen editing. Screen

editing uses either the CC-40 keyboard or an external full-size keyboard for

text entry.

SYSTEM REQUIREMENTS

In a minimal CC-40 system configuration, line-editing operation requires that

at least one mass-storage device is connected to the CC-40. The mass-storage

device provides storage and retrieval for any text which is stored in RAM.

u
u
0

u
u

u
u
0
a
a

a
a
a

a
fl

Page

Editor/Assembler User's Guide—Chapter 4

Line-editing operation with a minimal CC-40 configuration permits fully

functional assembly-language program development through the use of the

console display. The portion of the text shown by the display, however, is

limited to a 31-character segment of a single line. Also, because the display

shows only one line at a time, line numbers are necessary for keeping track of

multiple lines in relation to each other.

More complete configurations, however, enhance editor performance by enabling

the screen editing option. Significant improvement in editor performance,

flexibility, and convenience results from including an RS232 device and a

terminal or an external display for screen editing.

Screen editing with an external display provides longer display lines

(typically 80 characters), and it provides multiple-line display (typically 24

lines). With screen editing, line numbers are largely unnecessary for

referencing lines during text editing. Lines of text can be viewed in spatial

sequence and addressed graphically on the display screen by a cursor. The

logic of program statements is easily studied on the multiple lines
simultaneously displayed. Additionally, if a CRT terminal (display combined

with keyboard) is used, the full-sized keyboard permits more rapid, accurate,

and convenient entry of keystrokes than does the compact keyboard of the CC-40.

RUNNING THE EDITOR
After the E/A package is entered from BASIC with a [RUN "ALDS"] command, the

E/A program menu appears in the LCD display as shown below.

E)dit A)ssemble L)ink B)asic 2

The editor is entered when [E] is pressed. When the editor begins to run, the

display shows the editor menu as follows.

L)ine S)creen D)efine Q)uit ?

Page 37

Editor/Assembler User's Guide—Chapter 4

The four functions which appear in the display make up only a part of the

menu. Two other functions are scrolled into the display when either the

[SPACE BAR] or [u] is pressed, as shown below.

C)runch U)ncrunch Z

Line Editing: "L" Option

Pressing [L] causes the editor to enter line-editing operation. The editor

prompts with Copy file to determine if any file is to be copied from a

mass-storage device into RAM for editing. Pressing [[ENTER]] in response to

the prompt indicates that no file is to be copied. Typing in a device number

and a mass-storage filename (separated by a period, as in [120.FILE]) before

pressing [[ENTER]] loads the file of that name from the device. After

[[ENTER]] is pressed (and a file is loaded if a name has been entered), the

editor places the command prompt ">" in the otherwise blanked display.

Screen Editing: ”S" Option

Pressing [S] causes the editor to enter screen editing mode. The screen of

the CRT is cleared, an asterisk and the end-of-file abbreviation (*EOF) appear

at the upper left of the screen to indicate that no text is in RZ^l, and a Copy

file prompt appears on the bottom line of the screen. A file can be copied

into RAM from a mass-storage device by entering a device number, a period, and

a filename. Pressing [[ENTER]] alone initializes the editor for keyboard

entry of lines of text. Subsequently, the prompt disappears, and the cursor

appears in the upper left corner of the screen.

Screen Definition: "D" Option

Pressing [D] causes the editor to enter the screen-definition option. In

screen definition, a mass-storage file can be used to install or customize the

editor for particular characteristics of the terminal or display to be used.

Editor/Assembler User's Guide—Chapter 4

n
n
n
a
n
n

Screen editing relies on a number of CRT-display characteristics, such as

communication parameters (data-transfer speed, etc.), screen size (number of

columns and lines), display-control commands (for cursor positioning, clearing

the screen, and so on). In addition, if screen editing is to use a terminal

keyboard instead of the CC-40 compact keyboard, particular terminal keys are

used to produce command codes (unprintable ASCII control characters or

characters following ASCII "escape") for issuing editing commands. Both

display and keyboard characteristics are defined during screen-definition

operations. Screen definition can (1) modify (or create) a table of display

and keyboard characteristics, (2) load a previously saved file of display and

keyboard characteristics for use during editing, or (3) save a table of

displayed keyboard characteristics to a file.

Two sets of default characteristics are stored in E/A firmware. One set

contains screen and keyboard characteristics of the Televideo 920 terminal.
The other set contains screen definitions for a HEX-BUS^ Video Interface

device and key definitions for the CC-40 keyboard.

fl

fl

fl

fl

fl

Uncrunched Format Text; "U“ Option

Pressing [U] causes the editor to operate in "uncrunched" mode. The display

then contains the message UNCRUNCHED MODE. Pressing any key causes the edit

menu to once again be displayed. With the editor in uncrunched mode, any text

typed into RAM or any file copied into RAM is represented in ASCII character

codes with null bytes to separate lines. No end-of-line characters such as

carriage returns or line feeds are used in the text. If a "crunched" (see

below) file is copied into RAM while the editor is in uncrunched mode, text

from the file is automatically converted to uncrunched text after it is read

into memory.

In uncrunched mode, no data-compression techniques are used to conserve memory

and decrease file-transmission time. Uncrunched mode is the default mode of

the editor; therefore, pressing [U] has no effect upon the editor unless

compressed or "crunched" mode (see below) has previously been selected.

31

Editor/Assembler User's Guide-Chapter 4

Selection of uncrunched text storage remains in effect until crunched storage

is selected while the edit menu is displayed. Text written to mass-storage

files while uncrunched mode is selected is written as it is stored in memory.

Crunched Format Text: "C" Option

Pressing [C] causes the editor to store text in RAM in compressed or

"crunched" format. The display then contains the message CRUNCHED MODE.

Pressing any key causes the edit menu to once again be displayed. In crunched

mode multiple-character assembly-language mnemonic codes (keywords) are stored

as single byte "tokens," spaces surrounding keywords are suppressed, and

multiple spaces within a line are replaced with space suppression codes.

Other line characteristics are the same as in uncrunched format. The use of

crunched format results in a savings in file memory space and file

transmission time.

An uncrunched-mode file copied into memory while the editor is in crunched

mode is automatically converted to crunched text after it is read into memory.

Crunched format remains in effect until either (1) the mode of storage is

changed while the edit menu is displayed or (2) operation of the E/A package

is terminated and the CC-40 returns to BASIC.

Quitting the Editor: “Q" Option

Pressing [Q] causes an exit from the editor menu. The E/A menu returns to the

display.

LINE-EDITOR OPERATION

After line editing is entered by pressing [L] in response to the edit menu and

the Copy file prompt receives a response, the command prompt ">" appears in

the display to indicate that the editor is ready to receive a command.

ditor/Assembler User's Guide—Chapter 4

Text Lines and Line Numbers

The editor references each line of text with a line number. The command to

enter a line in response to the ">" prompt is a line number followed by a

space, the text of the line, and [[ENTER]]. The line number can be any five

digit number from 00001 through 32767; leading zeros are provided by the

editor if they are not entered at the keyboard. If a line with the number

typed is already present, the old line is replaced by the new line.

Entering a line number followed by no text inserts a blank line of text into

memory.

Editor line numbers provide the means of accessing particular lines. With the

command prompt ">" in the display, lines of text are called into the display

by line number for editing, insertion, and deletion.

Line numbers are not stored with the text in memory. They are computed by the

editor each time a line is displayed. The effect of entering [1000 This] as

the initial line in the text area of memory is to store the text [This] in

memory for display as 00001 This in any subsequent display. Typing in another

line with the number 1000 produces a text line numbered 00002. A displayed

line number (always with a trailing space) indicates the position of a line

relative to the beginning of text. The number of any line changes as the

number of lines between it and the first line of the text changes.

Line Editing Commands

Commands available for use in line editing are listed below. Where a

parenthesis sets off the last characters of a command, only the first

characters need be typed to issue the command. Detailed descriptions of

commands appear on the pages noted in the list.

AUTO—Sets up the editor to produce a line number for the first line and

to produce a new line number after each line is entered.

4-1

Editor/Assembler User’s Guide—Chapter 4

COPY—Loads a file from mass-storage device into memory for subsequent

line editing.

DEL(ETE)—Deletes a line or range of lines from the text in memory.

E(DIT)—Displays a line of text for line editing.

F(IND)—Finds the next character string that matches the string specified

in the command.

FORMAT—Initializes the mass-storage medium in the specified device.

LINE—Sets the editor so that it displays line numbers with each line in

the display.

LIST—Shows lines of text in memory in the display or transfers the lines

to an external unit such as a printer.

MOVE—Moves a line or a range of lines to another location in the text.

NOLINE—Sets the editor so that it does not display line numbers with each

line in the display.

QUIT—Terminates line editing and returns to the main edit menu.

R(EPLACE)—Replaces one or more occurrences of a character string in the

text with another specified string.

SAVE—Saves the text currently in memory to a mass-storage device with the

specified device number and filename.

Editor/Assembler User's Guide—Chapter 4

UNDO—Cancels the effects of the last delete command, line modification,

or replacement operation by reinserting into the text the lines deleted or

changed.

VERIFY—Compares character-for-character the text stored in memory with a

file present in an external storage device.

New Text Entry

When the AUTO command is typed in response to the ">" prompt, the editor is

set to number each line automatically. The LCD display shows the number 00001

followed by a space and the blinking cursor. For normal keystroke entry of a

line, the line is typed and the cursor advances to the next position to the

right after every keystroke. When [[ENTER]] is pressed, the line is moved

from the display buffer into the text-storage area of memory.

The display buffer is then filled with spaces, and the line number 00002 and a

space appear in the display. Successive lines are always numbered in

increments of 1. In automatic line-numbering operation, for example, the line

editor always displays a line following the entry of line 00002 with the

number 00003, a line following line 00053 with the number 00054, and so forth.

The [[BREAK]] key terminates AUTO and returns the ">" command prompt to the

display.

Editing Previously Entered Lines

When lines are already present in the text area of memory and the *>* prompt

is displayed, the editor displays any line upon entry of a command of the

format [E] [NNNNN] [[ENTER]]. For example, the command line E 12 [[ENTER]]

causes the editor to read the 12th line of the text into the display buffer.

When [[ENTER]] is pressed after the line is edited, the edited line is stored

in the text area of memory and the ">" command prompt returns to the display.

Editor/Assembler Usdr 's Guide—Chapter 4

If, while a line is being displayed, the [Up Arrow] key is pressed, the line

currently in the display buffer is transferred into the text area of memory.

Then the line with the next lower number is displayed. In effect, the text is

scrolled backward through the display window by one line.

Similarly, if the [Down Arrow] key is pressed, the display-buffer line is

transferred to the text area, and the text line with the next higher nunber is

displayed. In effect, the text is scrolled forward through the display window.

Using the Display Buffer
Whenever a numbered line is present in the display buffer after entering an

EDIT or LIST command, the buffer functions as a scratchpad for entry of the

line into the text area of memory. When [[ENTER]], [Up Arrow], or [Down

Arrow] is pressed, the display-buffer line is transferred to memory and the

adjacent line is transferred from memory into the display buffer. Whenever

[[BREAK]] is pressed while a numbered line is in the display buffer, the

buffer is cleared and the ">" command prompt returns, but the line from the

display is not stored in memory.

If a line number (followed by a space) in the display buffer is altered, then

the new number determines the point of entry into the text area of memory

after the line has been entered.

If the space following the line number is replaced by a [-] (minus sign), then

the line is inserted into the text area as a new line before the one currently

with that number. If a [+] (plus sign) replaces the space, the line is

inserted into the text as a new line immediately after the line with the

number displayed.

Clearing the Display Line

The contents of the display buffer are cleared when [[CLR]] is pressed. A new

line can then be typed into the display buffer.

Editor/Assembler User's Guide—Chapter 4

The prompt ">" does not appear in the cleared display, although the cleared

line is used in exactly the same manner as the command line on which the

prompt appears. In command mode (where a line originating with the prompt has

been cleared), the lack of a prompt is the only result of pressing [[CLR]]

rather than [[BREAK]]. The display returns the command prompt ">" when a new

line is entered.

In text entry during AUTO mode, however, the difference between [[CLR]] and

[[BREAK]] has the added significance that [[CLR]] returns the editor to AUTO

mode after the new line is entered while [[BREAK]] causes the editor to

reenter command mode. A new numbered line of text entered during AUTO mode

causes the line-numbering sequence to be reset to the number of the new line,

and the editor continues in AUTO mode. However, if a command is entered in

the cleared display and executed during AUTO mode, the editor exits AUTO and

reenters command mode upon completion of the command.

Using the Playback and Recover Buffers

Two buffers in the CC-40 save text for repeated entry of commands or

cancellation of delete commands, text modification, or replacement performed

in error.

The playback buffer always contains the last command line entered into the

editor. Pressing [[SHIFT]] [Up Arrow] causes the contents of the playback

buffer to be transferred to the the display buffer. Through the use of the

playback buffer, an editor command such as FIND can be executed numerous times

without being retyped. The command is entered into the display buffer only

once through the keyboard, and thereafter the command is transferred into the

display buffer from the playback buffer.

Editor/Assembler User's Guide—Chapter 4

Similarly, the recover buffer always contains the line or lines most recently

deleted from the text area of memory, the original text of the line most

recently modified, or the line last replaced. The editor, by referencing the

lines in the recover buffer, can cancel the most recent deletion or

line-editing operation. When UNDO is entered, the lines in the recover buffer

are reinserted into the text area in their original position.

Line-Number Display Commands

The NOLINE command eliminates the display of line numbers, providing a greater

number of text characters to be viewed at the beginning of each line. The

NOLINE command has the effect of shifting the characters of the display line

six character-positions to the left (corresponding to a five-digit line number

followed by a space). The line number, even though not in view, is usable for

line-indexing operations. For example, setting the editor for NOLINE

operation and then typing in a command to edit line 15 still brings line 15

into the display; the only difference is that the line number cannot be seen

without forcing the cursor against the left side of the display window into

the line.

The LINE command causes the line numbers to once again automatically appear in

the display.

Cursor Control

When a line is in the display, five keys control cursor position in the

display. The cursor can be moved to the right or to the left one character,

it can be moved to preset tab stops, and it can be moved to the first position

of the line (home).

The [Right Arrow] key moves the cursor one character to the right of its

current position. The [Left Arrow] key positions the cursor one character to

the left. When either key is held down, repeated one-character cursor movement

begins; when the key is released, cursor motion stops.

Editor/Assembler User's Guide—Chapter 4

The left- and right-arrow keys have no effect if the cursor is at,

respectively, the the beginning or end of the 80-character line. If the

cursor moves to a character position not in the display, the display window is

shifted one character in the direction of the motion of the cursor.

The forward tab key [[CTL]] [Right Arrow] moves the cursor to the closest tab

stop to its right. If the cursor is to the left of character position 25,

pressing the key moves it to position 25. If the cursor is between character

positions 25 and 50, pressing the key moves it to position 50. Pressing the

forward tab key when the cursor is beyond position 49 has no effect.

The back-tab key, [[CTL]] [Left Arrow], moves the cursor to the closest tab

stop to its left. If the cursor is to the right of character position 50,

pressing the key moves it to position 50. If the cursor is between character

positions 25 and 50, pressing the key moves it to position 25. Pressing the

back-tab key when the cursor is to the left of character position 26 moves it

to position 1.

The home key, [[CTL]] [Up Arrow], regardless of the current cursor position,

moves the cursor to the first character of the line (the most significant

digit of the line number if a text line is being displayed).

Deletion of Text in the Display

Text in the display can be deleted character-by-character, erased from the
current cursor position to the end of the line, or completely cleared (as

described above).

The delete key, [[SHIFT]] [Left Arrow], deletes the single character at the

current cursor position and shifts all subsequent characters one position to

the left.

The erase-to-end-of-1ine key, [[CTL]] [Down Arrow], deletes all characters

from the one at the current cursor position to the end of the display line.

^7

Editor/Assembler User's Guide—Chapter 4

None of the delete display-control keys has any immediate effect on a line

already stored in the text area of memory. For example, if there is a line 30

which has been moved from memory into the display buffer and [[CLR]] is

pressed, line 30 remains in the text area of memory exactly as it was before

its being copied into the display buffer. Line 30 in the text area of memory

is replaced by a line in the display buffer numbered 30 only after [Down

Arrow], [Up Arrow], or [[ENTER]] is pressed.

Insertion of Characters into Displayed Text

Insertion of characters into the display buffer occurs after the insert

[[SHIFT]] [Right Arrow] key is pressed. The editor is set to insert

characters at the current cursor position, moving all characters from the one

at the cursor position to the end of the line to the right. Insertion of

characters continues until a subsequent line-editing control key

(cursor-position key or delete key) or line entry key ([[ENTER]], [Up Arrow],

or [Down Arrow]) is pressed.

If the number of characters in the display buffer (including the line nunber

and trailing space) exceeds 80 during insertion of characters, the line is

truncated with the 80th character. In effect, characters in excess of the

80th "fall off the end of the line."

Insertion of Single Lines of Text

From the command prompt, a line can be entered before or after a line

presently in memory by typing, respectively, a "-" (minus sign) or a "+" (plus

sign) in lieu of the space between the line number and the text of the line.

Entering [10-*] creates a new line 00010 which contains an asterisk, and the

old line 00010 becomes line 00011. Entering [10+LABEL1] creates a new line 11

containing the word "LABEL1", line 00010 remains as it was before the entry,

and the previous line 00011 is renumbered to become line 00012.

Editor/Assembler User's Guiae—Chapter 4

Using "+" and "-" in the column following the line number while a line is

being displayed in AUTO mode, is being edited after an EDIT command is given,

or is being listed after a LIST command is given has the same effect that it

does from command mode. Automatic entry, editing, and listing, however,

continue until AUTO mode is terminated with [[BREAK]j, editing is terminated

with [[ENTER]], and listing is terminated with [[BREAK]] or the end of the

text.

Insertion of Multiple Lines of Text

With lines of text in memory, AUTO mode effectively produces line insertion.

Entering AUTO mode with the number of a line already present in memory causes

the number of the line followed by a trailing "+" (plus sign) to automatically

appear in the display. When the text for the line is entered, the line is

assigned the next higher number, and that number followed by "+" appears in

the display.

With four lines of text already in memory, for example, entering [AUTO 3]

causes 00003+ to appear in the display. Text entered becomes part of a new

line numbered "00004," and after entry 00004+ appears in the display for

additional insertion of lines. The original fourth line remains the next line

of the text; its line number is incremented with each new inserted line.

If AUTO mode is entered at the last line of text, the display lines are

slightly different. Again with four lines of text in memory, if AUTO mode is

entered with AUTO 4, the display contains 00004+. When the text for the new

line is entered, the line is stored as line 00005. The display then contains

00006 followed by a space, indicating that new lines entered are being

appended rather than inserted.

Text Line Replication

A line of text currently in the display can be replicated into a line above or

below it by backspacing the cursor to the space following the line number and

pressing [+] or [-].

A7

Editor/Assembler User's Guide—Chapter 4

Entering a line in which [+] replaces the space trailing the line number

causes two changes to the text. First, the text of the previously displayed

line appears in the display with the next higher line number: it has become

the second line with that text in memory. Second, numbers of lines following

the replicated line are incremented. Using this process, a line can be

replicated "after itself" any number of times by moving the cursor to the

space trailing the line number, pressing [+], and entering the line.

The [-] key performs the same function, except that the replicated line

becomes the line previous to the one which has been displayed. The replicate

has the same number as the original line, and the original line appears in the

text as the line with the next higher number. A line can be replicated before

itself any number of times by repeatedly moving the cursor into the space

trailing the line number, pressing [-], and entering the line.

SCREEN-EDITOR OPERATION

In screen editing, an external terminal or display becomes a multi-line

"window" for viewing the text stored in CC-40 memory. All lines (rows) on the

screen except the last one are available for display of text lines. The last

line is reserved for display of editor commands entered through the keyboard.

Screen addressing (for both lines and columns) is performed by a

keyboard-controlled cursor. The cursor marks either the position at which

characters are entered by keystroke or the position at which the next

cursor-relative command or display-control function (delete character, for

example) takes effect. The cursor can be moved to any line or column of text

on the screen. For text in which the number of lines exceeds the number of

rows in the display, the lines of text displayed on the screen are selected by

either line number or page scrolling (moving the display window to the

previous or subsequent "screen" of lines).

Editor/Assembler User's Guide—Chapter 4

Any RS232-compatible terminal or external display terminal can be connected to

the CC-40 console through an RS232 device for screen editing. Terminal or

display characteristics, however, must be defined for the editor. These

characteristics include the column and line format of the display screen, the

transmission characteristics used for RS232 communication, and the

display-control characters used to determine operations such as cursor

positioning. The characteristics are stored into memory for use by the screen

editor with the D)efine option in the main edit menu.

The keyboard used for screen editing can be either the CC-40 compact keyboard

or another keyboard which is part of the terminal providing the display. The

D)efine option also specifies which keyboard is used and defines the keys

which are to be used to issue editor commands. Saving text as a mass-storage

file, for example, can be chosen to be the sequence [[CTL]] [S], [[ESC]] [S],

or some other key or key sequence, oepending on user preference.

The D)efine option must be used before the S)creen option is used each time

the E/A package is entered from BASIC. Screen and keyboard default values for
the Televideo 920 terminal and the internal keyboard and a HEX-BUS™ Video

Interface display device are included in firmware, and through D)efine they

can be selected for use as they are or they can be modified for other

devices. Alternately, previously saved sets of characteristics can be loaded

from a mass-storage device. If neither of these steps is taken before the

S)creen option is selected from the main edit menu, the screen editor cannot

be used and the No screen parameter table message appears in the console

display.

Screen-Editing Commands
Like line editing, screen editing uses display-function keys. These keys are

pressed during text entry to cause cursor movement in columns and lines,

vertical paging (scrolling page-by-page), insertion and deletion of text

within lines, and other similar operations. Also as in line editing, screen

editing uses commands.

r>

Editor/Assembler User's Guide—Chapter 4

In screen editing, however, the text remains on the screen while the commands

are typed. In general, a two-keystroke sequence initiates command entry. The

editor then prints out the full word or phrase for the command in the last

line of the display and places the cursor after the word or phrase.

Additional command information (containing line numbers, device numbers, and

filenames, for example) is then typed into the command line.

The command line can be edited using keys previously defined for clear-line,

delete-character, insert-character, left-and right-arrow, forward- and

back-tab, and erase-field keys. All printable characters can be entered.
Pressing [[ENTER]] begins execution of the command. Pressing [[COMMAND EXIT]]

clears the command line and returns the cursor to the text display area of the

screen.

Most of the commands and functions available in line editing are available in

screen editing. Some additional commands are also available to make full use

of the greater speed and convenience of the screen display.

Entry of screen editing commands is, in the default command set for the

Televideo 920 terminal, initiated by escape sequences. The nonprintable ASCII

character "ESC" is entered through the keyboard, followed by a character which

is generally the first letter of the full word or phrase which names the

command. Command keys in the CC-40 keyboard default set are similarly defined

for use following the [[FN]] key. For example, entry of the delete-line

command requires the sequence [[ESC]] [D] on the Televideo 920 and [[FN]] [D]

on the CC-40 keyboard.

Screen editing commands are listed below. Detailed descriptions of commands

are referenced on pages noted with each command.

COPY—Copies a file from mass-storage device into memory for subsequent

editing.

Editor/Assembler User’s Guide—Chapter 4

DELETE—Deletes a line or range of lines from the text in memory.

FIND—Finds the next string of characters that matches the string

specified in the command.

FORMAT—Initializes the mass-storage medium in the device specified.

HELP—Displays a list of screen-editor commands and cursor-control

keystrokes on the screen.

JUMP TO LINE—Places the cursor on the line with the number specified in

the command.

LIST—Outputs the text in memory to a HEX-BUS™ device such as a printer.

MOVE—Moves a line or a block of lines to another location in the text.

quit—Leaves the screen editor and returns to the main editor menu.

REPLACE—Replaces one or more occurrences of a character string in the

text with another specified string.

SAVE—Saves the text currently in memory to a specified mass-storage

device.

TAB DEFINE—Redefines the display tab stops to be other than those set by

default.

UNDO—Cancels the effects of the last delete command, line modification,

or replacement operation by reinserting into the text the lines deleted or

changed.

S3

Editor/Assembler User’s Guide—Chapter 4

VERIFY—Compares character-for-character the text stored in memory with a

file present in an external storage device.

Text Entry
Text is entered by typing a line and pressing [[ENTER]]. After the line is

entered, the cursor moves to the first column of the text area of the

following line.

A special AUTO provision in the screen editor inserts a new blank line of text

each time [[ENTER]] is pressed. Lines from the new blank one to the end of

text have their line numbers incremented by one. AUTO mode permits new lines

to be inserted into text as easily as if they were being appended to the end

of text.

When the editor is first entered, automatic line-entry mode is in effect.

Pressing [[CTL]] [A] the first time turns it off, and pressing the key a

second time turns it on again. Throughout editing, pressing the key toggles

insertion mode on whenever it is off and toggles it off whenever it is on.

Text is displayed after five-digit line numbers and a space, as in line

editing. The line number and space in screen editing, however, are

inaccessible to the cursor.

Cursor Positioning
The cursor is stepped through the columns of the current (cursor) line with
the [Right Arrow] and [Left Arrow] keys. The right-arrow key [Right Arrow]

positions the cursor one character to the right of its current position, and

the left-arrow key [Left Arrow] positions the cursor one character to the left.

Editor/Assembler User's Guide—Chapter 4

If [Right Arrow] moves the cursor past the last character typed in the line

without a displayable character being typed, the character positions between

the last character and the cursor are ignored when the line is stored into the

text area of memory. No trailing spaces are entered into the text. If,

however, a printable character is typed after the skipped character positions,

then the positions are entered as spaces into the text.

The [Up Arrow] and [Down Arrow] keys perform similar functions in moving the

cursor one line up and one line down on the screen.

The home key ([HOME] on the terminal keyboard, [[CTL]] [Up Arrow] on the CC-40

keyboard) positions the cursor to the first character of the first line in the

display.

The forward tab key ([TAB] on the terminal keyboard, [[CTL]] [Right Arrow] on

the CC-40 keyboard) moves the cursor to the closest tab stop to its right.

The tab stops are those set either by the screen-editing definition file or by

the TAB DEFINE command during screen editing. Pressing the forward tab key

when the cursor is to the right of the last tab stop moves the cursor to the

first column of the same display line.

The back-tab key ([[CTL]] [U] on the terminal keyboard, [[CTL]] [Left Arrow]

on the CC-40 keyboard) moves the cursor to the closest tab stop to its left.

Pressing the back-tab key when the cursor is to the left of the first tab stop

in a line moves the cursor to the last column of the same display line.

Editor/Assembler User’s Guide—Chapter 4

Display Paging Control
The page-forward key ([[ESC]] [Down Arrow] for the terminal and [[CTL]] [+]

for the CC-40) and the page-back key ([[ESC]] [Up Arrow] for the terminal and

[[CTL]] [-] for the CC-40) scroll the text lines up and down one screen page

at a time. When the page-forward key is pressed, the text line following the

one in the last line of the text area becomes the first line of the new page.

The display is effectively moved up "a page" (i.e., the number of lines within

the text-display area of the screen). Similarly, the page-back key scrolls

the lines of the text one page downward.

Screen Refresh (View)

The [[CTL]] [V] (view) key rewrites text lines to the current display. If a

terminal or display is cleared locally through keystroke or power

interruption, view can rewrite the text display to the screen.

Line-Number On/Off Toggle
The line-number display key [[CTL]] [T] controls the position of text lines on

the display screen. If no line numbers are to be displayed, the line is

effectively shifted to the leftmost six columns—five line-number digits and a

space—in either display so that only the typed-in portion of the line is

displayed. (Whether displayed or not, the six line-number columns count

toward the maximum 80 characters permitted in each line.)

Initially, the editor displays line numbers. During editing, pressing [[CTL]]

[T] the first time causes the line-nuiflber columns to be shifted from view.

Pressing the key a second time causes them to again be shifted into view. The

key operates as a toggle which causes the line numbers to alternately

disappear and appear.

Text Deletion

Displayed characters can be deleted by (1) single character, (2) all

characters from the cursor position to the end of the line, and (3) all

characters in the line.

Editor/Assembler User's Guide—Chapter 4

The delete key ([[DEL]] for the terminal, [[SHIFT]] [Left Arrow] for the

CC-40) deletes the single character at the current cursor position and shifts

all subsequent characters one position to the left.

The erase-to-end-of-field key ([[CTL]] [E] for the terminal, [[CTL]] [Down

Arrow] for the CC-40) deletes all characters from the one at the current

cursor position to the end of the display line.

The clear key ([[CTL]] [C] for the terminal, [[CLR]] for the CC-40) erases all

characters, except the line number and space trailing it, from the line.

Screen editing enters lines into the text area of memory differently from line

editing. Lines displayed on the screen are not operated on as if they were

line-by-line scratchpads. Pressing [[CLR]] during line editing for example,

clears the line number and results in only the display being cleared; the
current text line is not affected. When the clear key ([[CTL]] [C] for the

terminal or [[CLR]] for the CC-40 keyboard) is pressed during screen editing,

a blank line remains on the screen (with the line number unless it has been

toggled off).

The screen editor, like the line editor, has a provision for recovery from

erroneous entries through the use of the recover buffer and the UNDO command

([[ESC]] [U] for the terminal, [[FN]] [U] for the CC-40). If the text of a

line is accidentally cleared, for example, regardless of whether the cursor

remains on the line or is moved to some other text line, the cleared text is

restored to the line with UNDO. In screen editing, as in line editing, the

recover buffer stores the original text of the last line modified or replaced,

or it stores the last line or block of lines deleted.

Editor/Assembler User's Guide—Chapter 4

Text Insertion

Characters typed into the text area of memory after the character-insert key

([[CTL]] [Q] for the terminal, [[SHIFT]] [Right Arrow] for the CC-40 keyboard)

displace all other characters from the cursor to the end of line. When the

character-insert key is initially pressed, the editor is set to insert any

characters at the current cursor position, moving all following characters to

the right. If the text in the line reaches 74 characters, no further

characters are accepted into the line (they do not "fall off the end of the

line" as in line editing). Character-insertion continues until a subsequent

display-control key (cursor-position or delete key or [[ENTER]]) is pressed.

Screen-Editing Keyboard and Display Definition

Particular keyboard and terminal characteristics are defined by a table of

values stored in memory for use during screen editing. The screen-definition

menu provides for selection of particular values used during editing with

three options.

Pressing [D] in response to the main edit menu causes the editor to display

the screen-definition menu shown below.

M)odify S)ave L)oad Q)uit

Pressing [M] in response to the screen editor menu causes the editor to begin

displaying a series of prompts for modification of current table values by use

of line editing and the console keyboard and display. Normally, the values

displayed are the "default" values available in editor firmware: they are

values which work with a Televideo 920 terminal or with the console keyboard
and the HEX-BUS™ Video Interface device. With each prompt, previous or

default selections can be retained by pressing [[ENTER]], or they can be

modified through the use of line editing functions.

Editor/Assembler User's Guide—Chapter 4

Pressing [Up Arrow] or [Down Arrow], respectively, causes the display to

"scroll" to the previous or following prompt. Pressing [[BREAK]] in response

to any prompt returns the definition menu to the display (with characteristics

already modified retained in the screen parameter table in memory).

All modifications made to the table during screen definition are in effect in

the screen editor as long as the E/A package is running. The editor can be

tested by exiting the screen-definition menu with [Q] in order to return to

the main edit menu. Selecting S)creen from the main edit menu by pressing [S]

starts screen-edit operation with all new characteristics from the table in

effect.

After new screen-editor characteristics have been tested, they can be saved to

a mass-storage file. They can be conveniently reentered from the file instead

of the keyboard at a later time. Pressing [S], and entering the mass-storage

device number and filename saves the file.

Pressing [L] and entering a mass-storage device number and filename results in

the loading of any previously stored definition file for use or further

modification.

Note carefully that until the Define option is selected and either a file has

been loaded or the M)odify option has been selected to specify at least the

keyboard and screen default values, no table is present in RAM. Attempting to

enter the screen editor from the main edit menu results in a No screen

parameter table message.

The table of values for screen editing requires the following information.

lol Selection of internal (CC-40) or terminal keyboard use

lol The device number and data-transmission characteristics (such as RS32
parameters) of the HEX-BUS™ device connected to an external

terminal or display

Editor/Assembler User's Guide—Chapter 4

Io! The specification of which keys on the keyboard (usually control

characters or escape sequences) are used for screen-editor functions

and commands

Io! The specification of terminal display characteristics (such as screen

size and display-control codes)

Keyboard Selection

The editor first displays the prompt Internal keyboard (Y/N)p. Pressing [Y]

selects the CC-40 keyboard and the associated default values for table entry.

Pressing [N] selects the external terminal keyboard with associated default

values. The default values are loaded only if no screen parameter table

resides in memory.

Selection of Device and Data-Transmission Characteristics

The editor displays the prompt Screen Device for entry of display and any

terminal keyboard device data-transmission characteristics, such as the RS232

device code and transmission characteristics. Device number, baud rate, no

carriage return with lines (R=N), wait mode (T=W), no echo (E=N) and no data

overrun reporting (0=N) must be provided. Entry of other characteristics

depends on terminal requirements. Shown below is an example entry setting up

RS232 characterics through device 20 to communicate with a terminal or

external display device set for a baud rate of 4800, seven-bit data transfer,

one stop bit, and even parity. Pressing [[ENTER]] with these default values

displayed stores them into the RAM table from editor firmware. At this prompt

or any subsequent one, pressing [[BREAK]] stores values previously modified

into the table along with the remaining default values. The screen-definition

menu returns to the display. For information on how to use the screen editor
with the HEX-BUS™ video Interface device, see appendix D of the Reference

Manual.

20.B=4800,R=N,T=W,0=N,P=E,E=N

Editor/Assembler User's Guide—Chapter 4

Command Keystroke Definition

A series of prompts following the entry of the terminal characteristics

provides for definition of command and function keys. These definitions

differ according to terminal design and user preference. The codes produced

by special terminal keys are usually listed in the user documentation for each

terminal.

The prompts for the command keys contain the names of edit commands and

functions (copy, delete, and the like) and the default values assigned to

them. Entry in response to each of the prompts is the value of the byte or

bytes originating from the keyboard when the key is pressed. The values of

bytes can be expressed in either decimal or hexadecimal notation (for example,

[[ESC]] = 27 or >1B). Alphabetic characters can be expressed directly

(without referencing their ASCII values) for entry in two cases: (1) when they

are surrounded by double quotes, as in “Q", and (2) when they are preceded by

the letters CTL to convert them to equivalent control-code values. Typing in

"Q" stores the ASCII value of the letter (>51 or 81), and typing in CTL A

stores the value of CTL-A (>01 or 1).

Either one or two values can be typed in for each command or function

definition. If one value.is typed, zero is assigned to the second value in

the table. If two values, separated by a comma, are typed, both values are

entered into the table.

The specific commands for which keystrokes must be defined are as the

following.

Copy Help Quit Undo

Delete Jump Replace Verify

Find List Save

Format Move Tab define

6 (

Editor/Assenfoler User's Guide—Chapter 4 U

Pressing [[ENTER]] to store values for the screen device number and
transmission characteristics, for example, brings the prompt shown below into |j

the console display. The pairs of values shown are the default values for the

two keys which initiate the COPY command from either keyboard selected: they ||
are the decimal representation of the ASCII characters "ESC" and "C". U

Copy key: 27, 67 11
If these values are to be modified, the first keystroke for the new value(s) |J

entered clears the display and show the character entered. Changing the
values to the single value of CTL-C (>03 or 3) requires that one of the l|

entries shown below appear in the display before [[ENTER]] is pressed.

CTL C LI

3 U
>3

Function-Key Definition

Following the prompts for and entry of screen-editor commands are prompts for

defining display-function keys. Display-function keys, like keys which can be

selected for commands, are dependent on terminal design, and the user

documentation for each terminal lists the codes which they produce.

Function-key definitions are modified from the default values in exactly the

same way command-key definitions are. The specific display-functions which

must be defined are listed below.

Auto Delete line Insert char Page forward

Back tab Down cursor Insert line Right cursor
Clear line Enter Left cursor Tab

Command exit Erase field Line display Up cursor

Delete char Home Page back View

a
3

Editor/Assembler User’s Guide—Chapter 4

Default Values for Command and Display-Function Keys

Default values for commands and functions are represented in the following

table by the keys which produce them on both Televideo 920 and CC-40 keyboards.

EDITOR DEFAULT KEYBOARD DEFINITION ENTRIES

FUNCTIONS KEYS USED

OF EXTERNAL KEYBOARD INTERNAL KEYBOARD

KEYS (Televideo 920) (CC-40)

Copy [[ESC]] [C] [[FN]] [C]

Delete [[ESC]] [0] [[FN]] [D]

Find [[ESC]] [F] [[FN]] [F]

Format [[ESC]] [N] [[FN]] [N]

Help [[ESC]] [H] [[FN]] [H]

Jump [[ESC]] [J] [[FN]] [J]

List [[ESC]] [L] [[FN]] [L]

Move [[ESC]] [M] [[FN]] [M]

Quit [[ESC]] [Q] [[FN]] [Q]

Replace [[ESC]] [R] [[FN]] [R]

Save [[ESC]] [S] [[FN]] [S]

Tab define [[ESC]] [I] [[FN]] [T]

Undo [[ESC]] [U] [[FN]] [U]

Verify [[ESC]] [V] [[FN]] [V]

Auto [[CTL]] [A] [[CTL]] [A]

Back tab [[CTL]] [U] [[CTL]] [Left Arrow]

Clear [[CTL]] [C] [[CLR]]

Command exit [[CTL]] [X] [[CTL]] [X]

Delete char [[DEL]] (>7F) [[SHIFT]] [Left Arrow]

Delete line [[CTL]] [0] [[CTL]] [D]

Down [I] ([[CTL]] [J]) [1]

Enter [[ENTER]] ([[CTL]] [M]) [[ENTER]]

Erase field [[CTL]] [E] [[CTL]] [’]

Editor/Assembler User’s Guide—Chapter 4

Home [HOME] (>1E) [[CTL]] [Up Arrow]

Insert char [[CTL]] [Q] [[SHIFT]] [Right Arrow]

Insert line [[CTL]] [N] [[CTL]] [N]

Left [Left Arrow] ([[CTL]] [H]) [Left Arrow]

Line display [[CTL]] [T] [[CTL]] [T]

Page back [[ESC]] [Up Arrow] [[CTL]] [-]

Page forward [[ESC]] [!] [[CTL]] [+]

Right [Right Arrow] ([[CTL]] [L]) [Right Arrow]

Tab [TAB] ([[CTL]] [I]) [[CTL]] [Right Arrow]

Up [Up Arrow] ([[CTL]] [K]) [Up Arrow]

View [[CTL]] [V] [[CTL]] [V]

Definition of Required Display-Control Information

Following function-key definitions, the editor provides prompts for entry of

terminal or display screen size and display-control codes. Like control and

function key definitions, screen size and display-control codes are particular

to each terminal. User documentation on each terminal lists the parameters to

be entered. Values for some terminals are listed in appendix B of the CC-40

Editor/Assembler Reference Manual.

The prompts for screen size and display control codes, and the information

which is entered in response to them, are listed below.

Screen size—The number of rows (lines) available on the display and the

number of columns (character positions) in each line must be entered in

the following format: columns,rows (without a space following the comma).

Clear screen—The character code or codes used to clear the screen of

the terminal must be entered.

Editor/Assembler User’s Guide—Chapter 4

Move cursor—The first character code or codes used to initialize the

sequence which positions (addresses) the cursor on the terminal must be

entered. Following this byte or bytes in the sequence are two bytes

which specify the cursor addresses (row and column).

Row first, Offset—Specification of two format elements for the

cursor-address bytes must be entered here. For the first element, a

numeric non-zero response to Row first element indicates that the row is

addressed by the first byte and the column is addressed by the second. A

zero response indicates that the column is addressed by the first byte.

For the second element, the numeric response indicates the value of the

Offset used in both address bytes (this value is usually >20 to make the

addresses more easily "printable" in older high-level languages).

Definition of Optional Display-Control Information

Five other prompts list the definitipns of display-control codes which can be

modified or accepted for default values. When a terminal or display does not

support features described in a prompt, the corresponding value must be set to

zero. When a terminal or display can perform the functions specified in the

prompts, faster and more convenient operation results from entering the

codes. The prompts, in the order in diich the editor presents them, are

listed below.

Bell—The code used to activate the bell or beeper inside the terminal.

If a value of 0 is entered, the CC-40 uses the internal beeper.

Erase to end of line—The code used to erase all displayed characters from

the current cursor position to the end of the current line.

Erase to end of screen—The code used to erase all displayed characters

from the current cursor position to the end of the screen.

Insert line—The code used to enter a blank line on the screen.

Edi tor/Assembler User’s Guide-Chapter 4

Tab stops—The column or character positions of the default tab stops. Up

to ten column numbers can be entered in pairs separated by commas in

response to the five appearances of this prompt.

Default Values for Display-Control Characteristics

Default values for screen size and display-control codes are represented in

the following table.

DEFAULTS FOR DISPLAY-CONTROL CODES, DISPLAY SIZE, AND OPTIONAL CODES

DISPLAY EXTERNAL KEYBOARD INTERNAL KEYBOARD

FUNCTION (Televideo 920) (CC-40)

Screen size 80,24 40,24

Clear screen ESC 31

Move cursor ESC - ESC =

Row first, 1 (yes) 1 (yes)

offset 32 0

Bell CTL G 0 (CC-40 internal)

Erase to EOL ESC T ESC T

Erase to EOS ESC Y ESC Y

Insert line ESC E ESC E

Tab stops 2,8,15,25 2,8,15,25,32

32,44,60,79

Using or Saving the Definition Table
After the response to the final Tab stops prompt is given, the screen editor

definition menu returns to the display. Pressing [Q] for Q)uit causes a return

to the main edit menu display for selection of the S)creen option for testing

the table.

TcHAPTER 4
THE LINE AND SCREEN EDITOR

After the table values are tested and the main edit menu reappears,
pressing D to select D) efine once more displays the screen
definition menu. Pressing S forS)ave and entering a mass-storage
device number and filename saves the table in a file for later use.

Fl
fi

Fl
Fl
Fl
Fl
Fl

Line and Screen-Editor Command Descriptions
Editor commands, in general, perform identical functions in both
line and screen editing. Complete descriptions of these commands
follow. Any differences between command use in line editing and
command use in screen editing are noted in the descriptions. For
clarity, only the default keys for the terminal are listed: default keys
for the CC-40 keyboard can be referenced above in the table of
keyboard default values. Syntax requirements and options available
for each command are summarized at the end of this chapter.

AUTO: Automatic Line Number Command
The AUTO command provides new line numbers automatically
during line editing. Followed by an optional line number (which
defaults to 00001) in response to the command cursor “>”, AUTO
displays the text line with the number entered. If there is no line with
that number, the line number and a trailing space are displayed for
entry of a new line at the end of text. If a line with the number is
already in the text, AUTO provides a line number followed by “ + ”,
indicating that upon entry it is inserted into the text after the line o»
that number. When [ENTER] is pressed, the line number is
incremented by one, and the next line number (followed by a space
or “ + ", depending on whether the line is to be appended or inserted)
is displayed.

Initial entry into automatic line-number operation requires that the
editor be in command mode with the “>” being displayed. The word
AUTO is typed, followed by an optional line number and [ENTER].
Pressing [BREAK] abandons the current display line without storing it
In the text area of memory and returns the editor to command mode
with the ">” prompt being displayed.

The forms of the AUTO command are shown in the following
examples.

AUTO: AUTOMATIC LINE NUMBERING

LINE EDITING ONLY

AUTO Begin auto operation with line 1
AUT0100 Begin auto operation with line 100

fl
u
Fl

COPY: Copy (Load) a File into Text Area
The COPY command toads a fife for editing from a mass-storage
device into the text area of memory.

In line editing, if other text is already in memory and no line number
is included in the command, the file is loaded at the beginning of the
text area. If a line number corresponding to a line in the text area of
memory is specified, the file is loaded (inserted) before the line in
memory. In screen editing, the file is always loaded before the line
containing the cursor.

Fl

—-____the LINE AND SCREEN^eStOR

If crunched mode has been specified in response to the main edit
menu, then the lines in memory contain command-representative

... tokens and suppressed spaces. Otherwise the lines are ASCII-
character representations of the lines originally entered. If the file
being copied into memory has been saved in a mode different from
the one currently in effect, the editor performs the necessary
conversion.

At the outset of COPY execution, when the editor attempts to open a
file, an error results in an Open error NN [file name], Retry?
prompt. Changes in media are permitted before a Y response is
given. With a N response, the COPY command is terminated.

If an error occurs while file lines are being loaded into memory or if
there is not enough space in memory to load the complete file,
loading terminates with the record being loaded when the error
occurs. An error message is displayed. All file lines successfully
loaded into memory before the record during which termination
occurs are retained in memory for editing, saving, or other
operations.

The forms of the COPY command are shown in the following
? examples.

COPY: LOAD FILE FROM MASS STORAGE UNIT INTO RAM

L ; LINE EDITING

COPY 1 .XYZ Load file named “XYZ" from device 1 into
empty text area of RAM

© 1.XYZ Insert file named “XYZ” from device 1 into RAM
before the text now in RAM

COPY 1.XYZ 12 Insert file named “XYZ” from device 1 into the
current memory text before line 12

COPY 1 .XYZ 1000 Append file named “XYZ” from device 1 after
the current memory text of less than 1000 lines

A SCREEN EDITING
[ESC] C1. XYZ Load file named “XYZ” from device 1 into text

area of RAM at line before cursor

DELETE: Delete Line or Block of Lines
The DELETE command removes specified lines from the text area of
memory. A single line is deleted when the command is followed by
the number of the line (e.g. DELETE 5). A range of lines to be deleted
is specified by line numbers separated by a hyphen. For example,
DELETE 2-5 causes lines 2,3,4, and 5 to be deleted. The first line in
the range defaults to 1 (DELETE-5 deletes lines 1 through 5). The last
line number defaults to the last line in the text (DELETE 1-removes
all lines from the text).

CHAPTER 4
THE LINE AND SCREEN EDITOR

When DELETE removes lines from the text area of memory, the
deleted lines are moved to another area of memory called the
recover buffer. The lines remain in the recover buffer until some
action is taken to change the text area of RAM or until a MOVE,
VERIFY, LIST, COPY, or SAVE command is issued. The contents of
the recover buffer are lost if a line is modified, a line is inserted, or a
line is deleted. If no action has been taken which alters the contents
of the recover buffer and an UNDO command is entered, the lines in
the buffer are inserted into the text once more. The recover buffer
and the UNDO command minimize the possibility of accidentally
destroying text.

A special form of DELETE causes the editor to remove all lines from
the text area of RAM without the delay necessary in first copying the
text into the recover buffer. DELETE ALL performs very rapid text
deletion, but it provides for no subsequent recovery of the deleted
text from the recover buffer.

The forms of the DELETE command are shown in the following
examples.

DELETE REMOVE A LINE OR A BLOCK OF LINES
FROM THE TEXT

UNE EDITING

DELETE 25
DELETE 25-30

’ DELETE 25-
DELETE-25
DELETE ALL

Delete line 25
Delete lines 25 through 30
Delete line 25 and all following lines
Delete all lines up to and including line 25
Delete text without copying to recover buffer

-SCREEN EDITING

[ESC] D 25
' [ESC] D 25-30

[ESC] D 25-
[ESC] D-25

Delete line 25
Delete lines 25 through 30
Delete line 25 and all following lines
Delete all lines up to and including line 25

: [ESC] D ALL Delete text without copying to recover buffer

'r EDIT: Display a Line for Editing
The EDIT command, used in line editing only, transfers a line from

- - the text area of memory into the display buffer, if the line editor has
\ not been given a NOLINE command to eliminate the display of line

' numbers, the display contains a five-digit line number, a space, and
f the text of the line. If a NOLINE command is in effect, the first

column of the display contains the first character of text in the line.

The forms of the EDIT command are shown in the following
examples.

EDIT: DISPLAY LINE FOR EDITING

LINE EDITING

EDIT 38 Display line 38 for line editing
E38 Display line 38 for line editing

THELINEANDSCREEN EDITOR

FIND
The FIND command is used to display the next line in the text area
of memory which contains a specified string (sequence) of
characters. In both line and screen editing, the search for the string
begins at the current line (with line editing) or the cursor (with screen
editing) and continues until either (1) the string is found or (2) the end
of the text is reached.

One option can be specified in the search: W. With the W option, no
distinction is made in the search between uppercase and lowercase
characters. Also, with the W option, the search is carried for an
exact word match (including word boundaries); ABC does not match
XABC or ABCY. For the string ABC to be matched by the identical
sequence in the text, a string must be both preceded and followed
by a nonword character. A nonword character is any character other
than an ASCII alphabetic character, numeric character, or

If the W option is not specified, alphabetic-character case is
significant: ABC does not match AbC. The string is found in text
regardless of the context in which it occurs or the delimiters
surrounding it: ABC does match XABC and ABCY.

When a match occurs during the text search, the line in which the
match occurs is displayed and the cursor appears over the first
character in the matched string.

In the FIND command, any nonword character except “space” can
be used to mark the beginning and end of the string to befound.Any
printable character or a space can be used inside the string, except
for the character used as the beginning and end marker. The second
occurrence of the marker signals the end of the string. In other
words, the marker should be selected from among punctuation
characters which are not part of the string to be searched for.

In line editing, the FIND command is transferred to the playback
buffer each time [ENTER] is pressed. For repeated searches for the
same string, pressing [SHIFT] t transfers the FIND command back
.into the display buffer for re-execution (subsequent search for the

’ next occurrence of the string in the text area of memory). In screen
_ editing, the string to be found defaults to the string previously used:
^pressing the command initiation key followed by [ENTER] continues
V the search.

■ The forms of the FIND command are shown in the following
■ examples.

■ AND: DISPLAY NEXT LINE CONTAINING STRING IN COMMAND

?UNE EDITING

FIND.XY.
■i (

Find “XY” in the current line or in a line following it
and display the string

'■f/x.y/ Find “X.Y” in the current line or in a line following
it and display the string

;; FINDW.XY. Find “XY”, “Xy”, “xY”, or “xy” in the current or
following lines and display the string

" FW.XY. Find “XY”, “Xy”, “xY”, or “xy” in the carrent or
following lines and display the string

t TH E LINE AN D SCREEN EDITOR

SCREEN EDITING

[ESCjF.XY.

[ESCjFW.XY.

Find “XY” in the current line or in a line following it
and display the string

Find “XY”, “Xy”, “xY”, or “xy” in the current or
following lines and display the string

FORMAT: Prepare New Mass-Storage Medium
The FORMAT command followed by a mass-storage device number
causes the media in the device to be initialized for use.

The medium must be placed in the device before the command is
issued. All files previously stored on the medium are erased.

The forms of the FORMAT command are shown in the following
examples.

FORMAT: INITIALIZE MEDIUM IN MASS-STORAGE DEVICE

LINE EDITING

FORMAT 2 Initialize new medium in device 2

SCREEN EDITING

[ESC] N 2 Initialize the new medium in device 2

HELP: Show Commands and Display Functions
The HELP command, used in screen editing only, displays a list of
the commands and functions used in editing. The commands are
displayed one at a time. While a command or function is being
displayed, pressing keys on the keyboard indicates the key
sequence defined for it. All key sequences except the correct one
cause the terminal or console to emit a beep.

Pressing t displays the previously displayed command or function.
Pressing I displays the subsequent one. Pressing [COMMAND EXIT]
terminates the HELP display and returns the cursor to the text.

The form of the HELP command is shown in the following example.

HELP: DISPLAY COMMANDS AND FUNCTION KEYS

^SCREEN EDITING

; IESC] H Display commands and functions

CHAPTER 4
THE LINE AND SCREEN EDITOR

^JUMP: Move the Cursor (and Screen) to Another
^PointintheText
Sf^The JUMP command causes the cursor to be placed in the line of
SJ the text which corresponds to a line number specified in the

command. If the line is currently being displayed on the screen, the
^cursor moves to the line without any paging. If the line is not on the
■ • x screen, the display is paged so that the specified line appears on the

screen with the cursor.

The line number specified in the JUMP command can be written in
two ways: absolutely or relatively. An absolute line nun^ber simply
specifies the number of the line to next appear with the cursor (e.g.
“JUMP 10” causes the cursor to move to line 10). A relative line
number (a number prefaced by - or +) specifies a number of lines
before or after the current line. (A “JUMP +1” command, with the
cursor currently on line 10, causes the cursor *o move to line 11, and
“Jump -1” causes it to move to line 9).

Two special forms of the JUMP command cause the cursor (and
screen) to be moved to the top (beginning) and bottom (end) of text.
The form “JUMP T” causes the first page of text to be displayed with
the cursor in the first line; “JUMP B” causes the last page of text to
be displayed with the cursor in the last line.

If a relative line number calls for cursor placement in a line with a
number of less than 1 or greater than the number of the last line of
the text, the cursor appears, respectively, at the first line or last line
of the text.

The four forms of the JUMP command are shown in the following
examples.

JUMP: MOVETHE CURSOR (AND SCREEN)TO ANOTHER LINE

SCREEN EDITING

(ESC] J100 Move the cursor to line 100

[ESC] J + 3 If the cursor is on line 100, move it to line 103, if it is on 5,
move it to 8; and so on.

[ESC] J T Move to the top (first) line of the text

[ESC] J B Move to the bottom (last)iine of the text

LIST: Display or Print Lines of Text ■
The LIST command causes specified lines in the text area of
memory to be displayed or printed. Device parameters for this
command must be enclosed in double quotes. If no line-number
range is specified, the entire text is listed. When no first or last line
number is specified in the command, line numbers default
(respectively) to line 00001 and the last line in the text (as in the
DELETE command).

In line-editing, the first line appears in the LCD display if the LIST
command contains no device parameters. It can be edited as if the E
command had been pressed in response to the command-mode
prompt Subsequent lines appear sequentially each time [ENTER]
is pressed. If a device number of a printer, for example, or a device

^ number and filename for a mass-storage device are specified in the
LIST command, the file lines are printed or transferred to the

H specified device or file rather than displayed.

u
u

u
u
u
u
u
u
u
u
LI
u
u
u
u
u
u

CHAPTER 4
THE LINE AND SCREEN EDITOR

Lines are printed either with or without numbers in accordance with
^the UNE/NOLINE command in effect during line editing or the [CTL]

toggle in effect during screen editing.

screen editing, the LIST command must contain device
X parameters. There is no provision for listing to the screen device.
,7. The device number must not specify the terminal or display device

being used for screen editing.
At the outset of LIST execution, when the editor attempts to open a
device an error results in an Open error NN [device], Retry?
prompt. With an N response, the LIST command is terminated. If an

t * error occurs while file lines are being output, listing terminates with
the record being listed when the error occurs. An error message is
displayed.
The forms of the LIST command are shown in the following

-E. examples.

LIST: DISPLAY OR PRINT LINES OF TEXT

LINE EDITING

LIST List memory text line-by-line to display

LIST 250- List text lines 250 and following

LIST-250 List text lines through line 250

LIST “20” List text to device number 20

LIST “1.DATA” List all lines to a file named “DATA” on mass
storage device number 1

LIST “20” 50- List lines 50 and following to device 20

UST“1.A”-50 List lines through 50 to a file named “A” on
device 1

SCREEN EDITING

[ESC] L “20"

[ESC] L“1.DATA”

List text to device number 20

List all lines to a file named “DATA” on mass
storage device number 1

[ESC] L “20” 50-

[ESC]L“1.A”-50

List lines 50 and following to device 20

List lines through 50 to a file named “A” on
mass-storage device 1

73

CHAPTER 4
THE LINE AND SCREEN EDITOR

MOVE: Move a Une or Block of Text
The MOVE command copies a specified line or group (block) of lines
from one point in the text area of memory to another and deletes the
original lines. The block to be moved is specified by line number as
in the list and delete commands: if no last address is specified for a
block, only one line which corresponds to the first line number is
moved. The line of the text before which the line or block is to be
moved is also specified by line number. The command MOVE
1-10,20 moves lines 1 through 10 to a position in the text just before
line 20.

The default for the line that begins the block of lines is 1, and the
default for the line that ends the block is the last line in the text.

The forms of the MOVE command are shown in the following
examples.

MOVE: MOVE LINE OR LINES TO ANOTHER POINT IN TEXT

LINE EDITING

MOVE 3,6 Move the third line so that it becomes the fifth

MOVE 1-10,21 Move the first 10 lines of the text so that they
become the second 10

SCREEN EDITING

[ESC] M 3,6 Move the third line so that it becomes the fifth

[ESC] M 1-10,21 Move the first 10 lines of the text so that they
become the second 10

QUIT: Return to the E/A Menu
The QUIT command causes the CC-40 to exit the editor and return
to the E/A menu. Before the editor is exited, however, the prompt Are
you- sure (Y/N) ? appears in the console display or in the last line of
the screen display. Pressing Y for YES permits the exit to occur.
Pressing N, causes a return to the editor.

Once Y is pressed in response to the prompt, all text in memory is
lost.

The forms of the QUIT command are shown in the following
examples. '

QUIT: RETURN TO EDIT MENU

LINE EDITING

QUIT Leave line editing and return to edit menu

SCREEN EDITING
[ESC] Q Leave screen editing and return to edit menu

7V

u
u
u
u
J

u
u
u
u

u
LI
u
LI
u
u
LI

„ CHAPTER 4
n THE LINE AND SCREEN EDITOR

IK
r

n

in
fi
fi
r
fi
n
n
fi
n
fi
fi
n

REPLACE: Find One String and Replace It with
Another
The REPLACE command searches for the next occurrence of a
specified string (sequence of characters) in the text area of memory
and replaces it with another specified string. All alphabetic and
numeric characters and spaces are significant in the search. There
are three options which can be, either alone or in combination,
selected with the REPLACE command: the word W option, the verify
V option, and the all A option.

The W option following a REPLACE command indicates that the
search is for a “word” bounded by nonword characters. Individual

- characters of the word can be either lowercase or uppercase. The W
option in the REPLACE command operates just as in the FIND
command.

With V option in effect when a string is found during line editing, the
display shows 19 characters of the line beginning with the string.
Following the string is the prompt Replace? A Y response to the
prompt causes replacement to occur; an N response causes the
string to be skipped over without replacement. While the editor
awaits a (Y/N) response, a line can be scrolled right or left within the
19-character window by the use of and -* if option A is in effect,
the search is continued; if not, the search is terminated.

With the verify option in effect when a string is found during screen
editing, the cursor is placed over the first character of the string. The
prompt Replace: Y)es N)o S)top appears in the command line. A
Y response to the prompt causes replacement to occur; an N
response causes replacement to be skipped over. An S response

. terminates the REPLACE command.

The REPLACE command followed by A indicates that ail
occurrences of the searched-for string in the text are to be replaced.
When the verify option is also specified, the replacement operation
stops each time the searched-for string is found to query about

■ replacement. After replacement of the string is effected or skipped
over by a Y or an N response, the search continues through

/ ^ subsequent lines. If a S response instead of a yes-or-no response is
j ' given to the prompt, no replacement occurs and the REPLACE ALL
± : command is terminated. If the verify option is not specified in a
4A REPLACE ALL command, every occurrence of the searched-for

string is replaced. The display reports the number of times that
' replacement has occurred with the message Number of

replacements = NN when the ALL option is in effect.

When a string is replaced, the original text of the line is saved in the
• recover buffer. If, before the recover buffer is overwritten in another

; operation (such as another replace operation, line modification, or
' line deletion), [UNDO] is pressed, the last replacement is voided: the

original text line is restored.

' If the string which is to replace the searched-for string is null (that is,
no characters are typed between delimiters), the effect of the
replacement is to delete the searched-for string from the text area of
memory.

The forms of the REPLACE command are shown in the following
examples.

CHAPTER 4
THE LINE AND SCREEN EDITOR

REPLACE: FIND ONE STRING AND REPLACE IT WITH ANOTHER

REPLACE XX.YY. Replace the next occurrence of “XX” with
“YY”

REPLACE W7X.X7XX? Replace the next occurrence of “X.X”,
“X.x”, “x.X”, or “x.x” with “XX”

REPLACE V .XX. YY. Replace the next occurrence of “XX” with
“YY” after displaying the line, prompting
with “Replace?”, and receiving a y or Y
response

REPLACE A XX.YY. Replace ail subsequent occurrences of
“XX” with “YY”

R A XX.YY. Same as “REPLACE A .XX.YY.”

RAWV .XX.YY. Replace as above with all options
specified

SCREEN EDITING

(ESC] R XX.YY. Replace the next occurrence of “XX” with
“YY”

[ESC] R W .XX.YY. Replace the next occurrence of “XX”, “Xx”,
“xX”, or “xx” with “YY”

(ESC) R V .XX.YY. Replace the next occurrence of “XX” with
“YY” after placing the cursor at the string,
prompting with Replace: Y)es N)o
S) top, and receiving a y or Y response

(ESC) RA. XX. YY. Replace all subsequent occurrences of
“XX” with “YY”

(ESC)RAWV XX.YY. Replace as above with ail options
specified

SAVE: Write the Text to a Mass-Storage File
The SAVE command causes the text in memory to be transferred to
a file on a mass-storage device. The text is saved with lines
separated from each other by single-byte nulls. If the text is in
crunched format, it is saved to the file in crunched format. Line
numbers are not saved.

The SAVE command permits optional specification of record size. If
no record size is specified, the text is saved as one record. If a size of
less than 80 bytes is specified, the text is saved in 80-byte records. If
a size greater than 80 is specified (1024, for example), records written
during SAVE command execution are of that length.

At the outset of SAVE execution, when the editor attempts to open a
file, an error results in an Open error NN [device], Retry? prompt.
Changes in media are permitted before a Y response is given. With
an N response, the SAVE command is terminated. If an error occurs
while text is being written to the file, the output operation terminates
with the record being listed when the error occurs. An error message
Is displayed.

THE LINE AND SCREEN EDITOR

The forms of the SAVE command are shown in the following
examples.

SAVE SAVE THE TEXT IN FILE ON MASS-STORAGE DEVICE

LINE EDITING

SAVE 1.TABLE

SAVE1.TABLER = 70

Save the current memory text to device 1
with the filename “TABLE” in a single
record

Save “TABLE” to device 1 in 80 character
records

SAVE 1.TABLER = >FF Save the text as “TABLE” to device 1 with
a record size of >FF (255)

SCREEN EDITING

[ESC] S1.TABLE

[ESC]S1.TABLER = 70

Save the current memory text to device 1
with the filename “TABLE” a single
record

Save “TABLE” to device 1 in 80 character
records

[ESC]S1.TABLER = >FF Save the text as “TABLE” on device 1
with a record size of >FF (255)

TAB DEFINE: Set Display Tab Stops Other Than as
Defined
The TAB DEFINE command, used only in screen editing, redefines
videodisplay tab stops during editing. The column positions of up to
10 stops, separated from each other by commas, are entered on the
last line of the display before [ENTER] is pressed. (The leftmost
column is column 0, and the rightmost is column 79.)

The form of the TAB DEFINE command is shown in the following
example.

SETTABS: TO POSITIONS OTHER THAN THOSE SET IN DEFINE

SCREEN EDITING

[ESC]T 5,10,15,20,25,30,35,40 Set tabs after every five columns

CHAPTER 4
THE LINE AND SCREEN EDITOR

UNDO: Cancel the Last Modification, Deletion, or
Replacement
The UNDO command transfers a line or block of lines from the
recover buffer into the text area of memory. The recover buffer
always contains the most recently deleted line or block or the most
recently modified line of the text. Through UNDO, deleted lines are
reinserted into the text or a modified line is replaced by the original
text of the line.
the forms of the UNDO command are shown in the following
examples.

UNDO: RESTORE TEXT TO STATE BEFORE
MODIFICATION OR DELETIONBe---------------- :---H? LINE EDITING

UNDO After line modification, replace the modified line
B“ ‘1^, with the original; after deletion, restore deleted

lines to the text

. *.“•

^SCREEN EDITING

[ESC] U After line modification, replace the modified line
with the original; after deletion, restore deleted

" lines to the text

VERIFY: Compare the Text with a Mass-Storage
File
The VERIFY command compares character-for-character the text in
memory with a specified file on a mass-storage device. If one or
more of the respective characters in the text and the file differ, the
message I/O error 24, filename is displayed. (Other errors, such
as file-not-found and device errors, can also occur during a verify
operation). The primary use of VERIFY is to ensure that file transfer
between mass-storage and memory (through COPY or SAVE
commands) introduces no errors.

No record size is specified in the verify command.

The forms of the VERIFY command are shown in the following
examples.

VERIFY: COMPARE MEMORY AND MASS-STORAGE FILES

LINE EDITING

VERIFY 1.ABC Compare the memory text with the file named
“ABC” on device 1; issue message if text and the
file are different

SCREEN EDITING

[ESC] V1 .ABC Compare the memory text with the file named
“ABC” on device 1; issue message if text and the
file are different ■

u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u

CHAPTER 5
THE ASSEMBLER

This chapter describes the way the assembler is used to produce
object files from source-file text It also describes, in overview and in
detailed discussion, the assembler instructions called pseudo
operations and directives, and it discusses assembly errors.

The assembler is an E/A program which converts an assembly-
- language source program stored on a mass-storage device into a

>' machine-language program. It translates the easily remembered
(mnemonic) expressions for processor commands, program
addresses, and program-related values (source code) into machine
language (object code). The object code, when suitably linked with
other programs and loaded into CC-40 system RAM or CC-40
cartridge RAM, can be executed by the TMS7000-family processor.

Source and Object Files
The assembler source file is an assembly-language text file which
has been written to a mass-storage device. The object file, also
written to a mass-storage device, contains machine-language
commands, references to variables in other programs, and
information required for linking and running TMS7000-family
machine-language programs.

Source Files
The assembly-language program, stored as a file on a mass-storage
device by the E/A editor, can be in either crunched or uncrunched
format. In crunched format, keywords (assembly-language op codes
and assembler instructions) are represented by single-byte tokens
and multiple spaces are suppressed. Crunched format thus saves
storage space. The input file can be stored as either a single- or
multiple-record file as specified in the editor SAVE command. Single
null (XX)) bytes separate the lines of text in the file.

Object Files
The assembler output (object) file consists of an absolute or
relocatable machine-language program which can subsequently be
processed for execution from CC-40 memory. The object file can be
saved on a mass-storage device in a single record or in multiple
records of a specified length. Relocatable object code flags address
values in object code produced by direct addressing commands
such as LDA, STA, CALL, and BR. These addresses are
subsequently evaluated by the linker relative to the start of the
machine-language program.

The format of the object-code program is tagged-object format. In
this format, assembly-language labels which have been converted
into absolute or relocatable values within a single object file can be
resolved from other tagged-object files being linked with it for
execution. Linking resolves references external to the assembler
output file by transferring labeled addressing and value information
among files to be linked.

Tagged object format stores object code in a series of variable
length fields. Each field begins with a single alphabetic label or tag.
The label or tag for each field uniquely identifies the format, the
contents, and the type of data in the field. A complete description of
CC-40 tagged-object code appears in Appendix E of the CC-40
Editor/Assembler Reference Manual.

13

CHAPTER 5
THE ASSEMBLER

Running the Assembler
After the E/A package is entered from BASIC with a RUN “AIDS”
command, the E/A program menu appears in the display as shown
below.

E)dit A)ssemble L)ink B)asic?

The assembler is entered when A is pressed. The assembler displays
a series of prompts which request the names of mass-storage files
and the designations of peripheral devices which are to be used
during assembly.

' Upon entry, the assembler prompts for (1) source file, (2) object file,
(3) type of assembly, and (4) listing device number or filename. These
prompts, along with typical responses, are shown below.

Source file 1.SRC
Object file 1.OBJR = 1024
In memory assemble (Y/N)? N
List file 21.B = 300,R = N

The object file is optional. No object file is produced if [ENTERl is
pressed. Assembly without an object file is useful for displaying or.
printing assembly errors in minimal time.

When an object-filename is entered, it can be followed by spaces
and a specification for record length (of the form R = nnn, with nnn
being the number of bytes in a record). Specifying no record length
with the filename indicates that the object file is to be written as a
single record. In the example above, the object file is given the name
“OBJ”; the file is written to device 1 in 1024-byte records.

The In memory assemble? prompt does not always appear it
appears only if an object file is to be provided by assembly. An
answer to the prompt depends on the length of text being
assembled and CC-40 system configuration. An N answer to the
prompt, when mass-storage devices are used that permit only one
file to be open at a time, requires that separate devices be used for
source file and object file. A Y answer indicates that the object code
is stored in memory until the source file can be closed and the
object file written to the storage device. For an in-memory assemble,
memory must be large enough to contain source code, object code,
and assembly tables at the same time.

Much larger files can be assembled when an N answer is given to
the In memory assemble? prompt than when a Y answer is given,
but the mass-storage device configuration of the CC-40 system
must support two files being open simultaneously, either with two
devices, or with some single device that permits multiple open files.

If no listing device or filename is entered, no listing is produced and
assembly errors are displayed on the console. When the List file
prompt is answered with a device number, as with the RS232 device
specified in the example above, the listing can be printed or
displayed on an external device.

n
Bl

in

r
n
r>

TUP. CHAPTERS
----------------------------THEASSEMBLER

particularly useful because the TMS7000-family processor
has a memory-pointer decrementing instruction (DECD) but
no pointer incrementing instruction. A label preceding the
RTEXT instruction is evaluated to the address of the last
byte of the string (highest address).

Assembler Directives
Assembler directives specify the manner in which program
assembly is carried out. Although they do not produce object code,
these instructions are also typed into the op-code field, and any
values used with them are placed in the operand field.

Assembler directives cause, for example, assembly of object code
for use at particular locations in memory (relative or absolute), and
they cause listing or suppression of listing of assembly source and
object code.

The assembler directives include the following groups of
instructions.

• Four instructions for specifying the location at which subsequent
code and data are to be written into the object file

• An instruction for equating symbols with values during assembly

• An instruction for specifying the end of code for a program

• Two instructions for producing object-code symbols which enable
multiple object-file linking

• An instruction for including another source file within the current
one during assembly

• Five instructions for printing and formatting assembly-output
listing pages

• An instruction for setting assembler options, such as producing
cross-reference (symbol/location) listings and truncating the listing
of lines of object code for byte, data, and text lines

The instructions within each group of directives are described
- below.

Code and Data Location Instructions
Four instructions control program memory locations in which code

< and data can be stored during program execution. Two instructions
directly set the assembler “program counter/’ and the other two
cause the assembler program counter to increment past memory

; ? locations where data is to be stored.
£ . AORG: Absolute origin: Set the absolute-address origin of
/ subsequent object code to the value specified in the
Ty? operand.
"' \ RORG: Relocatable origin: Set the relative-address origin of the

object code to an address displaced from relative address 0
by the value specified in the operand.

* BSS: Block starting with symbol: Skip past object-code locations
for the number of bytes specified in the operand and assign

- any label for the skipped bytes to the address of the first
byte skipped.

BES: Block ending with symbol: Skip past object-code locations
for the number of bytes specified in the operand and assign
any label for the skipped bytes to the address of the first
byte after the block skipped.

CHAPTER 5
THE ASSEMBLER

Symbol Value Equating Directive
The EQU directive assigns values to symbols which precede it in the
label column of the line.
EQU: Equate: Assign the value in the operand to the label.

End of Source Statement
The END directive marks the end of the assembler source code. Any
source-code instructions following an END directive are ignored by
the assembler.

END: End source code: Terminate assembly at this line.

Linking Information Directives
Two directives provide the E/A linker with information making
program variables accessible to linked programs and permit the use
of similar variables in the other programs. (Also, see "IDT,” below.)

DEF: Define symbol: Include the symbol specified in the operand
as a “public” symbol in the object file with a value made
available to the linker for use in other programs being
linked to the current one.

REF: Reference symbol: Include the symbol specified in the
operand as an “external” symbol in the object file with a
value to be searched for by the linker among other
programs being linked to the current one.

Source File Copy (Include) Directive
The COPY directive enables the assembler to produce object files
from multiple source files.

COPY: Copy file: Copy or include another source file named in the
operand into the current file during assembly only (source
files remain separate following assembly).

Assembly-Listing Control Directives
Five directives control the listing of the assembly (and identify the
program in the object file for access by the linker).

IDT: Identify program: Identify the program by the string in the
operand both for the listing page heading and for access by
the linker.

TITL Title the following pages: Provide a page title for the next
page and subsequent pages from the string in the operand.

LIST: List lines: List the lines of the assembled program following
this directive and set the number of lines to be printed on
each page prior to automatic end-of-page eject.

PAGE: Eject page: Eject a page in listing.

UNL Unlist lines: Do not list the lines of assembled program
following this directive.

CHAPTER 5
THE ASSEMBLER

Assembler Option Directive
The OPTION directive turns on and off the listing of multiple lines of

' object code following DATA and TEXT instructions, and it turns on
and off the listing of a cross-reference map of assembly variables..
When OPTION is placed in a line in the position of an op code, the
following option specifications (separated by commas if more than
one is required) can be listed in the operand field.

■ B: Truncate byte lines: Print only the first line of object code
generated by each BYTE pseudo-op.

D: Truncate data lines: Print only the first line of object code
generated by each DATA pseudo-op.

T: Truncate text lines: Print only the first line of object code
generated by each TEXT pseudo-op or the last line of each
RTEXT pseudoop.

F: Finish line truncation: Print full object code generated by
BYTE, DATA, TEXT, and RTEXT pseudoops.

X: Produce a cross-reference table: Produce a detailed cross
reference table listing the value of each symbol, the source
file line on which the value definition occurs, and the
source-file lines containing references to the symbol (in
operands).

R: Produce a reduced cross-reference table: Produce a cross
reference as above, except that only symbols from copied
files which are referenced are listed in the table.

Pseudo Operations in Detail
All pseudo operations which produce binary data in the object code
are written into source lines in the op-code field. The expressions to
be evaluated into binary data are written into the operand field of the
line.

Each instruction can be preceded by a label which, for BYTE, DATA,
and TEXT, is evaluated during assembly to the location at which the
first byte representing the operand is stored. A label for the RTEXT
instruction, however, is evaluated to the location at which the last
byte representing the operand is stored.

Numeric Data-Storage Instructions: BYTE and DATA
The BYTE instruction causes one or more singlebyte values
specified by th* cpei and to be.wfitc*n into the object if one byte
is to be written, the instruction has the following form.

BYTE >D

Multiple bytes can be written with a single instruction by entering
multiple values separated by commas into the operand field of the
line, as in the following.

BYTE 13,>D

The DATA instruction causes one or more two-byte values (words)
specified by the operand to be written into the object file. If one word
is to be written, the instruction has the following form.

DATA >D

Multiple words can be written with a single instruction by entering
multiple values separated by commas into the operand field of the
line, as in the following.

DATA 1023,-1023

8*f

a
a
a
Q
a
a
a
11
a
a
H
b

U
a
0
a
0

CHAPTER 5
< THEASSEMBLER

The assembler evaluates negative values into binary form according
to two’s complement convention. The hexadecimal representation
for the evaluation of -1 is >FFFF, for example, and the
hexadecimal representation of - 65535 is >0001.

String characters can be used in expressions in BYTE or DATA
instruction operands. The instruction BYTE ‘A’ - >40 writes >01 or
CTL - A into the object file. Similarly, the instruction DATA ‘AB’
writes >4142 into the object file.

ASCII Data storage Instructions: TEXT and RTEXT
The TEXT instruction causes a quoted string of ASCII characters
specified in the operand to be written into the object file in normal
order: the first character in the operand is written at the lowest
object-file location, and the last character is written at the highest

• object-file address. If the initial quotation mark in the operand is
preceded by -, the highest bit (bit 7) of the last byte of text stored is
set to ONE to mark the end of the string.

The RTEXT instruction, like the TEXT instruction, causes a quoted
string of ASCII characters specified in the operand to be written into
the object file. The order in*which the characters are written,
however, differs with the RTEXT instruction: the last character in the
operand is written at the lowest object-file location, and the first
character is written at the highest object-file address. A label used
with RTEXT is assigned the value of the location of the first
character (at the highest location). Decrementing a memory pointer
set to this label with a DECD instruction during program execution
scans through the reversed text in normal order. If the initial
quotation mark in the operand is preceded by -, the highest bit (bit
7) of the lowest-addressed byte of text stored is set to ONE to mark
the end of the string.

Assembler Directives in Detail
Assembler directives can be divided into several classifications.
Each of these classifications is discussed below.

Code-and Data-Location Instructions: AORG, RORG, BSS,
and BES
When translating assembly-language instructions and data into
object code, the assembler progressively maintains a two-byte
counter which points to the location of each byte of a machine
command or data block in the object code. As each byte of the
object code is written, the pointer is incremented to the next
location in memory.

In general, when the assembler reads a label in the source code
(during “pass 1,” the initial assembler scan of the source code), it
stores the label and the value of the corresponding location counter
in a table called the svmbol table. After the table is comolete. the
assembler scans the source code again (during “pass 2” in which
the object code is written). During pass 2, when a symbolic (non
numeric) operand is found, the assembler searches the symbol table
in order to find a numeric value corresponding to the operand. The
numeric value from the table is then incorporated into the object
code for the assembly-language or data instruction currently being
processed.

CHAPTERS
THE ASSEMBLER

Four assembler directives provide control over the assembler
location counter from statements in the source program. The AORG
(absolute origin) and RORG (relocatable origin) instructions
determine both the value of the location counter and the action
taken by the linker in processing the object code for execution at
specific memory addresses. The AORG and RORG instructions are
mutually exclusive during the assembly of any program. Assembly
set by AORG to produce absolute code cannot also produce
relocatable code. Likewise, relocatable-code assembly set by RORG
cannot produce absolute code. The assembler produces a Mixed
module error message and disregards any origin statement that is
not of the same type as the first origin statement.

When the AORG instruction is encountered, the two-byte location
counter is set immediately to the value specified in the operand.
Subsequent assembly-language and data instructions increment
the counter from this value. If this value is >4567, for example, then
any label on the AORG instruction itself or on the instruction
following it is stored in the assembler symbol table along with the
value. If the label appears in an instruction operand, the assembler
uses >4567 appropriately in the object code for the instruction
during pass 2 of the assembly.

The RORG instruction performs essentially the same task as the
AORG instruction, except that it flags the object code following it for
.subsequent relocation by the linker. The linker subsequently
“biases” address-related words in the object code following an
RORG instruction by the address at which the object code is later to
be loaded. An RORG instruction assigning the location counter a
value >567, when the linker is set to relocate the origin of the
program to location >4000, results in an address of >4567 for the
next instruction.

If no AORG instruction occurs before the first object-code producing
instruction or memory-blocl< skip instruction in a program (see BES
and BSS below), the origin for the program defaults to RORG 0. If an
AORG directive is subsequently encountered, a Mixed module error
occurs.

The object code in a program can be stored discontinuously: the
assembler location counter can be incremented past a specified
number of addresses to reserve the skipped block of memory for
data storage during processing. Two directives cause such blocks
of memory to be skipped: BSS (block skipped defined by starting
symbol) and BES (block skipped defined by ending symbol). The
operand of each instruction specifies the number of bytes added to
the location counter during both passes of assembly.

The only difference between the BSS and the BES instructions lies
in the value which the assembler assigns to a label included with the
instruction during first pass. With a BSS instruction, the value
assigned is the value in the location counter when the instruction is
encountered in the source code. With a BES instruction, the value
assigned is that of the location counter after the length of the block
skipped has been added to it. The value is the address of the next
byte of object code to be stored.

CHAPTERS „
THE ASSEMBLER

Value-Assignment Instruction: EQU
When the assembler encounters an equate instruction in the source
code during the first assembly pass, it stores the value specified in
the operand of the instruction in the symbol table as the value

- assigned to the label of the instruction. If the operand is itself a
symbol, it must be a symbol previously evaluated to a number and
stored in the symbol table.

Registers can be given mnemonic names through the use of equate
statements. C EQU R2, for example, can enable programming with
another register designated by letter. Equate statements which
define registers should, however, be encountered in the source code
before the assembler scans any instructions using the register
name, because register instructions vary in length according to the

* registers being used. Designating the symbolic name of a register
< after the assembler has incremented the location counter past a

statement with the name in an operand can result in an erroneous
value in the location counter during assembly pass 1; all symbols

" stored in the symbol table thereafter can be in error. The assembler
detects and reports this error with an Invalid register value
message. The error can be avoided by placing equate statements

Z which rename registers at the beginning of a source file.

'? Linking Directives: DEF and REF
The def ine-symbol (DEF) instruction causes the assembler to
include a symbol and its value in the tagged-object file within a table
used for resolving symbolic references from other files. The DEF
Instruction declares the value of a symbol in the operand to be the

• value substituted while linking with other files in which the symbol
occurs undefined (provided the symbol is in the operand of a REF „
instruction within the other files: see below). The symbol is “public”
and available for use by other files being linked for memory
execution with the current file.
The external-reference (REF5) instruction directs the assembler to put
a symbol in the operand into a list of tagged-object code symbols
with values to be determined from other files during the linking
process. Upon linking, symbols tagged as REF symbols in one file
are searched for among symbols tagged with DEF in other files
being linked: values in DEF tables corresponding with entries in a
program’s REF list are returned to the program for use in producing
executable object code.

End-of-Assembly Instruction: END
The END instruction causes any succeeding lines in a source file to
be ignored during both passes of the assembly. The END directive is
optional at the physical end of a file being assembled.

Multiple Source File Directive: COPY
The COPY instruction directs the assembler to include a source file
other than the one specified at the outset of assembly. This
instruction does not actually copy source code between mass
storage files. It does, however, at the point of inclusion in the source
file originally specified for assembly, copy the file named in the
operand into memory for continuation of assembly during both
passes. When the copied file is completely scanned during either
pass of assembly, the assembler resumes its scan of the primary file
specified in response to the assembler Source file prompt with the
instruction following the COPY directive.

CHAPTERS
THEASSEMBLER

Files included in assembly by a COPY instruction can not contain
cOP j cn<ie/«lcf\sourcefde<*s^
If the filename in the COPY directive is preceded by the letter "P”
and a comma, the assembler issues a prompt for insertion of media
containing the file to be copied during all passes of the assembly.
For example, the directive COPY P,1.COPYFILE produces an
Insert: 1. COPYFILE message in the display.

The COPY instruction also requires that both the original file and the
file being copied into it be open simultaneously. Therefore, if a
mass-storage device is used that permits only one file to be open at
a time, two such devices must be used. A third device is required if
In memory assemble (Y/N) ? has been answered with N.

Listing Directives: IDT, TITL, PAGE, LIST, and UNL
If a device number or filename is entered in response to the List
file prompt at the beginning of assembly, an assembly listing is
printed during the second assembly pass. This listing, an example of
which is shown in figure 5-1, consists primarily of the object code
generated during assembly against the left margin of the paper in
correspondence with the source-code line from which it is generated
to its right. (Note that the listing has been edited to align the
elements of each line into columns so that they can be labeled; the
actual listing has fewer spaces between elements of each line.)

Following assembly, the assembler can be directed to perform a
third pass to produce a cross-reference table, an example of which
is shown in figure 5-2. The cross-reference table correlates the
name of each symbol used in the assembled program, the value .
assigned to the symbol during assembly, the number of the source
code line on which the value is assigned, and the numbers of lines
on which the symbol is referenced (in operands).

Both listings and cross-reference tables are controlled by assembler
directives. Some directives control listing format, Including page
headings, title lines, and page length. Other listing-control directives
control whether selected parts of a listing are to be suppressed and
whether a cross-reference table is produced.

Listing Format Directives
The file-identifier (name) instruction IDT specifies in the operand the
name of the file being assembled. This name appears, along with a
page title and page number, in a heading at the top of each page.
The IDT directive also causes the name of the program to be
included in the assembler output file, thus providing the linker with
the program name. The name is also stored in the object file for use
by the linker in reporting on files successfully linked. It can contain
as many as eight characters and must be surrounded by single
quotation marks. If no IDT instruction is present, the default name
“NO$IDT” is printed in the heading.

THE ASSEMBLER

The page-title instruction TITL causes additional text to appear in
the heading line beside the program identifier. The content of the
line, typed into the operand of the instruction and surrounded by
single quotation marks, can contain up to 40 characters. For a page
title to appear on the first page of the listing, the TITL instruction for
it must precede any line which is to be printed in an assembly
listing. After a page title is specified, it appears at the top of every
page following the TITL instruction until it is subsequently changed
to the text in a subsequent TITL instruction. The line containing the
TITL directive is not printed in the listing. If no TITL instruction is
present to specify the title to appear in the heading, the default title
“CC-40 TMS7000 Assembler Version 1.0” is printed.

The page-eject instruction PAGE causes an ASCII form-feed
character (>0C or CTL - L) to be sent to the printer. An ASCII form
feed character can also be sent automatical^ efttra preset number
of lines are printed on a page, as specified in a LIST directive (see
below).

Directives to List or Not List Lines
An entire program need not be printed in a listing. Selected lines can
be listed by preceding them with a LIST instruction. Selected lines
can be suppressed by preceding them with an unlist, UNL,
Instruction. Lines containing either the LIST or the UNL instruction
are not printed in the listing. <

The LIST instruction can, in addition, be used with a numeric
operand to set the number of lines to be printed on a page before a
page is automatically ejected. The instruction LIST 45, for example,
causes 45 lines of text (including the heading and blank line
following it) to be printed before a new page is begun. A LIST
Instruction with the number 0 in the operand, however, has a special
purpose: LIST 0 suppresses the heading and all form feeds. A LIST 0
directive is in effect when listing begins.

A LIST directive without an operand causes printing to resume with
the number of lines on each page set at the same value as in the
most recent LIST directive with an operand.

, Option Directive: OPTION
The OPTION directive provides for automatic deletion of listing lines
which consist of only object code produced by BYTE, DATA, and
TEXT instructions. It also provides for printing a cross-reference
table of assembly variables. Like other directives, OPTION is placed
in the op code field of an instruction, and letters representing
selected options are placed in the operand field. Multiple selection
of options in the operand field requires that commas separate each
letter, as in the following example.

- OPTION T,R

The BYTE, DATA, TEXT, and RTEXT pseudo ops sometimes result in
the printing of many unwanted lines of object code. Each byte of
object code produced by BYTE, TEXT, and RTEXT (each word of
object code produced by DATA) is listed on a separate line
beginning with the line on which the instruction occurs. A
30-character string in a TEXT statement therefore produces 30 lines
of listing. To eliminate such long segments of listing, four directives
are used. The OPTION B, OPTION D, and OPTION T directives cause

CHAPTER 5
THE ASSEMBLER

only the initial line of object code generated respectively by BYTE,
DATA, and TEXT (or RTEXT) statements to be listed. Listing of all
object-code lines following the first is suppressed. The OPTION F
option cancels the effect of any and all OPTION B, OPTION D, or
OPTION T directives issued in the source code preceding it.

An X or an R option in the operand field of an OPTION directive
causes the assembler to perform a third assembly pass to generate
a cross-reference table.
Both X and R produce identical tables if no file is being copied
(included) during assembly. If one or more files are copied, however,
the two directives produce different tables. The X instruction causes
all symbols defined in both the primary file and copied files to be
listed. The R instruction also causes all primary file symbols to be
included in the table, but it reduces the symbols included from the
copied files to those which are referenced.

When copied files are assembled and cross-referenced, line-
numbers in cross-reference listings for symbols within them are
keyed with alphabetic characters. The letter “A” precedes line
numbers in the first copied file encountered during assembly, the
letter “B” precedes numbers in the second copied file, and so on.
The cross-reference table in figure 5-2, above, shows an assembly
which includes two copied files.

Assembly Errors and Error Messages
During passes 1 and 2, the assembler screens the source file for
errors in instruction entry. If a listing is being printed during pass 2,
the assembler prints a message identifying any error on an
unnumbered listing line immediately following the instruction line
on which the error occurs. If no listing is being printed, the
assembler outputs the assembly-listing of the line containing the
error to the display. Pressing any key brings any subsequent lines of
object code produced by the source line or the error message into
the display.

Assembly error messages do not necessarily indicate that the
object code produced by corresponding instructions Is incorrect.
Error messages do mean that the object code can be in error and
should be examined. Likewise, the absence of assembly errors does
not indicate that “error-free” programs can be executed as
expected. The absence of assembly errors indicates the
acceptability of source-code instructions to the assembler on an
instruction-by-instruction basis; the logical flow of the program
remains unchecked until the program is executed and debugged.
(See chapter 8 of this guide, “The DEBUG Monitor.”).

The three tables shown below list error messages and explain the
errors which correspond to each message. The first table lists
warning messages. The object code produced by a warning can be
usable, but it should be inspected carefully. The second table lists

- errors classified as “severe errors.” Severe errors indicate a very
high probability that incorrect object code has been produced. The
third table lists errors classified as “fatal errors.” Fatal errors cause
immediate and unrecoverable termination of assembly.

CHAPTERS
THE ASSEMBLER

fl

fl

fl

fl

WARNING MESSAGES

MESSAGE EXPLANATION

. Value truncated A numeric value is too great. For example
>1FFFF has been evaluated to a word
expression as >FFFF

Symbol truncated A symbol string contains more than eight
characters (only the first eight are significant)

Trailing operands TooTnany expressions in the operand field:
extra expressions ignored

SEVERE ERROR MESSAGES

MESSAGE EXPLANATION

fl

fl

fl

fl

fl

fl

fl

fl

fl

Invalid op code

Undefined symbol

Multiply defined

Invalid symbol

Invalid constant

Invalid expression

Missing operand

Invalid use of
symbol

Reserved symbol

Invalid register
value

Divide by 0

Too many nested
parentheses
Missing “)”

The command field does not contain a valid
instruction mnemonic, pseudo operation, or
directive

An expression in an operand field has not been
defined by a label or a REF operand, and it
cannot be evaluated

A symbol is defined more than once

A symbol contains characters other than “A”-
“Z”, “a”-“z”, “0”-“9”, “>”, and

A string constant contains an invalid delimiter
or a numeric constant contains an invalid
character

Expression contains illegal operations or
invalid symbols

An operand required with this op code is not
present

A symbol was REFed and DEFed, or a REFed
symbol is used as a label

“$’7‘A’7‘B”,“R0”-“R127’7‘RX)”-“R>7F”, “PO”-
“P255”, “P>0”-“P>FF” or “ST”, all predefined
symbols, are being redefined

A register value exceeds 255, is not absolute, or
contains an undefined value (external or
forward referenced symbol)

Expression contains division by 0

Expression has too many nested parentheses
(normally five levels): simplify the expression

Expression lacks closing parenthesis of pair

--_y

THE ASSEMBLER H

Syntax error Invalid syntax in an operand ji
Displacement too
big

Offset generated by the jump instruction out of
-128 to +127 value range

u
Mixed module The source contains both absolute and

relocatable code (AORG and RORG) u
0

FATAL ERROR MESSAGES ■

MESSAGE EXPLANATION u
Memory full The source, object, and/or copy files and the

symbol table do not fit simultaneously in
memory (reducing record sizes can remedy the
difficulty) y

PASS1/PASS2
conflict

A symbol is defined only in pass 2 or it has a
value different in pass 2 from in pass 1, usually
because of undetected file error or a different
file being used during the second pass. This is
also a severe error if a symbol is defined
recursively, as in X EQU X +1.

u
u

Nested copy files A copied file contains a COPY directive u
0
0
II
0
0
0
0
0
u
0

CHAPTER 6.
THE LINKER

This chapter describes the way the linker is used to convert tagged-
object code into machine language object files and to link multiple
assembler-output files together into a single machine language
program.

. Assembler-output files must be processed by the linker before the
object program can be executed. Assembler-output files are In

■ tagged-object format (see chapter 6 and appendix E of the CC-40
Editor/Assembler Reference Manual). These files must be

‘ converted into TMS7000-family machine-language commands.

"... In addition to converting file format, the linker resolves (assigns
-1. values to) references which have been produced by assembler REF

and DEF directives. It produces either (1) relocatable-code programs
or subprograms which can be loaded and run under BASIC or (2)
relocatable- or absolute-code programs which can be loaded and
run in CC-40 system or cartridge RAM. Programs output by the
linker contain either absolute code or relocatable machine code (the
assembler does not produce an output file from a mixture of both).

Like assembly, linking requires two passes. The first pass
determines the length of the object file and builds a symbol table for
references among files. The second pass produces a memory image
of the object code (and a relocation table if the object code is
relocatable).

Running the Linker
After the E/A package is entered from BASIC with a RUN “ALDS"
command, the E/A program menu appears in the console display as
shown below.

E)dit A)ssemble L)ink B)asic?

Pressing L when the menu appears causes the linker to begin
execution.
Unking is controlled by commands stored in CC-40 memory. The
commands can be entered directly on the keyboard at the time of
linking, or they can be read in from mass-storage after they have
been created and saved by the E/A editor.

Upon entry, a linker prompt asks if there is a control file on a mass
storage device which is to control the linking process. The prompt
Is there a control file (Y/N)? appears in the display.The
control file contains linking commands entered through the E/A
editor.
If N is pressed, the display clears and the linker prompts with Enter
line for keyboard entry of commands to control linking. Each
command is entered on a single line. The last line entered is an E
command which signals the end of the commands list. As each
command is entered, the linker checks it for errors and displays any
appropriate error message.

If Y is pressed in response to the prompt, the linker then prompts for
the control-filename. When the control-filename is entered, the linker
opens the file and scans it for any incorrect linker commands. The
scanning continues until an E command code is found or until the
end of the control file is reached. If the end of the file is reached
before an E command is found, a warning message is displayed and
an E command code is appended to the file. Any other errors found
are printed on a “link map,” a comprehensive listing which records
the result of the linking process.

CHAPTER 6
THE LINKER

After the linker receives commands from the keyboard or reads from
the control file, it prompts for an output filename with the prompt
Linked output file. If no name is given, no object code is output
The code is nevertheless generated internally so that errors can be
determined.
Next, the linker prompts for the HEX-BUS™ device which is to print
the link map. A listing can be printed regardless of whether an
object-code file is written. If no list filename is entered, no link map
(sprinted.

Linking Commands
Five commands control linker operation. These commands identify
the assembler-output files to be linked, the type of machine code to
be produced (absolute or relocatable), and the format of the linker
output file. Each command consists of a single-character code
followed by any appropriate argument or parameter.

Spaces are allowed—but not required—between a command code
and an argument. Only one command can appear in each line. Lines
preceded by an asterisk (*) permit comments within a link-control
file. Comments appear in the link map.

Input-File Commands
An input file is included in the linklhg process If it is named in an
include command code (I or J). The argument for either include
command is the name of the file to be included. The J command
code is identical to I, except that J prompts the user to mount a
mass-storage medium (Wafertape™ medium, for example) with the
file on it. From a J code, a message such as Insert: 2 .PR0G2
appears in the console display.

As many as 255 input files can be processed in a single link
operation.

Absolute-Output Command
The absolute-address command A results in the output code which
Is absolutely addressed beginning with the value in the argument. If
no A command code is found by the linker (and an AORG instruction
from the assembler is not found before any code-producing
assembler-output command is found, the output code defaults to
relocatable code. If the linker is processing both relocatable and
absolute files and the first file specified in an I or J command is a
relocatable file, an A command must precede the command
specifying the file. The linker can process combinations of absolute
and relocatable input files into an absolute output file, but it cannot
process such combinations into a relocatable output file.
As in assembler AORG instructions, linker A commands must have
arguments in which subsequently specified absolute addresses are
higher than any address previously assigned in the linking process.
The file currently being linked cannot produce code with memory
addresses lower than or the same as addresses used by code from a
previous file.

CHAPTER 6
fl
Fi
fi
Fl

Fl
Fl
Fl
Fl
fi.

Fl

Fl
Fl
fi
fi
fi

THEUNKER

Output-File Format Command
The multiple-record output command code M sets the linker to
produce an output file containing more than one record of code. The
argument for the M command is the record length. The M command
must precede the specification of any assembler-output filenames
(see the I command, above). If an M command is not present, the
linked file is accumulated in memory for subsequent writing to
mass-storage at the end of linking, either as a single-record
relocatable-code file or as a two-record absolute-code file.

Only one M command can be issued in a single linking operation.
When multiple-record output files are to be produced and mass-
storage devices such as Wafertape™ units (which permit only one
open file to be open at one time) are being used, the output device
must be separate from the input device.

The END Command
The E command code signifies the end of the commands issued to
the linker.

:>***£> —v-

Linker Command Text and Listing
The following figure shows a series of commands provided to the
linker by a control file. Each valid command is represented, and one

" invalid command is included.

* A >9000
• * START THE CODE AT THE BEGINNING OF A 16K CARTRIDGE

/V M 255
- * NOTE THAT THE FOLLOWING ARE FILE (NOT PROGRAM) NAMES

I 1.CARTHEAD
I 1.PR0G1
J ; 1.PR0G2

> * NOTE THAT THE FOLLOWING COMMAND IS INVALID
Z
E

When a link map listing is produced, the first item in the map is a list
of the commands. Errors in the control file are documented in the
map, as shown in the figure below. Note that the commands in this
figure must have been issued in a control file, because the bad
command code Z would not have been accepted in keyboard entry
of command text by the linker. Also note that if Wafertape™ devices
are being used, a device other than device 1 must have been
specified in response to the Linked output file prompt because
of the M command.

In a link map, the M command is always moved to the top of the
command listing, and the value of the argument it contains is
always expressed in a decimal number.

CHAPTER 6
THE LINKER

M 255
A >9000
» START THE CODE AT THE BEGINNING OF A 16K CARTRIDGE
* NOTE THAT THE FOLLOWING ARE FILE (NOT PROGRAM) NAMES
I 1.CARTHEAD
I 1.PR0G1
J 1.PR0G2
* NOTE THAT THE FOLLOWING COMMAND IS INVALID
Bad command code: Z
E

Link Map Format
In a link map, the beginning addresses and lengths of each module
(assembler-output file) code are listed in hexadecimal values beside
the names assigned in assembler IDT instructions for each file. For
Identification in error messages and the symbol (definition) table in
the link map, the linker numbers modules with decimal numbers In
the order in which they are linked. The following figure shows a
typical link map with one error identified. A public symbol called
“SCAN” has multiple definitions: it is defined or “DEFed” in two
modules, once in the module with the IDT name NO$IDT and a
second time in the module with the IDT name 01234567.

CC-40 TMS7000 LINKER Version 1.0

CONTROL FILE

M 64
* PUT OUT 64 BYTE RECORDS
I 1.FILE1
Bad command code: TYYYY
I 1.FILE2
I 1.FILE3

■ E

MODULE MAP

NUMBER MODULE ADDRESS -LENGTH

1 N0$IDT 0000 0034
2 01234567 0034 0072
3 XY 00A6 018E

0233 0234

*** Warning SCAN in # 2 already defined in # 1

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO

ASTART 0000' 1 BLOOP 0049' 2 DLOOP 0023' 1
FLOOD 0043 2 GO 0093 2 HGG 0045' 2

»INPUT 0190' 3 METER 0069' 2 *NEXT 00A6' 3
*0NLY 0234' 3 SCAN 0014' 1 *SCAN 0053' 2
*ZREFO1 0119' 3

CHAPTER 6
__ THE LINKER

**** 2 : UNRESOLVED _ REFERENCES

NAME NO NAME NO NAME NO NAME NO

Z2 2 ENTRYPT 3

LINK COMPLETE

In the module map portion of the link map, relocatable values are
marked with single quotation marks following the assigned value. In
the example, all symbols except “FLOOD” and “GO” are address-
related in the three files which have been assembled to produce
relocatable code. Symbols preceded by asterisks are “DEFed” in the
numbered files, but they are not referenced or “REFed” in other files.

When symbols are defined more than once, the value assigned to
the symbol is the value associated with the first DEF instruction
found. Occurrences of the symbol after the first DEF instruction
appear in the listing, but they are marked with asterisks because
they are not REFed.

Following the symbol table, unresolved references are listed. There
are no DEFed symbols to correspond to the listed REFed symbols.

Linker Input and Output Formats
Assembler output files—input files for the linker—contain tagged-
object code and are described in appendix E of the CC-40
Editor/Assembler Reference Manual.

Output from the linker is a file which is a memory image of the
program to be executed. If the file contains relocatable object code,
memory-image code is followed by a relocation table containing
offsets to words of code which must be relocated prior to program
execution.

Headers, Memory-Images, and Relocation-Table
Records

Unless an M command is in effect, relocatable code is output in a
single data record for loading, relocating, and running under BASIC.
The single record has no separate header record, as shown below.

End of File
Beginning of File

Relocatable code
Relocation

Table

One record

CHAPTER 6
r THE LINKER

Absolute code which is output with no M command in effect is
saved in a file which contains two records. As shown below, the first
record contains a header and the second contains a memory image
of the absolute code. The memory image of the absolute code is
filled with NOP commands (>00) between segments of code set with
AORG instructions not to be contiguous. When a relocatable code
module follows absolute code, the relocatable module becomes
absolute and machine code from the module immediately follows
the last byte of the previous module.

Beginning of File
I

Header
Record

End of File
I

Absolute code with addresses for
execution already calculated

Record 0 Record 1

With an M command in effect, absolute code is output as a memory
image multiple-record file with a header record, as shown below. The
length of the records is specified in the M (although the last record
can be less than the record length specified if fewer bytes remain to
be written).

Beginning of File End of File

header
record

record
with

lowest
address

record
with

.higher
address

j record
I with
highest

[address

Record 0 Record 1 Record 2 Records

With an M command in effect, relocatable code is also output as a
memory-image following a header. Additionally, a relocation table is
written as the last record of the file, as shown below. The relocation
table is saved as a single record, regardless of the length specified
In the M command.

CHAPTER 6
THE LINKER

IB
fi

fi

fi

fi

fi

fi

fi

fi

fi

Beginning of File
r’Tl -T - header record

> record with
lowest

'■ address

Record 0 Record 1

End of File

record
with

higher
address

Record 2

record
with

highest
address

Record 3

relocation
table

Record 4

'-Header Records
An 11-byte header record contains the six fields of information used

- in subsequent loading of linked files.

" 1. A file-type word, set to X)F05 to indicate a linker-output file

2. A flag byte, indicating whether the file contains relocatable or
absolute code and a single- or multiple-record memory image (and
relocation table)

3. A word specifying the maximurh memory space required for
writing the relocation table into memory

4. A word specifying record length for multiple-record files

5. A word specifying memory-image code length

6. A word specifying either absolute load address or minimum
relocation-table length for multiple-record files

The function of each of the header-record fields is as follows.

File-Type Word
The file-type word, stored in memory at the highest address of the
header block, has the value >0F05. This word uniquely identifies
linker output files which contain absolute-code or multiple records
of relocatable code so that they cannot be erroneously read by
BASIC and loader programs for which they are not designed.

Flag Byte
The flag byte indicates whether a file is written in multiple records
and whether the file contains relocatable or absolute code. The
individual flags in the byte are set in accordance with the
hexadecimal values shown in the following table.

fi

fi

fi

fi

fi

FLAG BYTE VALUES

TYPE OF CODE OUTPUT
Record Output Relocatable Absolute

Single >04 >00

Multiple >84 >80

CHAPTER 6
THE LINKER

Maximum Relocation Table Length
The maximum length (in bytes) of a relocation table is two more than
twice the number of relocatable words and external references
(REF’s) in the program.

Block Size
The block size provides a loader with information required to load
multiple-record images into memory (from high to low address) for
the correct load address.

Length of Memory Image
■ • The length of the memory image (without relocation table) permits a

loader to verify that a program can fit into available memory.

Absolute Load Address or Minimum Relocation
. , Table Length

: - This dual-purpose header word contains different information about
absolute images and relocatable images.

For absolute images, it provides the load address for the start of
absolute code.

For relocatable images, this word and the maximum relocation table
length permits a loader to verify that sufficient memory is present for
loading the file. The minimum relocation-table length is calculated
to be two more than the number of relocatable bytes in the program.

Error Messages
The following tables list error messages resulting from control-file
errors and errors occurring during linking.

CONTROL-FILE ERRORS

Multiple M code Second M command code found in control file.
Second one is ignored.

M code after
include

M code found after first 1 or J command.
Second M code has been ignored.

Bad value Incorrect or missing number found in control
file. Command is ignored.

Bad filename Illegal filename found in control file. Command
has been ignored.

Bad command
codeX

. “X” is not a legal linker command.

Missing E
command code

Too many files
to be linked

No E command code found before end of linker
control file. Appears in display.

More than 2551 and J control codes are used in
a single control file.

Bad file type Control file is of the wrong type (not a text file
without special characters).

CHAPTERS
THE LINKER

ERROR MESSAGES OCCURRING DURING LINKING

Code wraps around Code generated for beyond address >FFFF. A
address space warning only for absolute code, but also

causes fatal memory-full error for relocatable
code.

Memory full

Too many errors

More RAM needed than available.

Too many errors (multiply defined symbols) and
extra module (IDT-specified) names.

Missing EOR tag
in#N

End-of-record tag in assembler object code
missing.

Missing module
name in # N

Module name tag not the first item found in
tagged-object file.

Bad program type
in#N

File of incorrect type specified in control file.
Not an assembler-output tagged-object file
with X)F04 in the header.

Missing load
address in # N

No load address tag in object code found
before tag generating memory image code
found.

Mixed code in
module in #N

Pass1/Pass2 data
conflict in # N

Both absolute code and relocatable code in a
module.

Data in the first pass and the second pass are
different (possibly two files of same name or
mass-storage read error).

Code overlaps
existing code
in#N

Load address tag less than the current address
being linked.

Abs address <
current address
in#N

Address in A command is less than the current
absolute address of the code being linked.
Number is of last module linked.

Extra module
name in # N

A second module name tag found in a single
tagged-object file. The second name is ignored.

*** Warning
XXXXX in # N2
already defined in

The public symbol “XXXXX” has been “DEFed”
in two files and is a multiply defined symbol.

#N1

IHegai tag
XX XX XX XX XX
in#N

Illegal assemoter tag has been encountered.
Bad tag and the 4 following bytes are displayed
or printed.

Checksum error
in#N

File checksum calculated by the linker does
not agree with the checksum generated by the
assembler.

Absolute in
relocatable link
in#N

Absolute code found after relocatable code
(possibly AORG after RORG in assembly).

CHAPTER 7
E/A UTILITY PROGRAMS

This chapter describes the use of E/A programs which provide
I - support for the development of programs written in assembly
■:: language (and BASIC as well). These utility programs work with the

files which are input to and output from the editor, assembler, and
? < linker during assembly-language program development. _

; The Editor/Assembler cartridge contains E/A utility programs which
are used to print or display files, to convert files to various formats

‘ used by the CC-40 and other computers, and to transfer files. The
utility programs include the following.

• A hexadecimal file-dump utility to permit output of the contents of
any E/A file.

• A cartridge loader and an absolute-code loader which load—for
subsequent execution—linked object files into CC-40 cartridge
RAM or internal RAM.

• A cartridge-save utility which writes the contents of a RAM
cartridge into a mass-storage file.

• Several file-conversion and -transfer utilities: programs which
convert between E/A-format files and files from external
computers, from the TI-990 assembler or linker, and CC-40 BASIC;
and programs which provide for RS232 data transmission to
transfer these files.

Hexadecimal Dump Utility (HEXDUMP)
The hexadecimal dump utility (HEXDUMP) outputs each byte in
every record of a file as both a hexadecimal number and an ASCII
character. Files which are output by the editor, the assembler, the
linker, and other utility programs can be examined in detail.

Running the Hexdump Program
When RUN “ALOS” is entered in response to the BASIC cursor, a
partial display of the E/A menu appears in the display as shown
below.

E)dit A)ssemble L)ink B)asic?

Pressing the [SPACE BAR] shifts the window to show the three
remaining E/A commands, as shown below.

H)ex dump D)ownload T)ransfer?

Pressing H while either part of the menu is displayed causes the
CC-40 to run HEXDUMP. An Input file message prompts for entry
of the name of the file to be dumped. After the source of the file is
entered, an Output file prompt appears. After the destination is
entered and the output device is opened, the prompt Memory image
file (Y/N) ? appears.

A Y response to the memory-image prompt causes the dump to be
output in the order in which it appears in memory (from lower to
higher addresses). An N response causes the dump to be output in
the order in which it is read into memory from the mass-storage
device (from higher to lower addresses).

Following the Y or N response to the memory image prompt, the
dump begins. It continues until [BREAK] is pressed or until the last
byte of the last record in the input file is printed or sent to an output
file. If [BREAK] is being held down when an input/output operation
occurs, HEXDUMP operation is interrupted with the prompt BREAK,
Continue (Y/N) ? Pressing Y causes the dump to continue. Pressing
N causes the E/A menu to appear once more.

CHAPTER? •-
E/A UTILITY PROGRAMS

Use of Hexdump
The Memory image file (Y/N) ? option provides for dumping both
text files and machine-code files in the most readable order.

Each text area created by the E/A, to make most powerful use of the
7000-family DECD (decrement double register) instruction, has text

- and tokens stored from the top of the area downward in memory.
(Mass-storage of an area has no effect on the order of bytes in text;

2^ bytes read back into memory are in the same order in memory as
: when they were written to a mass-storage device.) The result is that

'W- a text file, if it is viewed in the order of ascending memory locations,
appears to be “backwards.” An answer of N to the Memory. image

' file (Y/N) ? prompt causes the bytes to appear in “correct” order
so that text displayed in the ASCII portion of the display is
“readable.”

■ In memory-image sequence, bytes from a machine-language record
are output in the bottom-to-top order in which they are executed in

7 memory. HEXDUMP outputs bytes stored at lower memory
4 addresses first.

Each record output by HEXDUMP is preceded by a heading which
lists the record number. The location of each byte in the record is

. referenced by column and row numbers respectively at the top and
- left of the hexadecimal area of the output.

Sixteen bytes of a record appear in each line of HEXDUMP output.
The bytes are first output in two-digit hexadecimal values separated
by spaces. Following the hexadecimal representations of the bytes,
16 ASCII representations of the bytes are output. When a byte
cannot be represented by a printable ASCII character, a dot (period)
is printed in its place.

A HEXDUMP output of the first and last four lines in a text file which
contains the source code for the “BEEP” program appears in the
following figure.

OPENED FILE: l.SRC

RECORD 1

NUMBER 0

0000 OF 00

12 3 4 5 6 7 8 9 A B C D E F

..

RECORD 2

NUMBER

0000

0010

0020

0

43

35

55

12 3

4F 55 4E

44 20 20

4E 54 45

4

54

20

52

5 6 7

45 52 20

20 20 20
20 40 45

8

20

20
4D

9 A B C

20 45 51 55

20 20 20 20
4F 42 59 20

D E

20 20

20 43

4C 4F

F

3E

4F

43

COUNTER EQU >

5D CO

UNTER MEMORY L0C

0330

0340

0350
0360

46

20

34

52

53 45 54

20 20 20

20 20 20
20 49 4E

20 54 4F 20 4E

20 20 20 42 59

20 20 20 20 20
46 4F 52 4D 41

41 4D 45 00 20

54 45 20 30 2C

20 20 48 45 41

54 49 4F 4E 00

20

3E

44

20

34

45

FSET TO NAME.

BYTE 0,>4

4 HEADE

R INFORMATION.

The >0F byte which begins record 1 indicates that the record is a
header record. The header contains the single byte (a XX) file-type
flag) which identifies the file as an uncrunched text file.

I 03

CHAPTFR 7
BA UTILITY PROGRAMS

u
u

Record 2 contains the text of the source code. Note the null byte
(XX)) which separates each line within the record and the
representation of the null byte by a dot, because it is an unprintable
character.
See chapter 5 of this manual for comparison of the dump with the
assembler-output listing of the source code for this file.

The following figure shows a complete HEXDUMP output of the
tagged-object file output from the assembler when 1.SRC is
assembled.

OPENED FILE: 1.0BJ

RECORD 1

NUMBER 0123456789ABCDEF

0000 OF 04 41 00 00 4E 4F 24 49 44 54 20 20 44 00 00 ..A..N0$IDT D..

0010 48 88 49 04 00 49 5D A2 49 01 15 49 52 ID 49 CA H.I..1].1..IR.I.

0020 FE 49 A2 00 49 15 52 49 20 CA 49 FE DB 49 5D E3 .I..I.RI .I..I].

00J0 49 EE 0A 49 50 45 49 45 42 48 04 4A 00 00 49 00 I..IPEIEBH.J..I.

0040 00 49 FF FC 49 99 44 4C EA A8 4F •I..I.DL..0

Note that the tagged-object dump shows most of the code to be
made up of fields containing “I” (absolute data) tags followed by
two-byte words containing commands and data for the header. The
initial X)F byte is a header identifier, and the X)4 byte following it
indicates that the file contains compressed tagged object code. The
single-byte “O” tag identifies the end of the file.

See appendix E of the CC-40 Editor/Assembler Reference Manual
for a complete description of the tagged-object code shown in this
dump.

The following figure shows a dump of the linker output file as a
Single-record relocatable code file for loading as a subprogram
under BASIC’s CALL LOAD subprogram.

OPENED FILE: l.BEE? Memory Image file

RECORD 1

NUMBER 012J456789ABCDEF

0000 00 04 00 ID 88 04 00 5D A2 01 15 52 ID CA FE A2J...R............

0010 00 15 52 20 CA FE DB 5D E3 EE 0A 50 45 45 42 04 ..R PEEB.

0020 00 00 00 00 FF FC 00 44

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

CHAPTER?
E/A UTILITY PROGRAMS

The ASCII columns of the dump show with significance only the
subprogram name (stored “in reverse” by the RTEXT directive from
the assembler). The hexadecimal columns show the most
significant information: a four-byte relocation table at the start of the
record and the machine code of the program. The relocation table
begins with a two-byte word specifying the length of the table
(including the length word itself) and contains a single offset to the
only relocatable word—-the program entry point in the header—-in
the code.

Hexdump Error
A record output by HEXDUMP must reside completely in memory. If
not enough memory is available for loading the record, a Memory
full error message is displayed. The E/A menu returns after any key
is pressed.

Object-File Loaders
Two loader programs are present in E/A ROM: an absolute-code
loader called ABSLOAD and a cartridge-RAM loader called
CARTLOAD. Loading absolute programs anywhere in system or
cartridge RAM requires ABSLOAD. Loading relocatable programs
Into RAM cartridges so that they can be run under BASIC requires
the use of CARTLOAD.

Saving and Loading ABSLOAD and CARTLOAD
The CARTLOAD utility cannot be run while the Editor/Assembler
cartridge is being used, and the ABSLOAD utility cannot be used to
load RAM cartridges while the Editor/Assembler cartridge is in
place. The Editor/Assembler cartridge overlaps much of the area of
memory Into which programs might be loaded. Therefore, loaders
must be “downloaded” (saved from the cartridge) to mass-storage

> media for later loading under BASIC when the Editor/Assembler
: cartridge can be replaced by a RAM cartridge.

The D) ownload option in the E/A menu provides the means for saving
the loaders (and also the MEMSAVE utility described below). The
loaders are saved as single-record subprograms containing
relocatable object code for loading by BASIC with the CALL LOAD

- subprogram.

- . t From the E/A menu, D is pressed (as prompted by the second part of
the E/A menu). The downloader menu, shown below, then appears.

M)emsave A)bsload C)artload

;: The loader to be saved to a mass-storage file is selected from the
’ downloader menu. The Output file prompt then requests the name
of the file in which the loader is to be stored.

With the loader code in a mass-storage file, CC-40 cartridge RAM
can replace the E/A ROM cartridge, and the loaders can be loaded
into CC-40 internal RAM by a BASIC CALL LOAD subprogram, as in
the following examples.

CALL LOAD(”1.ABSLOAD")

or

CALL LOAD("1.CARTLOAD")

CHAPTER?
E/A UTILITY PROGRAMS

Absolute-Code Loader
Programs produced by the linker in absolute code are loaded into
internal RAM or cartridge RAM by the absolute loader.

After the absolute loader is copied from mass-storage by the CALL
LOAD subprogram, it is run from BASIC with the CALL command,
exemplified by the following.

CALL ABSLOAD("1.PROG")

When the BASIC cursor returns (provided that there are no I/O errors
reported and that the BASIC environment has not been altered by
the loaded program), the absolute-code program is present in
memory at the address set during assembly or (inking. The program
can then be executed from BASIC by an EXEC subprogram such as
the following, in which the entry address (the decimal equivalent of
>9000, is given as the argument for the command.

CALL EXEC (36864)

The following table explains error messages which may appear in
the display when ABSLOAD is executed.

ABSLOAD ERROR MESSAGES

Illegal syntax Bad syntax in the assembly language call,

Can’t do that An absolute address of the program conflicts
with the memory space used by ABSLOAD.

Bad program type The input file Is not in absolute format.

t

Cartridge Loader
The cartridge loader loads relocatable assembly language programs
and subprograms into cartridge RAM to reside within >5000 through
>CFFF.

The cartridge loader initializes CC-40 RAM cartridges and loads
relocatable code developed by assembly-language programs and
subprograms into cartridge RAM. The cartridge loader consists of
two subprograms, CARTINIT and CARTLOAD.

V:- The CARTINIT Subprogram
V The CARTINIT subprogram is called from BASIC with the name of

' the file to be loaded inside of double quotes which are inside of
parentheses, as in the following.

7. ...CALL CARTINIT("1.EXAMPLE")

C. The file must be in multiple-record, relocatable format.

; ~ The primary purpose of CARTINIT is to load and relocate a machine
code cartridge header into cartridge RAM at >9000. This header
enables BASIC to access programs and subprograms in a cartridge

. by pointing to the first of the programs the cartridge contains.

The file loaded by CARTINIT can also contain one or more programs
linked together by offsets in their individual program headers. In the
cartridge header, the pointer to the first program must be initialized
with the program-header address, and the offset in the header of the
last program must be initialized with >0000. If no programs are
included in the file, the pointer in the header is initialized with >0000.

u
0
u
u
LI
U
u
u
u
u
u
u
u
0
u
u
u
u
u

CHAPTER?
E/A UTILITY PROGRAMS

The following source program illustrates the relationship of
cartridge and program headers. A complete explanation of headers
is included in chapter 1 of the CC-40 Editor/Assembler Reference
Manual.
BYTE >A5,>5A Tell BASIC.that a cartridge is present
BYTE >81 16K cartridge; version 1
BYTE >1E Cartridge access speed set to 3 micro

seconds
DATA SUB1 Pointer to header of first subprogram
DATA 0 Reserved
DATA TOPCART Pointer to next RAM location for load

ing
DATA >5000 Pointer to lower next RAM location

for loading

* ASSEMBLY LANGUAGE PROGRAM (SUBROUTINE)

ENTRY
MOV M A trivial program for illustration

* ASSEMBLY LANGUAGE PROGRAM HEADER

NAMLOW
RTEXT 'SOMNAME' Subprogram name
BYTE NAMHGH-NAMLOW Length of the subprogram

name
NAMHGH EQU $-1

DATA ENTRY Pointer to entry point
DATA 0000 Offset to next program/sub-

program header
DATA NAMHGH-$+l Offset to name
BYTE 0,>44 Program-type information
SUB1 EQU $-1
TOPCART EQU $ First free byte in cartridge

The name of the program in each program header must be
assembled from upper-case (all-capitals) letters for BASIC to find it.

Cartridge RAM addressing is dependent on the type of cartridge
being used and the size of the memory chips used in it. The
illustration below shows the address blocks corresponding to RAM
chips currently available in cartridges.

. >D000 >D000

>B000

>9000

>7000

■I-; >B000

• >9000

>7000

2nd8K
chip
repeated

lst8K
chip
repeated

2nd 8K
chip

lst8K
chip
repeated

1st 8K
chip
repeated

1st 8K
chip
repeated

1st 8K
chip

1st 8K
chip

16K CARTRIDGE RAM 8K CONSTANT MEMORY™ CARTRKDGE

107

CHAPTER?
E/A UTILITY PROGRAMS

With a 16K cartridge, RAM Is available in two BK blocks beginning al
>5000 and >9000, With a Constant Memory™ cartridge, a single BK
block at >9000 is available.

The CARTLOAD Subprogram
Loading programs into a cartridge after the cartridge header (and
perhaps other programs) have been loaded requires CARTLOAD.
Information in the cartridge header and in the header of any last
program already loaded is updated by CARTLOAD. The subprogram
is called from BASIC as in the following example.

CALL CARTL0AD("l.PR0G5")

The pointer at >9004 In the cartridge header points to the header of
the first program or subprogram in the cartridge. The program
header for the first program, in turn, contains an offset which points
to the header for the next program. The program header for the last
program in the cartridge contains >0000 in the offset word. In this
manner, the cartridge header and program headers taken together
contain a linked list of programs stored in the cartridge. CARTLOAD
loads in any new program or programs, relocates them appropriately
for execution at their current addresses, and patches theoffsetcf
the (first) header in the new program(s) to replace the >0000 offset in
the header of the program which had been the last one in the list.
The new program(s) must contain >0000 in the offset of the (last)
header to indicate the new end of the list.

All files loaded by the cartridge loader must be in relocatable
multiple-record format produced by the linker M command. An
attempt to load an absolute file or a single-record relocatable file
causes a Bad program type error.

If memory is unavailable for loading a program into cartridge RAM
from >9000 through >CFFF, the loader attempts to load the program
In RAM from >5000 through >9000.

In addition to I/O errors, five other types of errors are identified by
messages from CARTLOAD and CARTINIT, as shown in the
following table.

CARTLOAD AND CARTINIT ERROR MESSAGES

Illegal syntax
Can’t do that

Bad syntax in the assembly language call

Missing cartridge header
Bad program type Input file is not a multiple-record relocatable

file
No RAM in cartridge
Memory full

No RAM in the cartridge

Insufficient space in system RAM for the
relocation table or in the cartridge for the
program

CHAPTER 7
E/A UTILITY PROGRAMS

Cartridge-Save Program (MEMSAVE)
The cartridge-save utility MEMSAVE saves a block of memory as a
multiple-record absolute file for later loading by the absolute loader.
All of the programs which are loaded into a RAM cartridge can be
saved as a block with beginning and ending addresses provided in
the MEMSAVE command. Blocks containing code from ROM or the
register-file area cannot be saved by MEMSAVE.

Like ABSLOAD and CARTLOAD, MEMSAVE cannot be used to save
data from cartridge RAM while the Editor/Assembler cartridge is in
the CC-40. Downloading MEMSAVE follows the procedures used in
downloading the two loaders (see “Saving and Loading ABSLOAD
and CARTLOAD,” above).

When MEMSAVE has been loaded by BASIC with the CALL LOAD
subprogram, the program is run with a CALL command which
specifies a filename, a beginning address, an ending address, and a
record length. If a record length is not included, the file is saved as a

. . single record. The following command, for example, saves the
8-kilobyte block from >9000 through >AFFF in records of 256 bytes.

< CALL MEMSAVE("l.HICART",”>9000,>AFFF”,2%)

Address values are entered by hexadecimal numbers within quotes
and separated by commas. The “>” sign is optional. Record lengths
are in decimal.

In addition to I/O errors, four other types of errors are identified by
- messages from MEMSAVE, as shown in the following table.

MEMSAVE ERROR MESSAGES

Illegal syntax

Can’t do that

Bad value

Bad argument

Bad syntax in the assembly language call

Attempt to save block from ROM memory or the
register-file area (X)000 to >0200) to a mass
storage file; also attempt to save block which does
not contain RAM

1. Record length specified in filename is either
negative or greater than 32767
2. Non-hex characters were used in addresses
provided with the MEMSAVE command
3. Hexadecimal value in an address is greater than
>FFFF

Starting address is greater than the ending
address

CHAPTER?
E/A UTILITY PROG RAMS

File Conversion and Transfer Utilities
The following utility programs are provided to convert between files
with E/A format and files of other formats (BASIC, 990) and to
transfer files to the CC-40 from external computers.

• Multiple-record to single-record relocatable files

• List file to E/A text file

• External-computer text files to E/A text files

• 990 tagged-object to E/A tagged-object files

• BASIC program image to E/A text file

• E/A test file to BASIC program image

Multiple- to Single-Record File Conversion Utility
(CONVERT)
The utility program called CONVERT reformats a file saved as
multiple records of relocatable object code into a single-record
relocatable file. Multiple-record files can, after this conversion, be
loaded and run directly under BASIC.

The conversion program is accessed from the E/A menu by typing C.
No prompt appears in the E/A menu for CONVERT.

The prompt Input file requests the name of the multiple-record
relocatable object file to be converted. The prompt Output file
then requests the name of the single-record object file to be written.

In addition to I/O errors, CONVERT identifies two other types of
errors by the messages shown in the table below.

CONVERT ERROR MESSAGES

Bad program type The input file is not a multiple-record
relocatable object-code file

Length error The input file is of incorrect type or it contains a
header with incorrect block size

File Transfer Utility (TRANSFER)
The utility program called TRANSFER permits the CC-40 to perform
three file transfer operations. It can input a list file with records of 80
or fewer bytes from one HEX-BUS™ mass-storage device and write
It to a file on another HEX-BUS device. A list file contains lines of
printable ASCII text without end-of-line bytes.

The TRANSFER utility can also input a file from an external
computer and convert it to an E/A text file on a mass-storage device.
In addition, it can input files containing TI-990 tagged-object code
and convert them to E/A taggecfcobject format.

Text Transfer from One Device to Another
The transfer utility program is accessed by pressing T in response to
Tjransfer from the E/A menu.

The message S)ource 0)bject prompts for input to determine
whether a standard text or 990 tagged-object code is to be received.

CHAPTER 7
E/A UTILITY PROGRAMS

Fl
n
fi
Fl
Fl
IB
Fl
IB
Fl
Fl

in
fi

Next, TRAMSFERissues the prompt C) runch U)ncrunch. If C is
pressed, the file to be output is set to be in crunched (tokenized)
form. If U is pressed, the file is output in the same form in which it is
input.

When the Input file prompt appears, the name of the file to be
transferred is entered.

The Handshake (Y/N) ? prompt appears to permit using
communications protocol with computers external to the CC-40.
For CC-40 device-to-device transfer, N is pressed to use internal
HEX-BUS™ protocol.

Next TRANSFER displays an Output file prompt. The name of the
file to receive the text is entered. An optional record length can be
specified following the name by typing a space and R = NNNN.

The message Transferring... appears in the display until the file
copying is complete and the E/A menu returns to the display.

Text Transfer from an External Computer
The computer from which the file is being transferred must be
programmed to send the file with the format and protocol required
by TRANSFER. The listing shown below provides an example of
such a program written in BASIC. The program uses handshaking
(line 150) to determine when to send the next line; no echo is
provided to the display. An asterisk (*) is sent by TRANSFER each
time it is ready to receive an 80-character line. An end of the file is
recognized by TRANSFER when it receives an ASCII >7F or 127
(DEL).

100 OPEN #2:”RS232.BA=4800.EC” . Open RS232, no echo
110 INPUT ’’File download utility filter file name: ”:NAME$
120 OPEN #1: NAMES . Open input file
130 LINPUT #1:TXT$ • Get line from source

file
140 PRINT #2:SEG$(TXT$,l,80); • Transfer first 80 charac

ters
150 INPUT #2:HSK$ • Get clear to send

character (handshake)
160 IF E0F(l)=0 THEN 130 • If not end of file,

continue
170 PRINT #2:CHR$(127) • Signal end of trans

mission
180 CLOSE #1 • Close source

' 190 CLOSE #2 • Close RS232

. For transfer of files external to the CC-40, the prompts through
'C)runch U)ncrunch are answered as they are for CC-40 internal file-

- < to-file copying. When the prompt Input file appears, however, the
* ;• number of the device (and characteristics such as RS232
/ , transmission speed) through which the text is to be transferred must

be provided.

‘ - The prompt Handshake (Y/N) ? appears. When Y is pressed,
TRANSFER is set to send an character to the external computer

'r when it is ready to receive text. Without handshaking, data is lost
*; * during transfer operations.

Fl
IB

E/A UTILITY PROGRAMS

Next, the prompt Echo? (Y/N) ? appears. Responding Y to the
prompt causes the CC-40 to expect the external computer to echo
the handshaking character upon receipt.

When TRANSFER displays an Output file prompt, the name of the
file in which received text is to be stored is entered.

With TRANSFER running, the message Ready... must appear in the
display before the external computer begins to transmit. With
reception of the first character from the external computer, the
message Transferring... closes the file and the E/A menu returns
to the display.

TI-990 Tagged-Object File Transfer
When TRANSFER is to receive TI-990 tagged-object code files from
an external computer, all prompts except one are answered as
above. The S)ource 0)bject prompt is answered by pressing O.

After 990 code is received and before TRANSFER writes it to the
output file, the code is converted to E/A format tagged-object code.

The table below shows the correspondence between 990 tagged-
object format and the tagged-object format output by the E/A
assembler.

The primary difference between 990 and E/A format is that the 990
assembler always outputs uncompressed tagged-object code while
the E/A assembler always outputs compressed tagged-object code.
Code in E/A format has bytes and words represented directly in
binary values, while code in 990 format has bytes and words
represented in ASCII characters. In E/A format, a byte of data with a
value of 32 is represented in a two-byte field containing an ASCII “H”
tag and a binary >20 value. In 990 format, the same byte is
represented in a three-byte field containing an ASCII tag, an
ASCII “2,” and an ASCII “0.”

Most tags, although designated by different characters, have similar
functions in both formats. Tags which do not have the same
functions are noted with a in the table.

Differences in the content of files are primarily in the expression of
symbols expressing assembled DEF and REF directives. Both
DEFed and REFed symbols from the 990 linker are fixed-length six-
character symbols with spaces to the right of symbols containing
fewer than six characters. The E/A assembler produces symbols
which are one to eight characters long with a length byte preceding
the symbol. The length byte has a value of one less than the number
of characters in the symbol. The 990 REFs also contain an unused
word that is not stored in CC-40 linker format.

CHAPTER 7
E/A UTILITY PROGRAMS

CORRESPONDENCE 990 AND E/A TAGGED OBJECT CODE

990
Tag

K

0

E/A
Tag

A

B

Value

Word Program ID

Word Program ID

Word Program ID

Reserved

Description

Cartridge indentifier-Compressed
Word = Highest relocatable address
Cartridge indentifier-Uncompressed
Word = Highest relocatable address
Cartridge indentifier-Uncompressed
Word = Highest relocatable address

Reserved tag

9 C Word Absolute load address

A D Word Relocatable load address

•• E Byte Symbol REFed symbol
byte = symbol length -1

3 .. Word 990-symbol REFed symbol (Ignore Word)
4 •• Word 990-symbol REFed symbol (Ignore Word)

•• F Byte Word Symbol Absolute DEFed symbol
Word = symbol value,
Byte = symbol length -1

6 •• Word 990-symbol Absolute DEFed symbol
, Word = symbol value

G Byte Word Symbol

I

Relocatable DEFed symbol
Word = symbol value,
Byte = symbol length -1

5 •• .Word 990-symbol Relocatable DEFed symbol
Word = symbol value

* H jByte Absolute byte of data

B I (Word Absolute data

c___ J Word Relocatable data

E K Wordl Word2
i

External reference
Wordl = Reference number
Word2 = Value added to reference

7____ L Word Checksum

8 M Word Ignore checksum

F N End of record

—
0 End of file

Value definitions
Word = 16 bit value
Byte = 8 bit value

Symbol = 1..8 ASCII characters
Program ID = 8 ASCII characters
990-symbol = 6 ASCII characters

Transfer Utility Errors
In addition to I/O errors, TRANSFER identifies four other errors with
messages listed in the following table.

E/A UTILITY PROGRAMS

TRANSFER ERROR MESSAGES

Invalid module

Duplicate module
Invalid value

Invalid tag

The first tag in a 990 file is not a “K” or “0”
(IDT) tag.

A second IDT tag has been found.

An ASCII character which is not a valid
hexadecimal digit is present in a data field.

An ASCII character which is not a valid 990
tag appears where a valid one should
appear.

BASIC to E/A Text Utilities (SA VEA and COPYA)
Two utility programs called SAVEA and COPYA permit using the E/A

, screen editor to edit BASIC program files.

‘•For saving a program currently in BASIC program memory in E/A
format, SAVEA is used. From BASIC, with the Editor/Assembler
cartridge in the CC-40, SAVEA produces a file named “BASPROG”
on device 1 in 128-byte records when the following command is
entered.

CALL SAVEA("1.BASPROG",f28)

The SAVEA utility cannot be called from within a BASIC program.
The name of the file must be typed in double quotes, and the
filename and optional record length must be enclosed in
parentheses If no record length is specified, SAVEA selects a length
as great as free memory permits.

The COPYA utility permits BASIC to copy an E/A text file into
memory in BASIC format. The E/A-format “BASPROG” file from
device 1, for example, is read into program memory by BASIC with
the following command.

CALL COPYA("1.BASPROG")

The COPYA utility cannot be called from within a BASIC program.
The name of the file must be entered inside double quotes which are
enclosed in parentheses.

In addition to I/O errors, errors occurring during SAVEA and COPYA
cause the messages listed in the following table to appear.

CHAPTER 7
E/A UTILITY PROGRAMS_______________

SAVEA AND COPYA ERROR MESSAGES

Illegal syntax Bad syntax in the assembly language call

Protection violation Attempt to save a protected BASIC program
(SAVEA only)

Illegal in program. SAVEA or COPYA is called from within a
program

Bad value Specified record length is either negative or
greater than 32767

Bad program type Attempt to load other than an uncrunched
E/A text file

E/A File-Transfer and Conversion Summary
The following figure summarizes the transfer of files among various
E/A programs and external computers.

E/A text format consists of one or more lines per record with a
maximum of 74 characters in a line and each line terminated by a
zero.

External text format consists of single-line records with the record
length fixed at 80 characters (using trailing spaces as necessary).

CHAPTER 8
DEBUG MONITOR

This chapter describes the DEBUG Monitor and gives an example of
the use of the monitor to alter and run a machine-language program.

The DEBUG Monitor allows examination, modification, and
controlled execution of machine-language programs which have
been developed by the E/A package.

The monitor permits displaying and modifying data in memory,
moving blocks of data in memory, executing programs until preset
breakpoints are reached, and executing programs in steps of single
machine-code commands. ‘

The BASIC and DEBUG Monitor operating environments (RAM
locations) are compatible. An E/A-developed program called from a
BASIC program, for example, can have breakpoints set by DEBUG;
when the BASIC program is run and CC-40 control is transferred to
the machine-language subroutine, the breakpoints cause the
monitor to be entered. All elements supporting BASIC program
execution remain intact, and the machine-language and BASIC
programs can resume when use of the monitor is complete.

Running the DEBUG Monitor
The DEBUG Monitor is entered by a CALL DEBUG BASIC interpreter
command or a CALL DEBUG statement line in a BASIC program.
The monitor prompts with a colon (:) for single-letter commands and

Ar. appropriate values.

Monitor Commands
Keyboard-entered command lines which control DEBUG Monitor
operation consist of a single-character uppercase or lowercase
alphabetic command followed by any required numeric values and
[ENTER] or [SPACE BAR]. Multiple values are separated by a single
space.

Command values are expressed in hexadecimal or decimal
numbers. Decimal values must be preceded by a period; numbers
without a period in front of them are evaluated as hexadecimal
values. The symbol for hexadecimal value is not used in the DEBUG
Monitor. Values greater than 65535 or >FFFF are truncated to the
left. All displayed values are in hexadecimal form.

For command-line editing, the ♦- and keys position the cursor over
any character entered except a period. At any time during
command-line entry, the [BREAK] key can be pressed to clear the line
and return to monitor command level (with the “prompt
displayed). When the DEBUG Monitor encounters an error in a
command line, it clears the display and prompts again with WHAT:.

Display-Memory Command: D
The display-memory command causes the content of eight bytes of
memory beginning at the starting address expressed in the
command to appear in the display. Display of the contents of
subsequent eight-byte blocks of memory is caused by pressing + or
(SPACE BAR], Display of the contents of previous eight-byte blocks of
memory is caused by -. Further display terminates when [ENTER] is
pressed.

CHAPTERS
DEBUG MONITOR

in
fi

ri

Fl
Fl
fi
Fl
fi
Fl
m
Fl
Fl
Fl
Fl
m
Fl
Fl

Because 7000-family data registers are in memory, the display
memory command can be used to display registers in the general
purpose file (>0000 through >007F) or the peripheral file (>0100
through >01FF).

The syntax of the display memory command is shown below.

Enter D nnnn

Note: Values may be entered in either decimal or hexadecimal.
Entering D without a value is equivalent to D 0000.

Memory-Modify Command: M
The memory-modify command permits display and keyboard entry
of single-byte memory contents.

The value stored at the address specified in the command is
displayed. (The default for the modify-memory command starting
address is >0000, the A register.) If a new value is entered, the value
replaces the value displayed. If + or [SPACE BAR] is pressed
following display of the memory contents or following entry of a
replacement value, the contents of the subsequent address are
displayed. If - is pressed at either time, the contents of the previous
address are displayed. The command terminates when [ENTER] is
pressed at either time.

Contents of the registers can be easily examined and modified by
the memory-modify command because they are addressed as
memory registers. General-purpose file registers 0 through 127 are
addressed as memory locations >0000 through >007F, and
peripheral file registers 0 through 255 are addressed as locations
>0100 through >01 FF.

The syntax of the memory-modify command is shown below.

Enter: M NNNN

Note: Values can be entered in decimal and hexadecimal. Entering
. M without a value is equivalent to M 0000.

Processor-Register Modify Command: P
The processor-register modify command permits the three registers
in the processor, the program counter (PC), status register (ST), and
stack pointer (SP), to be displayed and modified in much the same
manner in which the contents memory locations are modified. The
modification is effective with the next E (execute) or S (single-step)
command.

After P has been pressed, the value stored in the current DEBUG
Monitor program counter (PC) is displayed. If a value is then typed in
at the keyboard, it becomes the new DEBUG Monitor PC, which
specifies the point in the program at which the program begins
execution with the next execute (E) or single-step (S) command. If
[SPACE BAR] is pressed in response to the PC display or in
termination of the new PC value, the contents of the status register
(ST) are displayed. If a value is typed, it becomes the new ST after
the next E or S command; pressing [SPACE BAR] or terminating the
new ST value with [SPACE BAR] causes the stack pointer (SP) to be
displayed. If a value is entered it becomes the new SP with the next
E command.
Pressing [ENTER] or terminating any new value with [ENTER] at any
time terminates the command (but retains any values entered).

The modify-register command can display and prompt for all three
register values, as shown below.

Press: P

CHAPTERS
DEBUG MONITOR

u
Displays: PC=MMMM

ST=PP
SP=RR

Note: Proceed from one display to the next by pressing [SPACE BAR]
or exit from the P command by pressing [ENTER]. To alter any of the
values in the displayed registers, type the new value and press either
[ENTER] or [SPACEBAR]. Values may be entered in either decimal or
hexadecimal.

u
u
u

Copy-Memory Command: C
The copy-memory command causes the contents of one block of
memory to be moved to another block. One byte is moved and the
source and destination addresses are incremented by one. The
single-byte moves continue for the length specified in the command.
If the destination address is less than or equal to the source address
plus the length of the move, blocks can overlap.

The overlap feature of the copy-memory command can effect a “fill
memory” operation. When an initial “fill” character is stored by a
modify-memory command (M) at the beginning of a source block
and the start of the destination block for the move is set one byte
higher, the whole block is filled with the character.

The syntax of the copy memory command is shown below.

Enter: C NNNN MMMM PPPP

Note: NNNN-PPPP may be entered in either decimal or hexadecimal.
NNNNN specifies the address of the first byte to move. MMMM
specifies the address into which the first byte is moved. PPPP
specifies the number of bytes to move.

Execute Command: E
The execute command transfers processor control to the program
location specified by the DEBUG Monitor program counter (set by
the P command, described above).

The E command must be followed by [ENTER]. If E is pressed
accidentally and [ENTER] has not been pressed, pressing [BREAK]
causes the command to be ignored.

Any new system- or cartridge-memory page selection (see R
command, below) or new status register or stack-pointer value takes
effect with the E command.

The syntax of the execute command is shown below.

Enter: E

Note: No parameters are used with the execute command. The
address at which execution begins is the address in the DEBUG

- Monitor program counter.

Breakpoint-Modify Command: B
The breakpoint-modify command, in a manner like the memory
modify and register-modify commands, displays the current
breakpoints and permits the assignment of new addresses to them.
Breakpoints are addresses at which program execution is halted so
that the DEBUG Monitor commands can be used to examine
memory and register contents at that point in the program.
Breakpoints can only be used with programs which are stored in
RAM, and they should not be set at the current program-counter
value.

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

CHAPTERS
DEBUG MONITOR

When the DEBUG Monitor is reentered after a program reaches a
breakpoint, both breakpoints are turned off.

Breakpoints are set for particular addresses by the breakpoint
modify command. After being set, either of the two breakpoints can
be turned off by entering >0000 for an address in the breakpoint
modify command.
A breakpoint remains in effect until it is cleared with a breakpoint
modify command or until the processor “executes” it.
The syntax and procedure used with the breakpoint-modify
command are shown below.

Press: B

Displays: B MMMM
PPPP

Note: MMMM and PPPP are addresses at which program execution is
to be halted for memory and register examination and modification.
Proceed from one display to the next by pressing [SPACE BAR] or exit
from the B command by pressing [ENTER]. To alter any of the
displayed breakpoints, type the new value and press either [ENTER]
or [SPACEBAR]. Values may be entered in either decimal or
hexadecimal.

ROM-Page Modify Command: R
The ROM-page modify command permits setting the cartridge
(addresses >5000 through >CFFF) page and the system ROM
(addresses >D000 through >FFFF) page to any page from 0 through
3.

Pressing [SPACE BAR] after display or modification of the cartridge
page causes the system-ROM paging prompt to be displayed.
Pressing [ENTER] terminates the page-modify command without
display of the system-ROM page-modify prompt.

The cartridge page-modify command takes effect immediately. The
DEBUG Monitor commands used to display ROM or RAM, modify
RAM, set breakpoints in RAM, and other functions use the page
which has been set. The system-ROM page-modify command takes
place only after an execute (E) command is entered. All commands
except E reference the page from which the DEBUG Monitor runs,
page 3. Displays of system ROM are, for example, always from page
3. An address in system ROM at which execution is to begin,
however, is on the page last selected.

The syntax and procedures used with the page-modify command are
shown below.

Press: R

Displays: CARTRIDGE PAGE=M
SYSTEM PAGE=P

Note: Proceed from one display to the next by pressing [SPACE BAR]
or exit from the R command by pressing [ENTER]. To alter any of the
displayed page numbers, type the new page number and press
either [ENTER] or [SPACE BAR]. Page numbers are within the range
0-3. The cartridge page number displayed (M) is currently in effect,
but the system page number displayed (P) is only in effect upon exit
from the DEBUG Monitor.

Single-Step Command: S
The single-step command causes only the single processor
command at the location in the program counter (PC) to be
executed. After command execution, program control returns to the
monitor for subsequent examination or modification of registers and
memory, single-stepping, and so on. The effect of the single-step
command is as if a breakpoint were set at the command following
the one pointed to by the DEBUG Monitor program counter. One
consequence of the way the single-step command operates is that
an instruction which jumps or branches to itself cannot be single
stepped. Another effect is that single-step operation cannot be used
with programs in ROM or during calls to subroutines in ROM.

Execution of a single-step command turns off both breakpoints.

Single-step command syntax is shown below.

Enter: S

Note: No parameters are used with the single-step command. The
address of the instruction executed is the address in the DEBUG
Monitor program counter.

The Quit Ce Q
The quit command causes the CC-40 to exit the DEBUG Monitor
and reenter BASIC in one of two ways. The BASIC program being
executed when the CALL DEBUG instruction was encountered can
be resumed with a QB instruction, or BASIC can be restarted at the
command-interpreter level with a QI instruction.

The syntax of the quit command is shown below.

Enter: QlorQB

Note: Ql returns the CC-40 to the command level of the BASIC
interpreter, and QB returns the CC-40 to any program running under
BASIC.

The Help Command: ?
The help command displays all of the command codes used by the
DEBUG Monitor. Use the help command as shown below.

Enter: ?

Display: COMMANDS= Q,B,E,M,C,S,D,P,R

Note: The help command displays the codes until [ENTER] is
pressed.

DEBUG Monitor Operation Concepts
When the DEBUG Monitor is called from BASIC by a CALL DEBUG
command or program statement, it sets up the last 80 bytes of the
BASIC program-line crunch buffer (>0900 through >094F) for
temporary storage; therefore anything stored in this area is
overwritten. The colon (:) is the display prompt while the monitor is
active.

DEBUG MONITOR

Setting a breakpoint in a program location causes the DEBUG
Monitor to save the command and to place a single-byte TRAP 11
command (command code >F4) at the location specified. (The bytes
replaced by TRAP 11 commands for both breakpoints and their
addresses are stored in >08F4 through >08F9.)

The program containing the breakpoint executes ail machine
language commands until the TRAP 11 is read. The TRAP 11
command causes the DEBUG Monitor to be reentered at a point at
which both breakpoints are cleared and the original command is
restored to its memory location.

Storing a TRAP 11 in memory through a modify-memory instruction
has the same effect as setting a breakpoint, with one very useful
difference: the directly-stored TRAP 11 is not cleared upon return to
the monitor. The breakpoint remains set for future use after control
is transferred to the monitor.

The following events occur when a breakpoint is encountered.

1. The program counter, current status, registers A and B, current
ROM page, and two reserved bytes are pushed onto the stack. The
stack used for saving these values is the stack set by the program
being executed; therefore, the design of programs to be debugged
with breakpoints or single stepped must account for eight
additional bytes being pushed onto the stack.

2. R0-R53 and R83-R103 are saved in the crunch buffer (along with
' five other bytes of temporary data).

3. Both breakpoints are cleared.

4. The program counter, status register, and stack pointer are
displayed (followed by a colon as the prompt which indicates
return to the DEBUG Monitor).

Breakpoints remain active (as long as either or both are not equal to
0) when BASIC is reentered from the DEBUG Monitor. When the
machine-language program is executed by calling it from BASIC and
a breakpoint is reached, the monitor is called.

Breakpoints are not cleared when the DEBUG Monitor is reentered
from BASIC with a CALL DEBUG. Breakpoints are, however, cleared
when the^incjle-step command is entered. When the CC-40 is
initialized, breakpoints are cleared.

DEBUG Monitor Use with an E/A-Developed Program
The “BEEP” program developed in chapter 1 of this guide contains
no relocatable addresses in the executable code. It can therefore be
entered for execution at any memory location that does not destroy
BASIC or DEBUG Monitor RAM. The figure below shows a memory
image of the executable code in “BEEP” with addresses beginning
at >1000.

ADDRESS 0 1 23456789 A B C D F P
88 04 00 5D A2 01 15 52 1D CA FE A2 00 15 52 »

1010 CA FE DB 5D E3 EE 0A

CHAPTER 8
DEBUG MONITOR

Entering the Machine-Language Program
The following steps show how to use the DEBUG Monitor to enter
and display the “BEEP” machine-language program.

STEP 1: In response to the BASIC command prompt, type in CALL
DEBUG.

STEP 2: When the MONITOR: prompt appears, type in the modify
memory command M1000 (the monitor inserts the space
after “M”).

STEP 3: Type in each of the 23 bytes of the machine-language
program exactly as they appear above. After each byte
until the last is typed, press [SPACE BAR]. After the last
byte is typed, press [ENTER] to return the DEBUG monitor
command prompt to the display.

STEP 4: Type in D1000 to display the first eight bytes of “BEEP,”
and verify each byte with the commands listed above.
Note the values and memory locations of any incorrectly
entered bytes.

STEP 5: Press + to display the second eight bytes for
verification. Again note the locations of incorrect bytes.

STEP 6: Press + again, and verify the first seven of the third
eight-byte display.

STEP 7: With verification done, press [ENTER] to return to the
prompt.

STEP 8: If any incorrect bytes have been found, use the
addresses of these bytes with the M command to correct
them.

The machine code “BEEP” program is now entered into memory.

Testing the “BEEP” Program
The “BEEP” program is executed by setting the program counter in
the 7000-family processor to the entry point of the program (>1000).
When the program executes the return from subrouting (RETS)
command (>0A in the memory-image dump), program controi is
returned to BASIC. When a breakpoint is set at >1016, control
returns to the DEBUG Monitor. The following steps show how to
execute the “BEEP” program and return control to both BASIC and
the DEBUG Monitor.

STEP 1: Press P to modify the program counter in the processor.
The display shows the current value of the counter in the
form ?C=NNNN.

STEP 2: Type 1000 to set the program counter to >1000, the entry
point of “BEEP.”

STEP 3: Press E to execute the program and return to BASIC.

STEP 4: After the beeper has sounded and the BASIC cursor
appears, type in the CALL DEBUG command to once more
enter the monitor.

STEP 5: When the MONITOR: prompt appears, press P and enter
1000, as in step 2, to once again set the program counter
to the start of the “BEEP” program.

DEBUG MONITOR

STEP 6: Type B and 1016 to set a single breakpoint at >1016.

STEP 7: Execute the program by pressing E.

STEP 8: After the beeper sounds, the breakpoint address, the
value in the status register, and the value in the stack ■
pointer appear in the display followed by the prompt.

Modifying the “BEEP” Program Machine Code
The sound emitted by the beeper is controlled by values entered into
registers (Review figure 5-1 for exact details of how the program
works). The registers are decremented to zero to establish the
duration of the sound, and the period of the electrical impulses are
sent to or withheld from the beeper to establish the frequency of the
sound.

In the “BEEP’’program machine-language commands listed above,
the immediate value loaded into >1001 and >1002 controls the
duration of the sound. The values at >1008 and >100F control the
pitch of the sound. The value at >1008 controls the period in which
electrical current is sent to the beeper, and the value at >100F
controls the period in which no current is sent.

Changing the value in >1001 and >1002 to a lower value shortens the
duration of the beep. Changing it to a higher value lengthens the
sound. Changing the >0400 value in these locations to >0080
produces a short, crisp beep. Changing the value to >FFFF causes
the beep to last longer than 30 seconds.

Changing the immediate values in >1008 and >100F to lower values
raises the pitch of the sound, and increasing the values lowers the
pitch. A value of >10 at each location provides a noticeably higher
pitch, and a value of >60 in each register provides a noticeably lower
pitch.

u
u
u
0
0
u
u
u
u
u
0
11
u
u
u
[I
u
Li
0
—

Figure 4-1

LINE EDITING COMMAND SUMMARY

AUTO Begin automatic line numbering with line 1
AUTO 100 Begin automatic line numbering with line 100, or if

text contains line 100 begin insertion

COPY 120.XYZ

COPY, 120.XYZ 10

Load or insert file "XYZ" from device 120 into RAM at
the beginning of the text area
Insert file named "XYZ" from device 120 into the
current memory text before line 10

COPY 120.XYZ 1000 Append file named "XYZ" from device 120 to current text
of less than 1000 lines

DEL)ETE 25 Delete line 25
DEL)ETE 25-30 Delete lines 25 through 30
DEL)ETE 25- Delete line 25 and all following lines
DEL)ETE -25 Delete all lines up to and including line 25
DEL)ETE ALL Delete text without copying to recover buffer

E)DIT 38 Display line 38 for line editing

F)IND .XX. Find the next occurrence of "XX" and display it
F)IND W .XX. Find the next occurrence of "XX", "Xx", "xX", or "xx"

and display it

FORMAT 2 Initialize the media in device 2

LINE ENTRY COMMANDS

100 This[ENTER] With ">" showing, enter the string "This" into text
line 100 or replace the line currently at position 100
of the text with the string "This"

100+This[ENTER] Enter (insert) "This" into new line 101
100-ThisLENTERj Enter (insert) "This" into new line 99
100 This[Up Arrow] While editing, enter "This" as line 100 and thereafter

display line 99
100 This[Down Arrow] While editing, enter "This" as line 100 and thereafter

display line 101

LIST List memory text line-by-line to display
LIST 250- List text lines 250 and following
LIST -250 List text lines through line 250
LIST "20" List text to device number 20
LIST "120.DATA" List lines to a file named "DATA" on mass-storage

device 120
LIST "20" 50- List lines 50 and following to device 20
LIST "120.A" -50 List lines through 50 in file named "A" on mass-storage

device 120

MOVE 1-10,21 Move the first 10 lines of the text so that they become
the second ten

MOVE 20-.1 Move lines 20 and following so that they become^the
first block of lines in the text

QUIT Leave line editing and return to edit menu

R)EPLACE .XX.YY.
RJEPLACE W .XX.YY.

Replace the next occurrence of "XX" with "YY"
Replace the next occurrence of "XX", "Xx", "xX", or
"xx" with "YY"
Replace the next occurrence of "XX" with "YY" after
verifying

R)EPLACE V .XX.YY.

R)EPLACE A .XX.YY. Replace all subsequent occurrences of "XX" with "YY"
RJEPLACE AWV .XX.YY. Replace as above with all three options in combination

SAVE 120.TABLE Save the current memory text to device 120 with the
file name "TABLE" in a single record

SAVE 120.TABLE R=0
SAVE 120.TABLE R=>FF

Save "TABLE" to device 120 in record size of 801
Save the text as "TABLE" on device 120 with a record
size of 255

UNDO After line modification, replace the modified line with
the original or after deletion restore deleted lines to
the text

VERIFY 120.ABC Compare the memory text with the file named "ABC" on
device 120; issue message if the text and the file are
different

Figure 4-2

SCREEN EDITING COMMAND SUMMARY

[ESC][C] 120.XYZ Load file named "XYZ" from device 120 into empty text
area of RAM

[ESC][C] 120.XYZ Insert file XYZ before line containing cursor

[ESC][D] 25 Delete line 25
ESC][D] 25-30 Delete lines 25 through 30
ESC][D] 25- Delete line 25 and all following lines

;esc][d] -25 Delete all lines up to and including line 25
’esc][d] ALL Delete text without coping to recover buffer

[ESC][F] .XX. Find the next occurrence of "XX"
[ESC]LF] W .XX. Find the next occurrence of "XX", "Xx", "xX", or "xx"

[ESC][Hj Display editor commands and functions

[ESCJ[J] 100 Jump the cursor to line 100
[ESC][J] +3 If the cursor is on line 100 jump it to line 103, if

it is on 5 jump it to 8, etc.

[ESC][L] "20" List text to device number 20
[ESC][L] "120.DATA" List lines to a text file named "DATA" on

mass-storage device number 120
[ESC][L] "21" 50- List lines 50 and following to device 21
[ESC][L] "120.A" -50 List lines through 50 to a file named "A" on

mass-storage device 120

[ESC][M] 1-10,21 Move the first 10 lines of text so that they become
the second ten

[ESC][Mj 20-,l Move lines 20 and following so that they become the
first block of lines

[ESC][N] 2 Initialize (format) the medium in device 2

[ESC][Q] Leave screen editing and return to edit menu

[ESC][R] .XX.YY. Replace the next occurrence of "XX" with "YY"
[ESC][R] W .XX.YY. Replace the next occurrence of "XX", "Xx", "xX", or

"xx" with "YY"
[ESC][R] V .XX.YY. Replace the next occurrence of "XX" with "YY" after

verification
[ESC][Rj A .XX.YY. Replace all subsequent occurrences of "XX" with "YY"
[ESC][R] AWV .XX.YY. Replace as above with all three options

[ESC][S] 120.TABLE R=0 Save the text currently in memory to device 120 the
file name "TABLE" in 80-byte records

[ESC][S] 120.TABLE R=>FF Save the text as "TABLE" on device 120 with a record
size of 255

[ESC][S] 120.TABLE Save the text as "TABLE" on device 120 in one record

[ESC][TJ 5,10,15,20,25, 30,35,40 Set tabs after every five columns

[ESCJ[U] After line modification, replace the modified line
with the original; after deletion restore deleted
lines to the text

[ESC][V] 120,ABC Compare the memory text with the file named "ABC" on
device 120; issue message if the text and the file
are different

u
u
u
u
u
u
u
u
u
u
u
o
u
u
0
u
0
u
u

Figure 5-1

fl

fl

fl

fl

fl

fl

fl

fl

fl

fl

fl

fl

Listing of an Assembled Program

SOURCE PROGRAM LINE NUMBER
LOCATION OF OBJECT CODE
MACHINE OBJECT CODE IN HEX
LABEL
OP CODE
OPERAND(S)
COMMENTS

NO Errors NO Warnings

OOO1 005D COUNTER EQU >5D COUNTER MEMORY LOCATION
0002 0000 88 BEEP MOVD A>400,COUNTER SET CYCLE COUNT TO 1024

0001 0400
0003 5D

0003 0004 A2 BEEP 2 MOVP A1,P21 TURN ON THE BEEPER
0005 01
0006 15

0004 0007 52 MOV , a29,B DELAY COUNT FOR ON PERIOD
0008 ID

0005 0009 CA ONLOOP DJNZ B,ONLOOP LOOP BACK FOR COUNT
OOOA FE

0006 OOOB A2 MOVP A0,P21 TURN BEEPER OFF
OOOC 00
GOOD 15

0007 OOOE 52 MOV a32,B DELAY COUNT FOR OFF PERIOD
OOOF 20

0008 0010 CA OFFLOP DJNZ B,OFFLOP LOOP BACK FOR COUNT
0011 FE

0009 0012 DB DECD COUNTER COUNT OF CYCLES DONE
0013 5D

0010 0014 E3 JC BEEP2 LOOP BACK UNTIL ALL DONE
0015 EE

0011 0016 OA RETS RETURN TO CALLING PROGRAM
0012 0017 NAMLOW
0013 0017 50

0018 45
0019 45
001A 42 RTEXT 'BEEP' PROGRAM NAME

0014 00IB 04 BYTE NAMHGH-NAMLOW NAME LENGTH
0015 001B' NAMHGH EQU S-l FILE STORAGE SPECIFICATIONS
0016 00IC 0000' DATA BEEP PROGRAM ENTRY POINT
0017 001E 0000 DATA 0000 NEXT SUBPROGRAM
0018 0020 FFFC DATA NAMHGH-S+l OFFSET TO NAME
0019 0022 00 BYTE 0,>44 HEADER INFORMATION

0023 44

Figure 5-2

A Typical Cross-Reference Table

| A24 CC-40 1MS7000 Assembler Version 1.0 PAGE 0001

_ 0002 IDT 'A24'
| 0003 ★
• 0004 *This is an example of a cross reference map with copy files

0005 ★

1 0006 OPTION X Generate cross reference map
| 0007 0001 XI EQU 1

0008 0002 X2 EQU 2
0009 COPY 120.A24A

A0001 IDT 'A24A'
’ A0002

A0003 AA11 Al EQU >AA11
1 A0004 AA22 A2 EQU >AA22

1 A0005 0000 AAU DATA Al,Bl
0002 BB11

1 0010 COPY 120.A24B
B0001 IDT 'A24B'
B0002

_ B0003 BB11 Bl EQU >BB11
I B0004 BB22 B2 EQU >BB22
• B0005 0004 AA22 DATA A2,B2

0006 BB22
1 0011 0008 62 MOV XI,A
| 0012 0009 AA11 DATA Al,Bl

OOOB BB11

1 NO Errors NO Warnings

m A24
1

CC-40 TMS7000 Assembler Version 1.0 PAGE 0002

LABEL VALUE DEFN REFERENCES

Al AA11 A0003 A0005 0012
A2 AA22 A0004 B0005

n B1 BB11 B0003 A0005 0012
H B2 BB22 B0004 B000511 XI 0001 0007 0011

X2
1

0002 0008

0
u
u
0
u
U
u
u
u
u
II
0
fl
11
fl
fl
fl
u
fl

Figure 7-1

Flowchart Summary of E/A File Conversion and Transfer

External
text file

BASIC
program

E)ditor
L)ine S)creen

Optional
RS/232

BASIC -> E/A
utility (SAVEA)

T)ransfer
S)ource

E/A
text file

E/A -> BASIC
utility (COPYA)

990 tagged
object file

A)ssembler BASIC
program

T)ransfer
O)bject

E/A tagged
object file

Linker
control file
or keyboard

L)inker

Single-record
Memory-image file

Multiple-record
Memory-image file

Relocatable Absolute Relocatable 1

CONVERT

"CALL LOAD"
"OLD" / "RUN"

Absolute
Loader

Cartridge
Loader

RAM RAM / Cart. RAM Cartridge RAM

Memory Save
Utility

Absolute Memory
Image file

0
D
0
0
0
D
0
0
0
U
0
0
D
0
0
0
U
U
D

Figure 2-1 Op Code Map

n
m
Fl
Fl
m
Fl
Fl
Fl
Fl
p

M OST S 1 G h1 1 F 1 C ANT NIBBLE

____0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NOpj i MOVP TSTA/ MOV MOV JMP
[
TRAP

i PNA i
i

CLRC A.B A.RN J 15

1 IDLE MOVP TSTB MOV JN TRAP

-
PN.B B.RN J 14

2 MOV MOV MOV MOV MOV MOV MOV MOVP MOVP MOVP DEC DEC DEC JZ/JEQ TRAP
RN.A %N,A RN.B RN.RN %N,B B.A %N,RN A,PN B.PN %N,PN A B RN J 13

3 AND
AND I

AND AND AND AND AND ANDP ANDP ANDP INC INC INC JC/JHS TRAP
RNA %N,A RN,B RN.RN %N,B BA %N,RN A.PN B,PN %N,PN A B RN • J 12

L ► -—to ... - — . ** 4 - r ' . — —

E 4 OR OR 1 OR i: or OR OR OR ORP ORP ORP INV INV INV JP TRAP
A RN.A %n,a ; RN.B '' RN.RN %N,B B.A %N,RN A.PN B.PN %N.PN A B RN J 11
S
T 5 EINT XOR XOR XOR XOR XOR XOR XOR XORP ! XORP XORP CLR CLR j! CLR JPZ TRAP

RN.A %N,A RN.B RN.RN %N,B B.A %N,RN A,PN B.PN %N,PN A B !
' 1

I RN
।

J 10
S
I 6 DINT BTJO

1
BTJO : BTJO BTJO BTJO BTJO BTJO BTJOP ;1 BTJOP BTJOP i! XCHB XCHB XCHB JNZ/JNE TRAP

G RNAJ %n,a,j ; RN.B.J । RN.RN, J %N,B.J BAJ %N.RN,J A.PN.J ' B.PN.J %N,PN,J A 8 i RN J 9

N ♦ ■ *1 11 ■ 1r !r
I 7 SETC BTJZ ' BTJZ BTJZ 11 BTJZ BTJZ BTJZ BTJZ BTJZP BTJZP ,i BTJZP 'ISWAP SWAP ii SWAP JNC/JL i TRAP

F RN.AJ %naj i RN.B.J 1 RN.RN, J %N,B,J i1 BAJ %N,RN,J : APN,J /1 B.PN.J !%N,PN,J 1 A B RN J . / 8

I
C 8 POP ADO

r i
ADD ADD

I
ADD 1 ADD । ADD ADD

' MOVD
MOVD MOVD

1
> PUSH PUSH ! PUSH TRAP TRAP

A ST RN.A ■ %N,A ।j RN.B RN.RN %N,B 1 BA %N,RN *7oNN,RN > RN.RN %NN(B), A B RN 23 7
N i - .. HN_ _ _. —____ .

TRAPT 9 STSP ADC ADC " ADC ADC ’[ADC ADC i ADC POP POP । POP TRAP
RN.A %NA RN.B RN.RN ' %N.B ba %N,RN A B RN 22 6

N r* * ' ' - -'1r- - • —— — 1r —

I A RETS SUB SUB :! SUB ’
! SUB

SUB ‘ SUB SUB LDA 1 LDA LDA DJNZ DJNZ 1i DJNZ j TRAP TRAP
B RN.A %NA RN.B ! RN.RN %N.B .BA %N,RN j1 ©NN ^‘RN_ ©NN(B) A _ ? RN 21 _5 _
N —H| .

L B RETI SBB 1 SBB SBB SBB SBB SBB SBB 1 STA STA STA DECO DECD ' DECD TRAP TRAP
E RN> %N.A RN.B RN.RN %N.B BA %N.RN ‘ ©NN . *RN @NN(B) 1 A B i RN 20 4

. _ _ - —--- - - - - . — 1 ------- -----------f------ ——■ ■■to* ■RM to » •

C MPY MPY MPY MPY MPY MPY MPY • BR BR BR RR
RR 11 RR TRAP TRAP

_ RNA %N^ RN.B RN.RN %N,B i BA %N,RN ■ ©NN •RN ©NN(B) L A _ B . RN 19

D LDSP CMP CMP CMP CMP CMP .CMP CMP
! CMPA

CMPA CMPA
1 RRC

RRC ■ RRC TRAP TRAP
RN,A %N,A RN.B RN.RN %N,B BA %N,RN ©NN •RN ®NN(^ 1 * _ B____ ’ RN 18 2

E PUSH DAC DAC DAC DAC DAC i DAC DAC CALL CALL CALL RL RL RL TRAP TRAP
ST 1 %NA RN.B RN.RN %N,B 1I BA %N,RN ©NN •RN ©NN(B) A B RN 17___ 1___

F DSB (' DSB DSB DSB DSB jj DSB DSB RLC RLC RLC TRAP TRAP
RN.A %N,A RN.B RN.RN %N,B |I BA

; J
%N,RN

!i
A

i
M RN

i _ I

16 0

SYMBOLS: RN = RO THROUGH R127
J = JUMP DISPLACEMENT

PN = PO THROUGH P255 N = ONE-BYTE VALUE
@ = DIRECT MEM ADR * = REGISTER INDIRECT

NN = TWO-BYTE (WORD) VALUE
(B) = DIRECT, INDEXED ON REGISTER B

u
u
u
u
0
u
u
u
u
u
D
[I
I]
u
u
u
u
u
u

u

n
pi
n
pi
I!
H

fl
n
E
11
[I
P
fl
H
II
11

