i

st

W

wa i

st

v

e

e

s

e

s

@y

.

e

o

s

e

s ow

TI-9%/8 HOME COMPUTER

ERFPRETER

BARIC INT

Design Specification

totoe

e

v

e

Lopyrilght 1983
Teras Instruments

a1 vights reserved.

s

v

)

s

i

.

o

e

wings

d7o0r dra
in this document

LGN an

e infoarmat
set Fordn
#li vights
digsciosed

Fons

and
igns

ann

™

s

e

o

e

to invendi
patents
theraon

in and
herain

and

g be granted

which might
disviosing

smp iloging
techniques.
bed
syclusive properhy

o7
methods,

i

et

v

o

wpk

iy

s

e

st

oim

materials.

herein

Eol

28

or apparatus

of

the
Tezas Instruments.

E i

e

s

™

o

[

e

i

w

e

P

i

s

e

Fformation o

it

Mo disclosure of

s

ey

e

wi

hs

et

o

ey

e

0ep

o

ey

sy

e

awin

o

drawings shall be mads

osbther

i
G e
Wea e
[

W s

e~

T
LTy
i
e

consent

or
priaor
Tezas Instruments.

pETEON
the

without

s

e

w

naw

o

i

o

e

wawn

e

o

e

cons

i

s

Consumer Wroup

Mail

Lion BEYG
University
Yezas

gSta

2301 M,

7HLi4

Lubbook,

oo

)

i

i

o

n

e

e

et

e

e

P

TELAS INSTRUMENTS

IRCORPORATED

o

are

s

ey

i9E3

et G

Hug
&

Date

vy

i

Yersion

Ti~79/78 BASIC INTERPRETER TABLE of CONTENTS

TABLE of CONTENTE

Favragragn Title

BECTION I INTRODUCTION

Purptse
Heope

ok oo
..
BY s

SECTION 2 APPLICABLE DOCUMENTSE

BECTION 3 GENERAL DESCRIPTION

Use «f System Resources
g3 Uzage
GRM Usage
CPU RaM Usage
YOF RaM Usage
Physical HMemary Usage
Bystem Descripition
The Address Hescoder
The Memory Mapper
Mag Files
The Mapn Register
Mamory
Aocessing the Memory Mapper From Asszesmbly Language
Adccessing the Memory Mapper From GRL
AP IN
SETP
PUTE
movLe
MOVDR

(063660 60 B0 60 010 00 6 60 0 0 B0 K0 0 40 B
N ey e
R B R R SR CEU I S T

B v T BY we

BECTION 4 INTERPRETER PHABES

4. 1 Editing
4.1, 1 ingul

PRELIMIMNARY

TE~9%9/8 BABIC INTERPHRETER THBELE of CUONTENTS

H Line Editing
CRUNCH
Frogram Image
Frogram Editing
Auto-dMum
i.ist
Respguencs
Frescan
Bumbol Tabls
Execution
EXEC
i Statements
Papse
Precedontce
MUDs and LEDs
CORT MU

DA B O G R e
ke

Rhpphhbphbihbbhp
WBWERLWRR M e
RRRR e e

Gl R o

GECTION 3 INTERPRETER COMFONENTS

Date Btructures
Yaive Btack
- String Hpacs
Math Packags
String Package
Functions and Upsrators
arithmetic Uperators
Grithmetic Funciiens
i Trignometvric Funcitions
& Other Arithmetic Functions
String Operators
i Concatenation
String Functions
tsepr~Defined Funciions
Heiztional Operators
Errvor Hangling
Detection
Reporiing
Harnings

b

G 40 R T e

UL U1 U GO AR O K O A R O R
WA B bR b g e e B BB e e e

il B e

SECTION & BABIC STATEMENTE AND SUBPRUOGRANMS

introduction

Gxsignment
Mumerics
Strings
LET

ol
R R
LA VIS

PREL IMInanyY

TI-99/8 BASIC INTERPRETER

FEERERE R
PUEBLEEWW

1R B e e

e A O L A

R R R N L F s

B 4 B B L3 A e

G e O R B G R e

b B3 e

&EMMMMM-

Loh BY o

Input/Outaut
Geregen and Keyboard
PRINT Stateoment
DISPLAY Btatement
INPUT Siatement
Bevice/File
Perischeral Accese Block Definitiaon
BABIC PAR aAdditions
178 Gperations
OFEN
CLOBE
LD
BaVE
READ/DATS and RESTORE
Lontrel Transfer
070 Biastement
GUEUR and HETUHN Biatements
ON 8DBUE and ON GUTD EStatements
FOR and NEAT Statoments
i FOR Btatement
2 HEXT Btatemsnt
IF-THEN~ELEBE Statement
Call Bitatement
BABIC-Provided GFL Bubprograms
CLEAR Subprogram
SUOUND Bubsrogram
CIHOR Sybprogram
SCHEEN Bubproagram
CHAR Subprogram
KEY Subprogram
YOHAR Bubsvrogram
HOHAR Bubprogranm
GUHAR Bubprogram
GRAPHICE Bubpragram
HMARGING Dubsrogram
OO Subprogram
DR&M Bubprogram
DRAWTD SBubsrogram
FILL Bubpragram
Froovam Termination
Hormal
ETUFP snd BEND Statements
Hrourance af Breakpoints
Debugging aAlds
Breatpnints
BREAK Btatement
UNBREAY Ytatement
CONTINUE Command
Tracing
THACE Bitatement

{at 3 o

Rl

ot

TABLE of CONTERTS

PREL IMINARY

Ti-99/8 BABIL INTERPRETER TABLE of CONTENTE

& 7.3 & UNTRACE Statement

BECTION 7 GROUOM BAEIC PROGRAM BUPPORT

7.1 VIF Use
7. 2 Peogram Hepresentation
7.3 Ergcution Szguence
BECTION B HRITINDG GPL SUBPROSRAME
8. 1 Erxecution Segusnce
g 2 Useful Bubroutines
g 2 1 Linksge to BaSIC
8 2 2 Parameter Acguizition
8.3 Restricviions
g5 4 Stealing VDF HAH
8 & 1 Gtart Up
8. 4.2 MEMOCHR
8.4 3 String Space
APPENDIX & BASIC Keyword Table
ARPPENDIYL B Bystem Flags
B. 1 HARNSES
APPENDIX C GPLI0C &g A Debugoing &34
.1 Assembly Languays
£, 2 Gdrocessing GROM
.3 asreegssing VIF Ram
o4 BFL Dode

FRELIMINARY

TI-99/78 BABIC INTERPRETER LIBT af TABLES

LIST of TABLES

Tabls Title

31 YOF RaM Usage for Pattern Mode
b LS VP RAM Usags for Text Mode
3=-3 YVOP RAM Usage for Split~Bcreen: Texg-High Mode

B YOF RaM Usage for Split-Boreen: Texit-bow Mode
GG YOP RaM Usage for Migh-Resolubtion Mode

F-& VP RAM Usage for Multicelor Hode

A7 Mazg File tLocsbtions

WWW 0w
?&g&}w&wwwww
RN L

3-8 Flap Register Lontsnis

FHELIMINARY

&
1
i
B

s
3
i

o
o

TE-9978 BABIL INTERPRETER LIST of FIGURES

LIET of FIBURES

Figure Titie Paragraph
| Ti-99/8 2RO FMemory HMap 212

i B Berateh Pad RAM Description 213
B3 TIi~99/8 Mapped Femory UUsage 3.1.8
g System Overview 3.2
A3 Fhysical Memory 3.2
J-& Map Repister Descripition 3.2.4
G Bystem Memory at Fower—up Time 3. 2.3
3-8 Hemovry Fap of BABIC 388
&= Program Line Representation 4.1, 3
G Frogram Memory Image % 01,3
43 Bymbol Table Entry 4.2 3
1 S¢ack/FAC Entry for a Biring 5.1.1

b Btack Entry for 2 GLEBUR Statement B5.01.1
[t Steck Entry for a3 FOR Statement 3.1
G- B Etack Entry for & User-Defined Funcition 5 1.1
B5 Memory Usage 5 1.2
bt FAL Entry for & Temporary String %012
-7 Fal Enitry for a Pgrmgnent Séring 5 1.2
S Heai-Type Humseric Dats Farmat 5.2

&3 #-Bute FAL Entry &. o

ozt &2 1
&3 &. 2.2
& BABILC PABR Layout & 3 F 1
#-B 1780 Upcondes o202 3
&tz Btack~Block L. 484 4. ¢
&7 & 04, 4 1
&5 & 04 4 8

PRELIMINARY

Ti~92/8 a8l INTERPRETER INTRODUCTION

BECTION i
INTRODUCTION

This socument containg the design devails and dorumentation
af the VI-99/8 Home Computer BaABIC language processor. This
dorument ie in a preliminary state and ig subgect to change.
Bection F Appendix A, and Appendiz B haeve been veviewsd and
hopefully ars technically cortect. The rest of this
specification is not guarasntesd fto be technically accurate.

i.1 Pursgose

The informetion grovided in this document is intended %o
provide a comprehensive documeniation of how She TI-¥9/8 BasiC

intevgreter functions. This documesnt can be vefevenced by
persons maintaining: modifging, ov deing the interpreter on an
intimate fevel. Included ave descriptions of the use of memory.

£low of the BABIC interpreitsr. and information deemed necessary
o iiluminate gll ¢scets 2of ths interpreter.

1.2 Srege

The information cvontained herein i3 intendss to be &
coaplete view of the interpreter for persons maintaining BaBIC,
it contains all information about the intesvpgreter sxcepd that
inforsetion which is contesined in the documents named Iin secition
.

Thizs docyment gisg provides necesdgary informaetion for gseople

writing spplications softwsre in BABIC pud nseding to write some
partiens of Sheir BARIC progrems in Assembly Languags or GPL.

Tavas Instrumesnis i1 PREL IMINARY

TI-2%/78 BABIC INTERPRETER A&FPLICABLE DOCUMENTE

BECTION 2

APPLICABLE DOCUMERTS

Home Computer BABIC Language Specification
{Revigsion 4.1 April 128, 1979}

Bepegcitication of a3 Teras Instruments Standard for the BaABIC
Language
{Released June 9. 19783

Amerivan National Standard for Finimal BaBIC
(ANEI X3, &0-19%78)

File Management Bpecification for the TI-99/4 Home Computer
{Yersion 2.5 Revised Fabrusry 25, 1983}

HBottware Develiopment For the Teias Instrumenis Home
Computer
{Reoleased May 24, 1979}

THE 9900 Microprocessor Dats Manual
{Releassed Dzosmber 19740

Texas Instruments Graphics Frogramming Language
Bragrammer '3 Guide
{Revised June 1., 1979}

Top Down Uperator Precsdencs
{(Vavghan B, Praitt. &0M Bympeoszius on Principles of
Frugramming Languages. Boston., Mass. . Oobober 157310

Tezes Inscsrumsnis 2-1 PREL IMINARY

TI-9%/78 BABIC INTERPRETER GENERAL DEBCRIPTION

SECTION 3
GENERAL DESCRIFPTION

The BABIC intevoreter included in the TI-99/8 console is an
integral pavt of the system softwsre included in the consols,
The interpreter iz intended to be ANBI and TI Standard compatible
andg ig intended to provide atcess to some of the urnigue features
of the TI-®2/87s havdware. The diwntsrpreiter provides several
snhancements asbove the ANEI nucleus to sccwss the colov graephic
caepanility and %o access the sound genevators contained in the
machineg.

3.1 Yse of Buetom Resouyrces

This sechion describes how ¢the intergreiber wuitilizes the
memory rescurces of the TI-99/8 congoie, including the RaAM and
ROM rcontsined within the system. The interpreter resides in
agproyimately 32K of ROM and approzximately 18K of GROM, f5 much
of the speed criticael code 2% possible was put in the high spesd
ROM &0 increasse the speed of the intevpreter.

BABIC utilizes ths CPU RAM for progrem storags, symbol table
atorage. Fevriphesral #HAccess Blocks, siring spgace, crunch buffer,

and tne Floating-point steck. The CPU RaM iz alsa vsed 4o
maintain il of the necessary pointers and Semporsry varisbles
invalved with editing. prescanning. and syecuting a BABIC
progran.

BASIC wuiilizes the VIP RAM for screen [0

3.1.1 BOM Usags.

The ROM contaired in thz conscls conitains maeny of the moast
freaventliy seecuted paris of the BABID intersreter. The BROM code
partion o9f the intergsrester iz contained in 1% separaete assembly
moeules. Ywe of theze modules are entitied PFPAaRSE and BABBUP.
PAREE contains the stetement dizspatcher, the parsser Ffront-end and
ending code. ang somz of the most Freouently wvsed NULD, LEDR and
statemant handlers {zge sscticon 4. 31 It slsoc comtaing the CPULH
and CPOF routines which get valuss en and off the wvalue stack.
BAZDUP contsinsg ssveral of tke mosnt fregueentiy wssd support
routines such &3 the symbol table seerch voutine, symbol

Teraes Instrumenis B BRELIMINARY

e

Ti—-99/8 BAEIC INTERPRETER GENERAL DESBCRIPTION

szsignmens voubtine., and several sesll routines $o sccess Lhe YDP
HaM.

In order to put together gl of the RUM code #for the entirve
sy sten gach of the ssparvrate mocsules of the system must be
ingiuded in & link-edit. The modulies contalined in the TI-9%9/8
consoig ars:

INTEIM - The oPL intsrpretey

iee -~ The memory mapper ubilities

BIFMAB ~ The cassetts device gervice voutine

FLYPT —~ The floasting point pachkage

CEl ~ The convert string %o number routine

GUREEM -~ The screen handler

MEWEML — The XML tabls

H2SUEE ~ The witility reoutines callabls from GPL. or a2z an
XOP/7YMEZ zall

H3BUBE —~ The utility rouvtines callable from &FL. or as an
EOP/AMLE call

TRINGIC -~ The intrinsic functions

GRS - The coanvert numbesr to stving routine

STRING ~ The siving packags

BALBUP ~ The BABIC support pachage

FLMEREUP — The fils managsy suppoert routines

PEREE -~ The BASIC parser

FURNEET ~ The FUORSMENT command

BLANDYY ~ The prescan routine

SURPRGY The subprogram voutines

FILESR -

BLWPTAR -~

AGEMEM -

¢

Bince the assembly language portioens of the cenzple cen be
ling—~adited there are no problems im putting all of the wsodules
tugether, 2% there avs with the GPL povritions of the console.

2012 GROM Ussus.

The &ROM poriticon aof +the intersveter contains part of the
BAEZIC interpreter. The line input, crunching, program editing.
and some of the statement NUD and LED handlers svre vonbained in
QROM. A1l dinput and output rouitines, and 211 sf bthe GPL
subgrograms such as SOUND. COLODE, angd KEY sre located in SROM
The srvor messages’ text &% well as the svrovr handliing rvoutine
are a#lss locsted in GHRHOM code.

The GROM portion of the interpreteyr ig contained in five

separate asssembly modules. These modules are entitied: BT,
PECAN, FMEYX, and GBUE. These mnemonice descvribe the portions of

Tezas Instruments b S FREL IMINARY

TI-9%9/8 BaABIT INTERPRETER CGENERAL DEBCRIPTION

BaAZBIC nhandled by each of these gssemblies. ELIT handles mainiy
the editing, crunching. asnd ftop-level porticns of BABIC. FECAN
containg fhe erver handling routine &8s well &8 BUMeEToUS
subrovtines such a&s the line input routine. EXEC contains a1l of
the GPL portion of execution except the screen/file management
portions which asvre contained in the FILEMER sssembly. SEun
tontains all of the BABIC oprovided OPL subprograms, such as
CLEAR, SOUND, and COLOR.

in order %o include &8ll +the separate assembiies of +the
censole togebher, & BPL abject code linker is svailasbles. The
linker is simply & file concatenator. Thers is no iink~sditing
capability, so linkags from oue sssemblu to anchkbar s fairis

o= b T ——

r- - e r _J:-__g — ey - «
i _*‘E«‘_'—

b

iisi—‘
— v

asssmbly %o ancther is te et up a branch table 2% the Beginning
af each assembly and ‘ORE’ % 4o 2 permanent lpcation. In orvder
to Sranfer control between roukines in different sssemblies, the
address of the branch-table entry for the destination roubtine is

vsed as an equate in the asssembly of the scurce routine., An
gxrample ig:

& ASSEMBLY 1
BRaANOH TABLE
GROM 7 GROM 7 startes at SEOOO
aRe 40 Jffset of >40 bytes
B HOANKE PEGADC ~ Link to scan routing
ER WRITE 2EOAZ - Link to writs routing
ASSEFMRLY 2
BOANKE EQU EQLD Address in ASBEMBLY 1 of link o SCANME
WRITE EGU >EQ42 address in ABSEMBLY 1 of link %o WRITE
Call. 2CaANKE Cali SCANKE routine in ASSEMELY 3
8 WRITE Goto WRITE routineg in ASSEMBLY 1

In this egxrample ABSEMBLY 2 has scuates for SCANKE and WRITE,
which are routines in ABSEMBLY 1. The equates are used in the
Lal.l end Branch statemsnts in ASSEMBLY 2. i1t should be noied
that this cavses one evxtra instruction for esach routine {(the
table entry Branch instruction in ASSEMBLY 1), but this is o

P T S e g Ak e s s R o eae EoE e e sme e e

TI-99/8 B48BIL INTERPRETER CENERAL DEGURIPTIONM

In order fo keep $rack of the amount of GROM used and which
parts are used by which sections., s GROM mep is kept. The OGROM
mapg veflecis the organizelion and usage of the console GROMs.
The following figure is the GROM map for the latest vevision of
the conzols BGROM code,

TI-99/8 QRUM MEMIRY MaF
REVISION x
RELEASBEY su/uu/zy
2x7/%55f3% f¥I %y

SROM © SROM 1 GROM =
MOMITOR. .. 0000 EDIT. 2000 FHMEX. AGOC

; g
; :
§ ;
: :
: o852
z PECAN. ... SBEC

09D7 %

TAPEDER. | | 0AGO

guus, .., ... QEGE

: :

H aA2B0

H SRUBZ. aREG

£ i

; §

5 ;

H H

i H
(1800 1778 {3800 SFeF {5800 B7ES
dvailiable: £ ¥ %% F

Figure 3-~1 TI-9%9/8 GRUM Memovry Map

Eack GROM heoids &¥ worth of information and has been Fully
ubilized.

Texaszs Instruments 3-8 FRELIFMInaRY

TI-99/8 8A8IC INTERPRETER GENERAL DESCRIPTION

B.01.32 CBY BEM Usags.

The 2K bytes of on-~bosvrd RAM ave used srclusively for the
Boratch Fad RHAM, The Graphics Laenguage interpreter. varigus
interrupt rouvtines, and paripheral devices use 142 bytes from
FEATZ te FEIFF. The reet of the 2K bytes is uvsed by the BaABIC
intevoreter, This section itemizes BAEIC s uvsage of the EBevaiteh
Fad RAM and generalizes the GPL interpreter’s wusage of the
remzining bytes, Mote that the GFL interpreter’szs workspace
(HEFED $o JBIFF) iz aleg used by the assembly language poriions
of BaBIC, o0 it is imporitant o preserve information that the GPL
interpreter needs. This information includes workspase registers
13, 14, and 15

The following figure shows the layout of the Beratoh Pad RAM
veing logical addresses.

,i‘. wwwwwwwwwwwwwwwwwwwwwww S b B =3

FEOGO Map Fliles 0~3 H
H H

b i e i i i S 2 5 O 5 R 55 . 4 5 o . e

FELICD | H
§ H

H Unused i

PEIN0G :
g £

e s e 5t 2 o A e 1 A S 1 +

SEBG0 BASIC Variables i
e e o e e) i 0 i A i i i +

FBEFE | EPL Intsvpretev. some Intevrupd
! Rovtines: znd Peripgheral Devicesg |

o s - "

FBRaCD | Bystem Hork Ares !
H i

e Mwmuwumwws&m%m;{m

PEBBOG | :
i &

; B&EIC Variables {

FELG0 | i
e ——

SETGH HO/BAVE/MERGE Koark Area ;
SEIFF | :

Figure 3-2 Scrateh Pad RAM Description

Tezae Inssruments 35 PREL IFMINARY

Ti~9%/8 BABIC INTERPRETER PENERAL DEBCRIFPTION

G014 VPP RAM Usage,

The VIP RAM is used as the primary memory for the scresn,
coler table, character gensrator tsble. serite information, and
sound 1ist. The cuvrrent graphics mode determines how the VDP HAM
is partitioned For wse by Ghe #HABIC intsrpreier. HMorse
information on the date structyres used in thess aress can be
found in the particuler sections of this document which describe
than The following tables describe VDP RaM usage for each
graghics modsa.

Table 3~1 VIOF RaM Usage for FPattern Mode

Agdresses Uze

GOOG-0ZFF Bcresn (FEEH bytkes:

GBRGO-Ga7F Sprite Attribute List (128 butes)
QECU~-030F Colar Table (32 bytes!

GIEG~-O3FF ZBound List (32 bytes)

O 7B0-07FF Bprite Velocity List {128 bytes)
GBEGG~-0OFFF Character Genevator Table (2K bytss}
SROG-0OFFF Sprite Genesrator Table (2K buites)

Text mode usage of VDP RAM is similar %o that of Pattern
mode. The difference is that since the screen takes up more
memory in Text mode, the Sprite Attribute List iz at =zddrazs
204040 instead of >0300.

Table 32 VDF RaM Ussoe for Text Mods
Agdrecess Ugse
00 OEBF Seresn (960 bytesl
GICO-0EDF #Color Table (32 buytes?
QEEG-QEFF SBound List {32 bytes:?
DA -4TE #Gprite Attribute List (128 bytes)
GFBO-07FF #Hprite Velooity List {128 butes:
CRIOG-OFFF Character Gensrastor Tabhle (2K buytes)
GEOD-OFEF #Bprite Bensvator Table (8K bytes:

¥ The sarite~ and calor-velated bablss are maintazined sven
though sprites are not dispiayed in %texi mode. This iz %o insurse
that a CALL SPRITE command will have & safe place to write data.

Teras Instrumants e PRELIMINARY

TI-9%/8 BASIC INTERPRETER CENERAL DESCRIPTION

The two Split-Screen modes and the Migh-Resslution mode, use
completely different VDP HaM locetions tharn the Pattern and Teut
modes.

Table 3-3 VOP RAM Usage for Split-Screen: Test-High Mode

Addrasses Use

DoOGo~07FF Sprite Generater Table (2% bytes)
GOOG~L7FE Charvacter Gensrator Table (&K bygies)
1800~ 1 &FF Screen (7468 bytes)

TBOG-18B7F Sprite Attribute List (128 bytes)
1BEG~-1BFF Brerite VYelooity List (128 buytes:
ICO0-101F Soundg List (32 bytesn)

HO00-37FF Color Table (&K bytes)

The two Bplit-Screen modes are the same sicept for the
iocation of the Sprites Lensrator Tablse.

Table 3-4 VDPF RAM Ussge for Split-Scresn: Teri-Low HMade

dddrescsas tize

P L [EmI———

SOOG-LTFF Character Genervater Teble (&K bytss:

1000~ L7FF Barite Genevator Table (2K bytss!
IBGO-1AFF Bereen (768 buytes)
1BGO-1BT7F Eprite Attribute List (128 bytes)
LRBO-1RFF Hprite Velocity List (128 bytes)
ICO0-101F Bound List (32 butes)
2OG0~HT7FF Colovr Table {4¥ butes)

Teias Inssruments ST PREL IMINARY

Ti-99/8 BABIC INTERPRETER CENERAL DESCRIPTION

The Migh~Resclution mode has the Sprite Generator Table a2
3800, which is different from both the Split-Scresn modes. This
mode alsoe has an /70 Sereen which i3 unigue %o the High-
Regolution and Multiczolor modes, The 1/0 Scvsen iz 4he location
where ths Tesults from the ACCERT, DISPLAY., IHBUT., LINPUY. and
PRINT steatements are placed. This causes the results Prom these
sbtatements to bz invisible to the user.

Yable 3-% VDP RAM Usage for High-Resolution Mode

Lddresses

o G S e S R S G

Use

QOG- L TFE Character Generator Table (&K bytes:
1800~ AFF Beresn (758 bytes)

IBOO-1B7F SBprite Attribute List {158 butes)
B8O~ L BFF HBprite Velocity List (128 sybtes)
ICOn~1C1F Sound List (32 bytss)

1800~ LFFF A0 Bersen (7468 butes)

2000-37FF Color Table (&K bybss)
AE00-3FFF Zprite Generator Taeble (2K bytes)

The $ulticolor mode is similor fto Patisrn mode, excepnt the
Sprite Senervater Table ig located at address »1000. rather than
at 20EOG. This wmode alsc has an 170 Boreen which is wnigue to
the High-Resolution and Multicolor modes. The 1/0 Scresen iz the
location where the rvesulits From the ACCEPT, DISPLAY. INPUT.
LINPUT, and PRINT statements ave placed. Thiz cavsss the vesulis
from these statements to he invisible to the user.

Table 3-& VDP HAM Usage for Multicoler Mods

Addreszses Use

GOOL-GEFF Seresn (748 buytes:

OBC0—-037F Sprite Afttribube List (128 bytes:
QECOH~-03DF #Culor Table (32 bytes)

DEEQ-OOEFFE Hound List (32 bytes)

D7BO-OTEF Sprite Velaocity List ({128 butes:
OROG~OFEFF ##Character Genevator Table (2K butes)
1G00-17FF Sprite Gunerator Table (2K byutesd
D00~ 1FFF 170 Bovreen (768 bhyiss)

The Color Table iz nod usefo! in this mode, But it is=
dedfined.

#% The Chevraciter Gensrator Table is sctually used For color
information in $hisz mode.

Teraz Instrumsnis e B FREL IMINARY

TIi-F%/8 BABIC IMTERPHETER GERERAL DEBCRIPTION

3.1.% Ppysicrel HMemory Ussge,

The $ollowing $Pigure is & graphic vepressntation of how
physical memery is parvtitioned for use by the BABIC interpreter.

>0GHEO0

¥
t
i
1
i
t
£
i
i
1
H
§

Crunch Buffer

B N,

H
¥
[
§
i
e e e e - o o
I3
£
Ling Mumber Table H
]
[USSR ——————— i i 5 e S o B A R ST S s g
L3 §
< H
§ Crunched Frogram i
H i
et ok i s e A i 4 e T A s 1 K S o A A A S S % M W i £ e
& g
2 3
H Symbol Table ;
.]
e e v e e i e, e S T o o 5 i g S e e e i 53 T 8 S LS L . S e e N
4 7
% #
; String/PAE Space i
; i
B b e s < s £ s e
€ 3
¥ 8
i Free i
1 F
& H
[- o Pu—— P
k] H
H
H Yalue Btacl ;
H ;
i i st s e s A i ot e, Sk 65 95 50 A St S S T 3 7 . e &
£ H
4 3
H I/70 Pointers {
i ;
i o e s o e i S s e e st Gt 3 9 A 43 e i e D o S e £ S 5 S s 5
i ¥
14 H
H Hecall Buffer i
H H
e i it i S i e e 1 L) S R P e A i e S5 i 5 S 5 s

=l

Figure 33 I-9%/8 Mapped Mempry Usaos

Tezas Instrusments B PREL IMINARY

TI-99/8 BABIC INTERPRETER GEMERAL DESCRIFPTION

3.#2 SBustepm Descyvintiaon

The TI-99/8 syetem has a2 F990 processor with &£4K of phusical
memory in the consols and is sxpandable %o 16 MEG of physical
MEMET Y. There are twa possible modes: /8 mode and /44 mode,
Fagscal uses the /8 mede agnd BABIC usss the /48 mode. This
document only describes the /44 mods.

Bince there are 16 address lines from the 9995 and 24
agdress lines o physical memory, there iz a nged Far
intermediary addressing logic. The é&ddress Decoder and the
Memory Mapper chip ave the intermediasry components for $he Ti-
GR/8, The foliowing Figurs shows an overview of Lhe suystem

Physical Memory

£ “é."
¥ e s - 2K HAM ;
E i on v o e s e e A Y R S i
H ! H
e o o s ek e > s s s s e & o em e s s e] H H
£ 4 H E i i 13 i
& & H E £ H 3 &
i P l& 1 Addrsss 1 16 1 Memsry | 240 i
IS 5 B R > Decoder (weeow >i BMapper |-—wel] H
£ 2 & i H 3 ¥ g
3 2 E L H ¥ B H
H £ i : § : ; i
s et s i s s s o o s v v s e e e s e o i i Wi i i s S o H H
£ [E g
§ B § g
£ H v o s s s e e s 4
Yy e et o . e e e g8 "M §
e 3 oo s
PomMED
2 4
i 2
o s e s i
Figure 3-4 SBustem Overvisw
Memory is genevally described in fwo ways: Logical Address

Bpace (LAS) and Physical Address Space {(PAS). The LAY iz mevely
an aid #or the progreammer and is 2 lagiscal vepresentsation of how
the FAE ig being used. Vaiid logicsl addresses rangs from SO000
tu FFFEF. The PAB is the actuyal memory which includes conselis
memsTy and sipanded semory. Yalid phusical sddrezsses range f#rom
FOUCCO0 co FFFFFFF. The folliowing figure describes the layout of
ghysical msmory,

Teras Inscsruments 310 PRELIMINARY

TI-B9/8 BABIC INTERPRETER SENERAL DEBCRIPTION

e orm e s e B e
SOOGH00 1 2K Borastoh Fad Ras §
FOBORG0 Ral i P Memory
: H H H In
H H H I Consale
i : H H
SOOFFFEE 1% H H
e i e e s i e s e o i e
16000 | Expanded Mamory §
£ § H
: 2 :
H : ;
H H H
H H :
H i !
SFEFFFF i H
+ . e
PEEOGOLE Unused i H
£ “__%o g
>FEFZ000 4 Unused i i
-+ - e :
FFFA000 | DOR ROFe ; !
[e— ;
DEFLAGOO | Cartridge Port i ;
o H s i &4M ROM
FEFRGOG Y : !
£ N " mm‘?, §~
PEFAGOG ¢ B ROM H H
ot s s o i i S s 1 + i
SEFCOOG | 8 ROM H ;
s s i e o o e e sk o s o ;
ZFEFEQOD i Unupsed i H
PEFFFFFF - : B omemn e e

Figure 3-8 Physical Hsmory

3.2 1L TIne Addrezs Desioder.

The Addreszs Decoder btabes logicsl addresses and roubes them
o %he agpropriats place. Logical addresses >0008 through DIFFF
go te the sustem ROM {The system BOM. or ROM O3, is not in the
shysical aeddress spate.) Logical addrssses >BOGO thvough BIYFF
are translazted ¢to physical address 000000 throwgh SO007FF
respectively: and sent to the 2K Berateh Pad HARM l.ugical
addresses OBBOO through DYFFF gre sent o the appropriate Memovy

Teras Instruments F-11 PRELIMINARY

TI-9%9/8 BABIC INTERPRETER GENERAL DESCRIPTION

Mapped Device (MML). #11 other logicael sddresses zre sent Lo the
Memory Mapper.

3.2, 2 Ihs Memory Mepn

The Memory Mapper fransistes logical addresses fFrom the
Address Decoder into physical addresses. To de this. the Memory
Mapper used theg value Iin the most significant nibble of the
logical address as the address of one of ifts 16 rvegisters. it
then uses $the wvalue in the least gignificant 3 wnibbles of the
iogical address ags @ displacement, and edds it $o the contents of
that register. The resvlt is the desived physical sddress and is
placed on the Z4-hit sddress bus Yo phusicel memovry.

3 2.3 WMap Filles.

in ovder to change the wey FPaAS is pavtitioned, it is
ngreseary o define & map file. & map file contains informaltion
which describes the 4K sections pf PAE which sve te be mapped
intoc the LAS. & map Ffile cen only describe FaE sectiens whic
sre 4K bytes in lengith.

Thers are eight map Files nombered O Lo 7. Multiple map
tfiles may be defined. But oniy one msg Ffile at & time can be used
to map in the PAZ. The folliowing table shows the logicsl zddress
af sach map File.

Table 3~7 HMap File Locations

Plap File Logical Address
& >80GG0
28G80
RO
FBOCO
FELIO0
FHL40
>Bi80
FELCO

o5l de Dl B e

fZacn map PFile vses &4 bytss., 2nd ls divided into sixtesn &

word enitvies. Easch enbkry af %the curvent maep file describes a
*window” in the LAE Information for #ach eniry is stored as
follows. The thees most significant bibts of the Firvrst byte arvs

Ffor the flags net used in the sustem. These threse flags arse the
execute protect, the vead protect, and the write protect flsgs.
The vemaining five hits of the Fivst byte are unussd. The

Teiar Instruments F-12 PREL IMIMNARY

Ti-9%9/8 BAZIC INTERPRETER GENERAL DESCRIPTION

second, thivd. and fourthk bytes (24 bi%s! store the physgicasl
address.

Only the First Ywo map filieg. map File § and map File 1, ave
currently vsed by BABIC., but map Files 2 and map file 3 are
reserved for future use. The curvent definition does not reserve
FRE00 -~ 8200 for map files.

2.2 4 Tine Map Hegister.

Storing an sppropriats velus in the map register tells the
Memory Magpper to LUAD ovr READ the cuvrent memory configuration
degscribed by the specifisd map Fils, This can be done zs ofitsn
28 the programmer desires. The B bit map vregister is located a%
sddress 28810 The definition of each bit in the map register is
described below

e e Y
P U U T U A A A L
i cl s of ke R o

Unused

flag File Mumber

= 1 For LO6D 5 map file into the memory mapper

G Ffor READ current memory mapper inte & map file

A N
oW

i

Figuve 3~& Map Register Descripbion

SBpecifying LOAD f$2ils the memory mapper which 44U secbions of
P&S are to be mapped inte the LAS. Specifying READ puts the
sivtesn Z-wovrd phusical address pointsrs of the currently mapped
Fab into the specified map File.

The following table describes the results of storing varicus
values in the map register.

Teras I[nszruments HB-13 FREL IMINARY

TI-%/8 BARIC INTERPRETER GENERAL DESCRIFPTION

Table 3-8 HMap Register Contenss

Map Fils Map Hegister Lontenis Moaning

oo e o A s ok S B et

& SO0 GO0 oy XG0 BEAD Map File O
& GOOG OO01 or F01 LOADL Map File ©
3 QOO0 0010 v OZ AEAD Map Fils 1
i GOGG O4il or 03 LOAD Map File 1
2 QOGO 0100 or 204 READ Map File &
=2 GGO0 0101 or 03 LOAD HFMap File 2
b GOOG 0110 oy 204 READ Map File 3
3 OO0 0111 ey 07 LOAD Map File 3

Examples of how %o uvuse the Map Heglster gre described later

i this section.

i<

3.2 5 Hewmovy.

The Logical Address SBpace iz the only wmemory which isg

dirvectly addressabie by ¢the processor. The LAS contains 1é
fawindows ™. fach "window” corrvesponds to¢ & lIogical address az
follows: Window ¢ is address 0000, Window 1 iz sddress 1000,
Window 2 i3 address 3000, stc. Each “window" conteins &

shyeleal address which points te the top of a2 4K section of PAB
and iz defined by the cuvrrent map file. Se 1¢ the current map
File ds HMap File O ithe contents of HWindow {§ zaervresponds to
information stored st logical address >BOGG, and the contents of
Window 1 corvesgonds to information stored at Isgicsl address
>B004, stc. HNote that the contents of Window O, Window 1. Hindow
2. and HWindow % gan noet be changed.

In srder tn access physical memory, 1t 1s necessary to do
MEMOTY @Wapping. in ether words:, 1%t is necessary Lo map phuysical
addrasses into legitval address windows.

Map file O starts st Herstch Pad address PREOOG Easch of the
sivtesn Z—word enitries in the map file cfontain information sboul
the PAaE and corrvespond o park of the LAEB Figure 3~7 showe the
contents of Map File &, the covvesponding leogical addvesses, and
the layout of physical memory et power-—up Lime.

Teraz Instrumenis F-id PREL IMINARY

r

Scratoh
Pad FPAE
faddrens Foainter
- +
RGO | FOOFFO000
o e s i s s e s e 3
SEGGS | SOOFFOGLRO |
i s s s s i e &
SEGHE | XO0000800
5 o
FEGGC 1 000018060
P ——
>8GL0 | SOGOFFL000
B g
>EGLIE | POQFFIOO0
aé.,
»8018 | ROOFF&OO0
d - X
FBOGIT I SOOFFTO00 G
& =2
SBORG | O0FFOO0G
: -+
>E024 | POOFFOGRO
o e s i s o e e o
SBOEE ! SOOU02BGD
U —— -
SBOGRL T XODOOEBGH
o — XS
PEGEO b RO00048B00
s s s s s s s “*
>EBGZ4 | O0005B00
P — -
»ElEs F FODOGABRDD |
s i o s i +
>BO3C 1 00007800
2 A
Figure 37
Teeras Instrumsnis

TI-9%/8 BABIC INTERPRETER

LA
FOO00
210060
22000
>3000
24400
>50G0
>&EQO0
27000
FBOO0
SRR
25000
2BOGH
2000
2000
SEQO0

>FOOG

SBystem Mempory at Power-up

3~13

2000000
>OO0BO0
>0G1B0O
>OGEB00
*003800
SOOLBO0
>305800
>O0EB00
>OOTBG0

>OOTRG0

PEFQOOG

SFEFLIO00

SEFAG00
FEERGOO

>FESO00

FFEFGOG0
FEEAGDO

FFFEFFFE

GENERAL

DESCRIPTION

Phusical Address Bpace

{(PaE}

2 e
i 2K Berateh Pad RaM
o e e i e i e o
: RAHM :
: ¥ :
e —
: R&aM i
i e e o s o S B 5 e
g K £
£ 2 1
e H e o
/ i :
: o
3 H £
&] i
v b e i s e e b St it st i i e ot
3 £ s
H ¥ £
ottt 5t b s b ke i § ot o s st £
i ¥ :
S ——— P—— EN
¥ £
£ i
e N
b e e s
3 B
£ 2
e e s o
¢ :
13 B
" Er
v s Rt &
i LER i
S kel &
3 :
3 H
e s S i s i e S 0 S 5 o e s e %
P Cartrides Pobt ROM |
i i 4 i s e s e s £ s s e v st s s o
e 3 o
[P ———— B s v s s s
; 4 §
B — e e 3 s e 5 1 e i o
§ ROM 1 i
e A

s are i vt e s v e v o i e i

Time

PREL IMINARY

TIi-99/8 BABIC INTERPRETER GENERAL DESCRIPTION

The Ffollowing figure shows the contents of Map Fils 0. the
corresponcing logical addresses, and the layout of how the powsr-
up code maps the PAS foar BASIC,

Scratch
Pad PaAG Fhysical Address Zpace
Address Pointer LA&E {FADS
s sk o e o * e e
2BOGOG 1 OOFFOO00 | 0000 2000000 | 2K Scratoch Pad Ram
5 : e e - e s
SEQ04 1 FOOFFGOCO | »1000 FEOOBOGE | H
e e s s s - e o e o o i e e o .2
8008 | DOUFFACGDG | 2000 O8O0 | H
ot s i s 4 e : e
=8O0CC | FOOFFROGO | 3000 0028046 :
e e e % — e e e e o
FBGIO 1 FOOFFA000 | 24000 >OO3BBOCG i
= - & - o 0 e s e +
>8014 ¢ OOFFS000 | 3000 Foo480G :
; o S ——— -
SBOLE 1 HOQOFFCO0D | 26000 >O088B00 | :
s o s st s + e i o e s o o
SBGLIC | FROFFDOOD | 27000 FOOGHB0G H
e e e s b + + - e
8020 1 DOOFFOO00 1 >BO00 FOUTBOG | i
e & - ot e 5 it i e e ke e
28024 | FOOFFOO00 | 290460 FOG7EG0 3 i
s e S i ot e e s s e Hs P
>BOZH T OO P al00 + — o e
o v o o + SFFOOO0 | i
S8G2C 1 >00% P 2BOOD Fe ot e e o e +
: - e SEFLOGO 4 2
SBO3E0 § 200w HE L 14 ~ -
e o s i s * e : e s o
FEO34 1 200w P BOGO FEEAOGGT ! LER H
e ot i e + i o § e o e e e +
»>8038 | >00% ;o PEQCOD FEFSC00 | Y i
e e s e & b et o e e e e s e
*BO3C 1 00w S e FFF&000C | Cartridge Fort ROM
et o s s e £ st e +
These addresses changs e o e e s +
freguently to access FEERLOS | Y :
varisus paris of phusical e 1 i
R, SEFA&GO0 oM i !
B e L e *

Figure 3-8 Memory Mas of BADIC

Texss Insvruments D1k PEEL IMINaARY

TI-9%9/8 BABIC INTERPRETER CENERAL DESCRIPTION

The folliowing pavsgraphs describe how o access $he HMemory
Magper from Assembly lLanguage and from @PL.

3.2 46 Accessing the Mewmory Mapper From bssembly Langusge.

The following code assumes FAD through FAC+3 contain the 2-
word physical address to be mapped in &% windew 2D of map #ile O

WINDOW Eal 8034 SBOOGH {480
LOaDt BYTE 01 GO (fFor MAP FILE O 1 1 (for LOAD)
MAPREG EGU >BBI0 THE MaP REGIBTER ADDRESS
%

MOV @FAC, EWINDDW BTORE 187 HalF 0OF 2-WORD PHYZRICAL
ADDRESE 7O MAFP IN mMapP FILE

MOV @FACed, BUINDOW+2 SBTORE ZND HALF OF 2-WORD PHYSICAL
ARDRESS TO MAP IN MaP FILE

MOVE @LOADO, eMaPRES SEND COMMAND TO LOAD MAP FILE O

The twe MOV instructions need to be repeated Pfor each phuysicasl
address %o be mapped in. The MOVE instvuction only nesds %o be
arxecuted once. since 1% will load lor resgd) the entivre specifisd
map file

The following XOP 3 idnstruction accomplishes +the same
srocedurs, It is slower than divectly accessing the mapper
becavse 1t iz & subroutine call. but 1% saves progvram zteps. For
the example as zel us asbove:

WINDOW EGU 8034 FPROOG (4a D)
0P @rac. 3 Fal CONTAINE & Z2-WORD ADDRESS TD #MaPr IN
DaTA WINMDOW PUT MAP FILE ADDRESS IN DATA STATEMENT

The XOP 3 instruction needs %o be rapeated forv sach phuysical
address to be mapped in. The XOF 3 instruction automsticselily
loads %hae wentive map fFile O, so this instruction is very slow
when severasl physicsl addresses need to be mepped in.

It is wnot necessary $o define every window with MOV
instructiosns. The following erample shows how o read the
current descristion of phusgical memory into map Pile & it is
then possible to change any windows and then te load the new map
fils,

READZ HYTE 04 i0 (for MAP FILE 23 1! @ (for READ)
LUADZ BYTE 05 10 {for HMAP FILE Z3 11 1 {(fFor LOADI
FMAFRES EGU 8810 THE MaP RECIGTER anpResg

MOVE ZREADZ, BMAFRES BEND COMMAND TO READ CURRENT FPHYBICAL

Tezas Instvumenis B 17 FREL IMIMARY

Ti~9%9/8 BADIC INYERPRETER GENERAL DESBCRIPTION

MEMUORY POINTERS INTO MAR FILE 2
Ceange any windows.

L

ROVE BLOADRD. BMAPRER SERDG COMMAND TO LCAD #AP FILE 2

d.2. 7 Accessing the Messry Mapner From GPL.

The #oliocwing pavagraphs describe GPL instructions which ave
vsad in asmoTy mapping.

3271 HAPIM

The MAPIN routine fetches the physical address pointer from
a Scratch PAD RAM address (28300 ~ 287FF), and maps this sddress
in at the top of the 4K logical address space window specified by
the WINDOW parvameter. The format fovr this instruckion is:

DaTa XMLE. MaPIN
DATA SPHYADD. WINDDW

in MAFPIN, PHYADLD {(Phusical aAddress) is & i-~word gpointer %o the
Bevrateh Pad RaAM location containing o 2-wovrd physical address,
WINDOW i¢ {~byte parameter and contains the value of the desired
window. {Hevall that windows have values from 0 through >F. 3

an sxample for this imstruction is:

DatTa AMLE MAPIN
BATA BFAL+4, DE

This sxample moves the physical address at FAC+4 through Fal+? o
Window E ¢ mas file 0.

3.2. 7.2 @GEIR.

The GETP voutine will fetch deta from a physical sddress o
@ buffer in Soratch FPad RAM (38300 ~ >EVFF). The format for this
inssruction iz

DATA AFLE. SETP
LATA SOHRCPTR, BLOSDESY. BYTONT

in GEYP, BROPTR {(Bource Fointer! s & i-werd address in SHcrateh
Fad HAM which contains a Z-woerd pointer to dats located in
physizal memory. LOBDERT (logicel Destinetiond is a I-word
addvress of where in Boratch Pad RAM to put the datas. BYTONT iz s
i-byte parameter which tells how many buytes of data to rvead.

Tesas Instruments 218 PRELIMINARY

Ti-99/8 BABIC INTERPRETER GENERAL DESCRIPTION

An axample Fovr this instruction is:

DaTa ¥XEL2, eETP
BATA SDATA. BUHAT, 1

This exampie moves 1| byte from the physical address pointed to by
DATA fto CHAT.

22,783 PUTE

The PUTP routine will feteh data Ffrom a Scratch Pad RaM
address $o & physical sddress. The format for this instruction
ig:

DATA XFLE, PUTP
DATA GBRCPTR, #¥PHYDEST. BYTONT

In PUTP, SRCPTR (Ssurce Pointev) is & l-word address of wharve in
Beratch Pad R&M the date iz located. PHYDEST Physical
Destinationy is 2 l1-word address in Scrateh Pad RAM which
containg & 2-word pointer of where in physical memory to put the
data. BYTONT is & i-byte paremeter which tells how many bytes of
dats %o rosd.

An example for this instruction is;

DaTa XWLZ, PUTHE
DaTeE BFAL, BARG. 4

This example moves 4 bytes From Fal %o the physical address
puinted to by ARDS through ARG+4.

302,74 HOvUR.

The MOVUP routine will smove the contents of low physical
memery to kigh physical memory. The format for thiszs instruction
iw;

DatTa XWLZ, MOVUP
DATA HERCPTR. #PHYDEST. 8LENGTH

In MOVUF., SRCPTR {(Beurce Pointer? is & i-word address in Scrateh
Pad RA&M which containg a 2-word gointer to the data located in
physical memory. PHYDEBY (Phusical Destination) is &8 i-word
gddvress in Heratoh Pad RaM which contains & Z-werd pointer of the
address of whevre in phusical memory Lo put the data. Hince MOYUFP
is & non-destructive move, it is necessary for SROPTR to point to
the high-end address af &he buffer that is %o be moved.
Similarly, PHYDEBY must poingt o the high-end address of the
deggived buffer location. LERGTH is & il-word sddress of 3 length

Yexas Instruments Fe-1% PREL IMIMNaARY

TI-99/8 BABIL INTERPRETER GENERAL DESCRIFPTION

variable.
an exampie for this instruction is:

DaTa EMLZ. MOVUP
DATA #0OLDBOTTH, SNEHBOYTHM. #FAC

This sxample moves FAC number of bytes from the physical address
pointed to by OLDBOTTM ¢to the physical address pointed to by
MEWBOTTHM.

3.2.7. 5 MOVBHN.

The MOVON routine will move the content: of high physical
memory o low physical memory. The format for this insdruction
ig:

BaATA XMLE, MOVDN
DATA #SROPTR, 8PHYDEEST. #LENETH

in MOVDN, SRCPTR (Source Pointer) is & l-word address in Scratch
Pad RaM which contains & 2-word pointer to the dats located in
phusical memory. PHYDEST (Physgical Destinstion? is a Il-word
address in SBeratch Pad RAM which conteins 2 Z-word peinter of the
address of whevre in phusical memory to pul the data. Since MOVDN
ies & non-destructive move, 1% is necessary for SRCPTR fo point o
the tnw-end addrese of the hbuffer that is ¢to bese moved.
Similarly., PHYDESBT must point %o the low-end addrsss of the
degired buffer locetion. LEMGTM iz & l-wovrd addvrese of a length
variable.

& szample for this instruciion is:

DaTa XML, MOVDHN
DATA SOLDTOR, BNEWTOR, #Fal

This exemple moves FAL number of bytes from the physical address

spinted %teo by OLDTOP £ the physicael address pointed fo by
MEWTOR,

Teras Instruments s PRELIMINARY

Ti-99/8 BABIC INTERPRETER INTERFRETER PHABESD

BECTION 4
INTERPRETER PHABES

This section degscribes the differvent phases involved in
executing & BABIC statement or progvam. There are thresz major
phases involved in siecuting & BASIC statement or program. Thess
phases are:

i. Statement/program entry lediting).
&. SBtatement/program prescanning., and
3. EBtatement/program sxecution.

Fach of these phases have several subphases which are siszo
described in detail so that the code can be analyzed and/or
modified by pervrsons nseding te do so.

The outer-most level of BASIC, commonly referred ¢o ss Eape
ilavel. is the global dispatching element which determines what
has been entered #rom the keyboard (s sctatement. program lins,
command, sto.) and takes care of dispatehing control tc the
propegr handiing eslement. The following is & sseudo—code
description of the foo-—level a2f BASIC.

BEGIN
REPEAT FOREVER
READ _INPUT_LINE
CRUNCH_INPUT_LINE
SELECT *INPUT LINE®
WHEN “DIRECT STATEMEMT®
BOAN_NEW_STATEMENT
PARSE_NEW _STATEMEMT
WHEN “PROGRAM LINE®
EDIT_PROGRAM | INE
WHEN *COMPMAND
EXECUTE _COMMAND
END SELECT
END REPEAT
END

Functionally thiz is an esndless looe. since the BaABIC

interpreter has no legical end. The interpreter i3 writed via
the eresution of & BYE command.

Teras Ins¢ruments f § PHELIMINARY

TI-99/8 BABIC INTERPRETER INTERPRETER PHABES

4.1 Editing

The BABI(editor consists of routines to rsad an input line,
crunch & line into tokens wheve possible, and $o handle esditing
by line nuasber {(deletion, addition. and replacement). Fach of
these ssctions are discuseed here,

4 1.1 Input.

The line input routine iz entitled HEADIN. This routine
takes care of reading & character from the keyboard, displaying
the character on the screen, and returning to top-level when a
ling is tevrminated with s carriage veturn: or condidtionslily with
an up-arvow or g down-avrrow depending uvpon the particulasr mode
which called the routine,

READLN has three modes of operation when vsed for inputiing
BAGIC statements and commands. The three modes are: normal line
input, aufe-num input, and edit mode input

Briefly, novgal lime dinput is when the READBN routine has
been celled with none of the speciel modes set. it iz merely
atcepting & line of input. This will become clearer when aulp~-
fum input and edit input arve illuminated.

Auto-num input mode 1% active after the user has entersd the
MUM or MUMBER command and BABIC ig generating sequence. ar
statemaent, numberes Gutomadtically. Suito-num mode does not 2llow
ong to modify the line number generated and this mode iz syited
By dnputting & return key without including any other input on
the line. I¢ aubto-num generates the line nuamber of & shatemeni
which already ezists in the program. the editer goss into sdii
mode for that statement ss described in the following parasgraph.
The editor refturns %o standard auyto-num smode when 2 sgausnes
number is genevated which does not appear in the program

Edit mode is invoked by the vser entering the line number of
& statement in the program and fterminsting the line with an wup-
arroaw ov down-grrow kay, When this occurs the lineg iz displayed
on the screen and the cursor is positioned at the fivset character
of the Iine. A% $thie point 311 of the line editing festures
described in the following section become active for that line
aliowing the user %o changs a single line in 2 program without
resntering bthe entirvre line. i¢ the user terminates z lines in
gdit mode with an vp~arvow, the previous linme in Bhe program is
displayed on the screen snd $dit mode iz aciive Ffor that line.
I¢ the vser terminates 2 line in edit mode with s down-avrow the
succesding line in The progrem is displsued on the scresen and may
be edited. Edit mode is sxited by terminating & line with the

Texas Instrumenits i PREL.IMINARY

TI~-%9/8 B8ABIC INTERPRETER INTERPHRETER FHABES

egnter key., Also., s2dift mode is exited i¥ a down-arrow is entered
and the last line of the program iz being esditted, The READLM
routing contains all of the special line—-editing features of This
BaASIC and they ave described in the following section.

A.01,8.1 Lipe Editing.

The line edidtor ids the lowgst level of sditing wiihin the
read routins. This editor takes cave ofF all the edibting
facilities on thes line level, L& character insevriion and
delastion, cursor positisning., and line clearing.

The line sditeor recognizes the FUNC-BE a8 & bBack-arvrow and
moves the cursor back one position on the scveen, wrapping arsund
ty the previcus line if at the beginning of & continvaiion Iine
is the curvaent line., Bimilarly, the ling editor veoognlizes The
FUNG-D ag the forward-arrow and advencss ths cuvssr one position
e the right wrapoing arouvnd %o a continvation linme iFf a8t €he end
af a line wntil 255 charactsrs have bgan sntasred,

The lins mditor alss recognlizes two abher keys as being
special inlineg editing keys. The FUNC~-1 is recognizaed sz the
delete chavascter key and delstes whatever charscter is located at
the zursor’s posidion and snifés the remasining poviion of the
iine which lties to the vight of +the cursor o the left one
position Filling in the svsce left by the deleted character. The
FUMC-Z key is rvecognized s pubting the line sdifter inteo inssri
made. ffter & FUNC-2 key i vecognirzred all characiers
subseqguently recognized sre inserted intoe the line in the
position immediaetely preceeding %he cuvsor. Any charactsrs o
the vight of the cursor which meet the end of the inpul buffer
are bumped off. insertion 1& no lanhgeyr possible when Ghe curser
resches the end of the input buffer,

The ling sditor aisc keeps $rack of any changes in ths
current input line, I#f no changess have besn made, & Flag is ses
indicating that ng changes have been made to the line, This flag
ie weed by the EDIT raubtines as an indication that the currsnt
program line dossn’t need o be rveplaced. This zpeeds up program
editing when the wser ds ooly screiling through the linsgs in
adit~mods.

The TI-99/8 BABIC interprebsey uges 2 “erunched”™ wversion of
the grtual BABIC progrem for diTect execuiian, This esnhancess the
speed with which each program line can be seecuted since 211
lines are aliready sreprocesssed.

Terss Instruments Gl BREL IMINARY

TI-99/8 BaBIC INTERPRETER INTERPRETER FPHABES

This sreprocessing involves the soriing of each item in the
BASIC line into one of the following categories:

BaASIC kesywoerds -~ @ 5. FoR, TO, LET: sto. {gee Appendix
&)

Unguotbted strings ~ Hérings within DaTA eand CALL
statements not surrounded By guotes.

Quoted strings ~ Anyg strings surrounded by guotes.
Line veferentss
ABCII %$ext ~ Variasble names and camments

After the BABIC line has been preprocsssed or “crunchad®, 1%
can be sorted inde the current program segment 14 a2 lime number
has Dbeen detesckted at the beginning of the ling. The mavimum
length of & Ycrunched” line is 1460 characters.

& 1.3 Progrsm Imans.

The BABIC program segment consists of a number of crunched
gragram lines. Egch line is fterminated by 3 zevo byte. Far
gditing purposes. a line length iw sdded st the bBeginning of sach
progvam line.

Length

B own

R i R A N e S S AP sk R S o AR SO S AN W M U B Lo

Figure 4«1 ¥Frogram Line Representatiosn

The line number of sach grogram lins is stered in @ separate
"line number table® This table is physicaelly located Below the
pragram fSext segment in VIF memory. Each entry in fthe lins
number table consistes ofF & bytes. rontaining $he line numbey (2
bytes) and @ pointer <o the beginning of the covresponding
pragram line in the proegram Le:t segment {2 butes). Thig pointsr
iz pot pointing to the length byte of the srogram line. but
rather to the first i%em in that line.

This separation of line number table and progra; Lext

segment was chosen o epeed up srecution of danskructions that
reference line numbers (G0TOs, GO0BUBs., RESTORE, stc.)

Tezras Instruments e dp PREEL IFINARY

TI-9978 BABIC IMTERPRETER INTERFRETER PHABES

The entire program segment is condroliled by thres pointers:

i, EMLN {(OPU >B30G2) ~ indicates iast iocation uvsed by the
line number tsbls. This pointer dis pointsd %t the
least sigmiticant bute of the proagram line pointar.

2. BTLKR (CPU 8300F ~ Indicates the lowsst or first memory

locetion used by %the lines number fable. This pointer
ig pwinting 2% +the most significant byte of the line
number.

3. PEMYLR (CPU B304 -~ Points to the first byte gast the
end of ¢the pragram text.

Motea: HMEMTOP (CPU ZEE70), i maintained as VIF top-of-memory.
but is wnwot uvsed by TI Extended BAEIC IL.

The line number endtries in the line number table are storsd
i reverese lezical order, i.&. the highest line number iz
located at the lowest memovyg addvess. Entrizs in the sragram
kext segment are bzing mades in Ytime-order. i. g, ke last line
enteved is stored &t the lowest memory addvess. Entries in the
program ftext segment are therefore ngt in eny logical order.

Migh

PR T om0 0 5 1 1 # e Top 0F Program
]] ot s ot i i e +
{ FROBRAaM TEXT Pl H
¢ : f H
i F ol | e o = H
S ot e o ot S e 1 T 5 T 4 5 7 # | H H

ERLM -2f Fivrat line H Faointsr § e i H
o e o i = e o i e e i # ; ;
e e [H
T —— s e By ; !
i Line number | Paointer § s s + ;
: - s g i

BTLN -~ Last lins ! Pointar § o e e e i e +

A A G SO T TS T G ST ek G0 SR ARG R TR MRS B GRD FASH SRS S S GRS R P RS ‘3%
ow ; :
Memory ™ ”

Figure 42 Prggram Memory Image

The sssignment of 3 breakpoint causes the aost significant bit of
the ling number to be zet in the ling number table

Mote: The pointers ave kept zs physicsl poinvters, with the most
gignificant word dmplisd to bhe zero.

Teras Instruments 45 PR IMINARY

TI-9%/8 BaSIC INTERPRETER INTERPRETER PHAGER

Program editing consists of twe separate parts, line
deisgtion. and line insertiown. Whenever & line has bsen entersd
¥rom the ksuyboard:, a search is made of the line number fable %o
sege it & ling with the same line aumber alresady szists. I¢ it
does, the ling must be deleted From the tert befors the new line
can be insserted into the program.

In order to delete g line: the text pointer wiithin %the line
number btable is used %o get the pointer to the line ‘tend. The
line’s lengdh s then picked up by decrementing ¢he ftexlt pointer
and getding the length from the VIF RAM RKext, the ling text i3
deigsted fFrom the program text sves by moving a2ll of the oiher
iines’ %ezt that veside at lowsr memory sddresses up in msmory to
£i11 the space oooupied by the deleted line, The iine table is
then updated by seauventiaslly going Ghrough it and adding the
distance moved to the pointers of each program ling which wmoved,
The old line number enbtry i¢ delsted from the table a2t thiz fime,

In ovder te¢ insevrt the new line in the program. the line
number %$able is moved down in memory and the new program line is
sppendsd fo the lower end of the program btext srvea. gust zbove
the line numbsr table. Hote thet nome of the +$ext pointers in
the lime number tables need to Be changed sz the lines in the
program 4id not move. oniy the pointers to them. The line number
table is now searvched to #ind the corrsct place to locate the new
line number snd the new line numbevr: a3 well as the text pointer
are inseried ints the table, completing the lineg inssrtion.

£, 1.4 Auto-bum

The auto-num feature (s included ip the TI-99/8B HABIC to
provide #or ease in entering programe into the machine., Auio-num
consists of two phases within the inberpreter. Fipat. is the
praocessing of the nmumber command and second iz the sutomatic
gensration of seguence numbsrs as sech new line is entered.

The processing of ths number command invelwves setting up hhe
two interpreder variebles CURLIM esnd CURINC with the stariing
Lins nusbsr and the increment for the segusnze. First. thsy are
2% wp with the default values af heginning with line number 100
and incrementing by 10, I¥ either. or both, of the ophtional
arguments ave present these wvaluses are updasted wiith the supplied
valug or values. Asuto~num then seds the AUTONUM kit in she
variable FLAG to indicate tnaft the intsrpreter ie in auto-num
mode. duto-num then returns fo top-level and sroceede to
generate the lins numbsrs as nesded.

Teraz Instruments By FRELIMINARY

TI~-9%/8 BASIC INTERPRETER INTERPRETER PHABES

Auto-num mode normally btakes the curvent line number wvalue,
CURLIN, and adds %he cuvrrent increment value (CURINC) %o it te
sengrsts the next line number in the seguence. if the nexzt lines
number to be generated esxcesds the implementastion defined maximum
iing number of 32787 then suto-num mode is exited in the same
manner as when an empty line is entered %o terminate auvto-num
mnde,

in the special case that the line number genevaied by auvito-
num mode is the Iine number of 2 line in the program 1IN GMBEMOTY.
then the line is retrisved from memory and displayed on the
seveen for editimg. juet ss if edit-mode had been enteved. When
the line has been ediitted and ths enter key has been pressed. the
inssrpretar rveturns to standard avto-num mode {entevrs edit made
again if the mext line number generated alsc matches & line
number in the programd, Mote thaet when the interpreter is in
auto-num mode and edit-mode is sntered From that states the up—
srrow and down-avrrow keys funciion exactly as the snter-key.
terminating sditing of the curvent line and generating The next
line number in segusnce, not meving to the previous or next line
in the program a8s in simple edit-moude.

4, 1.% Lisk.

In order to be able %o look 2t 2 program onca it hags besn
gntered into memory. the liet command is included in the TI-9%9/8
BABIC interpreter. The list commend hkas the #hilidty to list s
portion of e program or an entire program. to either the display
or a device., Execution of the list command begins by gearching
the lis¢t scommand For 2 line-range and for 2 devive name. it =
line-range ov single number is spscified, then twoe peinters ave
sat wup to point indo the line number table to the fivst and last
iines to Be listed. The gpointers can he egual fo sach other
indicating that only one line is to be listed as well as gointing
to the firzt and last lines of & program if the entire program i3
to be listed.

After the line number range has been found. the list routine
checks €o see if the listing iz %o go te the disglay or o a
device. I# the listing is fo go to the display then the display
iz initialized for wulpul. I# the listing iz fte ge to 8 device,
2 dummy PAB is vused to open the device and flags are set o
indicate that the device iz the destination of the listing.

f.ist thern goss inte & loso. calliing &he line~listing
routine, LLIST. %o take an individual lime of & gprsgram and
restors 1% $from its crunched fovrm to 2 source form snd %o output
it %o either the seveen or to the device. after all 0¥ the lines
to be listed have been put out, a check is made %o see If tChe

Tezas Inztvruments G F BREl IMINARY

TI-99/8 BASIC INTERPRETER INTERPRETER PHASES

sutput went to a device or %o the screen. I¥ the listing went bo
a device, the device is closed. in zither case. control returns
to top-ievel. fMots that in the case of device oulpul; contrel
returns €o top-level by branching $o MAINL which initiaiizes the
symbel table and string space.

4.1. 4 Hsspguenoe.

Eyscytion of the reseguence featuve of the TI-F9/8 BABIC
interpreter it a three-part operation Firat, the resggugnce
command is scanned 0 pick up the aptional starting line number

and/er increment. I¥ ¢hey are found they are used, otherwisse,
the defaults of starting with line number 100 and incrementing by
14, The next ophase of the reseguence operation involves

seavching all of the text in the pregram looking for any line
number refersnces,

I¢ & reference o a ling number is found the iime number
tabis iz searched to Ffind 1% When 1t iz found., its offset into
the table is used to calculate the line number that 1t will
Become, When +the new line number has been calculabed, 1% is
inserted intoe the program text and the entive process is repeated
until 21l lime number vefersnces in the program have besn found
and replaced,

The line numbsr fadle. ituelé, iwm bthen updated by geing
segquentialliy through it placing the new line numbers irnn the line
numbey portion of sach lineg enivy. &fter the entire operation is
completed, condrol returns %o bop-level to awsit the users nexb
command.

%, 2 FPrescan

Beforse & BASIC program is actualily sxecuted it must Fivst be
geanned in order to generate & symbol table which contains &ll of
Lhe variables used in the program The static scanney aisg doss
samg error checking which consists maeinly of syntacticael checks
and far consistent use of all symbols. The scanner obhsoks o
make surs that each FOR statement hes & corrvresponding NEXT
statement. and that INPUT. DATA, FDR., NEXT., 6070, &08BUB. DEF,
RETURN, ot statements are not uvsed imperasbively. After 2
program or imperative statement has baen properiy scanned control
£laws ko the ezecuytion portion af BABIC o execuis the program ov
statement,

Tezze Inzsvuments Hom i3 PRELIMINGRY

TI-%%9/8 BASIC INTERPRETER INTERPRETER PHAZES

4.2 1 Dumbol Table.

in order to be able %o use wvariables in a BARIC program
memory must be set aside to describe sach of the variables and to
store sach varisblie’'s wvalus. In arder %5 do thig, this Basic
prescans each program line and builds & symbol table containing
an #ntry for each symbol (variabie!) wused in the program. &
zbandard format is ussd for 811 symbol table entries. This
format is shown in Figure 4-3 helow.

e Sy e e e o o B o e e e e e 5 s 3 e o 5 B B B
S Pl Kame }
IBIFL Db Ddamst L1 lhength i
I I H H

3
3 %

%

i@ %
H Bymbol bable link :
i ;
S e e o s i e s S s i s St e e e e s i 2 e e St Sl St =
] &
& §
§ Pointer to nams ;
! §
. S v s s o s s st s s s %
z i
i H
- Value Spece ~
¢ ;
S o s s it s S5 v e oV e v e i v s 1 s 4 o s o i e o &

Figure 4-3 EHymboel Table Entey

The following meanings have been sttached %o the byutes
contained in 2 symbeol table antry,

WIRD 1
8 ~ Btring flag —~ Bet i¥ 2 string varviashls slse veset
F o Uger-Defined Ffunction flag ~ Gst if User-Defined
function slse vresst
Dimg ~ Number of dimensions or function paremeters -
Legal values O - 3
Mame length -~ Length of symbol’s name ~ Legal values O
- 15

HORD 2
Bymbol table link ~ Link to next entry in Zable or zern
if end of ftabls

WORD 3
Painter %o name ~ Pginter to an svcouvrence of the

Tegas Instruments HweiF FREL.IMINARY

Ti-F9/8 BABIC IMTERPRETER INTERPHETER PHASES

symbal ‘s name

WORLD 4+

Vailue space - SBymbol’s vaelug space which cantains:

¥ Dimensgion information ¥ srray entry, H-buts
marims pev dimension

* B-bybte entryl{ies’? For numerics;

E-buyte entryfies) for siEvrings:

Z-byte pointer fto definitian for User—Dafined
Functions.

4.3 Ezecution

A BABIC program or imperstive statement is sxecuted by the
vyge of the EXEC command in GPL. hen the EYEC command is
siscutes the Assembly Language povéion of BABIC takes rave of the
parsing of sach statement until +¢he program or statement has
complated or an evrvoer has cccurred. Gerneraliy speaking. every
keyword in BASIC is contained in oneg or more tabless and:. when it
ig encountered in a statement, 2 lteoyuword-aspecific section of code
is wesed to interpret a paviicular keyward’'s mesning., The keyword
tabie i ordeved in such & way {see aAppendix A) that 2 sitrict
precedence is eeft up which keeps the intevsretsr from alliswing
any illegal statemenis to be sxecuted. Whenever & vaviable nams
iz encountered in & program it is looked wp in the symbol fable
which was built the static scanner and its value is picked up or
the varisple ig prepped for assigrnment. despending upon its wusage
in any particulaer case, The intesrpreter continues execubting
ungil the end of the statement is reached. Subseguent statements
in & program ave exetubed unlsss an erver or breskpoint halis
sxsuution prematurely.

& 3.1 EXEC,

The sxecution of & BASIC statement or program beging with
the seceptance of eibther the imperative ststemesnt or Shez BUN
Command. If @ RUN command was sunbered. the lins numbser table
pointer is set up to either the first line in ¢he program or to
the line specified in the RUN command. This poinkter is left in
the variable, DATA, and is preserved throughout the prescanning
aof fhe gprogrem, I¥ an impevative shatement waz enltered. it is
prescanned and thern lemedistely sxecuted.

in order to execute 8 BABIC statement or program controel

fiows to the beginning of the EMEC assembly of the interpreter,
if a progvam is to be executed, the saved line table pointer in

Teras Instrumenis B 30 FRELIMINARY

TI-9978 DaABIC INTERPRETER INTERPRETER PHABESR

DATA is moved to EXTRAM $o ellow the progrem to begin sxecuiion
2% soeme line other bthan the first sone. The routine DATABT is
calisd %o sei up the dats pointer faor READ and DATA statements.
If a single statement is $o be executed the teut pointer 1% setb
to point inte the crunch buffer so that that statement rcan be
executed out of there instead of out of the program.

The GPL EXEC command is used o grecude one or more lines of
BasIC. The op code for EXEC dis found in one of the GPL
interpreter ‘s tables and disnatohse controel to EYECS in the PaARSE
assembly of BASIC, EXECS sets up the necessary registers for uss
by the assembly languasgs portions of BABIC (RS and RY: and then
checrks to sse if & single BABIC statement (imperative mode! or a3
BABIL srogream is to be gzecuted.

I# & single statement is to be srecuted, the vreaturn address
is saved and the first token in the statement is picked wup and
the statement table {(BTMTTRY iz sesrched #for the foksen. i+ the
token is not in the table ov is 2 vaviazble neame, ths statemsnt is
gxecuted #From there by wusing the asddress of +the particular
statement handler to get to the appropriste statement-specific
code.

If a program is %o be executed, the interrupt level is set
te 3 to alliow the 9900 to handlie any interrupts that it may have
received. The interrvupt level is then set to O to not allow any
interrupts %o woccur while in the process of erecuting the 9900
code portion of BAGIC. The next statement 4o be siecuted is
picked up by getting the pointer €0 it from the line number
table. The statement’s first token is then picked wp and From
there +the statement is handled in the szame manner as The single
statement dosrribed above.

After 2 statemsnt has been ezecubted successfully lervors
abort execution as soon as they svre detected), control returns o
the EXEC code and the check for imperative mode is made again.
If in impevative mode, EXEC is gzited and zonkrol returns to top-
level by reoturning to the SPL interavreisr. I# inn progrsm modse.
the line table pointer is updatsd and if not at the end of the
praogram the nest statement s exszcuted in the same manner as
described above. lhan the end of the program has been veasched.
control returns to top-level in the same marnmer as when a single
statement has been grscubed.

4.3 1.1 Ghtatsments.

Each BABIC statement has unigque code within the interpretisr
to fsndle <he peculisritiess associated with that particular
ztatement. Hhen 2 statement iz Yo by szecuted i%s fivet boken is
plcked wup from the statement tewd. & walid BABIC token is

=11 PREL TMINARY

A
3

Teras Instruments

TI-9978 BASI{ INTERPRETER INTERPRETER PHaZES

grpached. i & valid token iz not vreceived. the statement is
aesumaed $o be an sssignment statement which doss not use the
sptional LET and contral immediately flows to the symbol code
(FEYM) which searches the symbol table fFor the nasme st bhe
beginning of the statement. If 2 valid BaBIL ftoken appesrs st
the beginning of the statement:, its value is checked to see if it
falles within the bounds (380 -~ DA&2) of the valid statement
tokens. I# it does not an sittempt ie being made €o syecute an
illegal stetement and an evrar oocurs, I+ the token falls within
the legal statement token range the asddress of the statement
nandler is looked up in the statement table (S8THMTTR) and control
flows %o the asppropriate code.

¥ the most significant bit of the ztatement addreses looksd
gp in the statement table iz set the code to handle it vresides in
the GROM perbion of the interoreter sud the address picked wp is
actualliy an offset into the table. MUDTAB:. in the GROM cods. The
tap Bit is vesed, and the address within NUDTAE ig computed and
ctontrol returns to the GPL portion of BASIC ¢s exscute that
statement. Motz that becavse of thiz condition, a GPL PARSE
command cannol occur in any GROMs esvept GROMs O Shrough 3 Fot
this reazon, any GPL subprograms celled #rom BABIL which need to
narse 3 value must veside in GROM 32

Mote that some of the tobkens in the lszgal statement range
ares not lsgal stetements (8. g. THEMN. ELEE, T4, BUB. e%c.) andg
the address picked up out of the stetement table fs that of a
routing to handle and error &0 thet & statement cannct begin wiih
agne of the fekens in the lsgal statsment range which iz not
actualiy @ BaBIC statement.

Egch statement Shen has the responsibility of advencing Sthe
text pointer through the statement to srecubts Lthe staitement.
bhen the statement hzs bsgen completed, the stztement handler
returns condtrol to the voutine, COMYT, which verifiess that the and
aof the ststemenit has been resched LCONT i3 alssc used in
congunction with the PARBE shtstement described in thes following
section? and veiurns control bo EXEC %o sither sxscute the nsxt
statement in & program or €5 veiturn o fop—level

4 3.2 FARBE.

The parsing sigovrithe veed in the TI-9978 BasSI{ interpreier
iz ‘baszed upon the paser by Fraty listed in the sppliicable
documents,

Pratt’s apsproach sssocistes the ssmantics of each foken wiih

the token viag a body of code unigque for each foken Bome fokens
may legically have two such pleges of code, which he calls the

Teoras Instrumsnts A1z PREL TMINARY

TI-%9/8 BABIC INTERPRETER INTERPRETER FHASES

null designatar (NUD) and the left designator (LED) An sxample
is the token ‘=’ which may Be both unhary sng bilunery. The unary
meaning is described in the RUD for ', whiles ths binary msaning
is described in the LED. Each token is associated with a left
sinding power (LBP) which is used to supply the precasdance for a
s8% of tokens., As the pavser algoerithe is called initially and
subsequently by recursion, & current right binding powsr (REP) is
maintained. Esch call s the parssy supplies a REF, which in
sffect telis the perser how favr down the input 1% must process
before returning with & value. The patrser vetbturns one valus on
the value stack sgach times it is called. The subrouvdtine stsck is
used For return asddresses and to communicate the current REP.
Simply stated, the aligorithm For paveing is as Follows:

PARSE(REP) Returns vaelus on value stack
advance tokesn pointer;
precute NUD for enitry tokern
push valug from nud onto stack:
while HEF < LBP
advance token pointer;
gxeoute LED for entry ftoken:
push valus from led onto shack;
end whils:
return

in order %o vse this algovithe, a MUL, LED and left binding
gower (LBP! theve been assigned by the token vsluss used and by
the tables in the PAREE asseably of BABIC.

4 32 2.1 Precedence.

The precedence of the BARBIC foiens Bave bheen assigned in
prder to allow the use of the algorithe described in the previous

serbion. The tokens were sssigned so that the statesment tokens
are grouped ftogether. the MUD fekens are groused bogether and the
LED tokens ave grouped together, #% much as possible. This

atlows & glebal range thecking %o maks suvre tokens appear in ths
correct arsas of the Ltables so that & semantic geaning may be
gttached to ssch Loken. The lowest valued to¥ens asve those which
apresar in the stztement tables and which must be sither the Ffirst
¥pten to appear in @ statement (FOR, LEY, PRINT, ete. ¥ or must
be uszed in ¢Congunciion width one of these ftokens (THEM, TO, JTEPR,
gt 3. The remainder of the tokens sppeer in fthe MUD tahles with
& small gorvticon of thess also appearving in the LED tablss (4~ =,
stc, 5.

4.3 2.4 MAUs ang

LEDs.

A1t of the fokens in BABIC have a unigue gisce of code fo
handle them: with some of the bokens having twe such plesces of

Teras Instruments e L 73 BRE!D IMINARY

TI-%9/8 28810 INTERPRETER INTERPRETER FHABES

code, Thaese are known as the null designater (NUDY and $he laft
desigunator {LED) ceodes. The NUD code iz the code denoted By a
token without & precesding expression (@, g. SECTIEE 3 Thus, ¢or
the unary use of “+7 and ‘-’ the semantic code for sach is placed
in the tables as & MUD routine. in contrast: the code for the
binary operators of +7 agnd V7 sve placed in the fables as LED
routines (& g, Bk, &)

#2 can be szeen, there naturally are morvre NUDs in BABIL then
there are LEDs. The sntive LED table includes the &7, *mi, 47,
YESe ey e, %Y, The NUD tables include il of the vest of the
bokensg in BASIC which are not containsd in the statement tsble.
This includes such $okens as {7, =7, =7, GQiM, COE, SEG%, the
mumeric constant token: and the siving constent toban.

4. 3. 2.3 LOMTINUE.

Bagsed upan the asigorvithm described in fhe preceeding
sections on how the parser in this BASIC works, 1% coan bes ssen
that & routine %o check the precedence of the left binding powers
(LBFz) and the vight binding powsrs (REFs) is nesdsd in order o
teil the parser how far down the statement %o continue bsfors
returning & valus. The continuation reutine, CONT. zerves this
purpose. Tts sele purpose is to campare the ourrent precedencs
with the sreviocus precesdence o determine whether the statemsnt
has been pavsed Far encugh or of 1¥ more parsing st the current
ievel wmust be dons. The continuation routine iz accessed from
FPL By the exscution of the CONT cosmand and ls accsssed from
assembly language by the siecution of a

B &0ONT

instruction.

Tezas Instruments -1 4 PRELIMINARY

TI-9%9/8 BASIC INTERPRETER INTERPRETER COMPONENTSE

SECTION 2

INTERPRETER COMPONENTS

B. 1 Data Siructures

This secition describes the Vwo oubstanding dasts structuves
which ave used by BASIC duving sxecution time which have not been
described previocusly. Thesse dats structures arve the value stack
and the siring space.

The waiue stasck dis very intimately fied with the parsing

operations described in the previpus secitien. It i3z the @main
means of accumulating and passing data within & particular
statement evaluation and the main means af maintaining

informaetion hetwsen any stabements which dictate that information
be meintainsd (FOR, &GOBUB, eltc. ¥,

The string space comes ints play whenever a siring is used
within a BABIC statement or program £11 strings &ve uopisd into
the siving space a3 they are wsed and $he siring space i
maintained during +the entire ¢ime a BHABIC statement and/or
program is being sxscuted. This data structure eliows For Lthe
feature of vevisble-length sirings in BASBIC frea O to 258
charatters.

5 04,1 Yalue Bterck.

Mogt statements in BABIC are executed &% @& particular time
in & gprogram and completed with control never veturning to them

tercapt if within a loopl. There are a few statements which
cause control to psss to some other pordion of s pregram and then
reguirs s return %5 the sriginel execuviion point These

statements reguire thet certain information be kept arsund even
when nodt exgouting that perticular statement, The FURJNEXY and
GORUE stetemants and vefevences o User-~Dafined statemants fall
ints this category. Each reguires rvgiurn informetion of zome
sovt: 23 well a2z obther information pesuliar fto zach. To maintain
this information. one or more endries are placed ondto She valusz
stark,

Ezecn stack entry has an identification byte which is the
third byte (FAC+2 or RAMIZ(VEBPTR!) of the top entry. The ID is

Tezazs Instruments Bt PREL IMINARY

TI=-9F/8 BAEIC INTERPRETER INTERPRETER COMPONENTS

bept o that stack seavches may be made (in the case of FORANEXT)
and ta prevent the uvser froam doling something illegasl and getting
garbage on the stack. The third byte of the Fal/s/stack esntry was
chosen becavses it iz the first byte of & Floating point number
which cannot have a valus higher than 9 (3633 The +First tuo
bytes of the entry can have & value higher than 99 (3&3) because,
fgr negstive numbers the +First twoe bytes of the number are
negated. Aiso. when an intsger wveriable tuype 1z added Lo o
Puture BARIL ths first twe bytes of the entry will contain the
valus znd the thivd byte can be vsed as an ID fto indicate thst
the Fal/s/stack entry contasins and integer (ID 264 was ressvrved for
thig purponsl.

Dther common sntries on the stack are numeric enirigs and
string entviss. Biring sndtries. in addition %o the eniries
alivded %o above, are also spweisl. HNumerics sppear on the stack
asg B-hkgts vadiz 100 numeraels (this is the resgson why & stack/Fal
entry is B-bytezs widel.

The stack is built im the VDP memory From 600 and may grow
a8 high in memory as needed or until it is about to collide with
the stvring space. The ooevations., YPUBH and VRPOP, move S-byte
entries from bthe FAL to the stack and vice-versa. VPUBM and VPOP
work speciaelly on sitring entries (see section 4. 3.3 2). When the
stack and string space get cless encugh thet they woeuld collide,
either by pushing an entry on $he stack or by allocating a nsw
string, & garbegs ctollection ls performed (zee szectionn 4.3 3 2.

The stack/Fal sntry Ffor & siring looke lika:

Y o i i i e e o B s s s 5 o o s e e i e %
P Address of | 565 ; Address H L.ength H
iGfvring Pointer! i : 84 Biring H of Litring H
B i i s S s et s et o o o o o s s s it i T [T ——— - el - B

Figure 5-1 Stack/FAL Enitry for & Hiring

i. FAL.FAL+l ~ addresss of where the pointer %o the siring
cama from. dddresg of BREF (00107 i¥ a tempovary or
the sddress of bthz sumbol table sniry 1F 2 permanent.

¥, FaCyd - 45 is the string identificstion byts

3. FaC+3 ~ Unused

4. FAC+E, Fal+% ~ Address of the first cheracter oaf the
ztring

Texas Iinstruments Sz FREL IMINARY

TI~-99/8 BABIC INTERPRETER INTERFRETER COMPONENTS

3. FaL+&6.FALY7 — Length of the siving {actually in FAl+7
and Fal+éd=ii:

The stack entry for & SOBUB stastement locks like:

o oo o = % o - o
i Raturn lines T Y T H ; H
i Table Pointer! i H H ;
o e e e e . e i 1 L — o 5 o e s s s i s S5 e s o o e e i s i &

Figure 92 8Stack Entry for a GUSUE Statement

e

FAC: FAC+1 — Return line number tablis nointar (BEYTRAM)
Falead ~ 266 ig the GDBUB identification byte
FAC+E -~ Unusged

Fal+d, FAC+S - Unuged

@ s owow

FAD+&,: FALET ~ Unused

The stack entry for a FOR statement looke Iike:

S o oo o i v i s e e e . Hp s e) e o ok o s e i oy e o e e e s st s e s i s s s S
PEr. to Bumbol | &7 I VYaelue Bpace (0ld Line Mumbaer!
! Table Entry ; i ; Fointer ! Yable Pointer |
B e s et v e, e s e e S s s s s s O S U — i@
H Inerement H
H Yalueg H
G i s s e o o S S S 0 Al 4l S 48 A e i G 5 e, e St S5 o s T 7 R 5 PR R T 4 B s s e -
H Looy :
: Limit :
e i s i o G o e S - A RS 6 i 55 S 4 i e i .l o i s e s et e el S S 8 e S o 2, 558 A 187 %
Figure 3-3 Htack Entry for g FOR Stztement
Entry 3

FAC, FAC+]l -~ Pointer to indeces’ suymbol table entry
FaCesad ~ &7 is the FUR identificetion bytbe

Fal+3 -~ Unuged

Fal+4, Fal+S -~ Pointer $to indeces’ value space
FAL+&, FAL+T = Line number ftable pointer o FOR line

Tezes Instrumenis 53 PRELIMIMARY

TI-9%9/8 BABIC INTERPRETER INTERPHRETER CUOMPONENTE

Entry 2
FARL-FAD+7 ~ Value of increment far indeyx variabls

Entrg 3
Fal~-Fal+7 — Yalue of index limit

The stack entry for a User-Defined function looks like:

Foo o mn e e i o e rm v o e e e o s o e
i Return i 6B (Funciion! £3id Bymbol | 0ld Free Spacse!
toLine Pointer | i Type | Tabvle Pointer | Fointer :
s e e o e e e e e e e o — #
Figure 5-4 Siack Entry for & User-Defined Function
i, FAC,FAC+! - Heturn line pointer {(PEMPTR:
#. FaC+EZ ~ 268 i the User-Desfined function identification
byte.
3. FaL+3 ~ Functiorn ftype:. >Q0=numevric, >BOmséring
&, FAC+4, FAC+E -~ Heturn sumbol table pointer (HVHMTAR)
F. Faled FACHT7 ~ Hepiurn fres space sointer (SYMPTR)
5.1.2

The séring management schems iz & very complicated ene which
2iliows stvings of up to. and including. #5859 charasciers. Berinags
are locgted in the dynamic memory arvee beitween the sumbol table
and the value stack. A ztring has pyactly one swner any point in
Bhe $flow of & user’s progran. Tempoerary strings, such a2 the
efving "HELLOY. in ths statement. PRINT "HELLOY. are copied inta
The string fpace From the program and are ledfl, marked as unussd.
ts be rveciaimed when memory is full snd 3 garage collechtion musd
be pevformed,

User memovry in the Mome Computer betwsen addyesses 2600 and
SAFFF dis used for the storage of the uszer’s gsrogram. the line
number %table, the sgymbol table and Pesrishersl Acosss Blseks
(FABs) for +File and device operations. the dynamic string spsce
and the value stack. PMemory usage is., genevslly spesbting., laged
sut au Ffollows:

Tezas Instrumsnis i PRELIMINARY

Ti~-9%9/8 Bagle INTERPRETER INTERPRETER COMPONENTS

G ot i 5 5k b 1 0 0 5 et B OBOEEE
H Lrunched H
H Yser {
: Program g
e e o G vt s it i o, S 4 e 5 i o 85 i Sk S i o A e ke £
b iineg Mumber Tabls H
5 e S s i b s i S o Sk A A S 45k R b b B i S A 5 o -
§ Bymbol Tables /7 PABs ¢
: :
S S 1 400 Sk st o o St S o S48 9 S e e e i o R A S e S S =3
: Hiring Baace H
H H
H g
H 3
E 3
£ %
H Valus DEark H
- e - o # &GO
& [
€ £
e]
£ ¥
A —————— :
s 3

Figure 3-8 Memory Usage

The complications invoelved with menaging the memory can he
realized by sseing that there are five independent data
structures residing in the same memory area. Mg conflicts arise
betwesn the crunched program and the string space ss the pragramn
and its associated line number table always reside in the highest
addresses possible and whenever the program is modified by the
vger the symbol table and string space sre desiroyed.

The symbol table and PABs present 2 problem inm that thare
tan be, and probadbly srs. shrings in the siving spate when 2
symbol tabls or PAE snitry is aliscatsd. Bumbol table sntrises and
FAB s pocupy contiguous memory and when an entry is allocated the
entive séring space is moved down {lowsre address) in memory o
give the nzeded space. The routine, MEMCHK, described below
takes care of this problem.

A3 can be sesn. Ythe siving spece can collide with the valus

stack, When this is about %o oeccur a garbage collection is
performed to reclaim ang memory that is not being used. Unysed
megmory can be generated in saversl ways. First, and foremost. by

temparary strings a9 described above, Second. by the closing of
a file and the conseguent deletion of the associsted PAR. Third,
by the elimination of & symbol table entry which is ne longer
needed (2.g.. an entry for a User-Defined funcition parasmeter

Terss Inssrumsnts BB PREL IMINARY

TI-F%/8 BABIC INTERPRETER INTERPRETER COMPORENTS

after the funcitian has been svaluatsdl.

Foilowing is & detailed description of how strings are
crpated, used. and destroyed in the course of eyecuting & BaARIC
progran.

Firet. the gtring, itself, ig copied into the string space
with & leading and trailing count of the number of charvacters in
it and a 2~byte back pointer which ig wvsed foar +the purpose of
garbage collection.

e Gl o e s e B s s e
HoUE L LG o8B
o 3 e B e B e s e o o 3

Bow= o

i s s s

in the asbove evample, the backpointer is set to rero, indicating
that this is & tempovavry siring and can be vreclaimed during a
garhage collection. The leeding and $railing length bykes
{hexadecimal) are vused as the length of the string (leading} by
the string functions, sueh as LEMN. and by the garbage collector
{grailingd, as will be explsined below. The stvring is:. of
courses, stared in its ABCII vepresentstion.

I¥ the string is assigned %o & variable, then the following
i & graphic vepresendetion of the finmal resuld.

i s o A 4 S P £ i 5 #
R Yalue Pointer e R e
$ oo o o e e # i
H H Mame Pointer e § e B i
! oo e i 2 i e i 45 8 5 T 5 2 5 # :
i ; Linmk H {
i o e B e G e e Bl e e B e s et B #* = % ;
H PBiFE ! iims H idame Lengihl :
H v o s i 3 i e §f e et e # :
; H / i
; / L2 — o it ot i e *
H { H i
H o S % e e
ol bk P O3 P HOLE LI L OO O8 S

5 e e s e st o oo e o s o e e B 3 v i

The value pointer and backpointer are Z-byte addrasses. The
value pointer points to the first character of the string and the

backpointesy points 6 the address of 4he wvalue pinter, formin
g g TgrnEmLng

@& igon.

When. far ezample. a PRIMT A% siatement iz syecuybtsd Lhe
pointer iy picked up Prom the symbol ¢able, one iz subtracted
From it %o get &he lenoth, . and the next $ive bytes

Tezas Instruments Bmdy PREL IMINARY

TI-%9/8 BASIC INTERPRETER INTERPRETER COMPONENTS

{eharsckere) are printed. I# an a%=4% statement is ezecutsd. &
completely ngw string is crsated, the old one is #freed and the
niew one is assigned to A%, Using this srample. msmory sould now
ioek fike:

o e i s e e R - 3

oo T Value Pointer T e

H o o o oz s # ;

i i Mame Fointer R e Y. H

§ o i o e e e i e e o o e o e 0 e # :

$; bimk i !

H B s L T P S— 2 ;
SBYMTAB-!I~~>181F} f Dims iMame Lengthi !
H B T T—— e e i e et s s T —— # ;
BYMPTR- f=-31 : ;
H 7 7 H

H ; H H

H #* o e o B o o e . o e 5 % % £ :

§ f00 G0 1 08B I H L E L LD 0% ([4-—- STREP I

¢ % R T & & o v i st s B ;
Flwemfem Back 105 M OPE DL P LI O08 H

T —— H o o o e o s e o e s e s e e ;

i PO--BTREND

Gt e i i 5 e - +

The orviginel sgiring is now garbage, ss can be ssen by the zers
backpointer: and the new string has been crsated and assigned to
the wvariable.

When & gasrbage collection is performed we begin at the
memory location pointed st by BETREP (Biring space’. subdtrsct the
length (5 3 + 3 from that pointer to point at the backpointer

for that antry. I# it ds zero (garbagel, the pointer i
decremented by one to point at the next string’s length and the
above subtraction is rvepeabed. I#., #s in %the case above, thisg

string is noet garbage (nonzero backpointer), it is moved up in
memury so that BTREF and SYMPTR gpoint to that lsst lsngth bube.
The wvalue pointer is then firxed up by Foellowing it and pubtting
the new addvess of the string inte the walue pointer, thus
maintaining the loon. This process i3 vepesbtsd until Lhs
moveable pointer reaches STREND {stving endl. which soints to ths
end of the string space. STREND is then reset teo point to the
niew end, completing the garbsge collection. In the szample,
mpmary ends up looking like:

PRELIMINARY

i
g

Terzs Instruments

TI-%2/8 BABIC INTERPRETER INTERPRETER COMPONENTS

B o s s i o e 5 e S L e . kA 5 e 3
kGl & Value Pointer i § st o o s >
H e e e 5 e 8 o et e # i
i H Mame Pointer e § oo T S H
H e e e e o o . e e 8 e e # :
: ; Link ! :
! o o o v o e e e e o s e B o5 e e s o — & ;

EYMTAR~ {8 1F! ! Dime i Mame l.engthi :
; s L T DURRTE SN SR T TSA SR S i
FLe=iee Gamok P OB DM OPE DL OPLOLO0S (- BTREE

e - #m 3w e B e e i e By e G e e SYHPTR !

! =S TREND |
B e o o o o e e o i +

Anctheyr impoviant facet of the string sascheme is the FaAC
entry which is created by the use of a2 string. The next two
figures describe the FAC entriegs for temporary and permanens
strings.

0 ot e s o e e o , e v s e #
i200I0 1245 { Fainter : Length ;
to string | of string |

% #

e s e e % s e B
tWaiye D45 H Pointer H f.ength ;
iPtraddr] { i to string 1 of sitring !
- L T T —— L T T —— =

Figure B-7 FAD Entry for 2 Permanent String

The entry in F&(,FAC+#1 is the addrvess: of where the pointer

o the string tame from. In the caszse of a2 parmgnent siving it is
the address of the value pointer in the symbol table. This, i
actuality, is the same value as the string’s basckpointer. In the

case of a ‘Gemporary skring it is the address of SREF (20010
which is a permanent intevpreter vaviable dedicated %o picking wup
string veferences. This is cvriticalliy imgoriant item %o remembar
as it iz used when a string FAC entry pushed onto or popped off
gf the value stack.

Tezazs Instruments B2 PRELIMIMARY

TI-9%/8 BABIC IWNTERPRETER IMTERPRETER COMFUMENTS

1# 2 ‘temporvary string (FAC/FAC+I=D00IC) is pushed onto the
stack then the backpeinter for the string is changed fFrom 0000
te point at the string pointer in the stack entry making the
string semi-permansnt. 4% this point, the string now has an
puner and if & garbage collection is performed while the string
Belongs to the stack, the strimg won’t bs lost. When it i3
popped off the stack., the sointer in FAC+4, +5 ¢ still pointing
at the string, even if it moved during a garbege collection. The
backpointer is then cleaved to make 1%t a temporary agein.

1¢ 3 permanent séring ie swushed onts the stack, nothing
special ig done, &% the string‘s backpointer alveady points into
the symbol tabls. When the staeck entry 1% posped. howsver the
string poinser in FAC+4/5 must be updated by wsing bthe FAC/+i
entry in case a gerbage collection was pevformed while the entry
was on the stack, This is due to the fact that the siring had
only one cwner., namely the symbol table entry, and i§ & garbage
colisction was performed while the entry was on the stack the
symbol table entry’s value pointsr would have been updated and
not the FACHE/S pointer, This problem {s taken care of in VPOP
to vrelieve 2l1 other codes from the responsibility of getting the
value pointer Back again,

H.2 HMatn Packaos

The Math pachkage wvsed in the TI-%9/8 conscle supporits real-
type numeric date with an overall accuracy of at lesst 13
gsignificant decimal digits. The vange for the suyponent is E-i18
through E+i128.

The format used in this implementation ls the Following:

G e o s s s 54 i e e i . Sk S S . i A 4 Bl S A e i s 0 o &
TEAER ; : ; ; ; ! H
PO MANTIEEA :
{OEMTE ; § § i : : i
B e s s i s s e 4 A A A et S i 5 S50t Al S A 0 W e R 0 3 e v S &

Figure 58 Real-Type Numeric Data Foraail

The =eiponent ig contained in the first byie of the floating
point value, The most significant bit of this byte indicates the
sign of the entire vaiue. 1# this bit is sed:, the value of the
fioating point number is negative and the first tys bytes have
been npgated. I# the most significant Bit of the first Bbyte is
reset this byte contains the actual exponent in excess-b4

Teras Instruments Htd PRELIMIMARY

TI~-99/8 BABIC INTERPRETER INTERPRETER COMPONENTS

notation. The srpanent given is & base 100 egpenent, i =, b
get %the avtuasl bhase 10 exponent. the given exponent hss o be
multiplied by twe., The value of the Ffivrst bhyte of $he sasntisss
detarmines 1F the actusl bassg 10 erxsonsnt is odd ov sven.

The mentisszse is contained in the next seven bytes, Each
Byte containg btwoe digits in vadiz 100 notation:. i.e. the wvalus
aof each byte is in the vrangs -2 The mantissa is normalized
from Ol GOOOOCOD0OCOD through 99 999999999999, I the wvalus of
the First byte of the mantisss s higher than 9 the artual value
of the base 10 syponsnt is odd.

The wvalue. BT, is handled as & specisl case. Itg
representation is given by Ethe firvst two butes {exponent and
first mantisse butel) heing zero.

For internal computation the math package wuses two eaxbtras
guard bytes: giving an esxitre accurscy of four bhees 10 guard
digits. When 2 computation is completed this ten Byte value is
rounded to eight bytes.

53 Biring Pachkaoe

The siving packaege of the TI-99/8 BABIC consists of several
routines dedicated to handling strings. The routines which are
dedicated inciuds SETHBTR., the system get-siring routines, COMPOT,
the syztem gavrbage colliector and LITETR, the sEring litesrasl
handier. Several other routines have spscial ssctions for
handling sévings. These include: VPUSH and VPDOP, the stack push
and pop routines: ARBBONV. the wvarisble assignment routing;
LTSBT20, Ehe string comparison routine, The $foliowing sections
dezscribe some of the above-listed voultines 3% well 53 how strings
are handlied within the interpreter. Alsa, more information may
be obtained in section 4 32 4 2

When o stving constant is sncounbtered in a HASIC progpram i
is ceopied into the string space via the following seguence:

1. LITETR - The voutipne LITETHE {(literal stving! builds the
Fal entvy By Firet putting the siving length ints
FaAleh w7, Mext, GETETR {get sitvingl iz calisd o
allocate a string in bthe string space and and return
the poinvter to the siring in BEEF The asddress of SBREF
ie put inte FALS+L to indicate thet the string is &

EREMOOTary. The pointery %o the strimg is put into
Fai+47+8, The 63 1D fer & string is put ints FAl+E
Mext, the length of the sitring is checked to see 1fF the
string is null. I# the length dis not zeves. $he siring

Teras Instruments 510 FREL IFMINARY

Ti~9%/8 BABIC INTERFPRETER INTERPRETER COMPUNENTS

i copied into ths reserved siring. I# the length is
zero: the séring does not need fto be copisd. Mote that
it copying the siring & check must be made to determine
i¥ the stving is to ke cosied from & progvam in the YVIF
or from & program in GROM so that 1% asy be copied froam
the cevrresct @meRory.

#. GEYETR ~ The routine SETETR {(gsi-siring; which must
check to see if therve enough voom in the string space
e allocate the string. I# there iz room i1ft a2llocates
the string. i¥ there is not encugh rvToom. it invokes
COMPLT o do & gavbage collection and then checks again
to see if there iz enocugh room if there is room Dol
it alicnates 2 sEring. I¥f wnot, it dssues &
MEMORY FULL error message.

The ¥irst thing BETSTE doss i3 pick up the siring
langbh. It then adds four (47 to that length $o allow
for the backpointer and the two (2 length bytes. it
thaen picks wp the end of the siving space (STREND) and
deducts Por the new string. The wvalue stack pointer
(VEPTH! ig then picked up and has & b4-byte buffer zone
added to it Yo give added protection in ensuring that
the string space and the value stack do not callide &
comparison is done to see if theres is snough space. i¢
there is voom.s the sxact string lesngth is reirigved
{aubtract 43, The treiling length buyte is now put into
the stving space a2t BTREND, which points to the first
#vee lucation. The length of the stvring is subtracied
from ETREMDE %o peoint a2t the firgt byte of the string.
SYREND is mow saved in EBREF 4o be the gpointer %o the
string when the allocation of the string is complats.
The leading length byte is now put in by decrementing
STREND by one to point at it and putting it in, GTREND
it now decremented by two to point &t the bhasckpointer
and the backpointer iz cleaved to indicste that the
string i3 & temporary. HTREND is decremented to point
£u the first fress bute agein and BETETR is eritsd.
refturning %o ths callevr. The strinng has now besen
agilocated with the pointer %o Hhe sbring appearing in
SREF and the lssding and ivailing length bytew in pglace
and fthe backpointer clegarvred %o indicate & null string.
The sftving which the siring spasce has bsen allocated
foar has nugt been copied intsg the stving space, Thisg is
the vesponsibility of the valler after the string has
beren allocated.

PRELIMINARY

2
¥
ol
B

Teras Instrumesnis

TI-99/8 BABIC INTERPRETER INTERPRETER COMPONENTS

5. 4 Functions and Dperators

This section describes how a1l of the funcitions arnd
operators contained in the TI-99/8 BASBIC are handled. This
includes 21l of the arithmetic funcdions and operaters. soring
functions and operators. reistional aperators and how Ussr-
Dedined funciions are srecuted.

S04, 1 Arithmetic Opevators.

The arithmetic opevators can be divided into two categories,
the LEDs and ths MNils. The LEDe are il of ths binary operators
{4, ~, %, %t and the nuds are the unary cperators (+ and ~3.

Exscution of the unary (MUD} operators ave very simple and &
small pisce of common code used for the Two. Each of the nud
haendlers does & parse %o pick uvp the operand. The minus operator
then does @ negation of the value received and <then the common
code is exscuted. The common code merely checks to be sure that
the value parsed 1is & numeric value and {Ff it is a OQONT
instruction is executed. otherwise an error message 1% issued.

Execution of all of the binary (LED} operators arve very
similar and common code is utilized %o handle the common portions

af each operator except invelutien (™) which ig nandied
diftferentliy because it is handled in GPL and the rest of the
eperators are handled in assembly languages. Each of the

pperators does a parse to a garbticular level.

Each of the opsrators, plus, minuvs, mulitiply and divide.
push the first operand onio %ﬁe stack &ﬁﬁ then do & parse 5 DIick
up the second operand. 11 % E 73 & parse to the
level of the gmings. This &ﬁ%ﬁ?@% %%5% bokh pliusg aﬁé minus have
the same precedsnce. Zimilariy. o) - multisly ang divide parss
tn the level of the divide. This insures that bokh mﬁ§ﬁ§§a§ ang
divide have the samse precsdence. &fter the pavse For sach
sperator has been done common code ig entered to complete the
speration. The common code checks to meke sure that sach of the
srguments are numevric and then calls the sppropriete Floating
point routine to complete the apevation, fHfter the Ffloasting
poeint ocperation has besn completed. & check is made so that an
warning message can be issued in the case of an overfliow and
Ehen 2 hranch o CONT i3 mede e return gonitrel Yo the parser.

Invalution {7} is handied specislily im OPL because the
involutieon roubine contained in the system is writsen in GFL.
The involution code in BASIC does exactly the same Shings &s the
assembly languase code for the other operators. it insures that
gach osserand is & numeric, galls the involution ragtine and fthen

Tazas Instruments b ol PREL IMINARY

Ti=-99/8 BARIC INTERPRETER INTERPRETER COMPONENTE

issuss & warning i€ an overflow unccurs and then exscutes a GPL
CONT instruction.

2. 4.2 Arithmetic Funchbions.

Inciuded in the TIi-99s8 BaABIC interprester &ve fwelive
arithmetic funcitions., These may be divided voughly inte Ltwe
ditferent types. +trignometric and other functions. Inciuded in
the $trignometvric functions are the arctengent (ATHN}, cosine
(oLBY, sine {SIM} and ftangent (TANI. The ramaining functions
include the absolute value (ABS), End OFf File (EOF. exponentizl
(EXF G, integer (INT), mnatural-legaritha (LOG), random number
(RMNDY, signum (BGNI, and the savars voot (8GR} function. &1t af
the nod handlers fov thes avithmetic functions sre written in EPL
and are contained in Lthe EY¥EC aesemblily excspt for the EOF
fumction which is contained in the FLMER assembly of BABIC

%5 4 2.1 Trignomeiric Funciions.

All of the trigmonmeric functions are handled in wxactly the
same way by the interpreter. Fach of the MNUD handlers stoves the
address aof the function svaluator {agddress in the MOMITOR) into
ARG and then sroceeds inte a section of code entitled COMMON
COMMON checks to make sure that there is encugh voom on buth the
subroutine and value stacks for the floating paint sperations to
taks place. 1¢ there is not enoush voom an evrroer ccours., COMMON
then places the address of the instvuction following the PARSE
instruction in COMMON (CAl) onto the top of the subroultine stack.
The address of the functien handler is then placed on %o the top
o the subroutine $t8ck s$o that the PAREE instruction following
it will refturn tou the correct Ffuncéion evaluator in the MONITOR,
svaluate the Function: and then rveturn to the label, (AL, in
COMMIN, complieting the evaluation of the funoiion. Common then
checks for any errors or warnings., handles them apropristely and.
i+ 1%t is able ¢o continue, executes a GPL CONT instruction fto
veturn o the parser.

The algorithms used %o evaluate the trignomebric Funotions
evaluate & set of poluynomisls to epproximats the correct anssiers.
These aligorithms will not be described in detail here. as they
are not an integral parit of BASIC, but ave part of the systems’
saftwars contained in the TI-99/78

5. 4.2 2 Uther Arithmetic Funchions,

8 the vemaining asrithmetic functiens included in the Ti-
$9/8 BASIC, the exponential (EXP., wnstural logarithmic {(LOG). and
the sgquars root (BOR! functiens are handled in exactly the sanms
manner 2% the itrignometric functions described in the previous

Teras Instrumenis B13 PREL IMINARY

TI-99/8 BABIC INTERPRETER INTERPRETER COMPONENTE

segtion. As with the trignometric funciions, %the algovithms uvsed
Yo evaluate these Funciions will not be described herse.

The grestest integer (INY) funchion is evaslivated By the
GRINT function of the MONITUOR but is csiled directly from the
BAZIC integer cade and does nat go through COMMONM, as the other
functions which are sveslusted by routines in the monilor. The
SRINT routine itgelé will not be dgseribed here. since it L2 not
an integral part of HaBIC but is contained in the systems’
anfiware.

The random number funcitiom (RED) generates the next number
in & sseudo-random number sequenne. it dosg this by firszt
placing the esxponent {(J3FFr of the radiy-100 numbsr to hbe
gunavated into the FaAL It then vses the GFL RAND instruction to
generate the next seven bhytes of the number and places them inte
Fala+i through Fal+7. MNote that in ovder for & revre to be
generagted for the RHD function, sizty~three fervoes in & vow would
have to be gsnersted by the HAMD instruction. which is known to
be impussible {a logk at the code will show whyl. after the RND
function has bullt the FAC eniry., & GFL CONT instruction is
sxecuyted %o return conbtrol to the pavser.

The signum {(S5GM) function is & very simple ta sxzcute. i%
fivrst parses itz argument and verifies that the vesult that it
gets is a numeric. It then vhecks to ser if 2 valug of zevoe has

besn returned and If it has, then BEN returns that to the parvssr.
I+ & wnon-rers value has been generated. B6N uvsss & GFL TBR
instruction to sse iFf the number is positive or negativs. i%
then doss & MOVE instruction to slace 2 floating point one into
the FAC and i¢ the argument was negative, the flpating point one
iz negeted +to indicaete that the argument was less than zero,
When a2l] Shis is completed. & GPL CINY instruction iz executed to
return control $o the parssr.

The end-of-File {EOFY funcition nud handler iz contained in
the FLMER asseably. The function is exsculted by Flret parsing
the arvgument {(which iz fthe logical unit number) and finding the
corvesponding PAB in the I/70 chain f{gee Home Computer File
HManagement Specificationd. It thewn loads the I/70 op code for
status (0% into the PaE and calls the DER ko determing the
status of the #ileg or device, #after the LER returnz, a PFlioating
point ons iz loaded intp the FA&C. % check is madge 9f the
veturnes stetus and 1F the f#llisldevice s & & physicail snd-od-
File, the floating one in the FAL ig negated. iI# the filesdevics
iz not 2t en egnd~of~Fils, the FAD iz cleared. After the carvect
number is in the Fal, & BFL CONT instructicn i3 exescuisd e
return cantral to the parser.

Yezes Instrumesnts B d FRELIMINARY

Ti-99/8 BASIC INTERPRETER INTERPRETER COMPONERTES

The only string cperator supported by the TI-9%2/8 BABIC is
that of cvonvatenation (&3, The concatenation operater is used o
concatenate two strings tegether indo ong string.

8.4, 3 1 Concatenatign.

The LED handler for concetenation. 8% are ail of the siving
handliing facilities, iz written in GPL and iz contained in the
EXEL sssembly of BaABIC

Getting to the LED handler for concatenation is not handled
directiy &y the tablies of the parser. In order for the
concatenation opervaboer to bhe added %o the TIi-99/8 BABIC, it was
necessary to add a check in CONT for the opervator and if it is
present to send control €o the LED handler, Ta add the
concatenation operator to the LED table in PARBE would have cost
several bytes and it was decided %o add the de%sction of it
girscily to CONT.

Te syerute the concatensiion gopsration the left—hand
sperand is pushed on the staeck and the vight-hand argument 1is
parsed, The lengths of the two strings are then added together.

I# ¢he length of the vesult string would be grestsr than the
implementation capacity of 283, then LB is set as the lengih #for
the rvesult string. The system get-string routine, GETSTR, 1s
called to a2llocats & string For the rvessull The lefi-hand
argument is then copied ints the result siring. Az much of the
vight~hand s¥ring =% is possible., depending upsn truncation, is
the copied into the result string, ctomplebting the concatenation
aperation. Ceontrol then returns to the parser via the GFEL. CONY
instruction.

5. 4 & Bering Funciiansg,

This section will deal with the string functieons ABCII
(#SCH, character (CHES), length (LEN)., position (PO8). segment
(BEGEY, stvimg (8THS$) and value (VAL). Although $he functions
ASC., LEN, POS andg VAL all refurn numeric values. they are being
discussed in this section because they take string erguments and
are four of the primary means of operating on sirvings. H#i1 of
the NUD handlers for the string opsrations are written in &GPL and
are contained in the EXEC asesembly of BaABIC.

The ABCII function {ABCF veiturns She ABCII wvalus, i
decimal, of the #irst charascter of the string argument supplied
to the function. After pavsing the argumendt, ASC takes the first
character of &he string (null sétrings csuse an evrvord, puis 1%

Tesas Insétvuments 515 BREL IMINARY

TI~9%9/8 BASIC INTERPRETER INTERPRETER COMPONENTY

intoe AREY and then Jumps ints the LEN code to take sdvantage of
cammon code o canvert the chasrascter to its ABCII wnumber.

The chavacter (CHR%) +function takes, as its argumenit. an
integer valus, which ig converted ints the gone-chavactesr string
containing the chaeracter specified by the ordinasl position within
the ABLII collating sequence. Executiorn of the CHRS funciion iz
done by gavsing the ergument and converting it intoe a&n integer.
& one-chavacter string is the created, the integer wvalue. which
is the a48C1II value. ig copied into the stving and a GPL CONY
instruction is eyscuted to cvomeliste ths Funcbion,

The string lenoth (LEN) function is used to find the number
gf characters conteinad in the string specified by the argument.
LEM parses the argument and talkes the length of the siving,
returned in the Fal entry, from Fa&l+4&/7:, and $Shen converis 1%
ints a fleoating point soint wnumber and exscutes a SPL CONT
instruction to compiete execution of the funciion.

The pasitieon (POB! funciion iz used ta Pfind ithe charscier
paslfion of the First chavsciter of the first occurrence of one
string within another beginning &%t 8 particulasr character
position within the source string. Execution of the POE function
involves pavsing the three arguments, pushing the Ffirst two on
the stack., as soon as they are pareed. When the third avgumsni
is pavrsed:, it is converted te an integer %o be wvsed internalliy to
ysg as the stariting charscter position fov the comparissn. The
two string arguments ave popped ofF the stack, moving the sscond
argurent {(First popped off) into ARG from Fad. I¥ the souvce
s€ring is found %o be null, then the valus 137o iz veturned a5 no
match can be made, The chavavter gasition which has baen
specified is then compared to the length of the spurce string and
if 1% is greater. fthen & zero le vreturned by the funmchion. since

ne siring match can be found, I¢ the mateh string is null, then
the wvalus of 1 is veturned., indicating thet s wmateh sccoured in
the first column, as the null stving @astches any string. The
stvings are then comgaved. thavacter b4 character: in an
intricate loop in an atitempd to Find 2 mateh for the second
string within the scurce sEring. I® & mateh ig fgund, then the
charscey position of the fivst character matching is returned in
the FaL I¥ no @mabtch is ever found then & value of zers is

returngd in the FAL, Hote that the vcode in LEN i3 wzed to
convert $he infeger posibtion of the wabteh indto a flosting point
vaius.

The string segmendt (SEGS) function is used o sexirsct ons
s¥ring fFrom snother. The arguments specify the source siring
the character position within ths source eiring ¥From which the
new siving is %o bBegin and the length of the new string.
Execution of the SEGS function involves the pavsing of the first

Teias Instrumsnts Bt h PRELIMIMARY

Ti-9%9/8 BASIL INTERPRETER INTERPRETER CUOMPOMENTS

two arguments, pushing them on the stack and then parsing the

third zrgumentd. AFter the thivrd avgument has been parsed,
ceaverted to en integer and saved, the first fwo arguments are
pupped aoff the stack. saving the ssoond argumesnt {the First

pooped off the stack? before popping the fivst argument. &
comparison is made to see i¥ the chavacter position specified is
greater than the length of the string. and if so, the null string
is reiturnsd. I¢¥ the charecter position specified plus the number
ef characters asked For is greater than the length of the source
string then the enbire source string beginning with the specifisd
position is taken obtherwise %he specified porvition of the source
string is ftaken. When the exsct length of the séring to he taken
has been detevmined, & string of dhat length is crested by wusing
GETETR and the correct s¥ring is copisd into +the vesult sitring
and & siving FAC entry is built. When this has besn completed, a
GPL CONT dnstruction is executed to return conitrel %o the parser.

The string function (BTR$! iz used %o convert = number ints

ite gtring eaulvalent. it doeg this by First parsing ths
argument and converting it inte a string by using thes Convert
Mumber to String (CHMEB) rvoutine contained in thas monitor. BTHS

then geds vid of any leading speces and then calls the string
literal rovtine (LITETR) to cveate & string, copy ¢the converted
number inte the string and to build the FAC entry. After
compietion of this a GFL CONY instruction is exscuted %2 veturn
controal %o the parser.

The numeric wvalue Punction (VAL) is used te convert the
string representation of & numeric value into & number. It dogs
this by fivst parsing the argument and then cenverting it BTRS
cenverts the argument by removing anyg leading or trailing blanks
from the source string and then allocating 2 now siring with the
exact number of characters contained in the number portion of the
souTre® stving plus one, The numevic portion of the source string
is cvopied into the new stving and 8 blank-space character is
agpended %o the end of the siring %o indicates to the convarsion
routine where the sirimg ends. The conversion rouiine, C8M ig
then called %o caonvert the s%ring into & numbsr. When OBK
returns a check is made to verify %that the string was converted
and that an illegal argument was not passed and ¥ there where no
grrors a GPL CUNT dnstruction is sxscuted %o return congral fo
the parser.

5.4.5 User~Defined Functions.

Execution of User-Defined functionz is one of the morve
complicated parts of the TI-99/8 BABIC intevpreter. Mots that
this implementation supports onliy one-paramster. gingle—-iins
User—-Defined functions,

65
e
d

Tasas Instruments PHEL IMINARY

Ti-%9/8 EASIC INTERPRETER INTERPRETER COMPONENTE

Khen a referencte to 2 User-Defined funciion is encountersd
control flows %o the UDF code conteined in the EXEC assembly of
BASIC. The UDF code is entered with FAC rontaining the pointer
to the sgmbol ftable entry For the function definiftion and CHAT
containing the charvacter following the referenced name. The
Fivet thing that is done iz that 2 parameter count is initisiized
to revo (Fal+7}:, azssuming that no argumenis are praovided.

If CHAT contalins & Isft parenthesis then it is sssumesd that

an argument i¢ being supolised and it must be parsed. The pointer
to the symbol ftable entry in F&l is pushed on the value siack to
save it while the argument is being parsed, #Fter the argument

hae been parssd 1t iy moved $from the FAl fto ARD so thad the
symbol table pointer van bz poposd off of Lhe valus stack and the
argument count is incremented fte indicate that & gparamster has
been encvountesred.

The symbol table pointer gnd nusmbesr of argumenis are now
saved Iin fsmporary varisbles so that they can be ussd lIater.
YPUSH s rcalled %o ressrve an entry on the stack for ths UDF
gnntry that is to be constructed. The parse result {(or & dummy
gntry if no srguments arve supplied} is then pushed onto the stack
#or safe kzeping. The first byte of the funciion’s symbol table
ig Fetched to see 1if the number of argumenits supplied matehss the
niumber of parameters needed by the Funciion. I it dpess not
match,: &N BTTOT OLCUTE,

The UDF stack entry is mow constructed by coapying PEMPTE,
the string flag bit of the symbol table entry, the symbol table
pointer and %the Frge~spacs pointer ints FAC threugh FACT.
respectively. Until the parameter sntry has been made on the
zymbol table. the stack ID for & User-Defined fyncitien is not
added o that If an evror ooours in bhe EMNTER routins. the firvst
gntry on the symbol table will not Be deleted when the shack iz
clsaned un by the ervor handler, The entry is then pushed onic
the stack below the parse rssult.

Mow & suymbol table entry must be consbructed for sikther the
parameter ovr a dummy eniry to kesp the global wvariable scoping
carract, This second case prevents one User~Defined funciion
having & pavemsier which has the zsme name 33 & global wvarisble
Ffrom invoking another User~Defined funciion which uses that
gicbkal vavriasble From getiting the value o0f the pavemetsr,

After the parameter entry hag been made indts the symbol
table, the veal UDF stack ID is put ints the UDF stack entry so
that i¥ am error occurs during the syscutien of the funciion, the
parameter gntry will be removed from the stack. The symbol table
link in the pavemeter’s symbol table enitry iz changed so that
global scoping ds wsed for varisbles appeasring in the UDF

Teras Instrumsnts S5-18 PREL IMINARY

Ti-99/8 BASIC INTERPRETER INTERPRETER COMPONENTS

definition. Mow the argument wvalue is poppsd aff of *the stack
and the wvalue is assigned %o the parameiter. Note that if ns
parameter was provided, garbage is assigned te the dummyg symbol
table enitry which doss net affect angthing since the entry has &
revog-length name and cannot ever be used for anyihing, execept to
give gilohal valuss.

After the parameter wvalus has besen assigned to the
parameter. the function definition is actually parsed to get the
valug ¥for the function. Hhen the pavrssr veiurns to the UDF cade.
& check iz made to be sure that the value veturned has the same
type a8 the Ffunction, 1.8 & string Ffunction produces a siring
resulit and 2 numeric funclion returns @ numeTic Tesuli. i the
type mafches cervectly then the parameter entry is delinked #from
the symbol table. the stasck entry is vetrieved to restere the sid
symbol table, free-space and program pointers are vestered to
resume execution a8t the point where the funmction was referenced
and then & GPL CONT instruction iz executed %o return control o
the parser.

5. 4.6 Relstional Opsrators.

The relational operators, equal, not-egual, less-than, less—
than—~or—-asgqual. grester~than, and greater~than-pr—edual are
handled by & tommon pisce of code in the FPARSE aszsembly of BASIC,

Whan one of the relational operators is encountered 2 wvalue
ig assigned Lo ths operation. O $hrough 3 {sssigned in ths list
sbove. with O being egual and 3% bpeing greater—than—or—sguall.
This walue 1s then uvsed after 2 compariscen of the twe operands
has been made to determine how the compavisen is to be

interpreted.

The comparison of the fwo operands is done by vsing the
floating point routine SCOMP for numeric comparisons or by using
specisal coude for comparing ftwe strings whichk is contained in the
relational cods. Hhen comparing sirings. the sirings are
compared chavracter-~by~character wuntil all of &he charactsvrs
mateh., @ character does not match. or all of the characters have
mateched buit one siving 8%ill has move characters. The three
cases Just described vesult din the strings being considered
Equsi. not-equal or oneg string besing considered greater—than ths
sther ones. respectivele. In %he third caze. thaet 211 af ths
chavacters have been compared and are equal, and one string is
longer. the longer string is Cconsidered to he greater than the
gshorter one.

After the comparison, either string or numeric, has besn
campileted, then the number assigned to the comparisoen type (O

Teias Instruments G PREL IMINARY

TI-99/8 BASIC INTERPRETER INTERPRETER COMPUONENTS

through G abovel is used as an indey into & swall brsnch Lablse
to cavse control fo branch inte & series of condifional jump-
ingfructions which cause & 0 (falzge coumparisont or & @minus one
thrue comparigson! to be loaded ints the FAC, HFter thig has been
completed, a B GCONT is gzsoutbted to return control to the parser.

%% Evvar Handling

A significant pavition of the TI-99/8 BABIC interpredter iz
devoted o the detection and reporting of errors. The
interpreter has meny checks foar sunkax, illegal =zitatements.
memory averfiow and semaentic ervors. Errors are detected as soon
as possible once a program is entered into memevy. &ty srvars
which can by detected when & statement is enteved sre rspoaried
immediately. A number of ervors which really would not occour
until & program is executed are detected during the static scan
af the program %o rveporit thes sz soon as possible. The following
two sections describe what asctions arve taken by the interprater
when an srroar is detected,

2. % 1 Dotection,

Evrors may be detected in any number of wauys but once an
greor is detected the interpreter handless it in & spzcific
mERDET. The error hendling vouting of the interpreter is
entitled ERR®S% and is located in fthe PRCAN assembly of BABIC.

Whan an error 1is detechted ERR$$ is called by using 2
CALL ERRS$% statement followed by ftwe datae bytes containing the
address of the evrov message fto be printsd by Ythe ervor rvoubins,
A sample calling sequence isg:

MEGENM DATA 22, BTRING-NUMBER MISHATOH:

CéLé EREee Issua The grror messasgs
DATA BMBGENM FETHR ING-NUMBER MISHATOH

The errov messags its STRING-NUMBER MIGMATCH asnd its length
is £2 which preceeds the message in the data-statemsnt, When
zentrael rezeches the evrer roubine, it doss two GFL FETOH
instructions to get the address of the srror message.

The preceeding discussion assumes that the evror has besn
detected by & Graphics Language pordion of the interprater. When
#n ervor is detected within the sssembly language portions of the
interpreter, 2 value is placed in the wvariable, ERRCOD. and

Teuiszse Insftrumenis B 20 FREL IMINARY

TI~99/8 BaABIC INTERPRETER INTERPRETER COMPONENTS

contral returns to GPL at the CABE statsment #ollowing the EXED
instruction which started the statement or program executing
The case statement sends coantrol o 2 small evror roubineg in the
EXEC mssembly which bthen doss anobbher (ABE statement fo send
control %o & stetement which calls the evror routine with ths
approgriate message addrees folliowing the call statement.

5.3. 2 Bzpuriing.

ALl svror veporting is handied by the ervror routine, EHRSS,
which % conteined iIn the PECAN sssembly of BABIC. The error
routine first febtches the two butes of the message addrsss se it
will know what errvor message to display on the screen. it then
checks %o see i¥ the symbol table pointer iz pointing into the
crunch bBuffer {(UDFs can casuses this) and 4# 1% ig: it is restored
e the correct place. it then scroiis the screen gpropeviy {1all
lines 1€ in BaBIC. bottom six lines if in Eguation Cslculator:
znd then displays an @stevisk. which will precesd the error
message on the scresn. & zubroutine, ERFE$L, is called which is
wsed by both the evrvor vroutine and the warning reubtine, &s
display ¢he error messsgs on the screen and to display the line
number that the error oceurred in if & program was sxecuting.

When contrel returne to ERRSS after the error m@message has
been displayed on the scresn. & check is made to see i¥ 2 program
wat bBeing executed. It & srogram was being erecuted then bhe
routine o closs all open files (CLBALL:Y i¢ called. HFter any
open $#iles have besn clossd, then the SROM $#lsg is checked to
return condrol to a GROM progrem if one was being execubed. it a
VDFE RAM BASIC program wass being executed fthe wvalue stack is
cleaned up by popping all temporavy snitries (stving entriss are
critical haevel and delinking a3 User-Defined function’s paramster
it a Ussy~Defined “function was being executed whsn the ervor
srourtred. The Eguation Celrulastor flaeg ig checked and 18 1% is
gat control returns o the Eguation Calculator. One Final check
is made o? the program flag and if & program was baing executed
when the srror was dedtechbed. the valus stack iz wiped cut. Mote
that this iz OK since a1l ftemporary entviss have alvregady been
cleaned up. Finally. coentrel rsturns to top-levsl by exscuting &
BR #HMa0 instvuction to return to the sditor.

5 5.3 Harpings,

Warning messages dssusd by the interpreter are handled in
much the same way &8 erTor GEES5A09S. gxzept that ezscution
continues atter the messeges has beesn displaysd, Tee only warning
massages which can oocur when a srograw is egxecuting are =
MNUMERIC DVERFLOW asssags when a8 fFloating point sseration has

Tezags Instruments B2l FREL IMINARY

Ti~-99/8 BagiC INTERPRETER INTERPRETER COMPONENTS

taken place and the machine’s capacity has been syceedsd, and an
INPUT ERROR messayge when the wrong number of input items hag besn
gntered or the type of the items entered doues not match the typs
of the wvariables inte which the valus is %o go. The floating
guint routines a1l return an srror code €6 well 14 an overflow
has occurved and the BASIC interpretsr checlds the error code to
gee if¥ an an overflow has ocourred. The input rouvitine alsza
detects ity waernings and reports them,

The warning routine, WARNSS. is called in the same mannsr as
the error routine, ERRS%, with the address of the messags to be
printed following the «caell statement., ag in the $following
gXamsie;

MEeRD Data 14, NUPERIC QVERFLOW:

CALL WARNSS lssus & warning message
DATA BHMEGND # WARNING: NUMERIC OVERFLOW

The warning routine Fivst scrolls the scrseen: 1£ nod in
Caletulator mode and then displeys the message, & WARNING: 7. on
the scrzen. it then {fetches the addrese of the messags and
scrolls the screen again, Cognérol then flows inte the common
routineg ERASL which disslays the message and returns to the
calier of the warning routine to resume execution of %he
violating statement in fhe normal manner.

Tezas Instruments Be-gZ PREL IMINARY

Ti~-9%9/8 BABIL INTERFPRETER BABIC STATEMENTS AND SUBPRUGRAMS

BECTION &

BAZIC STATEMENTE AND QUEPROGHRAME

& % Intraduction

This section describes, in detail: how gach of ths different
statements in TI-99/8 BASIC iz exscuted. The statements ars
groused togebher in generael cvatesgories based upoern their gsnersl
funckion, . 4. I/J0 statements are grouped tegethsr, condrel
transfer statements are groupsd Logathey, sio. &s manyg details
a5 possible avre covered, bubt it iy advisable for the reader fo
iook &%t listings of the code te completely understand how each
statement is srecuted.

There are two separate types of asssignment statements,
numeric assignmenits and string assignmenits. Assignment of values
€0 variables is handliszd by +the ABBGHY lassign wvalus! rvoutine
which is lovated in the BABBUP asssembly of BABIC. In preparation
fav the wuse of AEBENY., 5YM (symbol name!) and SMB {symbol value}
must 2iso be called to prepare the variagble for assignment. 5YH
serves fwo funciions. Fivst, it picks up the varizble neame from
the statement text, advancing the text pointer, PEMPTR. past &he
namy antd sesvohes the symbol taeble for the variable, Baecond, it
places the address of the symbol table endtry inte the FAL i¢ a%
any btimes duving the name accumulistion ovr suymbol table seavrch an
ETTOT QCLUTE:s the operavion is aborted and &n erveoer message i35
generated. BMBE is then wvsed $o 4$find whsre the values being
gssigned to the varisble must be plsced. SME will evaluste the
subscripgdts in the svent thaet fhe wvarizble iz an srray. B
plsces the address of where the value ig te go into Fal+4 A
idsntification bute of either 200 or »565% is added in FaAl+2 o
indicate to ASSEEY whether fhe symbel i 3 numevriz gr siring
vespestiveily, The B-byte FAL esntry, after BYHM and SME have been
cailled loopks like:

Texas Instvusenis &y L PREL IMINARY

TI-9%9/8 BABSIC INTERPRETER BASIC STATEFENTS AND SUBPROGRAMS

R e — #®
ifsr to P00 1FEr to H :
5. %, sntrygirss ! iValue space | :
e s s e -) i e i e 0 s i 2
Fag Fal+Z Faled Faled

Figure &-1 &-Bute FAL Engry

After this FAQ entry has been constructed i% must he pushed
ento the vaiuve stack and the value to be assigrned must be placed
into the FAD., The foilowing sections describe what unique things
must be done dn evder fto gssign the wvalue $o the variabls
depending upon whether iv is & numeric assignment or string
assignmant.

& 2.8 pumesrirs,

ABEENY first poups the top entry off of the stack into the
ARG ares of the Fal. This snbtry should be the sntry constructed
By SYM and ZME. I+ ABGENV determines that & numeric argument is
neing assigned Yo & numeric variable 1% copies the sight bytes of
the FAL into the symbol table 2%t the locstion spscifisd by the
pointer pichked wup from ARG,

PRELIMINARY

il

Tezas Instrumsnis =

TI-99/8 BABIC INTERPRETER BASIC BTATEMENTS AND GUBPROGRAME

{£ix
S St kA e e S o i s i e &
; Pagp !
DR — # :
IBTIOGIVE H H
et s i # ARG Y el
H H B o v o s s i s % b o i e s o s 5 e b e i s e %
i 8 H BT 100G VAL | ; ; Value :
i T : B ot s s e b # A e s o e et *®
i & ; ; ; i
{ C H e s § s s + H
i 24 ; i ; ;
: H H Y ;
T — # i s o o o e & :
; 100 : ieni H
H % - & {drifssigned
i i Link i i
i 36 o o o e i o e # !
; ! Mame Pointer ; ;
H Bl e ot e e e s s s e #® i
! i b ;
: #* - # H
e | Value § it s +
* - #

Figure &-2

After the wvalue has been copied into the coerrect place in
the suymboul table. AUBENY rveturns to its rallev,

& o2 2 Birings.

AGBEMY first pops the top entry off of the stack inkto the
ARG area of the FAC., This entry should be the entry constructed
by ZYM and 8ME, I# 4% iz rwmo%. an #TTor OCCUTE. I€¢ ABSENY
determinegs %that & siring argument is being sssigned %o & string
variable 1% must do several fthings fo ceoerrectly mabke the new
#signmant, First, it shecks to ses i¥ the wvariasble currvently
kag a value assignsed o 1% IF it does it must Free the string
asgigned to 1t so thait it can be garbage collected a2t a laster
time. Then, 1+¥ %the siring to be assigrned is currentiy assigned
%90 & symbol {(the FAC entry indicates that the string is not a
tempovavrylr. & new sitring iz crested that sxectly mabtches the
string %o be sussignsd and this new copy is assigned $o the symbol
pointed fo by Ethe pointer in ARG

4

Teras Instruments &3 PREL IMINaRY

oo

TI~-F9/8 BABIC INTERPRETER BABIC STATEMENTE AND SUBFROGRAME

1%
e s o e e o s e e &
¢ Pop :
e o s e # :
IBTI&S VR ; i
s e e o a0, e ARG W Fal
: ; 3 e - B o o o o o *
: b i BT 168 Ival P 0w i &3 iIPer llen
H T H Gt v s e e vt ot e e e e i o e S e i s o %
i & i H i e
; o e R + et #
H ® - : e {PERMIGEving |
f bt ¥ L #
Bl i s e i e ® § ® # H PN
H PEG (Dimi teni H {3¥ilreated
i o= e # H W
i § Link H P e s
L e e e =) =3t TEMP IBEring i
: f dame Pointer : s o i i e
P e ' # 5
P ™ {4 ifssigned
: O —— #]
el Value Poinfter Qe o g
#* s - —df
i {2¥ o o e o #
o e Filid Stringl
Eresd P #

Figure &3

#fter the new sitving has besen assigned to the symbol table
gntry, ADBENY returns to its caller. Additional! informstion on
strings appears in Beetion 4.3 3 2.

G203 LEY.

Assignments $o variabless may take place in many ways but the
LEY stetement iz the primary mesans, Exscution of the LEY
statement i3 veally quite simple. The symbol rvoutins, S5YM, i

called fo oet the pointer to the name of the symbol which i1s fo

receive bhe new value and bo ssarch the symbel tables For its
erntry. #ME ils then called to get the pointer is the corvrect
pilace in the variable’s value space. The esntry created by BYH

ang SMB in the FAL is then pushed on the stack. & check is mads
o zee i an sgusl elgn is preszent and iF it s, the walue T be
assigned Tto the vavriable iz parsed.

Yezas Instrumentsy &4 FRELIMINARY

TI-99/8 BABI{ INTERPRETER BASIC STATEMENTE AND SUBFPRUGRaAME

Mext, the value gavrsed isg assigned to the wvariable by uvsing
the ABSGNY routine described in the preceeding ftwe ssciionsg.

&3 Inpus/Dutoul

A11 of the inputioutput statements sre handlied within the
FLAGH =sssembly of BARIC, This section has all 170 stetsments
broken down intps either internal 170, seresn or kegbpard., and
gxternal 170, devigce pr file.

& 3.1 Boreen and Keuboard.

I/ to and from the soreen and kReyboard vise fthe INPUT,
PRINT.: and DIBPLAY statements of BASIC.

& 3. 1.1 PRINT Statement.

The PRINT statement can be used %o do 170 to either a3 device
or to the display., funciioning in & menrver similar fo the DIGSELAY
statement. Execution of the PRINT statement begins by checking
0 zee 1if it is IS0 to a devices or to the scrsen. i# it is te be
subtput o & device, the PAR is set up and some flags are set to
indicate that, later on. when the output is to he actuaily deone,
€hat it is to go to a device, i the cutput is to the screen,
the routine IMITHE is called to inmitizlize the gcreen for outpul
#nd e w2t some Flags to indicate that whsn the subput iz o
actualliy take place 1% is %o go to the screen, Mote that this is
&t the sntry point for the DISPLAY statemani.

Conérol then flows into 2 glebazl lsop whichk outsube zach
grint-item in the print-iist until +the send o the line is

reached. Iinside the loop. & check is made to see 3iFf 2 print-—
sgparator preceeds the next print-itesm in the ligh. iI¥ so, the
print—separater is handled in ig pwn psvrbiculasr mannsr: £ mma

gkips to %the mezt Field, colon to bthe next line. and semi-colan
to the next celumn or location, Affsr +the print separator is
evaivated conftroel Flows fto the bottom of the gloabal loop. i¢ =
print—~sesgarator iz not oresent a2 check is made Yo sse2 iF A&
reference to the tsbh function is present. I# & reference fo the
tab function is present., it iz evaluated and control flows to the
bottoem of the glabal ioop. I+ 8 reference fto thes tah Ffuncition is
not present, control flows inte the code which parses the
sypression and outpuks it

Afher the expression iz parsed. & check is made to see 1#

sutput is teing dons te an intsrnal-type File {(dosz not dincludse
sutput ¢o the screen), and if so, numeric values are placed into

Terxas Instruments =5 BRELIMINARY

TI-9%/8 BABIC INTERPRETER BABIC STATEMENTE AND SUBFROGRAME

#ight—byte strings and explicit sitrings are left as they ars
Finally, & check iz made to zee iF g siving ov numevric is being
autpul. I & string is being ocutput, 1% is ocubput using OSTRNG
i¢ 8 numevric dg being output, 1t is converifed to a string and
autput, alse using OETRNG. OBTAENG is & routine which ocutputs any
pending vrecevrds to 2 device and then ftakes care of pulpudting the
current ibtem It “chunks’ uvp ang items which are fgo long for
the device aov scvesn, vepsabtedlyg puibting ocut as many records as
necessery to get the entire iiem outi.

AFter the print~item has been ocutpud, & check is wades Lo sss
i 5 print-separaior or an end-pf-line occurs next, and, if

neither 18 gressnt, &an ETYOT OCOUTS. I¢ & print-separator is
sresent it iz handled and the entirve loop i3 rvepeaied wuntil the
gpd~oéf~Llineg is reached. Whern the gnd-pf~line iz reached, & GPL

CONT Y dnstruction is executed to return te the statement
dispatoher to process fthe next statement er to reiurn o top-
level.

in psseudo-code, the esntire srecution of the PRINT and
DIEPLAY statemsnts cen be described as follows, with the label,
PRINT. being the eniry-point for the PRINT statement and fhe
iabel, DISPLAY, bBeing the snitry point for the DISPLAY stabement,

i

Tezas Instrumenis dyrr PRELIMINARY

TI~99/8 BABIL INTERPRETER RABIC STATEMENTS AND SUBPROGRAME

PRINT IF DEVICE-DUTPUT THEN
INITIALIZE _PAP
ELSE IF SCREEN
DISPLAY INITIALIZE SCREEN
END IF
REFEAT
IF SEPARATOR THEN
HANDLE SEFARATOR
ELSE
IF TAB THEN
HANDLE_TAB
ELSE
PARSE EXPRESESION
IF INTERMNAL-~FILE~TYPE THEN
IF NUMERIC-ITEM THEN
CONVERT_TO_B-BYTE_STRING
END IF
END IF
IF STRING-ITEM THEN
OSTRNG
ELSE IF NUMERIC-ITEM
CONVERT_TO_STRING
DSTRNG
END IE
IF MOT SEPARATOR THEN ERROR
HANDILE_SEPARATDR
UNTIL END=0F - INE
CONT

& .32 1.2 DIBPLAY Btstement

The DISPLAY ztatement is syecuied in exactly the same manner
ag & PRINT statement fo the scraen. Exscution of the DISPLAY
statement actualily begins &t the place whers bthe PRINY statement
calls IMITHB to idinitialize 170 $5 the scrgen. & complete
explaination of how the DIDPLAY statement i3 exerzvied masy be
found in the precesding section on the PRINTY statsment.

& 032 1.3 INPUT Statsment.

The INPUY statement is separated ints two separate paris.
fine part provides Ffor input From the ksyboard and she osher
provides fFor inou% from & device. This section descpibes inpul
#rom the soresn.

Aftsr 1t has bsen detevrmined thaet input incoming ¥fFrom the
keyboard (ne $ile-clauvse or File number C) a check is made to
insuyre thaet theres i enough voom on Ythe screen fgr the guestion
maryk te be placed on the screen and 1f there iz not fthe zcvesn 13

Teyas Instrumsnis =7 PREL IMINARY

TI-%9/78 B8AEIC INTERPHETER BASIC STATEMENTE AND SUBPRUOGRAME

geroiled €5 create rvoom The guesiion mavk prompt i¢ Thesn
displayed.

Mext the INPUY statemsnt is scanned to pick wp all of the
variables which are to receive values and €o push the gpesoial
entries for esch ferested by & cell fo BYM) onito ithe stack.
after 8l of the variable entriss ares on Yhe stack. the rest of
the line on the screen from which the input is to come is clesrved
and the prompiting bong is sounded. The routins, READLMN is
catied to read the input lineg from the scveen and to allow a#ll of
the esditing festures four the input line. “¥ter the line has bsen

read. it is crunched by calling the routine BCDATA, which 18 =
subroutine vsed by CRUNCH to crunch data-statementis, Srunching
#n input lime fs essentiaily the same a8 crunching & data-
statemant. After the line has heen crunched. the soreen is
serolled and a check is made to see i€ the number of argumsnids
input matohes the numbeyr variables in thse IMNPUT statemend. i#

the numbsr of argumsnts doss not metch the number of variables, a
warning message 15 issued znd the input is tried again.

A%t this point an assignmenit loop is entsred which rescans
the input line. in case & subsuript dis beimg dinput, andg the
values read from the screen are assigned %o the variasbles in the
input liset wntil the end of the INPUT statement line is reached.
When a&ll of the wvalues have been sssigned, a SPL CONY instruction
is srecuted to return to the garssr.

&nn extensive devicelfile 170 system is supported by the Ti-
F2/8 BASIC interprsisr. The +Files management indterfece ig
discussed in detail in the Home Computer File Manasgement
Bgecification and %he reader is referved %o that documesnt
Discussed heve, briefly. are the Peripheral Access Hloocks (FPAHs)
and how the OFEN, CLOBE, OLD., and SAVE statemenis are eyecubted.

& F 2.1 Peripheral Arcesy Bilgek Definition,

A1l DERs are gocessed thvrough & Peripheral Access Blook

(AR, The desinition for these Palls is the same for every
pariphersl. The only difference bebwsen peripherals, a3z sesn by
Basic, iz that some periphersie will not support every opition

provided for in the Pai
ALL PABls are physivally located in VDP HAM Thay are

cregted before the OFEN call, snd are not to be rveleased wuniil
the 170 fhas besen closed for that device or Fils,

Teras Instruments & FREL IMINARY

TI-99/8 BABIC INTERPRETER BAZIC STATEMENTSE AND SUBPRUGRAME

Figure 6~4 shows the layout of & stendard FPAY with the
additions %to it By Ehe interpretsr to manage the Falls in memory
{firet 2ight bytsss. The FAE hes &8 wvariasble lemgih. depending
vypon the length of the file descripior.

Fpor e - - s - .
BASIC--31 0,1 :
! LINK TO NEXT PAB IN CHAIN :
SO S :
;o2 ;o3 :
d CHANNEL NUMBER f INTERNAL DFFSET
§ et e e e 0 S A 8 0 ;
PABme—=3] 4 P05 :
: 1/0 OPCODE z FI.AG / STATUS
§ o Bt o o e e e :
f o é. T :
¢ DATYTA BUFFER ADDRESS ;
io8 ig :
{ LOSICAL RECORD LENGTH | CHARACTER COUNMT ;
i 10,14 :
z RECORD NUMBEER ;
Y- P13 :
i SCREEN OFFSET : NAME LENGTH :
i s v i it Gt S S D4 S S s e G) L S S8 G i s 5 H

e
e
&
‘
i

Figure 4&-4 BABRIL PAR Layoul

The measning of the bytes within the PAE is described below

Buts Mezaning
& - 1703 mocode - Lonteineg opoode for the current
P/0wcmll. & descripiion of the walid

ppcodes will bhe gliven ilster.

Yot
¢

Filag/Btatus ~ 411 Lthe inforsastion the sysbem
ngeds about Fils-tyse. mode of cperation
snd data-tupe, ig stored in this Buyte.

2. 3 - Dats buffer addrsss - Address of the data

Buffer in VOP BEaM the data has fo ke
written to or read From

Tesas Instrumenis eGP PREL IFMINARY

TI-9%/8 BASIC INTERPRETER BABIC STATEMENTE AND BUBPROGSHRAME

4 - Legicel record length - Indicates the lagiecal
record length For Filyed length records. orv
the maximum length for & veriabls lsngth
vecard (see flagbytel.

bl - Charagoter ctount — Humbsr of characters Bo he
transferred for a WRITE apcode, ovr the
ngmber of bytes sctually vead far a READ
spoode {(not equivalent to INPUT awnd ODUTRUT
model,

&, 7 - Record nuamber ~ UOnly reguired 4F the #file
spened is of the rvslative record type.
indicates the rscord number the current
170 operstion is %o be pevformed upon
{this limits the range of record-numbers
$o O - JETET). The highest Hit will be
igriored by the DSRE.

g - Borsen ogffset -~ {ffsed afF the SEresn
characters in respect fo their noresl
ABCII value,

7 - Masme lengith - Length of the file descriptoy
following the PAE.

10 - File deseyiptor - The device name and, i
veguired, the {filename and aptiosnzg. The
iength of this descripter is given im
hute 9,

& 3 2.2 BaBle PAR Additions,

Aside From the conirol information contained within the PAR,
BAGIC adds four (4) more bytes %o the top of the PAR #for specific
BARIC relasted control informedion,

The additional four bytes contain contrel infarmation HASIC
nesde for ifts internsl FAE linkage siructurs, The FPAHs within
the BABIC control structure, fForm a linked list. The iast PAB in
the list has g zeve (70"} Llink.

The $irst Z bytes in the BASIL PaABs contain the link ts the
nest PAR. The next 2yte conbtains %he acbual JFABIC channel or
File number (1-235%:, The next byte contains the offset af the
cuyrrent data—pointer within the data-block,

The offset indicated in the third buyte of the BASIC Pas
indicates the position of the current dats pointer wiithin the

Teias Instrumenits &0 FRELIMINARY

TI-99/8 BABIC INTERPRETER BABIC STATVEMENTE AND SUZPRORERAMD

data buffer given in bytes siz and seven of the PAB. I¢ bute
theee esquals zere. the curvent dats buffaer is “blank™, 1.8 iF
in "read” mode. & new buffer has to be vead in before any Further
groceesing: in Ywrite” sode. the sntirs buffer ig gtilil avelliszbls
#or dats storage.

¢ byte 3 iz non-zevro:. it contsins an “offset® within the
data bu¥fer. Added to the start sddress of the dats budfer. it
will give the sciusgl addrsss of the first dats-—bybe to be rsad or
written. Thig is onmiy the csse 1f there are pevding print
gperaticons or ithe most vecent INPUY snded on & comma. In 211
sbther cases, byte 3 will be zeve.

& 3. 2.3 170 Opevations.

The vaild opcodes which may appesar in & PAR are shown in
Figure &5, The $following sections describe the gensral azctions
invoked By an [/0-call when the OPEN. CLOBE, LOAD. and BAVE [/0
ppeodes are ussed,

flpcode Mganing

) OFEN

5] CLOaE

ey READ

o8 WRITE

{34 RESTORE /REWIND
o5 L&D

Oé& SAVE

o7 DELETE

08 BURATOH RECORD
o9 87aTU8

Figurse &-8 170 Opcodes

DEEN

The UPEN gperation should be gserformed bedfore any data
Yransfer operation. The $ile rvamaeinsg open until =& CLOSE
speration iz performsd. The mode of soeration fFor which the #ile

has to bz opened should be indicated in the Fflagbyte of the PAD.
In case this mode isg UPDATE, APRPEND, ov INFUY. the record lengih
wili be rveiturmed inn buyts 4, Ay given non-rere racoavd lengin
will be checked agasinst this stered length. Far RITPUT the
rerord length can be speoified. ar & defauli zan be used by
specifuing vrecord length zevs.

Egprytion of the [PEM sitatement beging by plcoiing up the

BASIC channel number orv Logical Unit Number (LUNGE, Orice 1% does
this & tesmporery PAR is bullt in the 4PU BAM until the device can

Teras Instrumsnis &t l FREL IMINARY

TI-9%/8 BARIC INTERPRETER BASIC STATEMENMTS AND SUBPROGRAMS

be vevified open, ot which time the PAE is copied into the VIP
RaM and made parmanent. When the #framewovk for the PAE has been
dong, the opticns ave parsed and put inte the PAH 4o customize 1%
for the particuiar device being opensed. &t this point, the
Device Service Roubtine (DERY iz called %to actualiy open %he
device or $File. If the DEBHR does net encouniter an error the PAE
iz made 2 parssnsnt structurs and contrel returns to the parssr
via the execution of & GPL CONT insitvuction.

CLOGE.

The CLOSE opsration infarms the DER $hat the current /0
sequence to that DER has been completed.

Exscution of ths CLOBE operation i3 & rvelatively simpls
speration. The fivst thing done is the BABIC channel number is
picked up and the covrrect PAB iz found in the PAB list. I¥# ‘the
device was opened for OUTPUT. ang pending ocutput that may exiszt
is gutput. The CLOSE opcode orv the DELEYE ogpocode {i¢ DELETE is
specified? iz placed in the PAB and the DER iz zazlled. after the
CLUOBE operation has taken place. the PAB ig delsted by a routins
called DELFAB. This vemoves %the PAB from the PAH list and
releases the memory 50 that 1t mey be allioceted for another PAHR,
& symbol ftable sntry, or the string space.

it & file ovr dewvice is opened for OUTPUT or APPEND mode, an
End OF File {(EiF} vecouvd iz written to the device or File. hefors
disconnecting the PAR.

h.b.

The OLD operation Ipads an entire memory image From an
gxternal device or files. A1l of the rontrol informeatiocon fhe
applicvation program nseds should be concastenated %o the program
image. Mo intermedliary buffers are used. The entive memory
image iz domped sterting at the specified locabion.

The OLL operation is @ stend alone opevation. i.s. the LD
gpearation can be used without 2 previous OPENM ppevation,

For ths D ogeration. the Fal negds o contsin the
Following information:

Bytee 2.3 : Gtart address of the memory dump arsa
Butes 6.7 ¢ Number of bytes asvailable.

#gide from the 170 opoode and the file descriptor, no other
Fag-entry ie reguired for s LOAD pperation.

Tezas Instruments e § 2 PRELIMIMARY

TI-F%/8 BASIC INTERPRETER BASIC STATEMENTS AND BUBPROGRAMS

Execution of the OLD command involves %three phases. First:
the PAB isg built. Then the DER is telled $o actualliy read in fthe
program from the device specified by the name. after the progranm
hae been vesd inte the VDPF RAM the starting and ending line
pnumber Table pointers are vetrieved from the memory image and arse
vesd te locate the program in memoryg snd fix all of the lins
pointers within the line number isble. After this fs all
completed control returns fo top—level to awailt input fFrom the
user,

SAVE,

EAVE 13 the complimentsvryg opesration for OLD. It is uvsed for
writing memory images %o a device or file. ALl negcessary control
information is linked to the msmory imagse. s that the

information plue program imesse use ons cantiguous memory sSres.
again, oriiy & smsll pavt of the PAE is uvsed. dgide from the
ysual information {(I/0 apcode and $ile descriptor!. +the FAB
contains:

Buteg 2,3 : Start address aof ths memory sres.
Butes &7 @ HNumber of bByitss to be saved.

Exscution of the B5AVE command involves building the cervect
Fad and 2ppending the starting end ending line numbar table
pointers to the program image in the VDF HBAM so that they can be
gaved also, KWhen €his has bsen completed. the DER iz calisd to
actually write the memory image %o the device. Control than
¥lows hack %o tep—level %o await a command from the user.

RESD/DATA ang RESTORE

READ and DATS statemenis alliow & BABIC program writer to
store data in & program and reirieve it sasily, vsing & minimum
of spare. In order to properiy handle READ and DATA commands the
interpreter. when & HUM command i3 being processed. sgang the
entire program segment sesvching fer an ccourrvente of g DATA
statement, I# one is found, the address of +%he fivrst item of
that DATA statement is stoved in bhe globhal wvariable DATA. The
addrese within $he ling number ftable of the line in which The
DATA statement has been found is storsd in the global variable
LMBUFE In case noe DATA stastement i¢ prassent in the curranig
program segmend the high ovder bute of DATA is set %o -1 (all
gne .

Earh READ statement reasds one or more i%ems From a DATA
statement. ITtems ave sesparated By commas. I#, during a READ, an
end-gé~-line is encountersd. the variable LMBUF g used ta soan
subseguant program lines searching for another DATA statement.

Teyrss Instrumenis fo 13 PREL IMINARY

Ti-29/8 BABIC INTERPRETER BABIC ETATEMENTE AND SBUBPROGRAMS

I¥# another DATA statement iz sncountered, the D&T4H pointer is sei
up For that sarticuliar DATA stsbement and the READ iz complieted.

after 21} DATHA statements in the progrem have been used, the
high buyte of DATA is set $o ~1, indicating %that no move datae is
avallabls. Eyacution of 2 READ statement sfter this willl result
in an srvov.

The DATA pointer can be reset to any DATA stabement within
the program ssgment by using the RESTORE commend, In the RESTORE
comnand an sptional line number can also be specified. Thig ling
number indicastes the line at which the DATA scan is to start. Is
the line number specified is not contained in the program. the
HESTORE dofaulits to the first line in the program which contains
a DATA statement.

& & Control Trensfer

The BABSIC interpreter normslly executes the statements of 3
sregrem in 2 seguentisl manner. Whaen it is Finished eszscuting
one statement. control Fflows $o the next statement in the program
urnless one of the statements described in this section dictates
stherwise. The stafements described hevre can cause unconditional
branching. conditional branching. branching with rveturn, and
looping %o ooour.

&4 1 SOTO Eistement.

The szecution of a GUTO statement consists of ftwo paris.
Firgtd, ig the identificabion of the BOTO statsment and szecond is
the actual branching te the statement specified by the line
numbar provided.

Identifying & GOTO statement is somewhst complicated by the
fact that 1% can bave two distinct forms, BOTO and 0 T4 When
the QOTH fForm ig ussgd the addesss of the statement handler is
picked up dirsctly from the statement fablse. It the case of the
61 T fors, & check must be made afbter the G0 has bezen looked up
in the statement table to sse if the token followinmg it is & 7O
gr g BuUb I+ @ TO is found after the GU then contral flows o
the same locastion #s in the case of the GOTI

Finding the line to resume gxecudion &t is handied by a
rovitine which i wtilized By ithe BOTDH statemsnt, the ON-GOTO
statement., the GDBUB statemend. the [N-BOBUE stabtesasnt and the
THEM and ELEBE clasuses of the IF-THEN-ELEBE statesment. Motice that
the GOTH statement 18 & specialized case of the ON-BOTL statement

Tewaes Instrumsanits f-i s PREL IMINARY

TI-99/8 BABIC IWTERPRETER HASIC STATEMENTS AND SUBPROGRAME

without the index. 7% ghould be obvious to see that if the inde:x
for a LUOFD statement ran be assumed o be zeve. then the GOTO
statement can bz treated exacily sz an OGHN-BOTD statement afier
the indewx has been svalusbed. This is sasctly what is done by
the interpreter. & dummy Indesx (B3 is sel vp and from here the
statement iLe ezecuted in sxsctly the same manner ag the OMN-BOTE
statemant described in section 4.3 & 3 3 Rafeyr to that seziion
#or how the SUOTO statement ie completed.

& 4.2 GUBUB snd RETURNK Statsments.

The GUEUER zsiaztement is handlied in a very similar manner to
the GOVTO statement. Initially, *the same procedure ig used to geb
te the GOBUR statement handler as is uvsed by %he SOTO statement
{see preceeding section}. After control has veached the GOBUER
statament handler, a special stack/ /FAL entry fe built which saves
Ehe cuvrent ling number fable peointer (EXTRAM) so that exzecution
may vesume at the statement following the GLEUB statement when 2
RETURN statement is srecuted. & dummy on-indesx is coreatsd Just
as with fthe BOTO statement and conivol flows inte the common code
used by the GUTO, ON-GOTO and ON-GUBUE statements. See the
preceeding and #ollowing sections for how execution of the GUSUB
statement is completed and for more information.

Execution of the RETURN statement involves popping an entry
off of the value steck, looking for s GUBUB entry. ¢ a GOBUE
grtry iz not found, succesding entries ave popped off until one
ig Found or wuntil VBOP attempte 2 stack-underflow which causes an
BYFTOT, I 2 GOBUB entry is found, PEMPTR is restored from the
entry and exscution resumes there by branching beo NUDEND to get
tha neut statement.

& 4. 3 O GOBUER snd ON BOTH Statements.

The ON-S0TD and ON-GOBUER statements are handled in almost
the sract S EME way a8 the HOTO and GUBUBR statements.
respectiveliy. The ON~GOTO and ON-GOEUER statements are the
generalized cases of the BUTO and SUBUB statements alluded to in
the previous two ssctions.

When the ON stsiement foken iz encountersed cantrel Flows o
& esection of code which svaluates the indey. renverdts it t2 an
integer and then proceeds into the code which picks out The
SOTO/R08BUE portion of the statement. The index for the statement
is maintagined in & vegister (R3) end when the code which looks
far & particular line in the pregram is entered it uses the index
to select %the correct lime wnumber of the lins-pumber—-list by
ysing Ethe fFollowing asethod. It ¢irst checks for the gpecial

Teras Instruments &1 5 SRELIMIMNARY

Ti—-9%9/8 BABIC INTERPRETER BASIC STATEMENTE AND ZDUBPRDOGRAMS

“r

ling-—number token. I¢ ane is not present an ervor Soours. i
agne iz sressnt, the indey is decremented to sew if the carrect
ltine number has been found. I¥ the count is greater than zervo,
the correct line number has not basen sncountersed and the srocsss
is repeated until %the inder veaches zsva, indicating that the
caorrect line hass been found. Onee the coarvrect line Bas heoen
found then the common code Ffor $fFinding the Iine in the line
number Yable is esntered just 3z in the case of the QOTD and HOBUE
statements without the indezing.

&.4. 4 FOH and NEXT Ststemenie

The FOR-TO-BYEP statement and the NEXT statement are defined
in songunction with each othey. The physicsl seqgusnceg of
statement beginning with & FOR-TO-STEF statement and snding with
& NEXT stastemsnt g termed & for-block. For-blocks can he
physically nested, {(l.e., one can contain anotherd., bubt they
cannot be interisaved (i.e.., if a for-bleck centains &ny portion
af another for-block, it must contain all of Yhe sscond Hlockd
Physically nested for-bloecks cennot use the same control
variables.

LA & 1 FUH Sizstement.

When & FOR statement is encountered. the statement is
pgrocessed. igft te vight, and & stack block is gesnerated. which
iz left on the stack to picked up by fthe NEYXT statemant. The
stack-block has the #form of:

et e st < m v o o e e - = 3
iFtr. t£o 1 &7 ! Yalue | Heturn |
I8 T.ent | i iSpacePir] EXTRAM |
e —— 5o v e e 5 s i e i 5t s #
; Increment ;
: Valus H
5 e e s o e i e R B i 0 i 5 5 1 i 4 e i . 55 %
: lL.imit H
H Valus ;
[p—— [Ep—— e

Figure &-4& Siavk-Black

The code which generates the stsck block is $fairliy complex in ids
manipulations of the stack and is complicated by the ®sct that in
prder to maintain ANSI compatibility. the initial value must he
maintainsd while the limit and optional step values are parsed.
& step-by-step servies of disgrams follows the develaopmant oé the

Tesas Instruments e $ PRELIMINMNARY

TI-%3/2 BABIC IWNTERPHRETER BABIC STATEMENTE AND SUBPRUGRAMS

stack-block bzlouw 1% ig vecommended that the reader haveg & Copy
of the 4PL. Assembier listing wmhen fFollowing the develapmeant

belaow.

The FOR rcode ie¢ entered with CHAT containing the first
character of the index symbol’s name. The voubine SYM is called
tc get the pointer to the symbol’s symbol table enitvry. Tha Fal
entry refturned by SYM now looks like

%
iPtr. tol ;
BT, enbt ;

£

Figure &-7

Mezt, BMB is called %o pet $he spointer te the symbol’s wvalue
spaETe. The FAC entry now hses the form of

o g e 2 i s s o s i s s e &

iFtr. tol iValiuve ; H

8. 7. enti iBpacelFir! §

[A p——— e 0 it e i i v s e s s s s s s v e o s i ks s i st i
Figure &8

The header entry for the bBlock is then completed with the stack
FOA-biock identification, 2&7, and EXTRAM is asdded te indicate to
the NEXT statemsnt where the beginning of the FOR-block is
iocated,

Rext, & search of the szisting stack entriss iz made.
ioeking for a8 FOR~block with the same index variasble. I€ one is
Fopund, i¢ is delsted: 1iF not. the stsck remsins unchanged.

Mext, the asctusl use of the stack begins. Hixteesn {1467
hytey avs rveserved fFor the Iimit and increment and the
identificabion sntry is pushed via a (IML VPUSH. A PARBE

instruction is now executed %o pavse the next-value in the FOR
statement. The stack, &t the point of the parse. looks like:

Texrss Instrumenis &=-317 PREl IMINARY

TI-9%/8 BABIC INTERPRETER BASIC STATEMENTS aND BUBPROGRAME

(W = THT—— 5 e e e s e e i e e e s %
iPtr. Eol 471 fYalus P Beburn |
When the garse of 5. T.enti ; iGpnacefir! BATHRAM |
the initial valus G s B s e o s i o ks s s #
is compisted i% H HBezerved :
ig returned in i :
the FAL. It is # et e e e e 5 1 8 5 et i i i "
thaen pushed onto i Resarved i
the stack to H i
giald & siack Bl o st 7 i e S s e R
that loocks liks:
VEE TR Dl s s o i s s e HBELer & D i
H initial § grrar checking
: Yalue ; is done. the
o e o o e s s e ot om0 s # e e # to-value, oy
iFey. tol 2471 iYalue i Return ¢ limit, ig
8. 7. entd H iGpaceRtri EXTRAM | parsed and ig
B o o s P # s o s 3 returned in the
H Reserved i Fal, &t this
H ; peint: the Tesl
oo o 0 S R el S 1 e e s #* stack
H Rezerved ; manipulations
H i begin in order
B i 5 o e £ 12 S L b 2 i 2 # to gei the
values into Bhe covvect positions in the stack block.

Thivtu—tws {32 iz subbracted from VEPTRE 4o get it zointing
&% the valuve below the FOR-Block., The 1limit iz now pushed on the
ztack and the stack now looks Iike:

<l i o A] O 3 0 5 # Bext: the stack
; Initial : pointer is
H Vaive : reset to the
e e e e e e o v i t top nf the
iFEr. kel 2&71 tWaluse i Return etgrk and %he
g T, ent ; iBpacePtri EXTHAM | BTEF walus i3
o e o B e e o st e s s 2 # parsed, i¥ one
H Feserved H #rista. or &
! { #loating point
e s i e e et o o s e s s gne iz put in

VERTR-—=| Limit : the FALD 35 the
H H default

e o e o o ok i v o e e B

igcrament,
Twenty—four (24 ig now subtracted from the valus sztack pointer
te soint 1% 8% the limi% again and the increment valug iz pushed

Teias Instruments & 1B PREL.IMINARY

TI-%9/8 BAEIC INTERPRETER BABIC STATEMENTS AND SURBPROGRAME

inte the stack~block yielding @ stack 1ikse:

0 # Mexi. siytesn
; Imitial H {14y is added
{ YValus I %o the value
Fprem s o e 5 e o e B e e Bt o e P st st e # stack painter
iPetr. o 1 &7 iValus i Return | %o point 1% at
B 7. ent i i (BpacePirl EXTRAM | 4he initial
e o e o B e B e # wvalug. The
BB TR | Increment H initial valus
H H iz then popped
P s e e e 1 o e 8 o b % ofé of Lthe
H Limit H stack inke $he
! { FAaL
e # Yhe initial

valueg 1% nom assigned %o the indey wvariabhle by wsing ASEGNY.
ASBGNY leaves the stack pointer pointing &% the increment endtry.
Eight (8! is now added %o the stack pouintsr o get 1% pointing at
the top of the for-Block snitvy on the stack.

MNow @ check must be made te determing 14¢ the FlR-loap should
be erecuted 5% alil. The initial value iz copled inte ARG and the
final value is c¢opied inte FAD and & comparisen i3 made to see 1i¥F
the for-ioop should be executed &% &1l by wusing the flsating
point rvoubtine FOOME. FLOMP leeaves the stack poiwter peinting st
the limit. & check is now made %o seg iFf the incrsment is
positive ov negaibive. Thisz determines the divection that the
inigigl/limit comparison should be interpreted. 1€ %he increment
ig positive. the initiasl value must be less bthan or sgusl t¢ the
Itmit 14 the leop ie tao be exscutsd. If the increment is
negative. the initial value must be greater than or s#gual to She
limit iFf the lecop is to be srecubsd.

I# the loop is te be srecuted the stack enivy is compliete
and & CUNT command 14 executed to continves sxmoution in the body
af Ethe FOR-loop. i# ¢the lioop is not to be suecuted, the
remaining program text is ssarched for the matching MEXT
statement. & count de kest of the number of FUOR statements
sncountered, ¥t de inditislized to ome and is incremenisd for
gvery FOR statement encounitered znd decremented for every NEXT
statement sncountered until it reaches zsvo. He are guarantsed
e Find a8 HEYT at the same level as the FUR statesment by the
check that is made &% srescan time. When ¢the metching HEXY
statement i3 encountersd, the loop variable is chachked to make
gure that 1% iz the same ze the ons used in the FOR stavesment.
I it iz not the same. 4n YT goours, i# it is the same
execution resumes at the statement Following the MNEXT statement.
The FOR-block i3 flushed off fthe stack. CHAY iz clsared to
jndicate the end of the statement has been Teached snd s CONY

e}

Tezas Instrumenis e FREL IMIMARY

Ti~3% /8 BaBl{ INTERPHETER BABIC STATEMENTES AND SUBPROGRAME

command is syxscuted.

. & A 2 HNELT Bratemenst.

The NEXT ztatement is ezecubed only in conjuncition with the
FOR-TO-STER statemesnt which has the same indexr wvarisble. The
MEYT statement serves in sither of twe Ffunctions. One, it sevves
as the end of the FOR-NEXT Ioop and causes the index vavriable to
incremented/decremented sppropriately and control fto resume at
the FOR statement. Becond, it sevves st the and of a skipped
Block in the svent that a FORB-NEXY loop i3 nod exsgeuted. This
sgcong ¢sse has been degcribed abovs,

The fivet thing that the MEXY statezment doss 1% %o pop tThe
fivst antry of the for stack-block off Che stack. I£ the entry
popped off is not & FOR sntry. then an errer ocoours. Mext: Lthe
indey variable is checksd to see 14 the gne in the MEXT ztalement
matches the one in the FOR-bBloch. 1¢ it dozs mnot then sisteegn
34y iz subtracted {i.e.. this FOR-block is discarded’ from the
value stack pointer and the stack is searched further for the
matching FOR-bBlocok.

I the matching FUR stack-black ie¢ found., %he nexd thing to
be checkod is the indey walue - MOVFEAD ie now used to get the
indey varigble’s valug into the FAC and the increment iz added %o
the wvalue, isaving the result in the FAC and lesaving the value
stack pointer sointing at the limit., SBizxteen {(14] is sdded %o
the wvalue stack pointer %o point it back at the fop of the FOR
stack-biock and the new value is assigned fto the index wvariable
by weing ASHEMY. ABBGNY leaves the valus stack pointer poinging
at the increment entry of the FUR-block en the stack.

Eight {8 is now subtracted from the value stack pointer o
point 3t the limit and & stack comparison is made by wvsing
SCOMPE, comparing the limit on the stack with the new valus which
has Jjust been asssigned o the indez vaeriable. We next check the
increment value do see 1f 1% is negative or positive to determine
which divrsction $o intsrpret the comparison. If the velue is
sutside of the bound, we simpiy continus as the wvalus stack
palintey due Yo bthe comparison {(BUOMPEY that wmas doneg, effeciively
discarding +the FlRE-block. I¥ we arve within the baund, we add
twenty~four (B4} to the value stark pointer te retain The FOHR-
Bisck on the stack. We then pichk uvp the oid lineg number btable
painter {EXTRAM) from ¢the $fivet entry of the FlR-bleck and
gyscute 2 CONYT command to resume eysrubtion &t the top of fhe FOR-
faop.

Texss Instruments &} PREL IMINARY

TI-99/8 BABIC INTERFRETER BABIC STATEMENTS AND SDUBPROGRAME

& A4 FH IF-THEN-E] GF Stastement,

Execution 0f the IF-THEWN-ELSE ctatement consiszts of twe
sarts. First: the supression of the IF-clause is evaluated and

sgrond: the correct line numbesr i selected and contvrol Flows to
1%, The srovession in the [F~gisuse iz eupected te producs a2
nusmeric rvesult which can be either fave or BHOon—~I8TO. feve is
traated @85 & fzlse value and anyg other value iz ftreated ae 2 true
waELue, The logieal operastors described in seetion 4.3 7. 4

produce values of esither zere or negative ons.

#fter the ezpression has heen evaluasted the IF stetement
handler checks fFor & I§ i1t is present. the wvalue of the
gipgression is checked %o gse i¢ it is trvue asnd iF it is & dummy
ton’ index ie loaded (CLR R3:. szs ssciiong 4.3 4 0% and
4.3 6. 3.3 3 and control $flows to the common code used by the
QUTD and GUBUBR statements. I¢ the ezpression’s result s falsze
an EiS8E-clause 1z loocked for and 1€ it iz sresent control #lows
into the GUTO zode atherwise 1t Flows to the statement fFollowing
the IF-THEM statement.

& .4, & CALL Bitatement.

The CALL stastement in the TIi-99/8 BABIC is used to acoess
subprograms writtem in &PL or Aasemb iy Languadge. BAHIC
subprograms svre not supporied.

Ezecution of the Call statement is very siaple. It checks
for the unguoted-string token which signifies 2 name and if it is
present then a pointer to the name is placed in FaAL+IE2 1¢ the
srogram vesides in VOP RAM o the name is copied inte dhe crunch
buffer and 3 pointer to the crunch buffer is placed inte FAC+IE
i¥f the program beling sxecubed resides in GROM, From thers, the
tinking routineg of the MOMITOR is called which segads contrel to
the GPL or ALL subprogrem. When the subprograem has completed
srecution i% vedurns contrel %o BAEIL by using the veiurn routing
of the monitor. When conirol redurns to BaABIC & check is made to
see that the end of line has besen veached. I¥ not the guboprogram
did not srist or thevre are sitranegous characters vemaining on ths
gnd af the lins. I¥ the end of line has besn Teached & SPL CONY
ingdéruction 4z exescuted to continue exscuiting the BABIC program
gr to refturn to ftop—lsvel.

Terss Instruments &E=21 PREL IMINARY

TIi~%%/8 BaASIC INTERPRETER BAZIC ZTATEMENTE AND SUBFROGRaMS

&5 BABIC-Pravided GPL Hubproorams

This sectktion describes the GFL subsragrams contaelined in the

TLI-992/78 BASIC dinterprater. The subprugrams suppovrted incliuds:
CLEAR, MCHAR, VOHAR, GCHaR., OHAR, KEY, BOUND, COLOR, SOREEN,
GRA&PHICS. MARGING., DOOLOR, DRaW, DR&WTD. ang FILE. These

subprogrems provide access to some of the unigue features of the
hardware and alse maks programming in BABIC sasisr.

& B 1 CLEAR Subovograa.

The CLEAR subprogram is used to clsar the snitire screen.
Esecution of bthe subprogram invelves execvubtion of a GPL PALLY
ingtruction to set il of fthe charasctsrs on the saresn Lo spaces.
initializing the scrssn column soindsr to the thivd column and
returning to the callisr.

Execution of the SOUND subpreogram involives parsing the
argumsnts; building & sound list in the CPU HaM and then moving
it into the VDF RAM and izsuing an A0 tail to the sound
gensrators. The SOUND subprograem begins by parvsing the duration
¥ the sound which is to be genevrated by this invecation af the
sUBHT AT Sm. i# ¢he duraticn is negsastive, the current sound, id
anyg: 1is %terminated and the duretion is made positive. it is then
converted into siytisths of 3 second and saved in & tasmpovary
lwcation din the CPU RAM. Mext, the freguencysattenvation pairs
for the ‘three sound gensratsrs {gr for aone or bws sound
gerevators 1F thet is all thet is swvpplied? arve parsed and placed
in the table being Built in the CPU RAM i1f & negative Frequency
is enceountered. the noise coentrol byks in the ftable ds loaded

with the covrect value. i# & fourth f$fregusncysatitenvation pair
iz provided. it is treated as wnoise controel and is luaded into
the tables a2t the approgriete location, After all of Ehe

arguments to the BOUND sviprogram have been parsed and The table
for the sowund genervrators has been built, the subprogram then
weite wntil anyg previous sound is completed and then losds the
new zound table out to the sound gsungrsbars and issues an 170
call to start the sound generators producing bhe desived sound.

& 5.3 CHHUOR SubsroorTam

The COLOR subprograe ig pssd te specify +he colors of
characters, blacks: or sprites. depending on the grashics @ade,
In PFatétern wmode. the CIHOR subprogram is uvsed to specify fthe
foreground and bsréoround colaers of parviiculsr charvacter gstis

Tezas Instrumsnis % BREL IMINARY

Ti-99/78 BABIC INTERPRETER BASIC STATEMENTS AND SUBPRUGRAME

{portions of <€the entire coharacker setil. in the Bplit-Bereen
modes, the COLOR subprogram is wvsed &g specify the Porsground and
backgvround colers of individuasl charvacters. Im Multicolor mode,

the COLOR subprogram is wsed to specify the color of af a
gunecified block. The COLOR subprogrem can alsoc be wvised to
specify the foreground color of sprites. Exscoution of the COHHLOR
subpragram beging By parsing thes chargcter szt nusbsr and
converting 1t intc an address intoc the charscier celar table.
The foregraund and background colovrs are then parsed. verifisd ta
Be in the covrect range {(1-ié&r and then are loaded into the color
table at the address caloulated Ffrom the chavracier get specifisd.

The SCREEM subprogram iz weed to change the bacikground color

#f the scresn. in Text mode, the SCREEN svubpreogram g used o
spoeify the foreground and background colovrs of all 5
chavacters. Execution of the subprogram invelves dnsuring that

the Ieft parenthesis iz present, parsing Che calor specification,
converting it indte an integesr and loading VDP register 7 with the
color specification and returaing o the celling program.

&5 85 CHAR Subprooranm.

The CHAR subprogram 15 uvsed to define specisl charschters.
This includes defining both new chavactasrs sand redefining the
standard character set which 413 conteined in the intsroreter.
Execution of the subgregram involves first pavrsing the character
number, converding 1t inte an integevr: werifuying it %o be in the

legal rangs, and saving it in & temporary location, Mext, the
peEttern identifisr is parsed. it is then converted., character by
character., inito heyadecimel digits. I1¢ the length of the sitvring

parsed 1% less than lé, the string iy padded with snough zeros fo
make the length bz 14 I# the length of the sitvring iz greater
than 14 i% ie fruncatsd %o 164 The string. snees it hazs been
cognverted to hexadecimal, iz then moved inta the asppropriate
place in the character fbable by wusing the charascter number,
previously saved. as &n index into the character table.

&8 & KEY Subnroaran

The KEY subprogram is uvsed to determine i¥f & key iz bezing
degressed on & keyboard (sither The caensels keyboard por 2 ramolte

reyboard:. The subprogram refturns the keyboasrd statugs and the
key code 1f a2 key is being depressed. Ergoution of the
subprogram begins by parsing the keyboasrd unit which 18 %o 6Be
scanned and then scanning the spprosriste keybosrd unit. The

Texas Inzftrumants &3 BPRELIMINARY

TI~F9/8 BABIC IWNTERPRETER BABIC STATEMENTS AND SUBPRUOGRAMS

bey—~code assigned te the refurn variable will be either the ABNILY
representstion of the key or zeve if mo key is depressed. The
walug assigned %to the status varisbles will be zevro iF no key is
depressed, @itue-dneg 1f the same ey is depressed 88 whenh fhe
ismst cail to the KEY subprogream was made, and one if a new key
hag been depressed since the last call to the KEY subprogram was
made,

&, B 7 VYCHAR Bubproavas

The YOMAR gubprograem is vsed fto wverticaelily repeast =
charazcier on the screen. in the Split-HBeoresn and High-Hesslubion
modes. the YOHAR subprogram cannot access the teyd poritisn of the
sLTesn, The btwo svguments supplied tp the subprogram indlicate
the positien on the scresn where the First chsracter iz fto be
dispiaged, The thivrd argument specifiss the ABCII character
number of the character to be displayed on the soreen. The
fourth arvgument is oppitionsl and if i% is present specifies the
number of times the chavacter iz to be repeatsd verticaily an the
sevesn. The characters arve displayed from the starting position.
dowr the screen: wrapping around to the top of the sereen when at
the Dobttom of the screen and wrapping avound to the upper lefi-
hand corner when the lower right-hand corner is veasched.

Erecution of the subprogram begins by persing the screen
pogition arvrguments and initisiizing %he screen postion to ths
carrect position, it thewn parses the chavacter number and saves
it in a tempovrary, i¢ the optional repeat count is present 1% is
parssd, otherwise & default of one iz used. Finalily, & loop is
gntered which displays the tharzcter on the scrveen as many Himes
8% NBCEBBATY. When the character has been displayed the veguired
numbar of $imes, control veturns Yo the cslling program.

The HOWHAR subprogram i3 exackly the same as the VOHAR
subprogram sxcept that the charscter it repested horizomtaliy on
the streen, wrapping avound to the fellowing lins when the end of
gne line is reached and wrapping arcund %o the upper lefit~hand
curner of the scresn when the Iower vight-band covner is vesched.
Execution of the subprogrsm i1s szsentially the samp 8% the
grecution of the VOHAR subprogram and the reader iz referred to
the previous sesciion.

& 3% GOHAR Bubsrusram

Teyas Instruments byt BREL IMINARY

TI-%9/8 BABIC INTERPRETER BAEIC STATEMENTS AND SUBPRUOBRAMS

The BOHAR subprogram is wsed %o detevming the charaecier code
of & character. the steatus of 8 screen pixel:. or %ne colasr of a
Biock, at a specified location on the screen, Three arpuments
are necessary for fhe srecution of the subprooram. the row and
column poglitions 8 read and & reburn-veriable to whick the
character number of the character ocoupying the position on the
screen can be assigned. Erecution o¢ subiprogram invelves parsing
the screen position srguments and setting up the sovreen sddress
gercordingly and then reading the character off of the seveen at
#haet oposition. The character valug is then converted ints iis
figating point repregentation an ig assigned fo fths return-
variasle, complieting sxecution of the subprogram.

& 510 BRAPHICEH Sobpreogrvam

The ORAPHICE subpvegram 1s wvsed %to specify the desired
grapghics mode.

A5 11 MARBINE Bubsrogram.

The MARGINE subprogrem is used to specify the sorsen mergins
which define & ¢cresn window,

& B 12 DLOEOR Subneontan.

The DCOLOR subprogram ie used to specify the foreground and
bachground volors $£hat ave used in the DRAM, DRAWTD., FILL. HOHaR,
and VOHAR subprograms. The DOOLOR subervogram cvan only be used in
the graphices pordion of the Split-Bereen modes and in the Migh-
Resolution mode.

Teyazs Inzetrumsnits a2 FRELIMIMNARY

TI~9%9/8 BABIC INTERPRETER BAZIC GCTATEMENTS AND SUBFRUOGRAMS

& 0513 DRAM Bubproaram.

The DRAW zubprograsm iz uzed to drawm or evsse lines beiwesn
specified pizels. The DRAW zubpvogram can only be used in the
graphice partion of the Hplit-Screen amades and in the HMigh-
Besolution mode,

&, 5. 14 DRAWTO Subasvooran

The DRAWTD subprogram is used Lo draw ov ersese lines beslween
the curvent position and the specifisd pilzels. The DRAWTD
subprograem fan only be wused in the grashics portion of the Split-
Scresn modes and in the High—Resoclution mode.

.05 1% FILL Subprogram.

The FILL zubsrosram iz used fo color the ares surrsunding »
specifisd pizel. The FILL subprogram can only be used in the
graphics pordtion of the Split—Screen modes and in dhe High-
Resoliution mode.

a& BaABIC srogram may be terminated by any one of Four
methods., First. and foremost, execubion mey be ferminated by
BAGIC having executed the last stastemsnt in the program, in
srder o interrupd execution without runming off the end of the
program the ETOP and EMND siztesents are providaed, Finaliy. as an
a&id in debugging BABIC programs. breaskpoinis and the BREAK
statement may be wuse €0 halt sregrcubtion with $he osodtion of
TESUMITG exscution &t exact point whers L% left adf

Yoaxzes Instruments &~z2& PREL IMINARY

Ti-99/78 BaBIC INTERPRETER BABIL STATEMENTS aAND SUBPROGRAME

&.06. 1 Normal.

Mormal complietion of a BaABIC progras occocurs when the laset
statement in the program has been gygcuted. Thiz ig detescied by
the parser when the asovable line number table sointer (EXTRAM
reaches. and paszses, the end of the line number fable (BTLN}.
Thie rondition i3 checked everytime a2 statement has completed
gxevution and the line ftable pointer (EXTRAM) is descremented by
Faur, When Lt ig determined that EXTRAM has pessed STLN {(has =
ipower addresss) the intevpreter reiurns to top~level in the same
manmer 1% doess when an ilmperative ststement has been completed
{gee section &4 35 13}

& & F GTOP and ENDG Stataments,

The BYOP and END stastements are troated sxactly the sasme in
this BAEIC. Meither is reguived in & BABIC pragram howsver i
ang 1% present 1% is evecuvted in the following manner. The
addrsss in the statemsnt table causes control to Flow into the
code which i3 used to reburn te the tos-level in GFL., The code
loads wp the GFL addresz of the statement falleowing the EXEQL
stabtement which cavseed the program to be execubted and returng Lo
the GPL interpreter with that sz the OPL ‘program countsr’. In
the HBPL code, the statement following the EXED instruction 43 =z
case statement which checks for what type of statemsnt snding is
taking place. In this case it is & normal end of execution and
contral flows ints the top~lesvel routine of bhe inbesrpreter.

bk 3 Oocurantes of Breskoeints,

Breskpoints are provided in this BABIC $to gllow the user a

strong debugging #fecilityg. This wgparseraph describes bhow 3
Breskpeint is taken. Breaskpoints c8n socur in three different
WEGE.

i. & breskpoint cen ke sst by wsing the BREAR command of
BE&SIC.

#. A bresksoint cen be tsken by the exvecution of & BRE&K
commend without a line numbsrt.

6

bresigoint can be taken by the wuser depresssing the
FUNLC—~4 key on the hkesyboard.

Bevtion & 7.1 describes how 2 breskpoinit is seid,

Teraes Instrumenits Ee 2 F PRELIMINARY

Ti~F9/8 BABIC INTERPRETER BASIC STATEMENTS AND BUBFROGRAME

&7 Bebussing Alds

The TIi~9%/8 BablC includes two asides for uze in debugging
B&EIU programs. breaksoints and tracing. Eveatpoints allow the
uesser to cause eyxscubion fo procesd s normal unitll & certain
statement iz about to be erxecuted and srecution is intervupied %o
aliow the ussr to look st and aessign wvalues fto varisbles and then
resume exenubion, Tracing a grogram casuses the ling numbars of
gsa#ch line to be displayed on the screen before ssch statement is
grscuted, sllowing the user to gee sxactly how control is Flowing
through the pregram.

& 7.1 HBresskpoints,

Breaksoints din the VI-P9/8 BABIC maey be caused in one of

thres ways. Firgt: the FUkC-—-4 4ey on the ksyboavrd may be
pressed, halting esxscution. DBecond: & BREAK statement with no
grguments smay be erxscuted. Thivd., & breasbpoint may haeve besn getb

By a2 BREAK ststement snd have been sncounbtered. Each of these
types is discussed here ov in the following sectien.

Whegnever the psvser le about %o begin szgcution of a2 new
statement. 1% checks teo see i€ the FUND~4 key is depressed on the
keyboard. I it hms been depressed, a break iz taken by loading
the breab-Flag code ints ERRCOD and vesiturning to GPL. The aFL
code checks to see i¥ a GROM BASIC prograem iz being srecuted and
iF it iz the bresak-key is ignered and szecution continuss. i¢
the bBreak is a lswgal ones the gereen is scrollesd and the
breakpoint message is displayed on the screen. as well as the
eurvent Iine numbed. The current line numsber ¢eble pointer
(EXTRAMY ig saved in the VI RAM in & special locaition 1o
indicate $hat a continue statement could be executed if i% is
entered. The default chsracter set is then restored asnd control
veturne fto btop-level to await & command.

The other twe types of breskpoints ave intimately %ied up
with the srecution of the BREAM statement and are described in
the following ssction,

&#.7.1. 1 BREAW Biastsment.

The BREAK statement serves two Functions in ths TI-9/8
Bagic. Fivet. it can bs used Yo set bresipoints st sariicular
lines in & program and, sscond. i% can be used in & program to
cavse & breakpoint to oogur when it is esxseuted (BREAK statesment
without any line numbere specifisd?

In order to set a breakpoint at & particular line in & BASIC
program. the most-significent bit of the most-significant bute of

Fesae Instruments &—28 BRELIMINARY

TI-99/8 BASIC INTERPRETER BaBIL STATEMENTE AND SUBPROGRaME

the line pointer in the live number ftable is set o & one. When
the BREAK ctatsment picks wp 2 lineg number $from %he line~lisi.
the iine number table is searched %o locete She line specified.
I# the Iime dis not cowntained in the program then a warning
message is issved, bui, the vest of the lineg-list is sesavched,
setting any other legsl breshpoints. fnce The line has besen
found the most-significant it of the line pointer is seit to set
the bregalbpoint, This method iz wuvsed because the line fable
pointer in & VDP Ra4aM BABIC program can never normally bave an
address with the moet~significant kit set and no bhrsakpoints are
a#llowed in GROM BABIC grograms, Thus, when the parser sncountsrs
2 line pointer with the most-gignificant bit set to 2 ons, i%
detesrmines that & breakpoint has besn sed theve and control fFlows
to the breskpoint handler in sractly the same manner as when the
FUMC~4 ey dg depressed on the keyboard (described in the
grevioaus section:.

When & BREAK statement without & line number Iist is
guvauntered. it ig intevpreted as bheing asn ismediate Breakpoint
ard contrel Fliows From the BHEAK statement handler %o fhe
brezakpoint code to indicate +that 3 breakpoint has heoen taken,
Before control reaches the breskpoint handier:, the current linsg
number fable pointer is saved and four is suybtracted From 1% se
that if & CONTINUE command iz sntared, the statemsnt fFollowing
the BREAK statement is where execulion will begin. i+ this wers
not done the SREAK statement could nesver be passed: ss & CONTINUE
wiculd cause Ythe BREAK statement %o be sxecutsd, putting ths
intevpreter in%o an infinite laop, as long a3z the user continuss
to enter & CONTINUE command.

&, 7. 5.2 UNEBEEAR Bistement.

The UMBREAK statement cen be used to sslectively remove or
totaelly rTemove 211 tbreakpoaints, When the UNEBREAK statemsnt is
srecuted without anyg line number specified, 1% goes Shrough the
gntire program in memnory and ressts the top bit of il of the
iing gointers in the line number table. This cipavre any &nd all
brezaipoints thet wmight have been sei. It makes no diffsvencs
that & breaskpgoint iz not set at & particular line since resetiing
the Ctop Bit of the poindter will meke no changss $To the pointer iF
the bit ig already vesst. ”

I# 3 line~list ig specified, Ythen the srogram 1s sesavrchsd
For each line. and the top it of sach lipne poinker is veszet For
gach line listed. i€ g line ig listed which doss net exist, a
warning sessage is issusd., budt, the remainder of the lins list is
sparched.

"L

IHARY

[

Teyas Insdtvrumsnts &y B HEL

TI-%%/78 BASIC INTERFRETER BARIL STATEMENTS &ND SUBPROGRAMS

& 7. & CONTIMUIE Command.

The code %o ezecubys the CONTINUE command is containsd in the
EDIT escembly of BaBif., as it i3 & command and not an grescutabls
statement. When the CONTIMUE command is erxescuted. & theck is
made To sse if @ breakpoint has besn taken. I# osne has (EXTHAM
wes saved in the VI by the breakpoint handler) been ftaken the
program flasg is switched bBack to program mode, CONTINUE is

disabled {(the specisl VDF RAM continue word is clearedd, and
cagntrel floaws into the code which executes the GFL EXEC
instruction to start sxecution agsin, I# 2 bBrsakpsint has naot

been taken, an srrorT message i issued fo state thaet BASIC can’t
continue sxecuting a program iFf it has not executed a breakpoint.

& 7.3 Tracing.

The trace feature of the TI-99/8 BABIC is a very simple one
te executs. The TRACE and UNTRACE commands to turn on aend off,
respeckively, the trace feature are described in the following
geciions.

Hhen & ststement is about fo be szecuted, the parser checis
to see if¥ trzce-mode is burned on and, i€ it isms the trace
routine is callied o put the line nusmber on the scrsen. When
cantrol rzaches the frace handler. it calculates the current
sereen address o see if the trace information can be pubt on the
surrent ling ov iF the scovesn must be sovoelled Figt, I# there is
net enocugh space on the scresn. it iz sevoellesd and the soresn
address is initiglized to the beginning of the bottem line of the
sCresn, The less—than chavacter is then displayed, followed by
tha line number which has besn calculated, and finally Feliouwed
by & greater~than sign to closs put the displayed information.
The screen addrszes is updeted %o be after The displayed line
nushber and & RYME inectruction is szscuted to return to the parsey
to execuie the statement, for which the line number has just been
displaged.

& 7.3, 1 TRACE Biatement.
Exerution of the TRACE statement involves simply setting the
trgee flsg Bi% (bi%t 4) of the interpreter wvariable. FLAE, and

grwcuting a GPL CONT idnstruction f¢ veturn control $o the parser.

& 7382 UNTRACE Ststement.

Eyxprution of the UNTHACE gstatsment inveolves simply clearing
the trace flaseg bit {bit 4 of the intevpreter verisble, FLAR:, and
expcuting & GFL CONT instruction to vefturn cantrol to the parser,

Teras Instrumsnts 303 PREL IMINARY

TI-F%/8 BABIC INTERPHETER GROM BASIC PRUOGRAM BUPPORT

BECTION 7
GROM BABIC PROGRAM SUPPORT

RARIC progvams olacved in SROM have only limited ascosss o
the HASIC interoreter. The BABIC editing Fascilities cannot be
ubitized a5 it does noit make sense o ftry to edit & RAOM any way.
BASIC programs contained in GROM cannot be divectly accessed from
BASIC. They must be invoked gither by selecting them from the
main meny or by some voutine selecied from the main menuy invelking
the, There are #iso cevisin restriciions placed upon BASIC
programs which veside in GROM due to some buge contained in the
interpreter that have not been Fized due to lack of memory space
te $ix them. & GROM BASIC program cannot use READ and DATA
statements a5 the RESTORE command does not work for GROM BABIC
programs. Also, the Call CHAR subprogram cannet be used te
specify the charvacter fonts of any special characters. The
CALL CHAR subprogram can be vsed with the null string specified
s the second argument to sllocets the space and then a custom
GPL subprogram cen be writiten to place all of the character fonts
in the reserved ares.

7.1 O ¥DP Use

The VDP BAM 1z viilized in sractly the same way with OROM
B&EIC programs as with VDP BASIC programs except that twoe things
differ. Firvrst, the progyrem chviously doee not veside in the VDP.
thus lwaving more space for the symbol table and siring space.
Bepcond, the symbol names must be stoved in the symbol table along
with the symbol %able entry so that the symbol table seavching
routine will work properiv. This cendition is taken care of
sufomaticalily by the prescan poriticn of the interpreter.

7.2 Prgg Bepressentetion

GROM BASIC programs are represented within a GROM exactiy as
they wowld appeasr in the VIDP as described in seciion 3.a The
iine number table. instead of aposaring at a lowser address than

the program text appears at & higher address. This due to the
manner in which the program image i3 built by the BABGRUM
conversian ODrogram &lso, the program is set up with a link in

the GROM header and a startup procedure that die¢ invoked by

Toras Instrumentsz Fel PRELIMINARY

TI~-¥978 BABIL INTERPRETER GROM BABIC PROGRAM BUPPORY

seglecting +the program from the main menu. This is how sccess is
sained to & GROM BAEIC program.

7.3 Exezution Begusnce

& GROM BaSIC program is treated exactly the same a5 a VDP
BASIC program sxcept that the entry point inteo BABIC for the GROM
srogrem sets & flag in %the interprefer indicating thalt the
program resides in GROM and the ftext is %o be read fFrom there.
This Flag is checked in such places as POMOHR (gets next program
tokend, the string routines (where to get string constants froml.
the prescan voubtine (to put names in the VDP:, the ervor hendlsv,
the breakpoint handler and the normal end of execution handliar.
The *flag either indicetes where to vread text from or where fo
return %o in the case of an srrer ovr bthe normal end of sxscubion.

fd

Teyas Instruments Fo PRE IMINARY

TI-99/8 BASIC INTERPHETER HRITING GPL SUBPROGRAME

BECTION 8
WRITING GPL SUBPRUOGRAME

The TI-99/8 BaBIC supporis subprograns written in GPL, EPL.
subprograms may bBe accessed by exsrution of the BASIC CALL
statement with the subprogram taking carvre of picking up any
arguments and asseignment of valoues veturned to vaviables in the
Bagic program, GPL subprograms may be used Yo achieve & sosad
increazs gver the same code writien in BABIC or $o utilire some
of the system vesources bthat are difficult %o access ¥From BaBIld.
Examples of these sve meny processing and random scrsen access.
respectively.

H i Exscution Segyesnce

The exerudion of a GPL subprogram may be divided into $#ive
magur sections. Fivst. the OGPl subprogram must take care pf
setting up the linkage from BABIC so that contrsl may veiturn to
the interpreder. This invoives & call to PEMUITR to set up the
text pointar (sew section 4.2 1), SBescaond, the subprogram wmusit
take care of persing any arguments that it may need by using the
PARGE statement and doing szome syntaxr chesoking dsee saobion
.2 &) Thivd, the subprogram must siecute whatever function 1%
iz deaigned %o do. Fourth, the subprogram must take care gof
agsigning any wvaliyes to be returnsd to BASIC variables. S,
Fifth, the suboprogranm must vefurn contrel $o the intevpretsy by
calling RPL %o ftake cave of the linkage (szz2 sectian 7.2 1.

8.2 Ussful Bubroutines

Routines ave provided %o make programming GPL subprograms
gasier and Ho achisve povisbility betwesen future models of
personal computers. These rvoulbines preovide functions in the
araasg of:

Linkage to BABIQ

Fgramester zoquisition and reiurning valuss to the BaBIC
gragran

% Hendling string sosace

Teiae Instrumenis e i PRELIMINGRY

TIi-9%9/8 BARIC INTERPRETEHR WRITING GFL SUBPROGRAMS

¥ Manipulating the ficating noint stack

8. 2.1 Linksge tg BABIC.

FEMOCTR
& Pl subprogram must cail POMCTE to szt up for the
processing of paremebtevrs.

FEMOTR EGU 42 ADDREDS IN MONITOR
BTART CaLi PEMOTR SET UP BASIO POINTERS

This subreoutine se%s up menmovry location PRMPTRIZZC-2D) and
places the +firet byte asfter the subprogram name into
CHAT {427 This will be the """ foken (HB7: ¢ & valid
parameter list ig Included or 200 if no pavamsier list is
inciuded. The subprogram should validats the “{* token orv
00 a5 pert of standerd syntax checking.

RPL
A GPL subprogram veturns to exscute the next HBABIC
statement with a CALL fto RHPL.

RPL EQU >i2 EQUATE In MONITOR
END CALL RPL RETURN T ZaBIC PROBRAM
CRES NOT RETURN

Although this routine does not return: & CALL must be used

rether than & Branch instruction. I# the subprogram
processed the parasmeter list propeviy and thete was no
syntay srror,. CHAT will contain & 206G This will be
checked by BABIC after the CALL to RPL.

ERR
Evrors can Be reparted to the uvser with the EER

zubroutine.

ERR £GU 210 EQUATE IN MONITOR
ERRL CALL ERRE CALL, ERROR PROCESEUR
DATA a#MBGI MESSARE NUMBER

DOES HOT RETUBRN

BAZE G, 0. 2300, 3300, 0, 4, 260
MEGL DATA 19, INCORRECT STATEMENT:
Bagie G. O, »300, 2200. 4. 0.0

The ERR voutine does not return. The mesesge pointed %o
By the date wovrd is displisyed =snd +the BARIC program
srecution ig tevrminated. The first byte of Lhe meszage is
the lsngth of +the wessage siving which $follows. The

Teras Instruments B2 PREL IFInaRY

TI-9%/8 BABIC INTVERPHETER WRITING GFL BUBPROGRAMZ

message text wust be biased by 60 This is sccomplished
with the BASE stetement shown.

WARN
Harning message can be veporited to the user with the WHARM
rogutine.
HaRN BEGU Fia EQUATE IN MONITOR
Wi Call., WARN IE8UE WARNING MEBBAEE
DaTA #MEG: MESRAGE 2

BABE G, O, 23040, 2300, O, 4. »&0
MBSL DATA 13, T UNIT NOT OPEN:
BaBE G, G 2300, 2306, 0.0 0

The Szt % WARMIMG-" followed by the specifiasd messags is
displayged. The WARN routing then refturns to the GFL
subprogram, The messages is specified as in ths ERR
revtinei{ses abovel.

£, 2.2 Parameter Acouisition.

Individual characters and Tokens gan bz fested by comparing
CHAT with the sipected valus. The next rcharacter in the
paramslier expression wan be placed into CHAT with the XML PEMIHR
The wvsiue of & parameter expression cszn be compubed with the
PAREE stabtement, The address of a varisble name parameter can ba
determined with the XML SYM and ¥ML SFMB commands, A value can be
szsigned %o & warisble with the MM ABZONY. The rvoubtines
ARL. VPUBH and XML VYPOF are used fto manipulsts the flosting point
shack,

% PEMOHR
The nest charvactsr of the parameter list can be obiained
with the UMl PEMOHR. The nert chavecter i placed in
CHATIHAZY. The beginning of a GFL zubsrograsm could be:
FOMOMRE BEGU 27 XML EQUATE
LEARS EGLE »BY LEFT FAREM TOHEM VaLUE
ETART OaLL PEMOTH BET TO SCaN PARM LIBT
E£IF @DHAT | NE. LPARS SLTD EHRL GYNTAX
KMl POMCER SET TOKEN AFTER LPAHR

% PaARGE
an erpression (string or numeric? in the parameter 1iszk
can be evaivested with the PARBE statement. The apevand of
the PARBE statement 1s the precedsnce at which to stop
zareing. I$ the parvrser encounters an unmadtched token of

Yerxas Instruments He3 PREL IMIMNARY

Ti~99/8 BABIC INTERPRETER HRITING GPL SUBPROGRAME

the specified precedence or higher, the evaluation will
stop and conbtrol will veturn bt the subprogvam. When the
FARBE statement is wsxecutesd the first character of the
srxpreession must be in CHAT, To parze and stoep 2% the end
of a parameter I1ist or & commse the Following ig used.

COmMMAs EGU B3 COMMAe TOKEN
AP&Re EQU B4 RIGHY PAREN TOKEW
FARBE RPARS PARBE THE EXPRESGION

BIF GUHAT | HNE COMMA® QOTO ERRL

The PARSE statement will svaluate an expression until a
"¥* ov highey precedence token is encountered at the sams
igvel. Mete +that other operaiors in an sipression can
ceuse this FARSE to be temporarily stacksdis g. E R
will do & PAREE %to & Y1 and then return o the original
isvel). ALl PARESE statements must appear in GROMs & 1. 2
o 3 a8 the BABIC interpreter cannot egxescute & PARSE
sfatement fFrom GPL with the top bift of the address szet to
@ one (BROM 4 begins at FEO00:,

2.3 Restrictinns

EPL swubprograms have & great number of restrictions placed
dpon thes by the way in which the BABIC interpreter wutilizes
memory, GPL subprograms may nobt use any of the CPU RAM from 218
tu 249 nor can they change CPU S&E-&F without wvsing the KFL VPUDH
and HML YPOP commaends, VIE RAM cannet be used in any manner
withoeut uvsing one of the three methods described in the following
thres sections. The OPL FARDE gtastement mey not be vsed in & SFL
subprogram excepdt within GROM 3. Hoerites may not be used Ffrom =
FL subprogram called from BaBIC.

8.4 Sltesling VDP aaW

VOF RAM maey be "stolen® ar used by an applications program
in several wsys, depending uvpon the amount of memory nesded and
and %the jength of kime 1% is neesded.

g .4 1 Hiasrt Up.
VOF memovy may be permanently allocated to an apgplicstions

program at start up Time by tasking the top {highest adressable
argsl of VDIF BAM and “falbking out® BABIC so it doesn’t Enow that

Teras Instruments -4 PREL IMIMNARY

TI-%¥9/8 BaSIC INTERPRETER WRITING 6FL SUBPROGRAMZ

mamary ziists. This iz done with the CALL PREP &FL subprogram
which «can be cslled from the GPL stari-up poriion of a 43I0
agplications program. A listing of PREP is given in Appendiz B
After the aspplications progras has been selected on the main menu
of the computer, a vall to PREF will allocate the numbey of bytes
specifies by the first two bytes of the FAL to the aspplicabions
program by chenging the valys of MAXMEM (370, Thus, BA&BIC will
never know the bytss exist and thevefores not try to use them

fwmoe the BABIC program has siaerted execution the reserved
area can be accessed by other SFL subprograms.

8 4 2 MEMOHE

Memory may be allocated in a legss permenent manner than
vsing CaLL PREFP by using a CALL MEMOHE. MEMOHE may be rallied
gnly after the BaASIC program haes begun execution. MEMDMK
a#llocates & block of memory specified by the two-byte count
provided in FAC (CPU 24A-4B). The block of memory is allocated
between the B&ABIC symbol tabls and the string space (see figurs
b T S 1 N This memory will remain allocated while &he BaBIC
program is execyting but is desitroysd whenever the BABIC program
completes execution. an error ccouvrs: any BABIC progres residing
in YDP RAM iz edited and when BABIC iz sxited vis the BYE
command.

B.4.3 Siring Space.

VDFP RaM may be temporarily “borrowed” by allocasting a
tgmporary string in the stvring space. The string is specified by
the byte count provided in BYTE {(CPU 20C, 0D} and may be anuywhere

betwean O and 285 bytes, inclusive., To allocate the bBytes a call
to GETETR is made to get the string. GETETR will allecate @

s¥ring of the specified number of bytes if memory iz not Full
otherwise an erver will occur after & garbage callieschion is
performed and snother attempt is made o allocate the bytes. &
peinter to the allocaeted bytes is returned by SETETE in SREF (OPY
FLL, 103 The Ystring” alliccated is of the form described in
sgction 3. 7.

The temporary string may be uvsed until & garbage collection
ig performed a3 it is ov msy be made move persmanent by building s
temporary string FAC entry and pushing it onte the wvalue stack
vuing VPUZM VPUBH will set the backpointer pointing ints the
staty, making the stving semi-persanent. & sitving made ssmi-
permanent in this manney csn be freed by popping the entry off of
the value steck by wusing YPOE,

Tezas Instruments BB FPRELIMINARY

TI~-99/8 BABIC INTERPRETER

BABIC Heyword Table

Keygword Internsl Value
ELSE g1
! g3
& a5
GOSUEB 857
DEE B9
ERD g
LET 80
UNBREAK HE
LNTRACE E
Data 93
RANDOMIZE Eh
READ oF
DELETE Ca
N Y8
AL, 2 H
OPEN FE
SUB &1
IMAGE &3
ERRUR A5
SUBEXIT &F
Bl &9
(LIBRARY A8
ungefined A0
REAL aF
T Bi
: BE
: 83
{ 87
unidefined He
Fts Hh) 8
MOT BD
< BF
+ <1
e
o9
Guanted string e
Ling number o9
ARG CB
O 1042
INT CF

Teras Instruments

APFENDIX &

Kegword

I

GOTH
RETURHN
Dim

LN
BREAK
TRACE
NPT
RESTORE
MNEXT
STOP
REM
PRINT
DPETION
LOLI 8 12 2
DISPLAY
ACCERT
WARNING
SUBEND
LINPUT
undsfined
INTEGER
THEN
HYE

¥

%

g

XOR

£
undafingd
Unguoted
EaE

ATH

Eqe
106

&

BABIL Keyword Table

Internal Valus

string {8

. o o

PRELIMINARY

Ti-9%/8 BABIC INTERPRETER BaAZIC Keyword Table

Keyword Internal Value Beyword Internal Yalue
BaEn 351 BIN D
GER 53 TaN D4
LER 1] CHES B
RD a7 SEGE 0
BOE ey VAl oA
H5THS L8 &GO oo
PI on REL LE
FAR oF Min B
RETE £1 VAL HE R E2
FREESPALE £3 TERMCHAR E4
undefined g8 AL PHA B4
LALPHA E7 MUMERILC AT
DIGIY Ee UALFHA Ea
=3 A B ALL £C
UEING ED BEER EE
ERAZE EF 4T =
BASE Fi TEMPORARY FZ2
YARIABLE Fa RELATIVE F4
INTERNAL FE SEGUENT Ial Fé
CRITRUT E7 UFDATE F&
AFPPEND = FIXED)
BERMANENT FE TaB o
FD VAl IDATE FE

The highest (FF) and lowest (80) wvalues Bkave not been
assigned. The highest (FF) will never be assigned & value 3% all
precadence testing by the parser usss the fact that 1% is nat
asgigned and it is therefore considered an illegal wvalue,
Reywords in parentheses have not actually been implemented in
this BABIC, but have been assigned values in the anticipation of

& later genevations of personal computers uging them. Piesase
note that sach keyword has 3 hevadecimsel value with the moszt
significant bit set, This condition ig what artuslly

differentiates the tokens from symbols.

FREL IMINARY

Lo
4
#3

Teras Instruments

TI-99/78 BABI{ INTERPRETER Syetem Flags

APPENDIX B
Bystem Flags
This seppendiz describez 211 the suystem flags. The meaning

of sach flag. its lozation, the programs in which it is ussd. and
& descripsion of each wsed Bit will be included.

B. 1 WARNSS

WARNES®E checks the special warning hendling conditions which
gcen be set By an ON WARNING siastemsat and doss the Pollowing
based upon those conditions:

(3 WaRMIMNG PRINTY — Prints and continues sxecution
O WaRNING STDP - Prints and stops.
ON WARMING NEXYT — Ignores the warning end continues

The flag byte for warnings is WHNFLEG. It is located at EIETV and
is uged in WARNINGE and by “ON WARNINGT. The meaning of bitz in
WRMFLE is as follows:

Bit Rased Set

& WARMING FRINT PRINT OFF

i WARRMING NERT ST

s BREAK ALLDWED EREAR NOT ALLOWED

Tezase Inutruments H-1 PRELIBINARY

TIi-%9/8 BAQIL INTERPRETER GRLIO &5 A Debugging Al4d

ARPENDIX C
GPLIC 43 & Debugsing Aid

Experience wikth the TI-F9/8 BaAEBIC interpreter has shoun
that, by favr. the most effective way to debug new sectisng of
code in the interpreter is to use what is known as GPLID on the
GOo10. GRLIC iz a softwste emulation of the VI-W9/8. It anas &
sustomized GPL interpreter as well zs several support modulss
which provide the interface bestwsen the emulator asnd the 990710
gnsrating system.

& slighitly medified zsesembly language (TI-9F/8 ROM! code is
link~sditted in with the tustomized GPL interpreter and supsori
routinssg Lo geE the SRLI0 debugging Facilities. The
modiftirations nesded in the sssembly lanpuage tode are described
in a later section

When the GPLIL emulator iz invoked (with the LFLID BCI
command on the 990710 2 block of memory is eallcceted which 1is
divided up into the thvee rvemaining typss of memory {(LPU RAM, VOF
HAM, and SROM) In the TI-99/78

The OPU RBAM is 2liocatsd #ivst inm the %9072 memory, then the
YDE HAM and finslly the GRIOM The BCI GPLIC command prompis for
an object file which is the linked GPL object file that is te be
debugged, This GFL object file must contein the system monitor,
& pateh file for the monitor {described in a later section? and
whatever GPL code iz %o be debugged. This file should, aslthough
it iz noet reqguired., inciude BARBIC.

in ordesr to wse SPLIO. a special link #iie must bs cresited
#ovr the link-edibor. This Ffile should ook somsthing like:

Teraeys Iinztruments i Pril IminaRY

TI~-99/8 BABIC INTERPRETER GPLIOC Az A Debugging Aldg

THEW GPLINT

LIBRARY L BCIDSG. BOBJECT
IRCLUDE VIOL. GPLILG OBJ. M&IN
INCLUDE VOL. GFL1G. OBJ. CRT
INCLUDE VOL. GPL10. OBJ. DEBUG
INCLUDE VOL. GPLLO. OBJ. FLTPTY%0
INCLUDE VOL. GPLI1G. OBJ CHBNST0
INCEUDE VO, 8PLIG OBJ. TRINBIC
INCLUDE VUL, ePL1IG. JBJ. BABBUF
INCLUDE WL, GPLIG GBJ. PaRgE
INCLUDE VoL, 8PL10. OUBJ. BUBPROS
FHOLYUGE VI, GPLIC. 0BJ DATA
SEARCH

INCLUDE VOL. GPFLLIO OBJ. EMULATOR
ENMD

MAIN. CORT, DERBUG, DATA, EMULATOR and the LIBRARY and SEARCH
are reguived modules to get the special interpreter and fto get
the debug and P90 interface code.

In order for asesembly langusge code which sccesses the GROM
or VIF HAM to run properly. conditionsl sssembliss sndifor MACGHDs
are wnesded. This is due %t the didferences in accessing the
F90°e continuous memory and GROM or VIOF chips.

f£.2 fcesssing GROM

The following 1% & ftypicel ezample of how the GROM chips are
accessed ¥rom assembly language:

FMOVE BADDR, BOHMUA(RIT: Write ist byte af addrses
MOVE 2ADDR+1, BORMHAIRIEY Write 2Znd bute of pddrezs
MO Waste some Time

MOVE sR13. 8BYTE Fead = bhute

The same sccess fto the GROM is done in GPLIG by:

MY BADDR, RI3Z ge RIZ for common purpose
&l Ri%. GRO#™ HROM offset in memory
MOVE =R13+, €BYTE REAL & bute

BEMES end GROM need Lo be "HEPed” in the assembliess: as they
are DEFed in the smulator.

e

MINARY

i
-

Tezas Instruments Lot P

TI-99/8 BAHIC INTERPRETER GPLIO #s A Debugging Ald

£.3 Acressing YOE HaM

Accessing the VDP is more difficult than accessing the GROM
inn the real machine due te the rneed to write oubt the least
significant byte of the address before the most significeant byte
af the address. #lse, since the VDP can be both read from and
writben to snother step must be added. The 4following is 2
typical example of reading from the VODP chip:

SHPE Ri Addregs in in RHI

MOVE Ri,s#RL3 Write 2nd byute of sddress
BWFE Hi Suwap back

MOVE RL, #H1S Weite let byte of address
N Haste zoms Lims

MIVE &VDPRD, RZ Zead the hyte ints HE

The same code writtsy o read from GPLIGs "VIWY avrea iz
written &%

MY RL.RL4 Use Rid fov the resd
=91 Rig, @AM add offset ints memovry
MOVE #Rid+, RZ Read thes buts

Unece again. VOPRD and GRAM must be DEFed in the emulator and
must be REFed by the module uwsing thanm

in ordev %o write to the VDP chip & similar gprocedure to
reating wmust be wused. The following sxample demonsirates the
reverses of the sbove grample.

SBEPE HY fddress in HI

MOVE RL.#RIS Write Znd byite of address
SHEE R Swap To right order

ORl Ri,WBYDP Oy in the write snabls
HMOWE Hi, #R15 Write lst huts of asddress
MOP Waste some tims

HMOVE B2, 8VDPHD Write the data byte

The zame sxampie dons for LPLIG:

My ®Hi.REiL4 Vase K14 for the read
&1 Hi4. oRAM fdd offset inte mamory
MOVE RE. #H144 Write the data bute

Once again, WAEVDP, VDPWUD and OHAM must be REFed,

Tezas Instrumenis {3 PREL IMINARY

Ti~-99/8 BASIC INTERPRETER GPLLIO &% A& Debugging &id

.4 @PL Code

The only thing that must be done %to correctly srecuis GFL
cade on GPLIGC is to include & File called MONPATCH in with the
1ink of the GPL code. MONPATCOH patches sut some bytes of thse
monitor which +4he emuletor tonsidere to bhe illegal instruciions
beczuse of some ervor thecking is done. The Bytes that must be
patched out all deal with ftrying %o write %o the GPL interpreter
workspate registers which GPLIO does not allow %o be done from
GRL. code. Thesy attempts to write to the workspace vegisters
greur when the monitor is scanning the GROM ares for EROM hesders
and when the linking voutine, CPL., and the veturn rvoubtine, RPL,
attempt fo save and resstors the intergreter’s HIG Whenever the
monitor ic modified the pateh file must also be modified to match
the addregsse of where the satched insiructions are located. The
lorations of the patches may be found by looking at the source of
the monitor and mongatoh.

I% ghould 2ise be noted that nowne of the graphics avallsblse
on the TI-¥9/8 are available on the $94/10, bhut, any charactars
put on the scresn of the TI-99/8 will appear on the 990/10G7s CRT
in wome forem or ansbther. & TIi-B89/8 consocie or simulalor is
netessery &5 display the correct charsciers on Sthe screan,

Tezge Instruments £ FREL IMIMARY

	99_8 Home Computer BASIC Interpreter Design Specification.pdf
	99_8 Home Computer BASIC Interpreter Design Specification Part 2.pdf
	99_8 Home Computer BASIC Interpreter Design Specification Part 3.pdf
	99_8 Home Computer BASIC Interpreter Design Specification Part 4.pdf

