

s
v 4T, ..nww
nlm% A

=

TEXAS INSTRUMENTS

TI-95

PROGRAMMING
GUIDE

Manual The staff of Texas Instruments
developed by: Instructional Communications and
Design Communications
TI Corporate Design Center

Michael T. Keller
Chris M. Alley

David Thomas
De Warden
Joseph L. Willard
With Linda Ferrio
contributions Art Hunter
by: Robert A. Pollan

Jacquelyn F. Quiram
Robert E. Whitsitt, II

Copyright © 1986 by Texas Instruments Incorporated.

DATAMATH CALCULATOR MUSEUM

Important

Texas Instruments makes no warranty, either expressed
or implied, including but not limited to any implied
warranties of merchantability and fitness for a
particular purpose, regarding these programs or book
materials and makes such materials available solely on
an ‘‘as-is’’ basis. In no event shall Texas Instruments be
liable to anyone for special, collateral, incidental, or
consequential damages in connection with or arising out
of the purchase or use of these materials, and the sole
and exclusive liability to Texas Instruments, regardless
of the form of action, shall not exceed the purchase price
of this calculator. Moreover, Texas Instruments shall not
be liable for any claim of any kind whatsoever against
the user of these programs or book materials by any
other party.

Function Reference

Use this list if you know the function you want to perform but
you need a reminder of the key sequence. The page reference
tells where to find additional information about the function.
This list includes programming-related functions only;
scientific-calculator functions are discussed in the T/-95
Users Guide.

General Functions Key Sequence Page

Learn Mode 1-6,1-18

Toggle Program Counter [2nd](PC] 2-6,2-15

Clear Program [2nd]IcP] 1-6,1-18

Run Program 1-10, 1-20, 8-8,
8-33

Check Partitioning [INV] [2nd] [PART] 7-8, 7-14

Partition User Memory [2nd] [PART] 7-9,7-14,7-15,
7-16

Halt HALT 1-5,1-20,2-15

Break BREAK 2-10, 2- -16

Continue Execution (GO» 2-10,2-156

No Operation [2nd]INOP] 1-19

Pause 2nd] [PAUSE] 2-13,2-15

Restore Menu/Message OLD] 3-17,4-21,4-29

Assemble Program [2nd] (ASM] 4-25,4-29

Disassemble Program [INV] [2nd] [ASM] 4-25,4-29

Indirect Addressing [2nd] [IND] 6-3,6-14

Program Editing Functions Key Sequence Page

Right =] 1-18

Left 1-19

Insert Instructions 2nd] [INS] 1-14,1-19

Delete Instruction [2nd][DEL] 1-15,1-19

Alpha Functions Key Sequence Page

Delete Character ALPHA] (DEL)> 3-11,3-18

Insert Characters ALPHA| {INS> 3-11,3-18

Right] 3-10, 3-18

Left [+] 3-10, 3-18

Set Cursor to Column ALPHA| <COL» 3-10,3-19

Merge Number ALPHA| {MRG> 3-12,3-19

Recall Alpha ALPHA] (-->> (RCA> 3-9, 3-19, 3-20

Store Alpha ALPHA] ¢-->> (STA> 3-9,3-20

Character Code [ALPHA] ¢-->> <CHR> 3-7,3-20

Toggle Lowercase Lock ALPHA] (-->) <LC> 3-6,3-20

(continued)

i

Function Reference (Continued)

Listing Functions Key Sequence Page
List Program (PGM> 1-12,1-21
List Labels [LisT] <LBL> 4-24,4-26
List Status (ST 2-9
Transfer Functions Key Sequence Page
Label Segment [LBL] 4-5,4-26
Go To Label [GTL] 4-8,4-26
GoTo [INV] [2nd] [GTL] 4-10,4-26
Subroutine Label [2nd][sBL] 4-13,4-27
Subroutine [INV] [2nd] [SBL] 4-13,4-27
Return [2nd] [RTN] 4-11,4-27
Define Function Key [DFN] 4-16,4-28
Clear All Function Keys [DFN] 4-23,4-28
Clear One Function Key [DEN]Fx 4-23,4-29
Test Functions Key Sequence Page

If Greater Than [TESTS] <IF>> 5-4,5-256
If Less Than or Equal to TESTS]| INV] <IF>> 5-4,5-25
If Less Than TESTS| <IF<) 5-4,5-25
If Greater Than or Equal to [TESTS] [INV] <IF<> 5-4, 5-25
If Equal to TESTS| (IF = 5-4,5-25
If Not Equal to TESTS| INV] <IF 5-4,5-25
Decrement and Skip on Zero [TESTS] <DSZ> 5-7,5-26
Decrement and Execute onZero [TESTS|[INV] <DSZ> 5-7,5-26
Yes/No Response TESTS| <YIN> 5-11,5-26
Flag Functions Key Sequence Page

Clear Flags FLAGS] <CLR> 5-14, 5-27
Set Flag FLAGS| <SF> 5-14, 5-27
Reset Flag [FLAGS] <RF> 5-14, 5-27
Test If Flag Set FLAGS| <(TF> 5-14, 5-27
Test If Flag Reset FLAGS]|[INV] <TF> 5-=14,56-27

iv

File Functions Key Sequence Page

Load File (GET» 8-10, 8-16, 8-27,
8-30

Save File <PUT) 8-6,8-12, 8-26,
8-29

Delete File [FILES] <DF> 8-20, 8-28, 8-32

Display Catalog FILES| (CAT> 8-18, 8-28, 8-31

Clear Directory [FILES] <-->> <CD> 8-21,8-28, 8-32

Name Cartridge FILES] ¢(—->> <NAM)> 8-5,8-27, 8-31

Input/Output Functions Key Sequence Page

Write Tape File [10] <TAP> ¢(WRT> 9-9,9-22, 9-24

Read Tape File [i10] <TAP> <RD>» 9-12,9-22, 9-24

Verify Tape File [10] <TAP> C<VFY) 9-12,9-23,9-25

Calll/’O [o] <c10> B-2,B-15

Key Wait [ir0] <kw> B-22

System Functions Key Sequence Page

Store Byte FUNC| (SYS) <STB> A-7

Recall Byte FUNC| <SYS> <(RCB> A-7

Assembly Language Subroutine FUNC| (SYS) (SBA> A-15

Unformatted Mode CONV] ¢(BAS) (UNF> A-8

Table of Contents

This book describes the programming functions of the TI-95
calculator. Before using this book, you should already be
familiar with the scientific-calculator functions, described in
the T/-95 User’s Guide.

Chapter 1:
Working with
Programs on
the TI-95

Chapter 2:

Using Calculator
Functions in

a Program

Chapter 3:
Displaying
Messages

Programming Keys Used in ThisChapter. 1-2
IntroduckioneuDes POM .. .o vvisviian ve e SRR 1-3
T T e R e 1-6
ROTIAIE R FEORPRITIPN | 500 i ames win e s 1-10
B P EORTRIN . . - s s et s s Joad s i s s rama e avi s 1-12
Editing o Prograsnfibatll .. o s sanaiie s s stk 1-14
ReferenceSectioncoiiiiiunnunnnnnns 1-18
IRCroductHONAT: A MM . .o v e s Rl iy 2-2
Using System-MenuFunctions 2-6
Keyboard Commands versus Program Instructions 2-9
Making a Program Wait for NumericInput 2-10
Pausing a Program to Display Results 2-13
17T C] e 2 4 i il RN R 3 e s, e 2-15
IEOANCHON i s SRl o v ocv v oo v sicnin wninn 00 ol B e 3-2
ThHe Alpha Mann QCTEl VOB . « v pampas sam 3-4
Creatingan AlphaMessage.c..00u.. 3-5
Storing and Recalling AlphaMessages 3-8
it an AIDHAMOSERES oo it e e 3-10
Merging Numbers with a Displayed Message 3-12
Using Alpha MessagesinaProgram 3-14
T T e S 3-17

Chapter 4:
Controlling
the Sequence
of Operations

Chapter5:
Using Tests
ina Program

Chapter 6:
Using Indirect
Addressing

Chapter 7:
Partitioning
Memory

IETOAOCEION .. o e vt i ted® . 4-2

Before Proceeding with thisChapter. 4-4
Using Progeian LADeIS S su s tunis samald B v oo oo nvisnns 4-5
VEInE GO TO TADEINNT o ettt e e sl - = o < o5 s 4-8
USInGGOTO . . - ... i srumierinl Arirbosgis® o s vocin s.o s s-eors 4-10
Using SubroutinesinaProgram 4-11
Programming the FunctionKeys 4-16
Creating a Function-KeyMenu 4-18
Restoring a User-DefinedMenu 4-21
Clearing Function-Key Definitions ,................. 4-22
Listing Program Labelsvourerrnnnenennnnn. 4-24
Speeding Up Program Execution 4-25
BelereneeNOCRON . . . o s s S e s Ea 4-26
Introduction it st s g uimsiadam s v s SRR TR 5-2
Using ComparisonTests i xak wnrainiioss -« + » + 4+ «@HaH 5-4
Using DAY ROSIN . Jurnnttoes: A U] sririsisooment 3 o 0 as o s w a4 000 5-7
Using tReYES/INCETORE i odv i & ot mianataiel s veis sie s wre s 5-11
Vsing Flagstin (Smbevert ot Misa @i 11 -« - - <o - 5-13
Ways to Use Tests with Transfer Instructions 5-16
Using a Testto EXIER L00D) 1555 s waiibinml - o v sy site s 5-22
Reference Sectiof .3 5000 taarte Sttt ». .o s v ninsnes 5-25
IToduction - ..o tinibentd aniraeBalll v« 6-2
Indirect Data Register Operations 6-4
Indirect Transfer of Program Control 6-8
Other Indirect Operations ey suidasatit - - « Sl ¥ sl 6-13
ReferenceSecHom - . vt vnvesnensinss. BERSHEY 6-14
Introduction ...« oo sniratvaat s oo o EE 7-2
Why Change Memory Partitions? 7-4
Effects of Parbithoning .. 4 v eslcompissd o oo o o 50 o 4 7-6
Determining the Current Partitions. 7-8
Partitioning fromtheKeyboard 7-9
Partitioning from WithinaProgram 7-12
EY T vt L e e S 7-14

(continued)

Chapter 8:
File Operations

Chapter9:
Cassette Tape
Operations

Chapter 10:
Developing Your
Own Programs

Appendix A:
Advanced
Memory
Functions

Introduetion «- .- . vy, IIRSREEIES . oo 0 0 8 8-2
Usingthe FILESTORAGEMenu 8-4
If Using a Constant Memory Cartridge NI 85D
Savinga ProgramasaFile 50 0 So0aiiis L L SEEE 8-6
Runninga Program File ... B3 SR oo vsmnn 8-8
Loading a Program Pie B St B L v cvan 8-10
Saving Dataasd File I | o e L s 8-12
Loading a DataTile® s o s 8 B e e mwvws 8-16
Listing the CatalogofaDirectory.................... 8-18
Deleting Files o O R s 8-20
Performing File OperationsinaProgram.............. 8-22
Reference Becton’ % YU T f L BINEET v i 8-24
TREFOANCEION - .. s e et s oo s S e e 9-2
Selecting a Cassette RecorderandTapes 9-3
Guidelines forGood Recording. 9-4
Connecting Your RecordertotheTI-95............... 9-6
Finding the Correct Volume Setting. 9-7
Using the TAPESTORAGEMenu 9-8
Wrtings PileGniTape ¥ ERS S DI B0EW @ v wmaaen 9-9
Reading or VerifyingaFileonTape 9-12
Examplesof Tape Operationsd™? 70T . vnvien 9-16
Performing Tape OperationsinaProgram............. 9-18
Relerence Section: .= oo FETMEDNEE. . cu.. ot M 9-20
Programming Considerations’.0000n 10-2
Planning Your PYOgiani o s i I oo vaanns 10-6
IntrodNetion - v s, THCEMERIIRIEE i = MEGASD -
Changing the System-protectionMode A-4
Storing or RecallingaSingleByte. A-6
Using theUnformattedMode 2Pt L vaoenn A-8
Internal Representation of Numeric Values A-13
Accessing Assembly-language Subroutines. A-15

Appendix B:
Advanced
Input/Output
Functions

Appendix C:
Reference
Information

Intioduction . LOUDOISIR0TI0 SMOIIRTIDA . o v B-2

The ParametersiNaPAB .t e 5 0iilidse v cow ciines B-4
CommandCodes::inns o T, Sl . A e B-6
The Open CommaNG .« « L S o 058 ol e o s w00 0w = B-7
The Read and WriteCommands B-10
MO AR COtler - a s oo e e e B-11
Performing an I/0 Operation fromaProgram B-12
Example: Using CIO to Control a Peripheral B-16
Reading Keystrokes fromaProgram B-22
Character Coaeso TNraY o C-2
ProgrBIRCoes Wi e e e e C-4
Keévi€Codess) forvs aamitamydacdsanbdactl 0. C-6
Sustem IR0« oucnseis Satanes abuelasels e s Cc-7
Instraction MNeIMONNCE . ik 6 s viv v s ias s C-10
Useful Assembly-language Subroutines C-14
Summary of Field Instructions C-16
Memorydtap! \/. JOCLU MV OETCT . . vinivn i C-17
SystemBRAMUSage c.couuedifonnseeneenanaeaans C-18
Fides!! LG GlUailDl AU UL L a C-21

Introduction to TI-95 Programming

A keystroke programming language is built into the TI-95. By
using the features and capabilities of this language, you can
reduce the amount of manual work required for repetitive
problem-solving tasks.

Whatls
Keystroke
Programming?

Why Write
Your Own
Programs?

Keystroke programming, in its simplest form, consists of
storing a sequence of keystrokes in the calculator’s
memory. The key sequence that is stored is called a
program and the process of storing the keystrokes is
called programming. After storing a program in
memory, you can perform the key sequence by running
the program.

You can store virtually all the functions of the TI-95in a
program.

Besides the functions used for calculations, you can
include special programming functions that enable your
program to perform operations such as displaying
messages, repeating key sequences, and making
decisions.

The main advantages of writing a program are to save
time, improve productivity, and avoid errors. Writing a
program can be especially beneficial when:

» You need to solve a problem that requires an iterative
process to arrive at a solution.

» You need to perform a lengthy calculation
repetitively, using different data for each repetition.

» Youneed to change the sequence of stepsina
calculation based on a condition or on the value of an
intermediate result.

» You need to retain a keystroke solution for future
use.

By writing a program for such tasks, you can reduce your
workload to entering the numbers needed by the
program. You do not need to reenter the keystrokes that
are stored in the program. Your program can prompt you
for the required information, control the sequence of
steps, perform the calculations, and display and label the
results.

Programming
Features

The TI-95 has features that make it easy to write
programs. Some of these featuresinclude:

[3

7200 bytes of user memory, partitioned as data
registers, program steps, and file space. You can
change the partitioning of this memory to suit your
programming needs.

An alphabetic display that shows program
instructions in a readable, mnemonic form, rather
than as a series of numeric codes that you must
memorize or look up to interpret.

An alpha mode that lets you display descriptive
messages from within a program. You might use such
messages to label the result of a calculation, request
information, or indicate errors.

Five user-definable function keys that can be labeled
in the display. You can design your programs to
define the function of each key.

Storage and retrieval functions that let you save
programs and data as files for later use. You can save
files in the calculator’s file space, in an optional
Constant Memory™ cartridge, or on cassette tape
using the optional CI-7 Cassette Interface Cable.
Program files that are saved in the calculator’s file
space or in a Constant Memory cartridge can be
executed directly from the file space or cartridge.

(continued)

Introduction to TI-95 Programming (Continued)

Using This Book

This book describes the functions used to program your
calculator. The preliminary chapters cover functions
basic to all programming tasks, such as entering and
executing a program. Later chapters introduce more
complex functions, with the final chapters discussing
the most sophisticated functions of the calculator.

A reference section is included at the end of each
chapter. This section can be beneficial in two ways.
First, you can use it to review the information discussed
in the chapter. Second, you can use it as a reference
source when you want to look up details about the
functions. Some of the detailed information provided in
the reference sections is not repeated elsewhere. If you
are already familiar with a keystroke programming
language, you can use these sections to discover
differences between the TI-95 and the calculator that
you know.

Because each chapter builds upon the material discussed
in earlier chapters, it is recommended that you read the
chapters in the order presented.

The appendices provide information on manipulating
the system memory of the calculator and using the
input/output functions, as well as tables listing character
codes, key codes, and instruction mnemonics.

Notational
Conventions

Many functions are incomplete without additional
identifying data following the function. This data is
referred to as a field. For example, to store a number in
memory, you must follow the key with the address
of the register in which you want to store the number.
The register address is the field.

Notational conventions allow you to see at a glance
whether a field is required by a function. The following
notational conventions are used to represent fields in
this book.

| 3

An n character represents a digit (0-9) in a field. The
number of n characters in the notation indicates the
number of digits in the field. For example, [INV] [2nd]
[GTL] nnnn indicates a four-digit field.

An X character represents a letter in a field. Any
letter from A through Z is valid for this field. For
example, nnn or X indicates that can have
either a three-digit numeric field or a letter field. In
fields of this type, a lowercase letter is converted
automatically to an uppercase letter.

An a character represents an ASCII character (digit,
letter, or punctuation sign) in a field. This type of
field is referred to as an alphanumeric field. The
number of a characters in the notation indicates the
number of alphanumeric characters in the field. For
example, [LBL]laa indicates a two-character
alphanumeric field. Alphanumeric fields can contain
both uppercase and lowercase letters.

An h character represents a hexadecimal digitina
field. The hexadecimal digits are O through9and A,
B, C, D, E, and F (A through F are entered with
[A,] through IF,]). The number of k charactersin
the notation indicates the number of hexadecimal
digits in the field. For example, (<SBA) hkhh indicatesa
three-digit hexadecimal field.

Mmmmmm

& ptabaifT .moirmu st gaiwollol sish griviizaobi

il =dmunt s 9%0d2 08 | 307 _plefl £ aa of ba'rmilet
#eibba ey dlw voil aily wallol fapm voy Tromsm
odmun sfif 9veds of new vey doisdw ni 1eaiges edl io
Biaft et el smerhbs 1oreigar adT

sonsly & 1s 99261 oy wolls enoiinavaos lenatinio¥
anlwallo) ofT goidonu? 2 vd bentiopst # bisil s 1ediedw
maﬂaﬁmmbmmwmvmhmng

odT bisit s 6i{@~-0) iglh s nsesgarmasidonah =
sixmm a;u'lubarhm

51630 el
alculator Museum
A bisi) s alvatiel s pinsestgoi rebsmario L nA -
0% , blsit atrds vo} bilaw #i 8 dguowis A monY1saiel
svad aeo Q18] 1eds 2adusibani K 1o aen [078] , slgmaxs
nl blaftva33ai & 10 blpfl slvamon jiglb-oowd! & soritio
banovnod sivstisl sauswol s eqyd eid! Yozblen
5] sessreqau nie of yilssbizmolus
Jigib)1ehesds HDEA as mnsemger shatud>onA <
o aqyd eidT sl & i (igie noblauisnug 1o vadsst
' mmmmmuﬂhMihbﬂ'
mmmmmmabm

105 hiai) ot nfgistasgiis Yo edmun
: oe1eds-0w £ sedesibii on [1511 jpaf] algmsxs
nisines peoebloitolismunsdgla blol) shomunsdals

WMMWM

£ 11 3igib lemissbexsd seinsegm wisssdo dph <
A bite € ol 0 91 20igib Ieminobsxsd odT Sish
e dstor borstis ss T dyuods A) i bas 3 G 0 8
aisvssosads 4 Yo 1sdmus ofT (1,31 wl.ﬂ
m‘:':l:ba!m b - 101 |
8 {ABEy siqm hbnadnrnanﬁb
Sloil lemisebsxsd ligib-sanis

Chapter 1: Working with Programs on the TI-95

This chapter shows you how to enter, run, list, and edit a
program.

Table of Contents

Working with Programs

Programming Keys Used in This Chapter

The keys used to enter, run, list, and edit a program are shown
in the figure below. Familiarize yourself with these keys and
their locations on the keyboard.

[TEXAS INSTRUMENTS TI-95 PROCALC

e | | i
OO0 e O e)
3l AEEETIe A A e ede - 1 300

DEL INS

L-DDD_HHD L IESEET |

1-2 Working with Programs

Introduction

As you enter a program, the calculator does not execute your
keystrokes. Instead, it stores the keystrokes in a series of
numbered memory locations called program steps. The
number of program steps is controlled by the memory
partitioning of the calculator.

How Are
Programs
Stored?

Arrangement of
Program Steps

Each program step is identified by a unique four-digit
address. The first step is program address 0000. Asa
general rule, each keystroke is stored in a separate step.
However, there are several exceptions.

» Second functions, such as [x!], are combined into
a single step. Only the actual operation, x! in this
example, is stored.

» Menu functions, such as {MET)» (F-C», are
stored as a single step. Only the actual function,
{F-C» in this example, is stored.

» Functions that require a field, such as 007, are
stored in two or more steps—one for the instruction
and one or more for the field.

» There are two inverse function key sequences in
which [INV] combines with the function key sequence
it precedes. These two functions, SBR and GTO, are
discussed in Chapter 4.

The following illustration can help you visualize the
arrangement of program steps in memory. The
‘*Address’’ column gives the number assigned to each
program step.

Address Program Step
0000 INV
0001 LOG
0002 +
0003 b
0004 x!
0005 -
0006 STO
0007 A
0008 HLT
0009 NOP

Any unused steps automatically contain a NOP (no
operation) instruction.

Working with Programs 1-3

Introduction (Continued)

Whatls an Once a function is stored in program memory, it is

Instruction? referred to as a program instruction. A program
instruction is a key or key sequence that forms a
complete function. For example:

» [¥¥]is an instruction.

A

[2nd][x!]is an instruction.

v

Ais an instruction.

\j

007 is an instruction.

v

[Fix]2is an instruction.

Whatlsa The symbol displayed by the calculator when you store a

Mnemonic? function in program memory is called a mnemonic. The
mnemonic displayed for primary and second functions
generally corresponds to the symbol shown on the
keyboard. For some functions, the mnemonic is an
abbreviated form of the key symbol.

Some examples of the mnemonics displayed for
calculator functions are listed below.

Key Sequence Mnemonic
[CLEAR] CLR

z‘ *

[+] /

[+1-] =

IE Xt

[2nd] [nPr] nPr
(INCR] A INCA
[sTo] [+] 007 ST+ 007

A complete list of the mnemonics of the calculator is
given in Appendix C.

1-4 Working with Programs

How Are When you run a program, the calculator sets an internal

Programs pointer called a program counter to the first program

Executed? step. It then executes the instruction stored at that
location. After the proper action is accomplished, the
program counter advances to the next instruction.

The calculator continues to advance the program
counter and execute instructions until one of the
following events occurs.

» You stop the program by manually pressing the
or key.

» The program is stopped by an instruction stored in the
program, such as or [HALT].

» The program counter reaches the end of program
memory, which causes an error condition that stops
execution. (Certain other errors also cause program
execution to stop. See Chapter 5 for details.)

Working with Programs 1-5

Entering a Program

The learn mode of the calculator enables you to entera
sequence of keystrokes into program memory. Once entered,
a program remains in memory until you clear it or replace it
with another program.

Activating the Before you can enter a program, the calculator must be
Learn Mode in the learn mode. To activate the learn mode:

1. Press [LEARN].
The following screen is displayed.

{1st> Positions the cursor to the first step in
program memory.

{PC> Positions the cursor to the step specified
by the current setting of the program
counter.

{END> Positions the cursor to the last instruction
stored in program memory.

{ESC> Clears the learn mode menu.

2. Select the option for the program location you want
to display. The calculator displays the program ;
counter (PC) on the second line of the display. The PC
value corresponds to the address of the step marked

by the cursor.
Clearing the The key sequence [cPlclears all keystrokes from
Program program memory. When you clear program memory, the
Memory calculator fills all program steps with NOP (no operation)

instructions. To prevent the accidental clearing of a
program, the clear program function works only in the
learn mode.

1-6 Working with Programs

Entering the
Program

Exiting the
Learn Mode

After selecting the learn mode, enter your program by
pressing the desired sequence of keys. When a key (or
key sequence) is pressed, the calculator enters that
funection into program memory and displays the
mnemonic that represents the function.

As you enter your program, consider the following
points.

» Enter the instructionsin the order that you want
them executed. (It is possible to change the order in
which instructions execute by using transfer
instructions. Transfer instructions are discussed in
Chapter4.)

» Include every instruction that you want executed. If
you omit an instruction, your program will probably
not run as intended.

» End your program with a instruction. The
function instructs the calculator to stop program
execution and return to keyboard operation.

> If you make a mistake in entering a program, you can
correct it by using the editing keys discussed later in
this chapter.

After entering the keystrokes that make up your
program, you must exit the learn mode before you can
run the program.

To exit the learn mode, press again.

When the calculator exits the learn mode, it displays the
contents of the numeric display register. Any alpha
message that was in the display when the learn mode
was entered initially is not redisplayed. (Alpha messages
that you have created can be recalled, as explained in
Chapter 3.)

(continued)

Working with Programs 1-7

Entering a Program (Continued)

Exiting the
Learn Mode
(Continued)

Example

Exiting the learn mode does not affect the contents of
program memory or change the location of the program
counter. The program counter remains where it was last
positioned, until you perform an operation that changes
it.

Toillustrate the process of programming the calculator,
write a program to calculate the cube of a number. To
make this calculation manually, you would:

» Enter the number to be cubed.
» Press [¥¥] to specify the power function.
» Press 3 to specify the power.

> Press [=] to complete the calculation and display the
result.

The last three actions in the list are the actions that you
want to put into the program. Do not put the number to
be cubed into the program, or you will have to change
the program every time you want to cube a different
number.

You write this program by entering the learn mode and
duplicating the keystrokes in the list. The program
design assumes that the number to be cubed is already in
the display when the program is started.

1-8 Working with Programs

Example
(Continued)

To write the program, duplicate the keystrokes shown
below.

Procedure Press Display
Activate learn mode SHOW LOCATION:
Display first step {1st?

Clear program memory [cp]

Enter function | ¥
Specify power 3 y™ 3
Calculate result =] y™x 3=
Stop execution ¥y 3= HLT
Exit learn mode * 0.

*The value displayed is the value that wasin the
numeric display register before you activated the
learn mode.

The program is stored in the calculator. The procedure
for running the program is described on the following

pages.

Working with Programs 1-9

Running a Program

The advantage of entering a program into memory is that you
can perform the same key sequence as many times as
needed, without having to re-enter the program keystrokes.

Procedure

To run the program currently stored in program
memory:

1. Besure the calculator is not in the learn mode.

2. Press to display the following menu.

{PGM> Runs the program in program memory,
starting at program step 0000.
{MEM> Enables you to run a program you have

saved in the file space. (File space is
discussed in chapter 8, *‘File
Operations.’")

Note: If an optional software cartridge or 8K
Constant Memory ™ cartridge is installed, the name
of the cartridge is displayed in the menu. See the
*‘File Operations’’ chapter for details on running a
program in a Constant Memory cartridge.

. If your program requires you to enter a number into

the display before starting the program, enter the
number.

. Select the menu option for the program you want to

run.

The calculator runs the program. The RUN indicator is
displayed while the program is running.

1-10 Working with Programs

Example Using the program written on page 1-9, calculate the

cubes of 5and 3.

Procedure Press Display
Display the menu SELECT:

Calculate 5% 5<(PGM> 125,
Calculate 3° 3 (PGM> 27.

You only need to press when (PGM) is not showing
above the [F1] key. As long as {PGM) is visible, the
program can be executed by pressing [F1].

Working with Programs 1-11

Listing a Program

You can list the program currently in program memory by
using the {PGM) function. If you have a printer
connected to the calculator, {PGM) also prints the
listing. The calculator displays the listing in groups. The
address of the first instruction in the group is shown in the
left side of the display.

Listing the To list the program currently in memory:
Program
1. Besure the calculatoris not in the learn mode. Then
press to display the following menu.

2. Press (PGM? to display the following menu.

{1st> Begins at the first step in program
memory.
(PC> Begins at the address specified by the

current setting of the program counter.

3. Select the point at which you want to begin the
listing. Unless you pause or stop the listing as
explained in the following sections, the calculator
lists through the last step in the program.

Controlling If you do not have a printer connected, the calculator
the Speed of pauses for one second before displaying the next group
the Listing of program steps.

However, you can use the [=] key to control the speed of
the listing.

» To pause the listing indefinitely, hold down the [=]
key.

» Toadvance through the listing without the one-
second pause, repeatedly press and release the [~]
key.

1-12 Working with Programs

Stopping
the Listing

Example

To stop a program listing before it has finished, press and
hold the or key until the display returns to
the list menu.

List the program that you entered on page 1-9. Before
starting the listing, be sure the calculator is not in the
learn mode.

Procedure Press Display
Select program listing

(PGM> START LISTING AT
Begin at first step {1st) 0000 y™x 3= HLT
Listing finishes LIST:

Working with Programs 1-13

Editing a Program

You can edit a program by inserting, deleting, or replacing
instructions. The calculator must be in the learn mode before
you can edit the program. All changes occur at the location of
the cursor. To move toward the beginning or end of a program,
press [—] or[—], respectively. Both keys repeat when held
down for approximately one second.

Inserting an
Instruction

Example

Running the
Example

Pressing [2nd] [INS] displays the INS indicator and places
the calculator in the insert mode. In the insert mode, the
instructions you enter are inserted into the program at
the position of the cursor. The calculator remains in the
insert condition until you cancel it by pressing [«], [=],
[DEL], or [LEARN]. When you insert an instruction, the
instruction at the current position of the cursor and all
instructions that follow are shifted toward the end of

program memory.

The following key sequence changes the program
entered on page 1-9 so that it divides the cubed value by
2. The current program isy*x 3= HLT. Insert ‘'/2"’ before
the *‘ ="' instruction.

Procedure Press Display
Activate learn mode LEARN

{1st) ¥ X
Position cursor on = [=1=] y™x 3=
Prepare for insert [2nd] [INS] y™x 3=
Insert instructions 2 Yy x 32=
Exit learn mode LEARN 0.

Test your editing changes by running the new version of
the program.

Procedure Press Display
Display RUN menu SELECT:

Enter the number 5 5
Display result (PGM> 625

1-14 Working with Programs

Deleting an To delete the instruction at the current position of the

Instruction Cursor, press [DEL]. If the instruction has a field, the
field is also deleted. All instructions following the
deleted instruction are moved toward the beginning of

program memory.

Example Delete the **/2"" instructions from the sample program.
This restores the program to its original form, which
calculates the cube of a number.

Procedure Press Display
Activate learn mode
{1st> Mo
Move cursor to / [=1[=] yx 3
Delete / [2nd] [DEL] y x 32
Delete 2 [DEL] yx 3=
Exit learn mode LEARN 0.
Running the Test the program.
Example
Procedure Press Display
Display RUN menu SELECT:
Enter the number 5 5
Display result {PGM> 125.
(continued)

Working with Programs 1-15

Editing a Program (Continued)

Replacing an
Instruction

To replace an instruction, just ‘‘write over’’ the old
instruction. For example, to replace a/with a *, position
the cursor on the I symbol and press [x]. Because /and *
each occupy one program step, no further change is

necessary.

Watch that you do not leave an unwanted [INV] preceding
the new instruction. Also consider whether the new
instruction requires more steps than the instruction it
replaces. If more steps are required, use the insert
function to enter the extra keystrokes.

To replace the field of an instruction, you must reenter
the entire instruction. For example, to replace A
with B, place the cursor on STO and press B.
The calculator does not permit you to position the cursor
over afield, a feature that prevents accidental changes
to the field.

If you replace an instruction that has a field with an
instruction that occupies fewer program steps, the
calculator stores NOP instructions in the extra steps. For
example, if you replace A (which occupies two
steps) with [=], the calculator will place a NOP in the
second step.

When you enter the first character or digit of a field, the
calculator reserves enough program steps for the entire
field. If you know that there is not enough space to enter
the entire field without writing over existing
instructions that you want to save, press [INS] before
you begin entering the field.

1-16 Working with Programs

Example

Running the
Example

Change the sample program so that it raises the entered
number to the fifth power instead of cubing it. The
current program isy*x 3= HLT. Replace the **3’" witha

i l5 X ™
Procedure Press Display
Activate learn mode
{1st) y*x

Position cursor on 3 ¥ 3
Replace 3 with 5 5 ¥y 5=
Exit learn mode 0.
Now test the program.
Procedure Press Display
Display RUN menu SELECT:
Enter the number 5 5
Display result {PGM> 3125,

Working with Programs 1-17

Re!er'ence Section

Use this section as a source of reference information on
entering, running, listing, and editing a program.

Learn Mode

Clear Program

(=]

[LEARN]—Displays the learn mode menu or exits the learn
mode, depending upon the calculator’s state. When the
learn mode is not active, pressing displays the
learn mode menu. When the learn mode is active,
pressing leaves the learn mode. Entering and
exiting the learn mode clears the definitions (if any) of
the function keys but does not clear the numeric display
register.

{1st)—Sets the program counter to step 0000 and
enters the learn mode at the beginning of program
memory.

{PC>—Enters the learn mode at the current
address of the program counter.

{END)—Sets the program counter to the last
instruction in the program and enters the learn mode at
that locatian.

[cPl—Clears a program from memory. Clear program
only operates when the calculator is in learn mode.

[=]—In the learn mode, the [=] key increments the
program counter to the beginning of the next
instruction, which is displayed in full, including any
field. The key repeats if held down longer than one
second.

Outside of the learn mode, the [=] key controls the speed
of listing functions. Holding down the [=] key pauses the
listing; repeatedly pressing it accelerates the listing. For
details on the use of |=|in the alpha mode, refer to
Chapter 3 of this guide.

1-18 Working with Programs

Insert

Delete

No Operation

[<]—In the learn mode, the [+] key decrements the
program counter to the beginning of the previous
instruction. The key repeats if held down longer than
one second.

Outside of the learn mode, the [<] key removes the last
digit of a numeric entry. For details on the use of [«]in
the alpha mode, refer to Chapter 3 of this guide.

[INs]—Places the calculator in insert mode,
permitting you to insert program instructions at the
current location of the program counter (used only in the
learn mode). Pressing [2nd] [DEL], [<], [=], [LEARN], or

cancels the insert mode.

The instruction (if any) in the highest-numbered
program step in program memory is lost each time you
insert an instruction.

[DEL]—Deletes the instruction, including any field,
stored at the current location of the program counter
(used only in the learn mode).

INOP]—Enters a no operation instruction into
program memory. This function is valuable when you
want to eliminate an instruction from a program without
altering the addresses of any instructions in the
program. No operation instructions are ignored during
program execution.

A NOP instruction appears as a space character when
the cursor is positioned over it in the learn mode.

(continued)

Working with Programs 1-19

Reference Section (Continued)

Halt

Run

1-20

[HALT]—Stops program execution without affecting the
definitions (if any) of the function keys.

You can use from the keyboard to stop a running
program or a listing function. You can use a
instruction in a program to stop execution at the point in
the program where the halt instruction is placed.

The instruction mnemonic for [HALT|is HLT.

[RUN]—As a keyboard command, displays the
program execution menu. As a program instruction,
enables an executing program to identify and
execute another program. For details on the use of
as a program instruction, refer to page 8-34 of this guide.

¢{PGM>—Runs the program currently stored in
program memory, beginning with the first program
instruction.

{MEM>—Runs a program stored in the calculator’s
file space. For details on the use of this function, refer to
page 8-8 of this guide.

¢Directory>—Runs a program stored in a software
cartridge or Constant Memory cartridge. (A directory
name appears in the menu only when a cartridge is
installed in the calculator.) For details on the use of this
function, refer to page 8-8 of this guide.

Note: Running a program does not clear calculations in
progress. Therefore, if you decide to run a program
before you complete a calculation, press first to
clear any pending numeric operations. You should also
press if you decide to rerun a program that was
stopped in the middle of a calculation. To be certain that
no pending numeric operations will affect your
program’s calculations, you can include a
instruction at the beginning of the program.

Working with Programs

List

—Displays the list menu. Although all listing
functions can be entered as program instructions, they
are used primarily as keyboard commands. (Pressing
clears the numeric display register.)

Listings are normally displayed at a one-second rate, but
they can be paused or accelerated using the [=] key.
Listings stop automatically when the last item has been
listed but can be cancelled manually by holding down
the or key.

If a printer is connected to the calculator, all listings are
printed and displayed. The speed of the listing is
determined by the printing rate of the printer.

{REG)—Lists the contents of the data registers,
starting with the register address in the numeric display
register.

The list registers function is represented by the
mnemonic LR in program memory.

{PGM>—Lists the contents of program memory.
When this key sequence is executed as a keyboard
command, you are prompted to specify whether you
want the listing to start at the beginning of program
memory or at the current location of the program
counter. When this function is executed in a program,
the listing always starts at program address 0000.

The list program function is represented by the
mnemonic LP in program memory.

¢LBL)>—Lists labels used in program memory. For
details on the operation of this function, refer to page
4-24 of this guide.

(ST>—Lists status information about the

calculator. For details on the operation of this function,
refer to page 2-9 of this guide.

Working with Programs 1-21

,9%0 %&ﬂ?&%ﬁ

mwm:mww-m

e

mmhmmwmﬂ—{m
bxsodead & 2s badinans af sonsunss yoil wirkd n

tmm“mwmmm b Gs
mhmﬂ_ﬁum@

mwbmmmummﬂumwmlm/
L RO mmuw 3z

5

mmamﬂmmmw-
moiinpt sidd Yo moitewsgo sl aoalisleb i .
.sbisy aldi Yo 8- sgecro whey

Chapter 2: Using Calculator Functions in a Program

Table of Contents

The TI-95 User’'s Guide describes the scientific-calculator
functions and illustrates how to use them to perform manual
calculations. This chapter discusses the use of those
functions in a program. It also explains how you can stop a
program to enter numbers or pause a program to display
results.

Using Calculator Functions

Introduction

The scientific-calculator functions can be divided into two
categories: functions accessed through conventional key
sequences, such as [+] and [INV] [SIN], and functions
accessed through system-menu keys, such as (MET»
{G-L>.This section discusses the entry of conventional keys
into a program.

Storing
Primary
Functions

Storing
Second
Functions

Storing
Inverse
Functions

To store a key’s primary function in a program, simply
press the key for that function while the calculatorisin
the learn mode. For example, if you press in the
learn mode, the following mnemonic is displayed.

To store a second function in a program, press the
key followed by the key for that function. The
mnemonic that is displayed represents the key's second
function. For example, if you press [2nd][CMS]in the
learn mode, the following mnemonic is displayed.

To store an inverse function in a program, press the [INV]
key followed by the key or key sequence for that
function. For most inverse functions, isstored asa
separate instruction. (Only two inverse functions do not
store [INV] as a separate instruction. These are the
transfer instructions [INV] [GTL] and [INV] [SBL].)

For example, if you press [INV] %] in the learn mode, the
following mnemonics are displayed.

2-2 Using Calculator Functions

Storing
Hyperbolic
Functions

Storing
Functions
with Fields

To store a hyperbolic function in a program, press the
key followed by the key or key sequence for that
function. is stored as a separate instruction.

For example, if you press [inv] in the learn
mode, the following mnemonics are displayed.

To store a function with a field in a program, press the
key or key sequence for the function and then enter the
field. The calculator groups the field characters together
in the display.

For example, if you press 007 in the learn mode, the
following mnemonic is displayed.

You do not have to enter leading zeros when you store a
numeric field if you use short-form addressing. For
example, if you press 7 [x3in the learn mode, the
following mnemonics are displayed.

(continued)

Using Calculator Functions 2-3

Introduction (Continued)

Example Write a program to evaluate the following equation.

B=3A%+12A-12

Assume that you enter the value of A into the display
before you start the program. Because the equation uses
A in two places, have the program store the valueina
data register and recall it when it's needed again.

Procedure Press Display
Activate learn mode
{1st>

Clear program memory [cp]

Store value of A A STO A
Square A STO A x~2
Multiply by 3 [x]3 STO A x*2 *3
Add STO A x2 *3+

Enter second term 12[x]
A

2 "3+12" RCL A

Enter third term [=]12 3+12* RCL A —-12
Obtain result = +12* RCL A —12=
Stop execution RCL A —12= HLT
Exit learn mode

2-4 Using Calculator Functions

Running
the Example

To test the program, compute Bfor A=5, A=11, and

A=1024.

Procedure Press Display
Display RUN menu SELECT:

Calculate value 5 (PGM> 123.
Calculate value 11 (PGM> 483,
Calculate value 1024 <PGM> 3158004.

Using Calculator Functions

2-5

Using System-Menu Functions

When you include a function from a system menuin a
program, the calculator stores only the function. The menu
key is not stored in the program.

Storing Menu
Functions

Restoring the
Program
Counter
Display

To store a system-menu function in a program, press the
menu key and make the selection you want. The
calculator displays a mnemonic for the function you
select, but the keystrokes that you use to access the
menu function are not stored in the program.

For example, if you press (MET? {G-L> inthe
learn mode, the following mnemonic is displayed.

The calculator stores the function to convert gallons to
liters in the program, but it does not store and
(MET>.

Pressing a system-menu key displays the menu functions
on the second line of the display. If the calculator is in
the learn mode, the menu functions replace the program
counter. To restore the program counter, press [pCl.
[pc]alternately displays and erases the program
counter.

» If the counteris in the display when you press
[pc], the calculator erases the counter.

» If the counteris not displayed when you press
[pcl, the calculator displays the counter.

2-6 Using Calculator Functions

Example

The random-number function of the calculator
generates numbers that are fractional values. By using
the expression given below, you can generate random
integers that lie between 1 and a given upper limit:

N=INT(LxR#+1)

where N =the generated random integer, L=the
selected upper limit, and R# = the random number
produced by the calculator.

Using the formula given above, write a program that
generates random integers between 1 and 6.

Procedure Press Display

Activate learn mode LEARN
{1st>

Clear program Icpl

Enter upper limit [s[x] 6*
Random number [NUM] <R#> (6* R#
Add 1 [#10] (6* R# +1)
Integer <INT> (6* R# +1) INT
Restore PC [2nd][PC) (6* R# +1) INT
Stop execution R# +1) INT HLT
Exit learn mode LEARN

(continued)

Using Calculator Functions 2-7

Using System-Menu Functions (Continued)

Running Run the program. The sequence of numbers shown by
the Example your calculator will probably differ from the sample
shown below.
Procedure Press Display
Display RUN menu SELECT:
Generate number <PGM>
Generate number (PGM>
Generate number {PGM> 4

2-8 Using Calculator Functions

Keyboard Commands versus Program Instructions

Not all functions operate the same in a program as they do
when executed from the keyboard. Several examples are
listed in this section. Other differences between the keyboard
and program operation of a function are discussed in the
chapters in which the functions are defined.

The Help
Function

The Status
Function

The QAD and
CUB Functions

From the keyboard, displays the prompt SET
NORMAL MODE? and a menu from which you can choose
(YES), <NO), or <ESC). If you press <YES), the
calculator resets the system parameters to their default
settings. If you press (NO?, the calculator displays all
parameters that are not set to their default condition and
lets you choose between resetting the parameter or
leaving it unchanged. Pressing {ESC> clears the menu.

as a program instruction resets the system
parameters to their default settings and resets the
partitions (excluding file space) to one-half data
registers and one-half program memory. This is identical
to pressing <YES) from the keyboard.

From the keyboard, the ¢ST) (status) function lists
all parameters that are not already set to their default
condition and displays the error number of the most
recent error.

{ST» as a program instruction places the number of the
most recent error in the numeric display register. It does
not list any status information.

From the keyboard, the {<QAD» and <CUB> selections of
the [FUNC|] menu prompt you to enter coefficients and
display a message to identify the roots as real or
complex.

In a program, no prompts or messages appear. Instead,
the (QAD> and (CUB’> functions get the coefficients from
dataregisters 0, 1, 2, and 3. The results are stored in the
same registers. For details, refer to Chapter 2 of the
TI-95 User’s Guide.

Using Calculator Functions 2-9

Making a Program Wait for Numeric Input

This section explains how to interrupt a program so that you
can enter numbers into the program.

Using Many problems require you to enter a number after a

to Enter sequence of keystrokes has already been performed. To

Numbers solve this type of problem in a program, you need an
instruction that:

= Interrupts the program at the point where you want
to enter the number.

» Permits you to perform manual calculator operations
such as entering a number into the display.

» Allows you to continue execution from the point in
the program where it was interrupted.

The instruction is designed for this purpose.

interrupts program execution and defines [Fi] as
<GO). By placinga instruction in a program, you
can stop execution temporarily. When you are ready to
restart the program, just press {GO>. If you clear {GO>
by pressing a system-menu key before you restart the
program, you can restore <GO) by pressing [BREAK].

The use of a instruction to enter a number into a
program isillustrated below.

<_PGM)

BRK
Enter Number
(GO»

(Program Executes)

- (Program Executes)
HLT

2-10 Using Calculator Functions

Example

Write a program to solve the following problem.

Z=SINX-TANY

This problem requires you to enter valuesfor Xand Y.
Design the program so that you enter X before you run
the program and Y after execution starts.

Procedure Press Display
Activate learn mode
{1st>

Clear program [cpl

Calculate sine SIN
Subtract | A SE SIN -
Stop for number BREAK SIN - BRK
Calculate tangent SIN — BRK TAN
Final result [=] SIN — BRK TAN =
Stop execution BRK TAN = HLT

Exit learn mode

:
=

(continued)

Using Calculator Functions 2-11

Making a Program Wait for Numeric Input (Continued)

Running
the Example

2-12 Using Calculator Functions

Before running the program, set the angle units to grads
by pressing [DRG] until GRAD MODE appears in the
display. Then use the program to calculate Z for the
following valuesof Xand Y.

Value of X Valueof Y
206 Grads 94 Grads
45 Grads 101 Degrees
Procedure ~ Press Display
Set grad mode [2nd][DRG]* GRAD MODE
Display RUN menu SELECT:
Enter X 206 <PGM> —.0941083133
EnterY 94 <GO> —10.67300331
Display RUN menu SELECT:
Enter X 45 <PGM> 6494480483
Select ANG menu

{ANG> ANGULAR
Convert to grads 101<D-G> Grd= 112.2222222
Redisplay <GO>» BREAK Grd = 112.2222222
Restart program {GO» 5.794002064

*Repeat until GRAD MODE appears in the display.

Note: Running a program does not clear calculations in
progress. Therefore, if you decide to rerun the program
after it has been stopped by the BRK instruction, press
first to clear the pending calculation.

Pausing a Program to Display Results

This section explains how to use the pause instruction to
display numeric information during program execution. For
details on using pause to display messages, refer to the next
chapter of this guide.

Using Pause
Instructions

Example

A [PAUSE]instruction stops program execution for
one second to display a numeric result (or message). A
pause instruction does not affect pending numeric
operations, so you can use it to display intermediate
results as well as final calculations.

If you want a program to pause for more than one
second, include additional pause instructions in the
program. For example, placing three pause instructions
together in a program creates a three-second pause.
Write a program to evaluate the following equation.
A=B%*5

Design the program to display the value of B? for one
second before the final result is calculated.

Procedure Press Display
Activate learn mode

{1st>
Clear program [cpl
Square value [x3] 2
Pause

[PAUSE] x~2 PAU
Multiply by 5 [x]5 x™2 PAU *5
Final result =] x*2 PAU *5=
Stop execution HALT ~2 PAU *5= HLT
Exit learn mode

(continued)

Using Calculator Functions 2-13

Pausing a Program to Display Results (Continued)

Running Run the program using B=55 and B= —456.
the Example
Procedure Press Display
Display RUN menu SELECT:
Enter B 55 (PGM> 3025.
15125,
Enter B 456
{PGM> 207936.
1039680.

2-14 Using Calculator Functions

Reference Section

Use this section as a source of reference information about
entering calculator functions into a program, interrupting a
program to enter numbers, and pausing a program to display
numeric values.

Restore PC

Break

Using [BREAK
and [HALT

Pause

[pcl—Alternately displays and erases the current
value of the program counter in the second line of the
display. This function operates only in the learn mode.
(Use this function to restore the program counter if it has
been cleared by using a system-menu key.)

[BREAK]—Interrupts program execution and defines the
[F1] key as <GO>. The address where the program was
interrupted is stored internally. To resume execution
from that location, press <GO). If the <GO) definition is
cleared by subsequent manual calculator operations, it
can be restored by pressing [BREAK].

You can use as akeyboard command to stop a
running program or a listing function. If you press

to stop a program, you can resume execution
from the interrupted location by pressing <GO>.

The instruction mnemonic for is BRK.
Although and both stop program

execution, the functions have differences that make
them suitable for different applications:

> should be used when you want to stop a
program to perform a manual calculator operation
(such as entering a number) and then resume
execution from the interrupted location.

> should be used at the end of a program and in
cases when you want to stop a program without
affecting the definitions of the function keys.

[PAUSE]—Stops program execution for one second.
The information displayed during the one-second pause
depends upon the instructions that have been executed
previously.

The instruction mnemonic for [PAUSE] is PAU.

Using Calculator Functions 2-15

noijoed sonaeteof

tuads noitermolal snnoiete ho 20140 & S8 aoliass didt sall

& oini anoitorut volaluniss pnheing
mummmmum
: aeuisy ohemun

inoras 9 sonets bra exalgaib aisrsasl A {0

@il Yo onil brooss ed) nt vainuos mergorg el to
shom mussl sl al yine asasreqo noitaai aldfT yelquib
et 3 19900 ALE TG 9151 9v0tee of sollond el sell)
{mmmumwmm

mmmm
exw mETRowg ol sadw sesrbhe odT . tbana
noitusens spnest o wmmmubmum
ai noltini¥eh (0D s ¥l .COD) ssorg nobtanol terd? mov

mmbauumw:um mm?

e P RS S ORI

.Mdm 101 sinomanm noktawroes) odT

MMﬂ%M

_ odalinias ey e & rOISG OF DUSTRONG

; mmmmm-m.m

mwmmnmum

st bns msRoiq 60 brs o 18 bean od bluods TIAN <
Joakstw meavpong & qode Gl Inew uoy iadw esens
¢ poirmit 341 Yo asoltinilob s anitsis

bnoose aso 10 ackiusexs Moy wg
mmwwwm
bayunszanssd svsd tardy mwmww

A9 et t3pvad] [BaE s0 stnomsmm nottutend ofT

3L-8 - wmoldsan¥ vosslnslal yatat)

39 sveleoh

Chapter 3: Displaying Messages

Table of Contents

Although messages are most often used within a program,
you can learn how to display messages by working directly
from the keyboard. After you become familiar with the
functions available in the alpha mode, you can use messages
in your programs.

Displaying Messages

Introduction

The alpha mode lets you display characters ranging from
uppercase and lowercase letters to special signs and
symbols. The exercises in this chapter demonstrate how to
use the alpha mode.

Whatls the
Alpha Mode?

Uses of the
Alpha Mode

Redisplaying
an Alpha
Message

The alpha mode causes the calculator to interpret most
keystrokes as alphabetic and punctuation characters
rather than as calculator functions. The scientific-
calculator functions are not accessible while the
calculatorisin the alpha mode.

The primary keys you use in the alpha mode are
arranged in the same pattern as those on a standard
typewriter.

You can use the alpha mode anytime you want your
program to display a message.

For example, you can display a message that:

» Shows the title of a program.

» Gives operating instructions as the program runs.
» Prompts you for keyboard entries.

» Identifies the result of a calculation.

If you have a printer connected to the calculator, you
can print alpha messages.

Messages that you create using the alpha mode are
cleared by subsequent numeric operations. If you want
to redisplay the last alpha message, press [OLD]. ([OLD]
also restores the last user-defined function key menu, if
any, as described in Chapter 4 of this guide.)

3-2 Displaying Messages

The Alpha Mode
Keyboard

When the calculator is in the alpha mode, most keys
produce an alpha character. The keys have primary and
second characters.

On the left side of the keyboard, the alpha character for
each key is printed in blue above the key. For these keys,
pressing before pressing the key changes the
character from uppercase to lowercase, or vice versa,
depending upon the lowercase lock status of the
keyboard.

For two of these keys, the primary alpha characteris
printed above and to the left of the key, and the second
alpha character is printed above and to the right of the
key.

» The primary alpha character for the [FUNC] key isa
comma. Pressing [FUNC] produces ”.

» The primary alpha character for the keyisa
period. Pressing [LisT] produces ",

For most of the keys on the right side of the keyboard,

the character printed on the face of a key is the key's

primary alpha character. The second alpha character for

each key is printed in gray above the key.

Two keys have primary alpha characters that are not
printed on the keyboard.

» The primary character for the [EE] keyis" .

» The primary character for the keyis|.

Displaying Messages 3-3

The Alpha Menu

You use the key to both activate and exit the alpha
mode. The alpha menu has eight functions. These functions
are shown below and are discussed in more detail later in this

chapter.

The Alpha Menu

3-4

When you press to activate the alpha mode, the

calculator displays the ALPHA indicator, a flashing
cursor, and the alpha menu. If the display contained a
user alpha message, the message is also displayed.

(DEL>

{INS>

(CoL>
{MRG>»

{==>>

Deletes the character at the cursor position.

Allows insertion of characters at the cursor
position.

Moves the cursor to a column you specify.
Merges a number with an alpha message.

Displays additional selections (shown
below).

{RCA>
(STA>

{CHR>»

{LC>

{==>)

Displaying Messages

Recalls a previous alpha message.
Stores a message in data registers.

Stores a specified character code at the
cursor position.

Toggles (alternates) between lowercase lock
on and off.

Displays the previous selections (shown
above).

Creating an Alpha Message

Although the alpha register can hold 80 characters, only 16
characters can be displayed at one time. If you enter more
than 16 characters, the message scrolls left to accommodate
the newly entered characters. An arrow indicator appears
when any characters have scrolled off the display to the left.

Entering a
Message

Example

Before entering an alpha message, you must first
activate the alpha mode by pressing [ALPHA]. After the
alpha mode is active, you can type your message.

The following example uses the alpha mode to display
the message HELLO THERE.

Procedure Press Display
Clear calculator 0.
Activate alpha mode]

Begin alpha message HELLO HELLOE

Enter ‘‘space"’ HELLO B

Continue message THERE HELLO THEREE
Exit alpha mode HELLO THERE

When you exit the alpha mode, any message longer than
16 characters scrolls across the display and stops when
the last 16 characters are visible.

» You can press [«] to see the first part of the message

again.

» You can press [~] to skip to the end of the message
instead of waiting for it to scroll.

(continued)

Displaying Messages 3-5

Creating an Alpha Message (Continued)

Using Upper
and Lower Case

Example

The first time you activate the alpha mode after turning
the calculator on, the keyboard is locked in uppercase
letters. You can toggle between uppercase and
lowercase lock by pressing <LC» from the alpha menu.
The LC indicator shows when lowerecase lock is in effect.
The case that you select remains in effect until you
change it or turn the calculator off.

» Toenter alowercase letter while uppercase lock isin
effect, press before pressing the key for the
letter.

> Toenter an uppercase letter while lowercase lock is in
effect, press before pressing the key for the
letter.

Note:If you press the key by mistake, pressing it
again cancels the shift request.

The following example uses both uppercase and
lowercase characters to display the word Radius.

Procedure Press Display
Clear calculator 0.
Activate alpha mode ALPHA =@

Enter first letter

in uppercase R RE

Select lowercaselock ¢(-->) (LC) RN

Complete the word

in lowercase ADIUS Radius@l

Reselect uppercase

lock {LC> Radiusl

Exit alpha mode Radius

3-6 Displaying Messages

Using The {CHR) selection on the alpha menu lets you specify

the <CHR> a character by referring to its character code. (For a

Selection listing of these codes, see Appendix C.) This function is
particularly useful when you want to:

* Include printer control codes (such as a carriage
return) in an alpha message.

» Display special characters(suchasz, X, and +)inan
alpha message.

To use the (CHR) selection:

1. Activate the alpha mode and position the cursor
where you want the character to appear.

2. Select <CHR> from the alpha menu.

3. Enter the three-digit code for the character. The
character is displayed at the cursor position.

If the character is a control code for the printer, exit
the alpha mode and press [PRINT] to send the code

to the printer.
Example This example uses (CHR> to send a carriage-return
command to the printer.
Procedure Press Display
Clear calculator 0.

Activate alpha mode [|

Enter character code (-->)
{CHR>013 \m

Exit alpha mode \
Send code to printer [PRINT] \

Displaying Messages 3-7

Storing and Recalling Alpha Messages

You can easily redisplay an alpha message that has been
erased by a numeric value. However, to reuse a message that
has been replaced by another alpha message, you must
either reenter the original message or store the original
message in data registers when you create it.

How Alpha When you store an alpha message, it is stored in data

Messages registers, just as numeric values are. To avoid a conflict

Occupy Memory with previously stored alpha or numeric data, you need
to understand how alpha messages occupy memory.

A stored alpha message occupies 10 data registers. Thisis
because the entire contents of the 80-character alpha
register are stored. If the message is fewer than 80
characters in length, the remaining portion of the alpha
register contains blanks.

For example, if you store the message ‘' RESULT ="''in
data register 000, it occupies data registers 000 through
009.

Register Contents

000 [RIEJsJufL]T] [=]
001 O B T e
' (registers 002 through 007)
008 1 O e i iy T 1 O
009 [ashainh o:p coporafsmbo | |

Although data registers 001 through 009 are filled with
blanks, they are part of the alpha message and should
not be used to store any other data.

Before designating a location to store a message, make

sure you have 10 consecutive data registers available
that do not contain important information.

3-8 Displaying Messages

Storing an
Alpha Message

Recalling an
Alpha Message

The (STA> (store alpha) selection lets you store the
currently displayed alpha message in a specified series of
data registers. This function is primarily useful when
you plan to redisplay an alpha message after displaying
another alpha message.

To store an alpha message in data registers:
1. Activate the alpha mode and create the message.

2. Press (STA> and enter the address of the first of the
10 data registers you want to hold the message.

The ¢RCA> (recall alpha) selection lets you redisplay
either the most recently displayed message or a message
you have stored using {STA>.

To redisplay an alpha message:
1. Activate the alpha mode.
2. Use the key sequence that applies to you.

» Toredisplay the most recently displayed message
after it has been erased by a numeric value, press
{RCA> [=]. The message appears with the cursor
positioned where it was before the number was
displayed.

» Toredisplay a message you have stored using
{STA>, press {RCA» and enter the data register
where you stored the message. The message
appears with the cursor positioned immediately
following the last nonblank character.

Note:If you use (RCA)> to recall the contents of data
registers that do not contain a stored alpha message, the
calculator displays the alpha characters that correspond
to the numeric values stored in the registers.

Displaying Messages 3-9

Editing an Alpha Message

You can use the editing features of the alpha mode to replace
existing characters, insert additional characters, or delete
unwanted characters in a displayed alpha message. If the
message is not currently displayed, you must first redisplay it
using the (RCA) selection described on the previous page.

Positioning
the Cursor

Replacing
Characters

Before editing an alpha message, you must position the
cursor at the place in the message where you want to
make a change.

Use the following keys to position the cursor.

Moves the cursor to the left, one positionata
time.

[=] Moves the cursor to the right, one position ata
time. |

{COL> Letsyoumove the cursor to aspecified
character position (column) in the alpha
register by prompting you to enter a column
number, Columns are numbered 1 through 80,
starting with the leftmost column.

After you enter the column number, the alpha
message is redisplayed with the cursor in the
specified column.

After positioning the cursor, you can use the editing
features to change the message.

To replace a character in an alpha message:

1. Position the cursor on the character you want to
replace.

2. Type the new character.

3-10 Displaying Messages

Inserting
Characters

Deleting
Characters

Clearing an
Alpha Message

To insert additional characters in an alpha message:

1. Position the cursor on the character before which you
want to insert characters.

2. Press<INS) .
The INS indicator shows that the insert mode is active.
3. Enter the characters you want to insert.
Any of the following actions cancel the insert mode.
» Moving the cursor (using [«], [=], or <COL>).
» Selecting {DEL», {RCA>, {STA>, {MRG>, or {-->>.
» Pressing [CE] or [CLEAR].
» Exiting the alpha mode.
To delete unwanted characters from an alpha message:

1. Position the cursor over the first character to be
deleted.

2. Press (DEL> once for each character you want to
delete.

To clear an alpha message, press [CE] or while the
calculator is in the alpha mode.

Displaying Messages 3-11

Merging Numbers with a Displayed Message

Merging lets you display a numeric value together with an
alpha message. This feature is particularly useful when you
need to display an explanatory message with the result of a
calculation. The numeric value can be either the value in the
numeric display register or a value stored in a data register.

How to Specify
the Merge Point

Using the Merge
Function

Specifying a merge point takes some planning. The
rightmost digit (or the decimal point if the numberis an
integer) of the number will occupy the current cursor
position. Because a number may require as many as 12
character positions (16 for unformatted numbers), you
must leave enough space for the number.

You may find it helpful to draw a template of the
character positions in the display to help you establish an
appropriate merge point.

For example, before merging a number with the message
“AREA =," you may wish to position the cursor at
column 16.

172 84 b 6,7 8.9 1011 121314 15:16

A(R|E|A|= |

To merge a number with an alpha message, follow these
steps.

1. Activate the alpha mode and create (or recall) the
alpha message.

2. Position the cursor where you want the rightmost
digit of the merged number to appear.

3. To merge the number in the numeric display register,
press <MRG> [=].

To merge a stored number, press (MRG> and enter the
data register where the number is stored.

Note: The number is displayed in the currently selected
display format (such as FIX, EE, ENG, or HEX).

3-12 Displaying Messages

Example The following example merges a stored number with an
alpha message. Before beginning this example, make
sure the calculator is not in the alpha mode.

Procedure Press Display
Store 64 inregister A 64 A 64.
Activate alpha mode [|

Enter the message AREA [=] AREA=H

Allow room for

the number {COL> 18 AREA= [}
Merge the number {MRG> A REA= 64.0
Exit alpha mode AREA = 64.

Note: Because 64 is also in the numeric display register
in this case, you could optionally use <MRG> [=].

Displaying Messages 3-13

Using Alpha Messages in a Program

Your program can display messages and execute most of the
functions available through the alpha menu.

Replacing or
Appending
a Message

Avaiding
Problems

When you make an alpha entry directly from the
keyboard, you can easily see whether the entry startsa
new message or is appended to an existing message.

However, when you make an alpha entry while entering
program instructions, you must visualize what the
calculator would display if program execution were
interrupted just prior to your alpha entry (for example,
by a halt or pause instruction).

» If a numeric value would be displayed, any new alpha
entry starts a new alpha message.

» If auseralpha message would be displayed, any new
alpha entry is appended to the existing message,
starting at the cursor position in the existing message.

In most cases, you can easily visualize whether the most
recent instructions leave a numeric value or a user
message in the display. However, you should be aware
that some instructions, when executed, do not affect the
display. These include such instructions as CMS, PRT,
ADV, and the transfer instructions discussed in the next
chapter.

If you are uncertain about the effect of starting an alpha
entry at a specific point in your program, use these
guidelines.

* When you want to be sure a new entry starts a new
message, precede the entry with a CE instruction.

» When you want to be sure a new entry is appended to
the most recent alpha message, precede the new
entry with an RCA =instruction.

3-14 Displaying Messages

Additional
Differences

Asyou enter an alpha message into a program, the
message is displayed in single quotes to help you
distinguish alpha messages from instruction mnemonics.

The <LC) (Lowercase toggle) function cannot be stored
as a program instruction, but you can use the function to
toggle lowercase lock on or off while the calculator isin
the learn mode.

If you want your program to reposition the cursor (for
example, to prepare for merging a number), you must
use the {COL> function as a program instruction. You
cannot store the [+] or [=] keys as program instructions
because these keys are used in displaying the program.

(continued)

Displaying Messages 3-15

Using Alpha Messages in a Program (Continued)

Example This example stores a program that creates two alpha
Program messages: one that prompts you to enter the radiusof a
sphere, and one that labels the volume of the sphere.

Procedure Press Display
Enter learn mode LEARN
{1st>
Clear old program [cp]
Activate alpha mode
Enter first message ENTER
RADIUS ‘ENTER RADIUS’
Exit alpha mode ‘ENTER RADIUS’
Wait for entry BREAK ER RADIUS' BRK
Calculate volume 3
(] [2nd] (]
[x]4[+]3
y*x 3* Pl *4i3=
Activate alpha mode y*x 3* Pl *4i3=
Enter second message VOL [=] | *4/3= 'VOL='
Position cursor {COL> 16
and merge volume {MRG>[=] ' COL 16 MRG =
Exit alpha mode ' COL 16 MRG =
Mark end of program L 16 MRG = HLT
Exit learn mode
Running To run the program, press {PGM>. When prompted,
the Program enter a value for the radius and press <GO>. The program
displays the labeled result.

3-16 Displaying Messages

Reference Section

Use this section as a source of reference information for
using the alpha mode.

Alpha Mode

Alpha Register

[ALPHA]—A ctivates or exits the alpha mode, depending
on the state of the calculator. Pressing when the
alpha mode is not active displays the alpha mode menu
and the ALPHA indicator. Any user alpha message in the
display remains in the display when you activate the
alpha mode. The cursor is positioned in the same column
as the last time the alpha mode was activated. Pressing
when the calculator is already in the alpha mode
exits the alpha mode and turns off the ALPHA indicator.

If the learn mode is active when you select the alpha
mode, the characters and most alpha mode functions
that you enter are stored in program memory. In this
case, exiting the alpha mode returns to the learn mode.
The key is not stored as a program instruction. In
a program, alpha messages are displayed enclosed in
single quotes.

The calculator retains the most recent alpha message in
an 80-character alpha register. When the calculator is
first turned on, the default message stored in this
register is TI-95 PROCALC. When the calculator is in the
alpha mode, a message in this register can be redisplayed
with the <RCA> [=] function. Outside of the alpha mode,
you can redisplay the last alpha message by pressing
[oLD]. ([oLD] also restores the last user-specified
definitions for the function keys F1-F5.)

If the message in the alpha register is not currently
displayed when a new alpha entry is made, the register is
cleared and the entry starts a new alpha message.

If the message in the alpha register is displayed when a
new alpha entry is made, the new entry is appended to
the existing message, starting at the cursor position in
the existing message.

(continued)

Displaying Messages 3-17

Reference Section (Continued)

[<]and [=]

Delete
Character

Insert Mode

If the alpha mode is active, [+] and [=] move the alpha
cursor one position to the left or right.

If the alpha mode is not active, [«=] restarts the scrolling
of any long (more than 16 characters) alpha message
currently in the display. [=] bypasses any scrolling in
progress by displaying the last 16 characters of the
message.

[<]and [=] can be used only as keyboard commands. You
cannot store either key as a program instruction.

{DEL>—Deletes the character at the current
position of the cursor in a displayed alpha message. Any
characters to the right of the cursor move left to fill the
vacated position. If there are no characters to the right
of the cursor, places a space at the cursor position.
{DEL> can be used as a keyboard command orasa
program instruction.

¢{INS>—Allows insertion of charactersina
displayed alpha message. An inserted character occupies
the position of the cursor. Remaining characters,
including the character previously located at the cursor
position, are moved to the right. If the alpha display
register already contains 80 characters, inserting a
character causes the last character in the message to be
discarded.

¢{INS> can be used as a keyboard command orasa
program instruction.

When you use <INS) as a keyboard command, the INS
indicator appears, indicating you are inserting
characters. Any keystroke that does not produce an
alpha character cancels the alpha insert mode and turns
off the INS indicator. (In a program, you can access the
CHR function without cancelling the insert mode.)

3-18 Displaying Messages

Move Cursor
to Column

Merge Number
into Alpha
Message

Recall Last
Alpha Message

{COL> nn—Positions the alpha cursor at column
nn in the displayed alpha message. The value nn must be
in the range 01 to 80. {COL> can be used as a keyboard
command or as a program instruction.

{MRG» nnn or X—Merges the numeric value
stored in data register nnn or X with the displayed alpha
message. (MRG> [=] merges the number from the
numeric display register with the displayed alpha
message.

The number is merged to the left of the cursor, with the
last digit (or the decimal point if the number is an
integer) at the current cursor position. The cursor is then
advanced to the next position. If characters already exist
in the positions required by the number, the characters
are replaced by the corresponding digits of the number.

Note: If there are not enough character positions to the
left of the cursor for the merged number, the affected
digits of the number are not merged.

The format of the merged number is determined by the
current display format. A number may require as many
as 12 character positions (16 for unformatted display
mode).

Either form of {MRG> can be used as a keyboard
command or as a program instruction.

<RCA> [=]—Displays the alpha message currently
contained in the alpha register. If the existing message is
not currently displayed, ¢(RCA> [=] must precede any
new alpha entry that is to be appended to the message.
The cursor is positioned in the same column as when the
message was last displayed. (RCA? [=]canbe used asa
keyboard command or as a program instruction.

(continued)

Displaying Messages 3-19

Reference Section (Continued)

Recall Stored
Alpha Message

Store Alpha
Message

Display
Specified
Character

Toggle
Lowercase Lock

¢RCA) nnn or X—Displays the stored alpha
message that begins in register nnn or X. The message
replaces any message currently contained in the alpha
register. The cursor is positioned immediately following
the last nonblank character in the message. {RCA> nnn
or X can be used as a keyboard command or as a program
instruction.

{STA> nnn or X—Stores the alpha message
currently contained in the alpha register starting at data
register nnn or X. The stored message occupies 10
consecutive data registers. (STA) canbe usedasa
keyboard command or as a program instruction.

{CHR> nnn—Stores the character corresponding
to the number nnn in the alpha register at the current
cursor position and advances the cursor to the next
position. The number nnn must be in the range 000
through 255 decimal. (For a table of the characters, refer
to Appendix C.) {CHR) can be used as a keyboard
command or as a program instruction.

{LC>—Turns lowercase lock on or off depending
on the current state of the calculator. If lowercase lock is
off (the default state), <LC) turns it on and displays the
LC indicator. If lowercase lock is on, <LC) turns it off and
turns off the LC indicator.

The state of lowercase lock affects the case of letters you
enter in an alpha message or an alpha field. When
lowercase lock is on, pressing causes the next letter
entered to be uppercase. When lowercase lock is off,
pressing causes the next letter entered to be
lowercase.

You canuse <{LC» in the learn mode for entering
uppercase or lowercase letters, but you cannot store
{LC» as a program instruction.

3-20 Displaying Messages

Chapter 4: Controlling the Sequence of Operations

Table of Contents

The previous chapters showed you how to write programs
that sequentially execute a series of steps. This chapter
describes instructions that enabie you to change the order in
which program steps are executed.

Controlling the Sequence

Introduction

The calculator normally executes program steps in the same
order in which you stored them. For problems that are
relatively simple, you can write a “‘straight-line” program that
executes a sequence of keystrokes once, from beginning to
end. Many problems, however, cannot be solved efficiently by
a straight-line program.

Why Change
the Sequence?

You may have a problem, for example, that requires the
same key sequence to be executed many times.
Although you could probably repeat the key sequence
every place it is needed, the program could become very
large, perhaps exceeding the memory capacity of the
calculator. You could also spend a lot of time storing the
program in memory.

Transfer instructions allow you to solve problems
involving repetition by directing the calculator to
execute a key sequence as many times as needed. By
using these instructions, you can shorten a program and
make it easier to enter and edit.

Besides enabling a program to repeat a key sequence,
transfer instructions allow a program to skip a sequence
of keystrokes. This feature is particularly powerful
when transfer instructions are used in conjunction with
decision-making instructions, as described in the next
chapter.

4-2 Controlling the Sequence

The Transfer
Functions

The DFN
Instruction

The transfer functions are listed below.

Mnemonic Action

GTL In a program, GTL (go to label) transfers
control to a program step you have labeled.

From the keyboard, GTL sets the program
counter to a program step you have
labeled, but does not start program
execution.

GTO In a program, GTO (go to) transfers control
to the specified program step.

From the keyboard, GTO sets the program
counter to a specified program step, but
does not start program execution.

SBL In a program or from the keyboard, SBL
(subroutine label) transfers control to a
subroutine you have labeled.

SBR In a program or from the keyboard, SBR
(subroutine) transfers control to the
subroutine at the specified program step.

Note: Within a program, RUN can be used with a
transfer instruction to transfer control between
programs that are stored in separate areas. For
information on this use of transfer instructions, refer to
page 8-34.

The DFN (define) instruction lets you create your own
function-key menus. These menus, referred to as user-
defined menus, control the order of program execution
based upon the function key that you press.

The DFN instruction can be used only within a program.

Controlling the Sequence 4-3

Before Proceeding with this Chapter

Before working the examples in the remainder of this guide,
you should be familiar with the basic programming skills
covered in the first three chapters. If you have difficulty with
an example, refer to those chapters for instructions.

Assumptions

Format for
Program
Examples

From this point forward, you should know how to
activate and exit the learn mode, clear program
memory, display the program counter, enter uppercase
and lowercase messages, and run a program stored in
program memory.

Up to now, program examples have been presentedin a
format that shows each keystroke required to enter a
program. In remaining chapters:

» Examplesshow only the mnemonic form of a program
instruction. For example, PAU represents the key
sequence [PAUSEL If you don’t recognize a
mnemonic, refer to Appendix C for a complete list of
instruction mnemonics.

» Alpha messages are shown in single quotes. You must
remember to activate and exit the alpha mode to
enter these messages. Alpha key sequences, where
shown, assume that your keyboard is not in lowercase
lock (LC indicator not visible in the display).

» Functionally related instructions are grouped
together. The instructions are not necessarily
grouped as they would be in a printed listing.

For example, the last program in Chapter 3 is shown
below in mnemonic form.

PC= Program Mnemonics Comments
0000 ‘ENTER RADIUS' Creates message
0012 BRK Waits for radius
0013 y™ 3 * Pl

2 B30= Calculates volume
0022 ‘VOL=' Creates message
0026 COL 16 MRG = Positions cursor and

merges

0030 HLT Stops program

4-4 Controlling the Sequence

Using Program Labels

A program label is an instruction that you can use to identify a
particular location in a program. Typically, you use a label to
mark the beginning of a sequence of instructions to which
you plan to transfer program control.

Labeling a
Program
Segment

To place a label instruction in a program, use the key
sequence:

[2nd][LBL] 2

where aa is any two alphanumeric characters. For
example, [LBL] AA places the mnemonic ‘‘LBL AA"’
in a program at the current location of the program
counter.

After you press [LBL], the calculator interprets your
next keystrokes as alphanumeric characters. This
eliminates the need for you to activate the alpha mode to
enter the two characters of the label. You can use any
combination of uppercase and lowercase letters, digits,
and punctuation symbols in the label name.

Some examples of labels are shown below.

Label Key Sequence

LBL fx [2nd] [LBL] [2nd] F [2nd] X
LBL 10 [LBL110

LBLZ1 [2nd] [LBL] Z1

LBL Aa [2nd] [LBL]A [2nd] A

You can label any part of a program; the presence of the
label does not interfere with program execution or any
calculations in progress in the program.

You can use as many labels as you need in a program.
However, you should not use the same label more than
once in the same program. If you repeat a label, any
transfer to that label is always directed to the first
occurrence of the label. (The calculator begins searching
for alabel at program address 0000 and will not find the
additional occurrences of the label.) Refer to ‘‘Listing
Program Labels’’ in this chapter for details on listing the
labels used in program memory.

(continued)

Controlling the Sequence 4-5

Using Program Labels (Continued)

Why Use The field of a transfer instruction must specify a transfer

Labels? location. Although you can identify the transfer location
by giving its step address, it is more flexible to use a
label. A label provides you with a method of identifying
a program location that is not dependent upon the
numeric address of the location.

The step address of an instruction changes when you
insert or delete instructions ahead of it. By using a label
to identify a program location, you do not have to keep
track of these changes. The relative location of the label
remains constant, eliminating the need to correct any
numeric transfer addresses each time you insert or
delete other program instructions.

Consider a program that contains the segment shown
below. If you insert a RCL B instruction before this
segment, you change the address of all instructions that
follow the inserted instruction.

Before Insertion After Insertion

PC= Mnemonics PC= Mnemonics

0130 Hla= 0130 RCL B

0133 PAU 0132 *Pl =
0135 PAU

Without labels, you must change any transfer references
to the * instruction originally located at 0130 to show
that the new location of the instructionis 0132, If a
program has many such references, correcting them is
time-consuming and can cause mistakes.

4-6 Controlling the Sequence

Why Use
Labels?
(Continued)

With labels, you can insert an instruction without

correcting any references.

Before Insertion After Insertion

PC= Mnemonics PC= Mnemonics

0130 LBL AA 0130 RCL B

0133 *Pl = 0132 LBL AA

0136 PAU 0135 L e
0138 PAU

The segment still begins at the point marked by LBL AA.
Any transfer to LBL AA now transfers to step 135

instead of step 133.

Controlling the Sequence 4-7

Using Go To Label

The GTL (go to label) instruction transfers program control to
the first instruction following a specified label.

Transferring
Control to
a Label

The normal order of program execution is from program
step 0000 to the end of the program. By including a GTL
instruction in the program, you can transfer program
control to any labeled location in the program. The
program runs sequentially from the new location until
another transfer instruction is executed or the program

is stopped.

To enter the GTL instruction, use the key sequence:

[GTLlaa
where aa corresponds to the label in the program.

The following illustrations show how the GTL
instruction affects the flow of program execution. In the
illustration on the left, the GTL instruction causes the
program to skip several instructions. In the illustration
on the right, the GTL instruction causes the program to
repeat several instructions. Program sequences such as

that on the right are called loops.
Skip Instructions Repeat Instructions
GTL AA
LBLAA |« LBLZZ |4
GTLZZ

4-8 Controlling the Sequence

Example

Running the
Example

A counting loop is a good way to illustrate a transfer
instruction. The following program uses a transfer
instruction to repeat the key sequence + 2=PAU. The
PAU instruction is included in the program so that you
can see the result of the + 2 =operation. The GTL AA
instruction transfers control back to the beginning of the
program, causing the sequence to be repeated endlessly.

By repeating the sequence, the GTL instruction creates a
loop that counts by twos.

PC= Program Mnemonics Comments

0000 LBL AA Labels segment

0003 h 2 = Adds2

0006 PAU Pauses for one second

0007 GTL AA Transfers control to
label AA

Because the program does not include a means to exit
the loop, this type of loop is called an infinite loop. To
stop an infinite loop, you must press or [BREAK].
Methods for exiting a loop under program control are
described in the next chapter.

Run the program.

Procedure Press Display

Clear the display 0.

Run the program (PGM»)
4.

Stop the program 6.

Controlling the Sequence 4-9

UsingGoTo

In some cases, you may prefer to transfer control to an
instruction by referring to its program address instead of
using a label. The address of an instruction is the step
number of the instruction as shown by the calculator’s
program counter.

Determining
the Address of
an Instruction

Transferring
Control by
Address

To find the program address of an instruction you have
stored in program memory:

1. Press and use <1st), <PC, or <END) to enter
the learn mode at the point nearest the instruction.

2. Use the [=] and [<] keys to position the cursor on the
instruction. The address of the instruction is shown

by the program counter.

For example, suppose you want to find the program
address of the PAU instruction in the program entered
on page 4-9. If you apply the procedure described above
to place the cursor over PAU, the display should show:

In this case, the address of the PAU instruction is 0006.

The GTO (go to) instruction transfers control to a
specified program address. To enter a GTO instruction in
a program, use the key sequence

[InV] [GTLl nnnn

where nnnn represents the address of the instruction
you want to execute next. For example, GTO 0150
transfers control to the instruction at program address
0150.

You can use short-form addressing, as described in the
‘‘Memory Operations’’ chapter of the TT-95 User’s
Guide, to specify the address.

4-10 Controlling the Sequence

Using Subroutines in a Program

As you begin to write programs that are more complex, you
may find that you need to execute the same sequence of
instructions from several different locations in the program.
Although you could store the sequence at each point where
you want it to execute, you can save yourself time by designing
the sequence as a subroutine and storing it only once.

Whatls a
Subroutine?

A subroutine is a sequence of instructions that can be
executed, or called, from any point in the program.
When you call a subroutine, control is transferred to the
beginning of the subroutine. After the subroutine has
executed, control returns to the instruction that follows
the subroutine call. The word ‘‘call’’ is understood by
programmers to mean that control will return to the
original segment after the subroutine has been
executed.

To include a subroutine in a program, use the following
procedure.

1. Store alabel at the beginning of the subroutine.
(Although you can transfer control to the step address
of a subroutine, using a label has the advantages
stated earlier.)

2. Store the instructions that make up the subroutine.

3. Store a RTN (return) instruction at the end of the
subroutine. To enter a return instruction, press
[RTNI.

The following illustration shows how a subroutine
affects the flow of program execution. The SBL
instruction (described later in this section) is used to call
the subroutine.

Main Program Subroutine

_’—P LBL A
SBL A

(continued)

Controlling the Sequence 4-11

Using Subroutines in a Program (Continued)

Levels of You can design a program so that one subroutine calls

Subroutines another subroutine. In this case, the RTN instruction at
the end of the second subroutine returns control to the
first subroutine, which returns control to the original
program segment.

The calculator allows a maximum of eight “‘levels’’ of
subroutines to be active at one time. The illustration
below shows two levels of subroutine calls.

Main Program 1st Level 2nd Level
LBLAA » LBLBB
SBLAA —I_’]
- *
SBLBB |—
|
v v
RTN RTN

When the calculator encounters a RTN instruction, it
returns control to the program segment or subroutine
that called the current level of subroutine. If the
calculator encounters a RTN instruction when no levels
are active, the program stops. (RTN operates like HLT if
there are no subroutine levels active.)

4-12 Controlling the Sequence

Calling a
Subroutine
by Label

Callinga
Subroutine
by Address

The SBL (subroutine label) instruction transfers program
control to a subroutine that begins with a specified label.

To enter the SBL instruction, use the key sequence
[sBLlaa

where aa represents the label of the subroutine you
want to call.

After the subroutine has executed, program control
returns to the instruction following the SBL instruction.

The SBR (subroutine) instruction lets you transfer
program control to a subroutine by referring to the
subroutine’s program address.

To enter the SBR instruction, use the key sequence
[InV] [sBLI1nnnn

where nnnn represents the step address of the first
instruction in the subroutine.

After the subroutine has executed, program control
returns to the instruction following the SBR instruction.

(continued)

Controlling the Sequence 4-13

Using Subroutines in a Program (Continued)

Avoiding
Difficulties
in Subroutines

To avoid some common problems that can occur when
using subroutines in programs, keep these suggestionsin
mind.

-

To prevent the accidental execution of a subroutine,
make sure the program segment preceding it ends
with a RTN, HLT, or transfer instruction.

If the subroutine needs an intermediate result, use
parentheses instead of [=] to perform the calculation.
This avoids completing calculations in progress in the
program segment that called the subroutine.

If you need to clear the display within a subroutine,
use a numeric entry of 0 instead of [CLEAR].
clears all calculations in progress.

You should not use a subroutine to call itself. Using a
subroutine to call itself will generally result in a SBR
STACK FULL error.

4-14 Controlling the Sequence

Example

Running the
Example

This example illustrates a simple subroutine (labeled PZ)
that multiplies the contents of the numeric display
register by 2, adds 1, and pauses for one second before
returning control to the main program. The main
program calls the subroutine to perform the calculation
on the numbers 2 and 9.

PC= Program Mnemonics = Comments
0000 LBL AA Labels segment
0003 CLR Clears calculator
0004 2 SBL PZ Calls subroutine
0008 9 SBL PZ Calls subroutine again
0012 CLR Clears calculator
0013 HLT Stops program
0014 LBL PZ Labels subroutine
0017 (*2+1) Performs calculation
0023 PAU Pauses to display
result
0024 RTN Returns from
subroutine
Run the program.
Procedure Press Display
Run the program (PGM> b.
19.
0.

Controlling the Sequence 4-15

Programming the Function Keys

By “defining” the function keys, you can create a menu that
lets you transfer control to any of several locations in the
program, depending on the function key you press.

Definable During normal calculator operation, the function keys

Function Keys are defined by the system menus. For example, when
you press [CONV], the calculator defines the function
keys to provide a variety of conversions.

You can create your own function-key definitions by
executing a [2nd] [DFN] instruction within a program (DFN
cannot be used as a keyboard command). The DFN
(define) instruction is followed by a field that specifies:

» The function key to define.

> The three-character message to display above the
key. (This lets you display information to describe the
definition of the key.)

» The label of the program segment to execute when
you press the function key. (The sequence of
instructions following the label determines what
operations are performed when you press the key.)

The three-character message above the function key is
not displayed until program execution is stopped or
paused.

Storing the Toinclude a DFN instruction in a program:
Instruction
1. Press [DFNI.
2. Press the function key ([F1]-[F5]) you are defining.
3. Enter the three-character message you want
displayed above the key. If your message has fewer
than three characters, use spaces as blank characters.

4. Enter the label where you want to start execution
when the function key is pressed.

4-16 Controlling the Sequence

Example The following keystrokes store a DFN instruction in
program memory. This instruction displays *‘SUB"’
above [F1] and instructs the calculator to transfer
program execution to label AA when you press [F1].

Procedure Press Display

Define [Fi]key [DFNI] DFN
[F1] DFN Fi
suB DFN F1:SUB@
AA DFN F1.SUB@AA

The calculator automatically accepts alpha characters
for the function description and label name. It also
supplies the ‘*:"" after you enter the first character of the
function description and the ‘@'’ after you enter the
last character of the description. You can read this
instruction as ‘‘Define key F1 as SUB at label AA."’

Controlling the Sequence 4-17

Creating a Function-Key Menu

When using a menu, you must design the program so that
each function key transfers control to a specific program
segment. Typically, you place a HLT instruction at the end of
each segment to prevent the calculator from executing past
the segment.

Building
a Menu

4-18

To create a menu in a program, use a separate DFN
instruction for each function key you want to define.
After the final function key is defined, put a HLT
instruction at the point in the program where you want
the definitions displayed.

The following illustration shows how you structure a
program for a three-function menu. Pressing [Fi], [F2], or
[Fa] transfers program execution to label AA, BB, or CC,
respectively.

DFN F1:1ST@AA These instructions define
DFN F22ND@BB the menu shown below.
DFN F3:3RD@CC

HLT

1] [F2] [F] [F4] [Fl

LBLAA
HLT
LBLBB

HLT
LBLCC

HLT

Controlling the Sequence

Example
Program 1

Running
Example 1

Write a program that creates a menu with options to
calculate the third, fourth, or fifth root of a number.

PC= Program Mnemonics Comments

0000 ‘ROOTS’ Creates menu title

0005 DFN F1:3RD@AA Defines F1

0012 DFN F24TH@BB Defines F2

0019 DFN F35TH@CC Defines F3

0026 HLT Stops program and
displays menu

0027 LBL AA Labels segment

0030 (INV y™x 3) Calculates 3rd root

0035 HLT Stops program

0036 LBL BB Labels segment

0039 (INV y*x 4) Calculates 4th root

0044 HLT Stops program

0045 LBL CC Labels segment

0048 (INV y*x 5) Calculates 5th root

0053 HLT Stops program

Test the program by calculating the third and fifth roots

of a number.
Procedure Press Display
Activate the menu ROOTS
{PGM> 3RD 4TH 5TH

Enter a number 8 8
Calculate 3rd root <{3RD> 2
Enter a number 3125 3125
Calculate 5th root (5TH> 5

(continued)

Controlling the Sequence 4-19

Creating a Function-Key Menu (Continued)

Example
Program 2

Running
Example 2

4-20

This example lets you use the function keys to enter
sidesaand b of aright triangle. When you press (CAL>,
the program calculates the length of the hypotenuse. (If
the keyboard is not in lowercase lock, use Aand

B to enter the lowercase lettersaand b.)

PC= Program Mnemonics Comments

0000 ‘ENTER SIDES' Creates menu title

0011 DFN Fl:a @SA Defines F1

0018 DFN F2b @SB Defines F2

0025 DFN F5:CAL@CH Defines F5

0032 HLT Stops program and
displays menu

0033 LBL SA Labels segment

0036 STO A HLT Storessideainreg. A

0039 LBL SB Labels segment

0042 STO B HLT Storessidebinreg. B

0045 LBL CH Labels segment

0048 (RCL A x"2 Calculates hypotenuse

0052 + RCL B x*2 SQR

0058 ‘HYP=" Creates alpha message

0062 COL 16 MRG = Merges result

0066 HLT Stops program

Test the program by entering values that describe a

“‘3-4-5"" triangle.
Procedure Press Display
Activate the menu ENTER SIDES

(PGM> ab CAL
Entersidea 30 <a> 30.
Enterside b 40 40.
Calculate hypotenuse <CAL> HYP= 50.

Controlling the Sequence

Restoring a User-Defined Menu

if you use a system menu while a menu of yours is displayed,
the system menu will replace your menu. You can restore
your menu definitions by pressing [OLD].

Restoring
Your Menus

If you clear your menu by using a system-menu key or
pressing [F:CLR], you can restore the menu and any
previous alpha message by pressing [OLD]. You can also
restore the menu by executing as a program
instruction.

You cannot use to restore a system menu.

For example, suppose your program displays a menu
that lets you enter several variables. You want to
perform a metric conversion before entering one of the
variables. When you press [CONV], your menu is replaced
by the CONVERSIONS menu. After you make the
conversion, press to restore your menu.

Once a menu has been defined by a program, that menu
can be restored by until you:

» Replace the menu with another user-defined menu.

» (Clear the menu with a clear function-key instruction,
as explained in the next section.

» Turn off the calculator.
» Run another program.

> Run the same program again, but stop execution prior
to defining the menu.

To restore a user-defined menu after any of the actions

listed above, you must re-execute the instructions that
created the menu.

Controlling the Sequence 4-21

Clearing Function-Key Definitions

The calculator has two program instructions for clearing the
function-key definitions.

Why Clear the There are several reasons to clear the function keysina
Function Keys? program.

v

You may want to define a function key for a limited
time. By clearing the function key, you erase the
function description from the display and cancel the
function definition.

A\

If you use more than one menu in the program, you
may need to clear some portion of the menu.

Example For example, suppose you want to display the following
menus at different points in a program. The first menu
has five options.

The second menu has two options.

When defining the second menu, you cannot redefine
just the [F1] and [F2] keys. You must also clear [F3], [Fa],
and [F8]. Otherwise, the second menu would display:

4-22 Controlling the Sequence

How to Clear The calculator has instructions to clear function-key
Function Keys definitions either individually or all at once.

» Inthe previous example, it is more efficient to clear
all the function keys before you redefine [F1] and [F2].

» Inacase where two menus are almost identical,
except that the second menu has one or two fewer
selections, it is more efficient to clear the function
keys individually.

Use one of the following procedures within a program
when you want to clear the function-key definitions.

» Toclear all five definitions at once, use
IDFN]
The mnemonic for [DFN] is DFN CLR.

» Toclear the definition of a specific function key, use
[DEN] F

where Fxrepresents the function key ([F1]-[F5]) that
you want to clear.

The mnemonic for [2nd] [DFN]1 Fix is DFN Fx
CLR.

Controlling the Sequence 4-23

Listing Program Labels

You can list the addresses and names of labels used in
program memory by using the [LIST] <LBL) function.

Listing To list the labels in the program currently in program
Program Labels memory:

1. Press [LiST] <LBL).
The display shows:

{1st) Begins searching for labels at address
0000.

{PC> Begins searching for labels at the address
specified by the current setting of the

program counter.

2. Select the point at which you want to begin the
listing. Unless you pause or stop the listing, the
calculator lists through the last label in program
memory.

The listing format shows the step address of the label
followed by the label name. If you have a printer
connected, the listing is also printed.

Controlling If you do not have a printer connected, the calculator
the Speed of pauses for one second before displaying the next label.
the Listing You can use the |+]| key to pause the listing indefinitely

or to advance to the next label, as described on page
1-14 of this guide.

Stopping To stop a listing before it has finished, hold down the
the Listing or key until LIST: reappears in the display.

4-24 Controlling the Sequence

Speeding Up Program Execution

The ASM (assemble) function can increase the speed of
programs that perform frequent transfers by label.
Assembled programs execute faster because the calculator
does not have to search for a label before transferring control.

Assembling
a Program

Disassembling
a Program

The [AsM](assemble) key sequence, executed asa
keyboard command or program instruction, converts all
program label references to the step addresses of those
labels.

» GTL instructions are converted to GTO instructions.

= SBLinstructions are converted to SBR instructions.

» DFN instructions are converted to DFA (define
absolute) instructions. (You cannot enter the DFA

instruction from the keyboard.)

Before assembly After assembly

0000 LBL XX CLR 20

0006 STO 020

0009 LBL YY INC 020 39

0017 IF< 020 GTL ZZCLR
0024 STO IND 020 GTL YY
0031 LBL ZZ CLR STO 020
0038 DFN F1:EENT@XX HLT

0000 LBL XX CLR 20
0006 STO 020

0009 LBL YY INC 020 39

0017 IF< 020 GTO 0034 CLR
0024 STO IND 020 GTO 0012
0031 LBL ZZ CLR STO 020
0038 DFA F1:ENT@0003 HLT

To assemble a program currently stored in program
memory, press [ASM].

Disassembling a program restores all references to labels
in the program. You can then modify the program
without the editing difficulties associated with using
numeric transfer addresses.

To disassemble the program currently stored in program
memory, press [INV] [AsM].

Controlling the Sequence 4-25

Reference Section

Use this section as a source of reference information on
changing the order of program execution within a program.
Forinformation on transferring execution to a program stored
inthe calculator’s file space or in a Constant Memory™
cartridge, refer to the “File Operations” chapter of this guide.

Label

List
Labels

GoTo Label

GoTo

Setting the
Program
Counter

[LBL] aa—Labels a program segment. Labels are used
in a program to mark locations for transfer functions.
[LBL]is ignored as a keyboard command.

{LBL>—Lists labels used in program memory. The
listing format shows the program address followed by
the label name. As a keyboard command, <LBL> lets you
start the label search for the list at the beginning of
program memory or at the current location of the
program counter. As a program instruction, <LBL>
always starts the label search for the list at program
address 0000.

The instruction mnemonic for ¢LBL)isLL.

[GTL] aa—As a program instruction, [GTL]
transfers execution to the instruction following label aa
in the current program or file. As a keyboard command,
[GTL]sets the program counter to the instruction
following label aa in program memory, but does not start
program execution.

[inv] [GTL] nnnn—As a program instruction,

[inv] [GTL] transfers execution to program step nnnn
in the current program or file. As a keyboard command,
[INV] [GTL]sets the program counter to step nnnnin
program memory, but does not start program execution.

The instruction mnemonic for [INV] [GTL]is GTO.
You can use [GTL]and [INV] [GTL]to set the

program counter to a desired location before you enter
the learn mode. For example, if you want to edit step
0025 of program memory, first press [INV] [GTL10025
to set the program counter to step 0025. Then press
¢PC> to enter the learn mode.

4-26 Controlling the Sequence

The Subroutine
Return Stack

Subroutine
Label

Subroutine

Subroutine return addresses are stored in a system
memory area called the subroutine return stack. Each
time an SBL or SBR instruction is executed, a return
addressis added to the stack. Each time a return
instruction is executed, the return address that was
stored last is removed from the stack.

The calculator can store up to eight return addresses. If a
program exceeds this limit, the error message SBR STACK
FULL is displayed and the program stops. Any error that
stops program execution clears the subroutine return
stack.

[2nd] [SBL] aa—As a program instruction, [2nd] [SBL] stores
the address of the next instruction as a return address
and then transfers execution to the instruction following
label aa in the current program or file. As a keyboard
command, [sBL]starts execution at the labeled
segment in program memory, but does not store a return
address. Using [sBL]as a keyboard command clears
the subroutine return stack.

[inv] [sBLlnnmn—As a program instruction,

[INV] [2nd] ISBL] stores the address of the next instruction
as areturn address and then transfers execution to the
program segment beginning at address nnnn in the
current program or file. As a keyboard command,

[INV] [2nd] [SBL] transfers execution to address nnnn in
program memory, but does not save a return address.
Using [INV] IsBL]as a keyboard command clears the
subroutine return stack.

The instruction mnemonic for [INV] [sBL]is SBR.

(continued)

Controlling the Sequence 4-27

Reference Section (Continued)

Return

Define Function
Key

Clear All
Function Keys

[RTN]—Transfers program execution to the return
address stored most recently. If no return addresses are
stored in the subroutine return stack, a return
instruction stops program execution just as a halt
instruction does.

As explained in the ‘‘File Operations’’ chapter of this
guide, you can execute an entire program as a
subroutine after the program is saved as a file. If you
intend to execute a program as a subroutine, use a RTN
instruction at the end of the program instead of a HLT
instruction.

[DFN] Fx:aaa@aa—Defines function key Fx, where
Fxrepresents one of the five function keys, aaa
represents the three-character message to be displayed
above the function key, and aa represents the label to
which execution transfers when you press Fx. The
calculator supplies the *‘:"" and ‘@'’ characters as the
instruction is entered into program memory.

The function keys are activated after program execution
is stopped and remain in effect as long as the definitions
are visible in the display. If subsequent system-menu
operations replace the definitions, you can restore the
most recently defined function keys by pressing [OLD].

[DFN]isignored as a keyboard command.

[DFN] [CLEAR]—Clears the definitions of all the
function keys and erases the function labels from the
display. After function definitions have been cleared by
this sequence, they cannot be recalled by [OLD].

[DFN] isignored as a keyboard command.

The instruction mnemonic for [DFN] isDFN
CLR.

4-28 Controlling the Sequence

Clear a Function
Key

Old Menu

Assemble
Program

Disassemble
Program

[DFN] Fz [CLEAR]—Clears the definition of function
key Frand erases the function label from the display.
Once a function definition has been cleared by this
sequence, it cannot be recalled by [OLD]. [DFN] Fx
isignored as a keyboard command.

The instruction mnemonic for [DFN]1Fx is
DFN Fx CLR.

[OLD]—Restores the most recently defined user menu and
user alpha message. does not restore user-defined
menus that have been cleared by DFN CLR or DFN Fx
CLR.

does not restore system menus.

[AsM]—Changes all label addressing used by the
program in program memory into direct numeric
addressing. Assembling converts GTL instructions to
GTO, SBL instructions to SBR, and DFN instructions to
DFA. You cannot enter the DFA (define function
absolute) instruction from the keyboard.

[INV] [Asm]—Disassembles a previously assembled
program. This restores label addresses and converts GTO
instructions to GTL, SBR instructions to SBL, and DFA
instructions to DFN. Instructions that were stored
originally with numeric addressing are not converted to
label addressing.

Controlling the Sequence 4-29

noinnul Yo moiinfleb o) sesiO—FAS D] « 7 (w30) [Bag]
Senlgaih sl reod ladel noldomst el soess brs =™ v
aist vd batealo nosd esd noltiafish notivne 8 8500
ﬂ[mlﬂ G830 v bollaser od sonnes 3,
Ansmmmo eodyed pes batony) af

bos uneat 1oey bogiteb vidnenet Jeom s eoroleal —@101
bmﬁab—-msmmmh 630] .opsesanm uh;hm

of anciiaunnei WA bns 988 od enoitswrstent JAZ OTO
oot safish) ANG st 1adins tonnes po¥ . ATA
.m:simﬁmﬁnuw(m

baldmsees vlewoivaiq s 2aldmosesai(] —{MBA] bas] Vit
OT2 ermvinos bra esass1bbs todal seroiet 2T .mameig
A% bas JHE 0 anoloonteni 682 JTD of ancitoiest
bsyode omw Jnrll anodtsustan] . NG o) eaoitowsiesl

ol bsrevnos ton 918 gniessibbs ohemun ditw wisnigho

(1353 snnsaped sl yaillotined

Chapter 5: Using Tests in a Program

This chapter shows you how to use tests in a program. By
using a test instruction, you can design a program that
“decides™ foritself whether to execute an instruction.

Table of Contents

Using Tests

Introduction

A test enables a program to skip the execution of an
instruction, depending on some condition in the program. For
example, you can design a program to execute a particular
instruction only if the result of a calculation is greater than
100.

Types of
Tests

How a Test
Affects
Program
Execution

You can use four types of tests in your programs. These
tests are accessed through the [TESTS] and [FLAGS] keys.

» Comparison Test—Compares the value in the numeric
display register with the value in a data register.

= DSZ Test—Decrements (or increments) the valueina
data register and then tests if the value is zero.

» Flag Test—Tests the status of a flag to determine if it
is set or reset.

» YES/NO Test—Lets you control the execution of a
program by responding to a yes/no question.

When using a test, you specify a condition to test. The
program tests that condition and determines if the result
of the test is true or false.

» [f the resultis true, program execution continuesin
normal sequential order.

» Ifthe result is false, the program skips the first
instruction that follows the test.

This rule is summarized as ‘Do if true, skip if false.”

false true

test instruction :

A 4

Because a test determines whether the next program
instruction is executed, you can perform tests only in a
program—not from the keyboard.

5-2 Using Tests

Using a
Test

For example, you may want to use a test to determine
whether to execute a memory operation such as RCL A.
This case isillustrated below. If the result of the test is
true, the RCL A instruction is executed. If the result is
false, the RCL A instruction is skipped.

false true

test instruction
RCL A il

Although a test skips only one instruction, you can make
a program skip or execute entire segments by using a
transfer instruction following the test.

For example, you may want a program to transfer to a
segment labeled BB if a certain condition is true. This
case isillustrated below. If the result of the test is true,
the GTL BB instruction is executed. If the result is false,
the GTL BB instruction is skipped.

false true
test instruction
GTLBB EE

h 4

LBL BB <

If the instruction following a test is an inverse function
such as INV SIN, only INV is skipped.

Using Tests 5-3

Using Comparison Tests

You can use one of six comparison tests to compare the value
in the numeric display register with the contents of a data
register. (The value in the numeric display register is the
13-digit number used internally, not necessarily the rounded
value shown in the display.)

Available
Comparisons

When you press [TESTS], the following menu is displayed.

This menu enables you to select from the following
comparison tests. (In this table, the word *‘display”’
means the value in the numeric display register.)

AF>) Display greater than the data register
contents?

[INV] <IF>> Display less than or equal to the data register
contents?

F< Display less than the data register contents?

[INV] <IF<> Display greater than or equal to the data
register contents?

E= Display equal to the data register contents?

[INV] <IF = > Display not equal to the data register
contents?

Note: The <DSZ)> and <(Y/N> selections are described in
later sections of this chapter.

A comparison test compares the 13-digit numbers stored
internally in the numeric display register and the
specified data register. If you want the test to compare
the numbers as they would be displayed, use ¢{(RND> to
round them to the current display format.

5-4 Using Tests

Performing a
Comparison
Test

To include a comparison test in a program, use one of the
following key sequences:

¥yYN Y VYN

AF>> manor X

[INV] <IF>) mnnor X
[TESTS] <IF<) nnnor X

[INV] <IF<> mmm or X
{F=)nnnorX
[TESTS| [INV] <IF = > nnnor X

For example, suppose that you want to add 2 to the
contents of the numeric display register and then
determine if the result is equal to the contents of data
register A. If the result is equal to the value in register A,
you want the program to stop.

The key sequence to enter this test in a program is:

[+]2 [=] TESTS] <IF = > A [HALT]

+
2

false = true
L

IF=A
et]

If the result of the addition is equal to the value in
register A, the test result is true and the HLT
instruction is executed.

If the result of the addition is not equal to the value in
register A, the test result is false and the HLT
instruction is skipped.

(continued)

Using Tests 5-5

Using Comparison Tests (Continued)

Example Program loops provide a good example of the advantages
of using tests in a program. Write a program that counts
by twos, like the example shown on page 4-9, but uses a
test to stop the loop when the count reaches 20.
PC= Program Mnemonics Comments
0000 20 STO A Stores comparison
value
0004 CLR Clears calculator
0005 LBL LL Begins loop
0008 +2= Adds2
0011 PAU Pauses to show result
0012 IF= A Does count = 20?
0014 HLT Yes—stop the program
0015 GTL LL No—repeat loop
Running the Run the program and observe the result.
Example
Procedure Press Display
Run the program <PGM> 2.
4,
20.
5-6 Using Tests

Using DSZ Tests

A DSZ test combines two operations into a single instruction.
First, it decrements the value in a specified data register.
Then, it tests whether the value has reached zero. A DSZ test
is particularly useful to limit the number of times a loop
repeats.

Available
DSZ Tests

Rules Used
in Decrementing

Performing a
DSZ Test

When you press [TESTS], you can select one of two DSZ
tests.

<DSZ> Decrement and skip if zero.

[INV] <DSZ> Decrement and execute if zero.

In a DSZ test, ‘‘decrement’’ means that the value in the
data register approaches zero, based on the following

rules.

» If the stored value is greater than 1, the DSZ test
subtracts 1 from the value.

» If the stored value is less than — 1, the DSZ test adds 1
to the value.

» Ifthe valueisbetween — 1 and 1, the DSZ test storesa
zero in the register.

Toinclude a DSZ test in a program, use one of the
following key sequences:

- ¢<DSZ) nnnor X
> [INV] <DSZ) nnnor X

(continued)

Using Tests 5-7

Using DSZ Tests (Continued)

Decrement
and Skip
if Zero

Decrement
and Execute
if Zero

The *‘decrement and skip if zero’’ test decrements the
value in a specified data register and then tests if the
register value equals zero. If the register value does
equal zero, the program skips the instruction that
immediately follows the DSZ test. If the register value
does not equal zero, execution continues in normal
sequential order.

A=0 A#0

DSZA
]

The ““decrement and execute if zero’’ test decrements
the value in a specified data register and then tests if the
register value equals zero. If the register value does not
equal zero, the program skips the instruction that
immediately follows the INV DSZ test. If the register
value does equal zero, execution continues in normal
sequential order.

A#0 A=0

INVDSZ A :’

5-8 Using Tests

Example

The DSZ tests offer you a convenient and accurate
method of executing a program sequence a
predetermined number of times. By using either DSZ or
INV DSZ, you can control whether the instruction
following the test is executed a specific number of times
or skipped a specific number of times.

The following program illustrates the operation of a DSZ
test in a loop. The program allows you to enter the initial
register value for the DSZ test. It then displays the
contents of that data register each time the loop
executes.

PC= Program Mnemonics Comments

0000 STO C Stores initial DSZ value

0002 LBL LL Begins loop

0005 RCL C Recalls DSZ value

0007 PAU Displays value

0008 DSZ C Decrements and tests

C

0010 GTL LL C#0—repeat loop

0013 HLT C =0—stop program
(continued)

Using Tests 5-9

Using DSZ Tests (Continued)

Running the Enter 4 into the display and run the program.
Example
Procedure Press Display
Display RUN menu SELECT:
Enter count value 4
Run the program (PGM>

Slple|s]a

Notice that 0 is not displayed. When the data register is
decremented to zero, the program exits the loop and
stops the program.

The following table shows what appears in the display if
you run the program with a negative number and with a
number that contains a fractional part.

Starting Starting
with - 4 with 4.3
-4, 43
-3. 33
-2, 2.3
-1. 123

2.3

5-10 Using Tests

Using the YES/NO Test

The YIN test gives you an easy way to let the user control the
program by answering yes or no to a question. Unlike the
tests discussed previously in this chapter, the Y/N test does
not compare any numeric values in the program.

The YESINO
Test

When you press [TESTS], you can enter the Y/N test into
your program.

CYINY Defines the [F1] key as YES and the [F2] key as
NO and halts the program. This lets the user
of your program respond to an alpha
message you have placed in the display.

If you press {NO? in response to the Y/N test, the first
instruction following the test is skipped. If you press
<YES)> inresponse to the Y/N test, execution continues in
normal sequential order.

{NO> <YES>

N

Although you could create a yes/no menu using the DFN
instruction, the Y/N test has the following advantages
whenever you want a program to pose a yes/no question.

* Youdonot have to include <YES> and {NO> function
key definitions.

= Youdo not have to include a HLT instruction in the
program.

= Youdo not have to clear any function key definitions.
(The calculator clears the definitions automatically.)

(continued)

Using Tests 5-11

Using the YES/NO Test (Continued)

Example

Running
Example

5-12

The following program creates a loop that calculates the

square roots of a sequence of numbers beginning with 1.

The program uses a Y/N test to ask if you want to sum

each result to data register B.

PC= Program Mnemonics Comments

0000 0 STO A STO B Initializes A and B

0005 LBL AA Begins loop

0008 INC A Increments count

0010 RCL A Gets current count

0012 SQR Calculates square root

0013 PAU Displays square root

0014 ‘SUM TO B? Creates message

0023 YN YES/NO test

0024 ST+ B {YES>—sumto B

0026 GTL AA Repeats loop

the Run the program and sum the values of the first and

third square roots.

Procedure Press Display

Start the program <PGM> 1.
SUM TO B?

Sum 1st number <YES> 1.414213562
SUMTO B?

Don’'t sum 2nd number <(NO» 1.732050808
SUMTO B?

Sum 3rd number <YES> 2.
SUM TO B?

Check the sum B 2.732050808

Clear function keys [F:CLR] 2.732050808

Using Tests

Using Flags

Flags give you a way to retain information about the state of
the calculator or the status of a variable for later use. For
example, you might set a flag if the value of an intermediate
result is negative. Later, you can test the flag to see if the
number was negative, even though the number itself is no
longer available.

What s
a Flag?

User Flags

You can think of a flag as a two-position switch that is
either set or reset. You can:

» Setaflag.
» Resetaflag.
» Test whether a flagis set.

» Test whether a flagisreset.

After you set or reset a user flag, that setting is retained
until you change it. Although you can set or reset flags
from the keyboard or in a program, you can test a flag
only in a program.

The TI-95 has 16 user flags, numbered 00 through 15,
that you can use. Additional flags used by the calculator
and by library cartridges are discussed in Appendix C.

Flags 00-14 can be used as needed in a program.

Flag 15 is the halt-on-error flag. When this flag is set, any
error condition that occurs while a program is running
causes the program to halt.

When flag 15 is reset (the default condition), the
following errors do not stop the program.

> OVERFLOW
> INVALID ARGUMENT
> AOS STACK FULL

\

/O ERROR nnn

By executing the LS (list status) instruction and then
examining the numeric display register, the program can
test whether any of these errors has occurred and can
handle the error as you prefer.

(continued)

Using Tests 5-13

Using Flags (Continued)

The Flag When you press [FLAGS], the following menu is displayed.
Functions

e -

This menu enables you to select the following flag

instructions.

{CLR> Clears (resets) user flags 00-14. The
instruction mnemonic for this is CFG.

(SF> Sets a specified flag.

(RF> Resets a specified flag.

(TF> Tests whether a specified flag is set.

(TF> Tests whether a specified flag is reset

The ¢SF?, (RF>, <TF>, and <TF instructions are
followed by a two-digit numeric field that specifies the
flag. For example, {SF> 01 setsflag01.

Testing a Flag A test flag instruction affects program control in the
same manner as a comparison or DSZ test.

reset set

TN

set reset

INV TF 00 :l

5-14 Using Tests

Example

Running the
Example

The following program uses flag 00 to record your
response to a Y/N test. The program then executes a loop
that sums entered values to register A. On each pass
through the loop, the program tests the flag to determine
whether it should display the subtotal. Notice that the
example uses CFG at the beginning of the program to
make sure all flags are in a known state.

PC= Program Mnemonics Comments

0000 0 STO A Initializes register A
0003 CFG Clears flags

0004 ‘DISPLAY SUM?' Creates message
0016 YIN YES/NO test

0017 SF 00 <YES)—set flag 00
0019 CLR Clears message
0020 LBL BB Begins loop

0023 BRK Waits for entry
0024 ST+ A Sums entry to A
0026 TF 00 Is flag 00 set?

0028 RCL A Yes—display subtotal
0030 GTL BB Repeats the loop

Run the program and display the intermediate results.

Procedure Press Display
Start the program
{PGM> DISPLAY SUM?
Specify YES <YES) 0.
Enter values 25<GO> 25,
50 <GO>» 75.
6<GO> 81.

Using Tests 5-15

Ways to Use Tests with Transfer Instructions

By following a test with a transfer instruction suchas GTL or
SBL, you can use the test to conditionally execute entire
program segments. You can use such a combination, for
example, to conditionally execute one of two segments or to
conditionally call a subroutine.

Executing One
of Two Segments

You may want to execute only one of two program
segments according to the result of a test.

In the following illustration, an IF< test is used with a
GTL transfer instruction to determine which of the two
segments BB or CC will be executed.

» If the testis true, the program skips the segment
labeled BB and transfers control to label CC.

» If the test is false, the program executes the segment
labeled BB. Because the BB segment ends with a HLT
instruction, the program does not execute label CC.

faise true
IF< Ne——
GTL CC <
LBL BB
execute - execute
segment . segment
BB only : CConly
HLT
LBL CC

5-16 Using Tests

Example

Running
the Example

Write a program that uses two labeled program
segments: one to sum a negative number into data
register B, and a second to sum a positive number into
register C. A test of the number determines which

segment is executed.

PC= Program Mnemonics Comments

0000 STO A Stores entered number
0002 0IF< A Is number positive?

0005 GTL CC
0008 LBL BB

0011 ‘NEGATIVE' PAU
0020 RCL A

0022 ST+ BRCL B

0026 HLT

0027 LBL CC

0030 ‘POSITIVE’ PAU

0039 RCL A

0041 ST+ CRCL C

0045 HLT

Yes—go to label CC
No—execute label BB
Creates message
Recalls number

Sums to B and recalls
sum

Stops program

Labels segment
Creates message
Recalls number
Sums to C and recalls
sum

Stops program

Test the program by entering a negative number and a

positive number.

Procedure Press Display

Clear display and

data registers 2nd|[CMS] 0.

Display RUN menu SELECT:

Enter a negative 6.4 NEGATIVE

number {PGM> -64

Enter a positive 10 {PGM> POSITIVE

number 10.
(continued)

Using Tests 5-17

Ways to Use Tests with Transfer Instructions (Continued)

Skipping a
Segment of
a Program

5-18

You may want to skip a segment of a program depending
on the result of a test. For example, if the result of a
calculation is negative, you may want the program to

skip the next five instructions.

In the following illustration, an IF = comparison test is
used with a GTL instruction to determine whether the
segment labeled BB will be skipped. (The main
difference between this and the previous example is the
removal of the HLT instruction that preceded label CC.)

» If the testis true, the program skips the segment
labeled BB and transfers control to label CC.

» [f the test is false, the program executes the segment
labeled BB and continues executing through the
segment labeled CC.

true

oo]

false
IF=
GTLCC
S LBL BB

execute

both

segments

BBandCC -
LBL CC

Using Tests

-~

skip
segment BB,
execute
segment CC

Example

Running
the Example

This program sums each number you enter to data
register A. The segment labeled BB sums a number to
data register B, but is executed only for numbers that are

evenly divisible by 6.

PC= Program Mnemonics Comments

0000 CMS Clears data registers

0001 DFN F1:EENT@EN Defines F'1 for entry

0008 LBL AA Labels segment

0011 CLR Clears calculator

0012 ‘ENTER NUMBER' Creates message

0024 HLT Waits for entry

00256 LBL EN Labels segment

0028 ST+ A STO C Sumsto A, storesin C

0032 I8 = Divides number by 6

0035 FRC STO D Stores fractional part

0038 0 INV IF= D Is number non-zero?

0042 GTL CC Yes—gototoCC

0045 LBL BB Labels segment

0048 ‘DIVISIBLE BY & Creates message

0062 PAU Pauses

0063 RCL C ST+ B Sums original number
toB

0067 LBL CC Labels segment

0070 ‘SUM ="' Creates message

0074 COL 16 MRG A PAU Showsthe sum

0079 GTL AA Repeats loop

Run the program and enter a number that is not divisible
by 6. The program sums the number to register A, but
skips label BB and does not sum the number to register B.

Now enter a number that is divisible by 6. The program
sums the number to register A, displays an additional
message, and sums the number to register B.

(continued)

Using Tests 5-19

Ways to Use Tests with Transfer Instructions (Continued)

Conditional Your program may have a subroutine that you want to
Execution of call only under specific conditions. By preceding an SBL
a Subroutine or SBR instruction with a test instruction, you can use

the test to control whether the subroutine will be called.

In the following illustration, a TF test is used with SBL to
determine whether the program will execute the
subroutine labeled BB.

» If flag 00 is set, the program executes subroutine BB
before returning control to the segment labeled CC.

» If flag 00 isreset, the program proceeds to the
segment labeled CC without executing the
subroutine.

Main Program Subroutine
reset set

TF 00 LBL BB
SBL BB ;‘_F
LBLCC 4—‘_
RTN

r

5-20 Using Tests

Example

Running
the Example

This program contains a subroutine labeled BB that
displays the subtotal of numbers as you sum them to data
register A. The test instruction at program step 0048
ensures that the subroutine is called only if you select

(YES» at the start of the program.

PC= Program Mnemonics Comments

0000 CFG Clears flags

0001 0 STO A STO C Clears registers A and
C

0006 ‘SHOW SUBTOTAL? Creates message

0020 YIN Want subtotal?

0021 SF 00 (YES>—set flag 00

0023 DFN CLR Clears Y/N definitions

00256 LBL AA Labels segment

0028 INC C Inecrements item count

0030 CE 'ENTER ITEM’ Creates message

0041 COL 14 MRG C Merges item count

0045 BRK Waits for entry

0046 ST+ A Sums entry to A

0048 TF 00 Subtotal requested?

0050 SBL BB Yes—show subtotal

0053 GTL AA Repeats loop

0056 LBL BB Labels subroutine BB

0059 TOT=" Creates message

0063 COL 16 MRG A Merges subtotal

0067 PAU Pauses

0068 RTN Returns

Run the program and select {YES) when it asks if you

want to show the subtotal. After the program prompts
you for each item to be summed, subroutine BB shows
the current subtotal.

Run the program a second time and select {NO>. The
program does not call subroutine BB to display the
current subtotal as you enter numbers.

Using Tests 5-21

Using a Test to Exit a Loop

You can use a test instruction within a loop as a means of
terminating the loop. You can design a loop so that it
terminates after a specified number of repetitions, when a
specified condition exists, or when either of those two events
occurs.

Exiting on
a Specified
Count

Example

Running the
Example

A DSZ or INV DSZ test is commonly used to repeat a loop
a specified number of times.

Write a program that calculates the average of numbers
that you enter. Design the program so that you can
specify how many numbers you want to average.

PC= Program Mnemonics Comments

0000 0 STO A Clears sum register
0003 ‘# OF ENTRIES? Creates message
0016 BRK Stops for input
0017 STO B Stores # of entries
0019 STO C Stores loop count
0021 LBL AA Labels segment
0024 ‘ENTER NUMBER' Creates message
0036 BRK Stops for input
0037 ST+ A Sums entry

0039 DSZ C Does count =0?
0041 GTL AA No—repeat loop
0044 RCL B ST/ A Yes—calculate average
0048 RCL A Recalls average
0050 HLT Stops program

Run the program and calculate the average of 121 and 9.

Procedure Press Display
Run the program

{PGM> # OF ENTRIES?
Enter the count 2{GO> ENTER NUMBER
Enter first number 121 {GO> ENTER NUMBER
Entersecond number 9 <(GO> 65.

5-22 Using Tests

Exitingona
Specified
Condition

Example

Running the
Example

In many instances, you want to exit aloop only if a
specified condition exists. For example, you may want to
repeat a loop until a variable in the program is equal to
Zero.

The following program raises values you enter to the
fourth power. The program repeats the loop indefinitely
until you enter a value of 0.

PC= Program Mnemonics Comments

0000 LBL AA Begins loop

0003 ‘ENTER VALUE' Creates message

0014 BRK Waits for entry

0015 STO A Stores for comparison
0017 0IF= A Does entry =07

0020 HLT Yes—terminate loop
0021 RCL A y™x 4 = No—calculate power
0026 PAU PAU Pauses two seconds
0028 GTL AA Repeats loop

Enter the program and run it.

Procedure Press Display
Start the program
{PGM> ENTER VALUE

Enter a value 23<(GO» 27.9841
Enter a value 1.89 (GO> 12.75989841
Enter terminating
value 0<GO> 0.

(continued)

Using Tests 5-23

Using a Test to Exit a Loop (Continued)

Exiting on
Countor
Condition

Running the
Example

You may want to design a loop that terminates when
either a specified count is reached or some other
condition occurs. Such aloop must contain more than
one test.

The following program calculates the fourth power of
numbers you enter. The program combines the methods
used in the two previous examples for exiting from a
loop.

> It uses aloop counter to limit the number of entries to
a maximum of five.

» It tests for an entered value of 0. This lets you
terminate the loop before you have entered all five
values.

PC= Program Mnemonics Comments

0000 5 STO A Stores the loop counter
0003 LBL AA Begins loop

0006 ‘ENTER VALUE' Creates message

0017 BRK Waits for entry

0018 STO B Stores for comparison
0020 0IF= B Does entry =0?

0023 HLT Yes—terminate loop
0024 RCL B y*x 4 = No—calculate power
0029 PAU PAU Pauses two seconds
0031 DSZ A Does count=07?

0033 GTL AA No—repeat loop

0036 HLT Yes—terminate loop

Run the program and enter five numbers. The program
terminates after it calculates the fourth power of the
fifth number.

Run the program a second time and enter 0 as one of the
numbers. The program terminates when you enter the 0.

5-24 Using Tests

Reference Section

Use this section as a source of reference information on the
test and flag instructions.

Test Functions

—Displays the tests menu. Test functions can be
executed only as program instructions.

<IF>> nnn or X—Tests if the value in the numeric
display register is greater than the value in data register
nnn or X. If the test result is true, program execution
proceeds normally. If the test result is false, the
instruction following the test is skipped.

[INV] <IF>> nnn or X—Tests if the value in the
numeric display register is less than or equal to the value
in data register nnn or X. If the test result is true,
program execution proceeds normally. If the test result
is false, the instruction following the test is skipped.

¢IF<> mnn or X—Tests if the value in the numeric
display register is less than the value in data register nnn
or X. If the test result is true, program execution
proceeds normally. If the test result is false, the
instruction following the test is skipped.

[INV] <IF<> mnn or X—Tests if the value in the
numeric display register is greater than or equal to the
value in data register nnn or X. If the test result is true,
program execution proceeds normally. If the test result
is false, the instruction following the test is skipped.

<IF = > nnn or X—Tests if the value in the numeric
display register is equal to the value in data register nnn
or X. If the test result is true, program execution
proceeds normally. If the test result is false, the
instruction following the test is skipped.

[INV] <IF = > mnn or X—Tests if the value in the
numeric display register is not equal to the value in data
register nnn or X. If the test result is true, program
execution proceeds normally. If the test result is false,
the instruction following the test is skipped.

(continued)

Using Tests 5-25

Reference Section (Continued)

Test Functions
(Continued)

{DSZ> nnn or X—Decrements the value in data
register nnn or X (or increments the value if it is
negative). After decrementing the register value, the
calculator tests if the value equals zero. If the value is
equal to zero, the instruction following the test is
skipped. If the value is not equal to zero, execution
proceeds normally.

The rules for decrementing the register value are: values
greater than 1 are decreased by 1, values less than — 1
are increased by 1, and values between — 1 and 1 are set
tozero.

[INV] ¢<DSZ> nnn or X—Decrements the value in
data register nnn or X (or increments the value if it is
negative). After decrementing the register value, the
calculator tests if the value equals zero. If the value is
equal to zero, execution proceeds normally. If the value
is not equal to zero, the instruction following the test is
skipped.

The rules for decrementing the register value are: values
greater than 1 are decreased by 1, valueslessthan — 1
are increased by 1, and values between — 1 and 1 are set
to zero.

<YIN)—Defines [F1] as <YES> and [F2] as <NO> and
stops program execution. If <YES) is pressed, execution
proceeds normally. If {NO) is pressed, the instruction
following the <{Y/N> instruction is skipped.

Note: The <YIN> function definitions are treated like a
user-defined menu by the calculator. Therefore,
pressing will restore the <Y/N> menu after it has
been cleared by a system menu. To clear the <Y/N>
definitions in a program, use the [DENI or
[DFN] Fx key sequence.

5-26 Using Tests

Flag Functions

[FLAGS|—Displays the flags menu. The calculator has 100
flags. Flags 00-14 are general-purpose flags that can be
used as desired in a program. Flag 15 is the halt-on-error
flag. Flags 16-23 are reserved for use by programs in the
software library cartridges. Flags 24-99 are system flags.
Appendix C lists the system flags used by the calculator.

¢CLR>—Clears (resets) user flags 00-14. The
instruction mnemonic for ¢CLR> is CFG.

(SF> nn—Sets flag nn. Flags 00-15 can be set
from the keyboard or within a program. Unless the
calculator is in the unprotected mode, flags 16-99 can be
set only from within a program. (Unprotected mode is
described in Appendix A.)

¢RF> nn—Resets flag nn. Flags 00-15 can be reset
from the keyboard or within a program. Unless the
calculator is in the unprotected mode, flags 16-99 can be
reset only from within a program.

(TF) nn—Tests if flag nn is set. If flag nn is set,
execution proceeds normally. If flag nn is reset, the
instruction following the test is skipped. This function
can be executed only as a program instruction.

[INV] <TF> nn—Testsif flag nn is reset. If flag nn is
reset, execution proceeds normally. If flag nn is set, the
instruction following the test is skipped. This function
can be executed only as a program instruction.

Using Tests b-27

001 sad yoltalales sdP unemwgelt adt eyniqei(l- FOAH] enotonwd pel
od 0 28008 el seoqug-isvsasg ie b -00 igal™ . agah
woris-mo-2nd adial 81 gel™ owgeig o r betteob s buen
o) o wEgTaisg v sen 10l bevmsey om £8-51 aaald usll
wmmwnwmmﬂwm
soteuoles 942 vd bees 2gel? oredavs s wwil O xibasqud

en'ux-w Wmmm

mdmﬁ-ﬂqﬂmwm&-—m <32 BB,

ol seln) e wgoriq & abilite Yo trisodyadl ord mond

o e 9801 agalt sbom badoalongor o) nl 8i soielznlen
s shonr basraiowal)) mimyo & aldiiv mofl gino 19

© 201b fgg?anoerner

Saers i o 81 .nﬁ!ﬂ»m-i ator: Uéat

o) zaalg - l) _.‘.]" 1--'1 m
ad 11 88-01 emalt abom bametorgan st e wafusian
o & uidiin modt Ring 1ses:

Joz el nee pelt 1 doeal s gaft Xi azaoT—wer CIT) @HATH
o) 19007 eisw gl Y yllmieyon ehoenog nolioonzs
nobion’t 24T Heqablaal teat vifs grdwaollol aotisuriiani
mmmauwmedm

el sest gl X munmumw—nﬁhm

sda,.toui
mmm&mm
mmﬂmmsuwmmmm

.J‘I.

TEE et pole

Chapter 6: Using Indirect Addressing

This chapter introduces the concept of indirect addressing
and discusses ways you can use this feature in your
programs.

Table of Contents

Indirect Addressing

Introduction

Indirect addressing gives you an alternate way to specify a
fleld.

Whatlis
Indirect
Addressing?

Up tonow, you have supplied a specific field whenever
you used a calculator function that required a field. For
example, to store 10 in data register A, you used the key
sequence 10 A. This form of specifying a field is
called direct addressing, because you directly specify
the field.

Indirect addressing is an alternate method of
specifying a field. In indirect addressing, you do not
specify the actual field, but a data register where the
field is stored. For example, the key sequence 10
[ind] A instructs the calculator to store 10 in the data
register specified by the contents of register A. The
difference between direct and indirect addressing is
illustrated below.

Direct Indirect
Addressing Addressing
10[sTO]A IOIIND]A—¢

Register A
Wt R
Register A Register 4

In the indirect example, the contents of register A
determine where the value 10 is stored. In this case,
register A contains 4, so 10 is stored in register 004.

6-2 Indirect Addressing

Using Indirect
Addressing

Restrictions

To specify indirect addressing, substitute the key
sequence

[2nd] [IND]I i or X

for the field of the instruction you want to address
indirectly. The data register following the [IND]
sequence is called the pointer register.

To avoid causing errors when using indirect addressing,
apply the following rules.

» If the instruction you are addressing indirectly uses a
numeric field, be sure that the pointer register
contains a numeric value that is a valid numeric field.
The integer value of the contents of the pointer
register is used as the numeric field. (Negative values
are interpreted as zero.)

» If the instruction you are addressing indirectly uses
an alpha field, be sure that the pointer register
contains alpha characters that are valid as an alpha
field. The calculator uses the leftmost characters
stored in the pointer register as the alpha field. Any
extra characters stored in the pointer register are
ignored.

You can use indirect addressing with any instruction
that has a field, except the three instructions listed
below. A complete list of the instructions that require a
field is given in Appendix C.

» LBL(Label segment)

» DFN (Define function key)

» DFA (Define function key absolute)

Indirect Addressing 6-3

Indirect Data Register Operations

You can use indirect addressing with any data register
operation.

Indirect
Storing

Indirect
Recalling

Iindirect Data
Register
Restrictions

Example

The key sequence [STO] [IND] nnn or X stores the
value in the numeric display register in the data register
specified by the contents of register nnn or X.

For example, if data register D contains 12, the key
sequence 25 [IND] D stores 25 in data register
012.

The key sequence [IND] nnn or X recalls the
data register whose address is stored in register nnn or
X.

For example, if data register D contains 12 and data
register 012 contains 25, the key sequence
[IND] D displays the value 25.

Although you can use alpha addressing to specify the
pointer register, the contents of the pointer register
must be a numeric address, not an alpha address. For
example, if you want to address register C indirectly, the
pointer register must contain 2, not C.

Using indirect addressing, store 10 in register E. Then
recall E indirectly and directly. Use register A as the
pointer register.

Procedure Press Display
Store IND pointer 4 A 4.
Indirectly store 10 10
in register 4 (E) [IND]A 10.
Clear display 0.
Recall E indirectly [ReL]

[IND]A 10.
Recall E directly E 10.

6-4 Indirect Addressing

Why Use
Indirect
Addressing?

The power of indirect addressing may not be readily
apparent when illustrated by a keyboard example, but it
can be seen in programming applications. Indirect
addressing enables a program to control which data
register is referred to by a memory function. Thisis an
enormous advantage when a series of similar operations
must be performed on different registers.

For example, you may have a programming problem that
requires the entry and storage of a series of numbers.
Without indirect addressing, you would solve this
problem by including a separate STO instruction for each
number you want to store, asillustrated below.

STOA
BRK
STOB
BRK
STOC
BRK
STOD
BRK

As you can see, this method of solving the problem
makes a program long and cumbersome. By using
indirect addressing, you can design a loop to solve this
problem, asillustrated by the example on the next page.

(continued)

Indirect Addressing 6-5

Indirect Data Register Operations (Continued)

Example Write a program that will store six data entries in
registers 1 through 6. Use data register A as the pointer
register.

PC= Program Mnemonics Comments

0000 1 STO A Initializes IND pointer

0003 LBL 2Z Labels segment

0006 ‘ENTER NUMBER’ Creates message

0018 BRK Stops program to enter
number

0019 STO IND A Stores entry indirectly

0022 INC A Increments IND
pointer

0024 7IF= A Is IND pointer=to 7?7

0027 HLT Yes—stop program

0028 GTL ZZ No—repeat the loop

Running the Use the program to store the following values: 101, 102,

Example 103, 104, 105, 106. Check the program by listing data
registers 1 through 6.

Procedure Press Display
Run program
{PGM> ENTER NUMBER
Enter data 101 <GO?> ENTER NUMBER
102 <GO> ENTER NUMBER
103 <GO>» ENTER NUMBER
104 <GO> ENTER NUMBER
105 {GO>» ENTER NUMBER
106 {GO> i
List registers 1 001 101.
{REG> 002 102.
003 103.
004 104.
005 105.
006 106.
Stop listing HALT LIST:
6-6 Indirect Addressing

Indirect
Memory
Arithmetic

Example

Running
the Example

Indirect memory arithmetic lets you perform an
arithmetic operation on a series of stored values ora
computed register address.

The indirect memory arithmetic functions are listed
below.

Key Sequence Operation

[IND] nmm or X Indirect Addition

[=] [IND]l nnn Or X Indirect Subtraction
[x] [INDlnnn or X Indirect Multiplication
[IND] nnn or X Indirect Division

[IND] R or X Indirect Increment
[inv] [IND]nnnor X Indirect Decrement

The following subroutine uses indirect multiplication
(ST* IND) to multiply by 3 the contents of data registers
070 through 073.

PC= Program Mnemonics Comments

0000 LBL XX Label segment

0003 70 STO A Initialize IND pointer

0007 LBL YY Label segment

0010 3 ST* IND A Multiply by 3
indirectly

0014 INC A Increment IND pointer

0016 73 IF< A Is 73 < register A?

0020 RTN Yes—exit the
subroutine

0021 GTL YY No—repeat the loop

To test the subroutine, first store known values in data
registers 70 through 73. Then run the program. When
the program stops, use 70 {REG?> to verify that the
stored values have been multiplied by 3.

Indirect Addressing -7

Indirect Transfer of Program Control

Indirect addressing enables a transfer instruction to transfer
control to a location specified by the contents of a data
register.

Indirect
GTL

Indirect
GTO

6-8

To include an indirect GTL instruction in a program, use
the key sequence [aTL] [INDl nnn or X. Indirect
GTL transfers program control to the program label
stored in register nnn or X.

For example, if the leftmost two charactersin data
register B are AA, the instruction sequence GTLIND B
transfers program control to label AA.

Alpha characters can be stored in a data register by
using:

» The (STA) (store alpha message) function. Keep in
mind that (STA> uses 10 data registers, although the
indirect GTL instruction needs only the two leftmost
characters of the first data register.

» The STB (store byte) function. This function is
described in Appendix A.

» The STO function with the calculator in unformatted
display mode. Unformatted display mode is described
in Appendix A.

To include an indirect GTO instruction in a program, use
the key sequence [INV] [2nd] [GTL] [2nd] [IND] 2n2 Or X.
Indirect GTO transfers program control to the step
address stored in register nnn or X.

For example, if data register D contains 444, the
instruction sequence GTO IND D transfers program
control to program address 0444,

Indirect Addressing

Indirect
SBL

Indirect
SBR

Using Indirect
Transfers from
the Keyboard

To include an indirect SBL instruction in a program, use
the key sequence [sBL] [2nd] [IND] nnn or X. Indirect
SBL calls the subroutine specifed by the label stored in
register nnnor X.

For example, if the leftmost two characters in data
register I are B1, the instruction sequence SBL IND I calls
the subroutine labeled B1.

To include an indirect SBR instruction in a program, use
the key sequence [INV] [sBL] [IND]l R Or X.
Indirect SBR calls the subroutine at the step address
specifed by the contents of register nnn or X.

For example, if data register D contains 444, the
instruction sequence SBR IND D calls the subroutine at
program address 0444.

Using indirect GTL or GTO as a keyboard command sets
the program counter to the label or step address
specified by the contents of the pointer register, but
does not start execution of the program.

Using indirect SBL or SBR as a keyboard command starts
program execution at the label or step address specified
by the contents of the pointer register, but does not store
areturn address.

(continued)

Indirect Addressing 6-9

Indirect Transfer of Program Control (Continued)

Example 1 The following program calculates the step address of one
of three routines, based on a number you enter, and uses
GTO IND to execute the routine.

If you use this method of indirect transfer:

» The address of the first routine must be known to the
program.

» You must allocate an equal amount of memory for
each of the routines to be executed. (Note the NOPs
placed after the HLT instruction for routines 1 and 2.)

PC= Program Mnemonics Comments

0000 CLR Clears calculator

0001 14 STO A Stores length of

routines

0005 49 STO B Stores start of routines

0009 DFN F1:ENT@EN Defines F1

0016 ‘ROUTINE (1-3)?' Creates prompt

0030 HLT Stops program

0031 LBL EN Labels segment

0034 -1= Adjusts multiplier

0037 * RCL A + RCL B = Calculatesroutine

address

0044 STO C Stores routine address

0046 GTO IND C Executes routine

indirectly

0049 ‘ROUTINE ONE’ Routine 1 message

0060 HLT NOP NOP End of routine

0063 ‘ROUTINE TWO' Routine 2 message

0074 HLT NOP NOP End of routine

0077 ‘ROUTINE THREE' Routine 3 message

0090 HLT End of routine

6-10 Indirect Addressing

Running
Example 1

When you run the program, you are prompted to
identify the routine you want to execute by entering a
number between 1 and 3. When you enter the number
and press {ENT), the program subtracts 1 from the
number to produce a multiplier of 0, 1, or 2. The program
then uses the multiplier to calculate the address of the
routine and executes the routine by indirect transfer.

Procedure Press Display
Run the program

(PGM> ROUTINE (1-3)7
Specify routine 2 2 {ENT> ROUTINE TWO
Specify routine 1 7 1<ENT> ROUTINE ONE
Specify routine 3 3<ENT> ROUTINE THREE
Specify nonexistent
routine 4 (ENT> INVALID ADDRESS
Clear the error 0.

Note: To avoid the error message or possible execution
of the wrong instructions, you could use test instructions
within the program to ensure the entered number is
within the 1-3 limit before executing the indirect
transfer.

(continued)

Indirect Addressing 6-11

Indirect Transfer of Program Control (Continued)

Example 2 You may not want to allocate an equal amount of
memory for each routine. You can overcome this
limitation by creating an intermediate list of GTL
instructions. The program indirectly transfers to a GTL
instruction in this list, which transfers execution in turn
to a final routine. The advantage of the intermediate list
is that the entriesin the list are all the same length. Thus,
you can use the technique illustrated in Example 1 to
address them indirectly. The final routines can be
different lengths, as illustrated by this example.

PC= Program Mnemonics Comments

0000 CLR Clears calculator

0001 3 STO A Stores length of
routines

0004 48 STO B Stores start of routines

0008 DFN F1.ENT@EN Defines F1

0015 ‘ROUTINE (1-3)?' Creates prompt

0029 HLT Stops program

0030 LBL EN Labels segment

0033 -1= Adjusts multiplier

0036 * RCL A + RCL B = Calculates routine
address

0043 STO C Stores routine address

0045 GTO IND C Executes routine
indirectly

0048 GTL AA Transfers to routine 1

0051 GTL BB Transfers to routine 2

0054 GTL CC Transfers to routine 3

0057 LBL AA Labels segment

0060 ‘ONE’ Short alpha message

0063 HLT End of routine 1

0064 LBL BB Labels segment

0067 1.0045*2.012= Longer routine

0080 HLT End of routine 2

0081 LBL CC Labels segment

0084 CLR Very short routine

0085 HLT End of routine 3

Run the program and try the three options.

6-12 Indirect Addressing

Other Indirect Operations

Depending upon your applications, you can indirectly
address virtually all of the calculator instructions that have
fields. Examples of functions that you might want to address
indirectly in a program include alpha, test, and file /O
instructions. This section gives examples illustrating an
indirect alpha instruction and an indirect test.

Indirect
Alpha Merge

Indirect
Comparison
Tests

By using an indirect alpha merge instruction, you can
instruct the calculator to merge the contents of the data
register specified by the pointer register.

For example, if data register T contains the value 7, the
instruction sequence MRG IND T merges the value in
data register 007 with the current alpha message. This
example is illustrated below.

COL 16 RegT Reg7
[MRG IND T}— 7 — 14.36
HLT

Display

By using an indirect display-comparison test, you can
instruct the calculator to compare the contents of the
numeric display register with the contents of the data
register specified by the pointer register.

For example, if data register A contains the value 15, the
instruction sequence 2.5 IF = IND A compares 2.5 with
the contents of data register 15. If the result of the testis
true, execution proceeds normally. If the result is false,
the first instruction following the comparison test is
skipped. This example is illustrated below.

false true

Regl5 RegA 2.5 RegA Reglb
13.6 15 IF=INDAH 15 25 |-|
GTLNW e

» GTLDT

Indirect Addressing 6-13

Reference Section

This section defines the [IND] function.

Indirect

6-14

[IND]I nmn or X—Instructs the calculator to use the
contents of data register nnn or X as the field of the
function preceding the indirect instruction. This form of
addressing is called indirect addressing. Data register
nnn or X is called the pointer register.

If the pointer register contains a positive value with a
fractional part, only the integer portion is used as the
field. Values less than one, including all negative values,
are interpreted as zero.

If the field of the function being indirectly addressed isa
hexadecimal field, the value in the pointer register is
converted to hexadecimal before it is used.

If the field of the function being indirectly addressed is
an alpha field, the charactersin the pointer register are
read from left to right and only as many characters as are
needed for the field are taken from the register. Any
extra characters are ignored.

For information on which functions can use indirect
addressing, refer to the “*Summary of Field
Instructions’’ in Appendix C.

Indirect Addressing

Chapter 7: Paﬁitioning Memory

This chapter discusses the organization of memory" inthe
TI-95 and describes how you can use partitioning to WELCRU T
most efficient use of available memory.

Table of Contents

Partitioning Memory

Introduction

Understanding how the TI-95 memory is organized will help
you use the partitioning information in this chapter.

Divisions The TI-95 memory can be thought of as having two main
of Memory divisions: system memory and user memory.

System
memory

User
Memory

In typical calculator operations, you do not work
directly with system memory.

Organization User memory consists of 7200 bytes and is divided
of User Memory (partitioned) into file space, program memory, and data
registers. Each of the three divisions of user memory has

a specific purpose.
File Stores both programs and data in the
Soade form of named files. (File operations

P are discussed in the next chapter.)

Program .
Memory Stores programs that you write.
Data Stores numeric values and alpha
Registers messages.

7-2 Partitioning Memory

The Default
Partitions

Actions That
Affect the
Partitions

The first time you turn the calculator on, user memory is
partitioned as 5200 bytes of file space, 1000 steps (1000
bytes) of program memory, and 125 data registers (1000
bytes).

Although the default partitions are suitable for most

situations, you may have applications that require
changing the amount of memory allocated for each

purpose.

When you change the partitions, the newly selected
partitions remain in effect and are changed only if you:

» Repartition the memory.

» Use as a keyboard command to set calculator
defaults.

» Execute as a program instruction.

» Remove the calculator’s batteries or allow them to
discharge.

Partitioning Memory 7-3

Why Change Memory Partitions?

Partitioning lets you increase or decrease an area of user
memory, trading one type of memory for another. Some
examples are shown here, but there are many other

possibilities.

Increasing the
Data Registers

Increasing the
Program
Memory

You might write a program that generates a large
amount of data, requiring an additional 50 data
registers. Each data register requires eight bytes of
memory. The 400 additional bytes are taken from the
memory originally partitioned as the highest-numbered

program steps (steps 600-999).

Default partitions

Afterincreasing data
registers

file byte 0000 file byte 0000
file byte 5199 file byte 5199
step 0000 step 0000

: step 05699
step 0999 register 174
register 124 .
regist;ar 000 register 000

You might want to write a large program that requires
more than 1000 steps but uses only a few data registers.
Because each data register occupies eight bytes of
memory, you can gain 400 program steps by sacrificing

only 50 data registers.

Default partitions

After increasing program
memory

file byte 0000 file by.te 000
file byte 5199 file byte 5199
step _0000 step 0000

step 0999 :
register 124 step 1399
: register 074
register 000 register 000

7-4 Partitioning Memory

Eliminating
File Space

When using an optional Constant Memory™ cartridge
for file storage, you may want to partition the
calculator’s file space to zero. This makes all user
memory available for large programs and large amounts
of data.

This illustration shows the resulting partitions if you set
the file space to zero, the program memory to 4000 steps,
and the number of data registers to 400.

Default partitions After eliminating file
space
file byte 0000 step 0000
file byte 5199
b step 3999
step '0999 register 399
registf:r 124 :
regist;ar 000 register 000

Note: You cannot repartition file space that is occupied
by files you have saved. If you attempt to do so, the
calculator displays the message FILES IN USE. This
prevents you from inadvertently destroying files

through repartitioning.

Partitioning Memory 7-5

Effects of Partitioning

An increase in one area of user memory must be
accompanied by a decrease in at least one of the other areas.
To decide which area to decrease, the calculator treats file
space, program memory, and data registers with different
priorities. Understanding these priorities helps you
understand the effects of repartitioning.

File Space

Program
Memory

Increasing the file space reduces the data registers and,
if necessary, program steps.

When you increase the file space, the calculator shifts
the program toward the data registers, replacing the
highest-numbered registers with the highest-numbered
steps. This preserves the program and the data in the
lower-numbered registers.

If an increase in file space requires more memory than
that available in the data registers alone, the additional
memory is taken from the highest-numbered program
steps. This preserves program instructions located in the
lower-numbered steps.

Reducing the file space increases the number of data
registers, while preserving the program in memory. To
do this, the calculator shifts the contents of program
memory so that step 0000 immediately follows the file
space. The memory vacated by the shifted program is
then filled with zeros and partitioned as additional data
registers.

Note: You cannot repartition file space that is occupied
by files—even by explicitly reducing the file space. If
you need occupied file space for program memory or
data registers, you must first delete one or more of the
files and then reduce the file space.

When you change the partition for program memory,
only the boundary between data registers and program
memory is changed. The change does not affect the
contents of memory or the partitioning of file space.

7-6 Partitioning Memory

Program
Memory
(Continued)

Data Registers

Clearing Data
Registers and
Program Memory

When you increase program steps, the additional steps
are taken from the highest-numbered data registers.
This preserves data in the lowest-numbered registers,
when possible. If you want to increase program steps
without decreasing data registers, first decrease the
amount of file space and then change the partition for
program steps or data registers.

When you reduce program steps, the highest-numbered
steps are partitioned as additional data registers. This
preserves the lowest-numbered program steps, when
possible.

As with a change in program steps, changing the
partition for data registers changes only the boundary
between data registers and program memory. The
change does not affect the contents of memory or the
partitioning of file space.

When you increase the number of data registers, the
additional registers are taken from the highest-
numbered program steps. This preserves the lowest-
numbered steps, when possible.

When you reduce data registers, the highest-numbered
registers are partitioned as additional program steps.
This preserves the lowest-numbered registers, when
possible.

If you clear either the data registers or the program
memory and subsequently change the partition for
either area, you may find that the increased area is no
longer completely cleared. For example, if you clear the
data registers ([2nd] [cMS]) and then increase the partition
for data registers, the calculator interprets previously-
stored program instructions as numeric data.

When you want to make sure a new area is cleared, set
its partition first and then clear the area.

Partitioning Memory 7-7

Determining the Current Partitions

You can determine the current partitions using one of two
keyboard commands or a program instruction.

Keyboard
Commands

Program
Instruction

To display the current partitions directly from the
keyboard, use either of these two keyboard commands.

» Press [INV] [PARTI.

» Press [LIST] ¢ST> to display the current status of the
calculator.

The partitions are displayed as shown in this example.

In this case, the 7200 bytes of user memory are
partitioned as:

» 400 program steps (400 bytes)
» 100 data registers (800 bytes)
» 6000 bytes of file space

One characteristic of [INV] [PARTI makes it
particularly useful as a program instruction.

It places the number of data registers in the numeric
display register and places a number in the t-register that
has the form:

prpp. i

where pppp is the number of program steps and
I % 1000 is the number of bytes of file space
partitioned.

After executing INV PAR, your program can examine
those registers to determine the partitions.

7-8 Partitioning Memory

Partitioning from the Keyboard

You can use keyboard commands to examine possibilities for
repartitioning and to set new partitions.

The Partition
Menu

As akeyboard command, the key sequence [PART]
displays the partition menu. You use the menu to
propose changes in the partitions and to set the changes.
(This illustration assumes the default partitions are in
effect.)

(PS> Specifies new size for program memory.

(REG> Specifies new size for data registers.

<FIL> Specifies new size for file space. You must
specify more than 16 bytes of file space;
otherwise, the size defaults to zero.

(SET> Sets the newly-specified sizes.

{ESC> Cancels the partitioning operation.

Although the sizes of the three areas are displayed as

you specify new partitions, the new partitions are not

set unless you press {(SET>. This characteristic of the

partition menu lets you examine possibilities for

partitioning without making any changes.

Note: If the program steps or file space size you specify is

not a multiple of eight bytes, the size is rounded upward

to the next multiple of eight.

(continued)

Partitioning Memory 7-9

Partitioning from the Keyboard (Continued)

Procedure To set partitions directly from the keyboard:
1. Press [PARTI to display the partition menu.

2. Indicate the area of memory you want to change by
pressing <PS>, {REG», or <FIL>.

The calculator displays a prompt for you to propose a
new size for the area.

For example, pressing (PS> displays:

3. Enter the proposed size for the area you selected in
either steps of program memory, number of data
registers, or number of bytes of file space. (Pressing
{ESC?> at this point returns you to the first partitions
menu.)

4. Press (ENT? to enter the number.
The calculator displays one of the following.

» The new partitions that will be used if you set
them.

> Anerror message indicating you have specified
more memory than is available for that area. To
clear the error condition and try again, press

[CLEAR].

7-10 Partitioning Memory

Procedure 5. When you have specified the memory partitions you
(Continued) want to change, press ¢(SET> to set the partitions. The
calculator then:

» Sets and displays the partitions.

» Places the number of data registers in the numeric
display register.

» Places a number in the t-register with the form
pppp.fiff where pppp is the number of program
steps and ffffis the number of bytes of file space.

Example The following example, entered directly from the
keyboard, changes from the default partitions to 6000
bytes of file space, 400 program steps, and 100 data
registers. The example then restores the default

partitions.
Procedure Press Display
Select partition menu [PART] P1000,R125,F5200
Specify 6000 bytes <FIL> 6000

{ENT> P1000,R025,F6000
Specify 400 steps <{PS) 400

CENT) P0400,R100,F6000
Set new partitions (SET> P0400,R100,F6000
Select partition menu [PART] P0400,R100,F6000
Specify 5200 bytes {FIL> 5200

{ENT?> P0400,R200,F5200
Specify 125 registers (REG) 125

<ENT» P1000,R125,F5200
Set partitions {SET> P1000,R125,F5200

Partitioning Memory 7-11

Partitioning from Within a Program

You can include instructions in your program to partition
memory. This makes it unnecessary to set partitions from the
keyboard before running a program. When you set partitions
in a program, you must provide all the necessary information
to the partition function; the function does not prompt you for
the information.

Procedure

To set partitions from within a program:

1. Determine the amount of memory you want to

allocate for each of the three areas of user memory.

. Have the program place a value in the numeric

display register that has the form:

prpp JIT

where pppp is the number of program steps and ffffis
the number of bytes of file space you want. (You must
include any leading zeros in ffff.)

» If you do not want to change the size of the file
space, make ffff equal to 0.

= If you want to set the file space to 0 bytes, make
Jiffin the range 0001 through 0016.

. Have the program execute the PAR instruction.

. When the sequence pppp.ffff PARis executed, the

calculator:

» Sets the program memory and file space to the
sizes you specified and allocates the remaining
user memory to the data registers.

= Places the resulting number of data registers in the
numeric display register.

» Places the resulting number of program steps and
file bytes (in the form pppp.ffff) in the t-register.

7-12 Partitioning Memory

Example The following program segment partitions user memory

to the default settings.
PC= Program Mnemonics Comments
0000 1000.5200 1000 program steps,
5200 bytes file space
0009 PAR Sets the partitions
(Rerﬁainder of program)

Partitioning Memory 7-13

Reference Section

Use this section as a source of reference information for
partitioning memory.

Determine
Current
Partitions

Set Partitions:
Keyboard
Command

[inV] [PART]—Displays the current partition settings
for program memory, data registers, and file space. The
function also places the number of data registers in the
numeric display register and places the number of
program steps (pppp) and number of bytes of file space
() in the t-register in the form pppp. [f1T.

[INV] [PART] can be used as a keyboard command or as
a program instruction. The instruction mnemonics are
INV PAR.

[PART]—As a keyboard command, displays the
partitions menu and shows the current partitions. The
menu is used to propose new partitions and to set the
proposed partitions.

(PS> nnnn {ENT>—Proposes nnnn as the number of
program steps. If nnnn is not a multiple of eight bytes,
the calculator adjusts it upward to the nearest multiple
of eight. The calculator determines any resulting change
in the number of data registers. (File space is never
affected by partitioning program memory.) It then
redisplays the partitions menu to show the effect that
the proposed change will have. The partitions are not
changed unless you press (SET).

{REG>» nnn {ENT>—Proposes nnn as the number of data
registers. The calculator determines any resulting
change in the number of program steps. (File space is
never affected by partitioning data registers.) It then
redisplays the partitions menu to show the effect that
the proposed change will have. The partitions are not
changed unless you press <SET>.

7-14 Partitioning Memory

Set Partitions:
Keyboard
Command
(Continued)

(FIL> nnmn (ENT>—Proposes nnnn as the partition for
file space. If nnnn is not a multiple of eight bytes, the
calculator adjusts it upward to the nearest multiple of
eight. The maximum size you can partition for file space
is 6200 bytes. The calculator determines any resulting
change in the number of data registers and, if necessary,
program memory. It then redisplays the partitions menu
to show the effect that the proposed change will have.
The partitions are not changed unless you press (SET>.

Note: If nnnn is less than that required for files you have
saved, the calculator displays an error message. Because
a minimum of 16 bytes are required for the catalog of a
directory, the calculator displays 0 as the proposed
partition for file space if nnnn is 16 or less.

{SET>—Sets the calculator’s partitions to those
displayed in the partitions menu and exits the menu.
{SET» also places the number of data registers in the
numeric display register and the number of program
steps (pppp) and bytes of file space (ffff) in the t-register
in the form pppp.ffiT.

{ESC)>—Exits the menu without changing the settings of
any partitions.

(continued)

Partitioning Memory 7-15

Reference Section (Continued)

Set Partitions:
Program
Instruction

[PART]—In a program, sets the number of program
steps and amount of file space according to the number
in the numeric display register. No menuis displayed.

The number must be in the form pppp.ffff, where pppp is
the number of program steps and ffff is the number of
bytes of file space. You must include any leading zeros in
JIff. If a requested partition is not a multiple of eight
bytes, the calculator adjusts it upward to the nearest
multiple of eight. The maximum size you can partition
for file space is 6200 bytes.

If ffffis zerg, the partition for file space is not changed.
Because a minimum of 16 bytes are required for the
catalog of a directory, the file space is set to zero if [fffis
in the range 1 through 16. If ffffis less than the amount
required for the files you have saved already, the
calculator displays an error message.

After setting the partitions for program steps and file
space, the calculator partitions any remaining memory
as data registers.

The function places the number of data registers in the
numeric display register and places the number of
program steps (pppp) and bytes of file space (ffff) in the t-
register in the form pppp.ffif.

The instruction mnemonic for [PART]is PAR.

7-16 Partitioning Memory

Chapter 8: File Operations

Table of Contents

This chapter describes how to use the TI-95 file space oran
8K Constant Memory M cartridge for saving and retrieving
your programs and data. (If you are using a cassette tape for
storage, refer to Chapter 9 for instructions.)

File Operations

Introduction

By storing programs and data as files, you can reuse them
without the need to enter the keystrokes again. While the
informationisin a file, you can use the calculator’s program
memory and data registers for other purposes.

Types of Files

Rules for
Naming Files

You can create two types of files: program files and data
files.

A program file is a copy you make of the contents of
program memory.

*» You canrun a program while it is stored as a file. You
do not have to first load it into program memory.

* You cannot list or modify a program unless you first
load it back into program memory.

A datafile is a copy you make of the contents of a series
of data registers.

» Data you may need to reexamine or update can be
saved as a data file.

» You cannot list, modify, or otherwise use the contents
of a data file unless you first load it back into data
registers.

When you create a file, you specify a three-character
name for it. The name can include letters, numerals, and
punctuation symbols. If you use fewer than three
characters, the calculator adds trailing spaces. (You do
not activate the alpha mode to fill in this field.)

You must identify a data file by using a + as the first
character of the file name (for example, +$Q). You
cannot use + as the first character for a program file.
This rule lets the calculator distinguish between a
program file and a data file.

If you make a mistake while entering a file name in a
keyboard command, you must use the key to
erase the name and start over.

8-2 File Operations

File
Directories

Types of
File Operations

Because you can save afile in either a Constant Memory
cartridge or in the calculator’s file space, you need a way
to specify which storage area you want to use.

The calculator lets you do this by treating each file-
storage area as a named directory. While using the
menus described in this chapter, keep in mind:

» The directory name MEM always refers to the
calculator’s file space.

= The directory name NEW is assigned by the calculator
to any Constant Memory cartridge when you first use
the cartridge. (You can change the name to one you
prefer.)

The TI-95 lets you perform several file operations. These
include:

» Saving a program or data as afile.
» Loading a program or data back into memory.

= Viewing a catalog of files saved in a specified
directory.

» Deleting a specified file.

» Clearing all the files in a specified directory.

» Renaming a Constant Memory cartridge.

You can perform file operations directly from the
keyboard, or from within a program. Both methods are

described, but you should try the keyboard examples
before using file operations in your programs.

File Operations 8-3

Using the FILE STORAGE Menu

The key presents a menu to let you perform various
types of file operations, such as saving, loading and deleting

files.
The FILE When you press [FILES], the following menu is displayed.
STORAGE Menu You use this menu whether working with file space ora
Constant Memory cartridge.
{GET> Loads a file you have saved back into
program memory or data registers.
<{PUT> Saves a program file or a data file.
<{DF> Deletes a specified file from the selected
directory.
{CAT» Displays a catalog of file names in the
selected directory.
(-=>> Displays additional selections (shown
below).
(CD> Clears all files in a specified directory.
{NAM> Lets you assign a name to a Constant
Memory cartridge.
{==>) Displays previous selections (shown above).

8-4 File Operations

If Using a Constant Memory Cartridge

Read the information on this page if you are using a Constant
Memory cartridge and you have not set the partition for the
file space to zero.

Using the Menu
with a
Cartridge

Renaming the
Cartridge

If you are using a Constant Memory cartridge and you
have partitioned file space, when you press {GET>,
{PUT), {DF>, or {CAT?, an additional menu lets you
specify which directory you want to use.

For example, when you press {PUT>, the calculator
displays:

{MEM> Selects the file space.

(NEW> Selects the Constant Memory cartridge.
(The name NEW is automatically assigned
to a new cartridge, but can be changed, as
shown below.)

The ¢<NAM) selection of the FILE STORAGE menu lets you
rename a cartridge by assigning a three-character name
of your choice.

To rename a cartridge:

1. Press (-->) {NAM> from the FILE STORAGE menu.

The calculator displays:

(where aaa is the name of
the cartridge)

2. Enter a three-character name you want the cartridge
to have and press <ENT> (or press {ESC> to cancel the
operation). To correct a mistake while entering the
name, you must press [CLEAR].

The calculator renames the cartridge and displays the
message DIR RENAMED.

File Operations 8-5

Saving a Program as a File

When you create a program file, the entire program is saved,
starting with the instruction at program step 0000 and ending
with the last instruction in the program. (Because a program
is saved in multiples of eight bytes, the calculator might save
a few NOP instructions following the program.)

Procedure

To save the program contained in program memory:
1. Press to display the FILE STORAGE menu.

2. Press (PUT). (If a Constant Memory cartridge is

installed and you have file space partitioned, you
must then select either the cartridge or the file space
as the current directory.)

The calculator displays:

. Press (PGM>.

The calculator displays the following. (If you selected
the cartridge as the current directory, the name of the
cartridge is shown instead of MEM.)

. Enter a three-character name for the program file and

press ¢ENT). Do not use + as the first character.

» If the named file does not already exist, the
calculator displays a message to confirm that the
file has been created.

» If the current directory already contains a file with
the name you have specified, the calculator
displays the menu shown on the next page.

8-6 File Operations

Procedure
(Continued)

Example

When the named file already exists, the calculator
displays:

(where aaa is the name of
the file)

» Toreplace the existing file with the current contents
of program memory, press <YES». The new file does
not have to be the same size as the existing file.

» To cancel the save operation and leave the existing
file unaltered, press {NO>. The current contents of
program memory are not saved.

So that you will have a program example to save, enter
the short program shown on page 1-11 of this guide.
Then make sure you have file space partitioned and use
the following keystrokes to save the program as a file
named SPL in the file space.

Procedure Press Display
Save file*

(PUT> SAVE PGM OR REGS
Specify the file is
a program {PGM> DIR=MEM,FILE=__
Name the file SPL SPL{ENT> FILE SPL SAVED

*If you have a Constant Memory catridge installed, you
must select (MEM? as the current directory after
pressing <PUT>.

File Operations 8-7

Running a Program File

You can run a program you have saved as a file without first
loading it into program memory. This feature lets you build a
library of programs that you can easily access.

Limitations
on Running
a File

Procedure

Steps in program files are numbered starting with 0000,
just as they are in program memory. This lets the
program use transfer instructions with absolute
addressing as well as label addressing.

When you use as a keyboard command toruna
program file, execution always begins at step 0000. You
cannot use the keyboard commands SBL and SBR to start
at a different location in the file; these keyboard
commands always refer to the program in memory.

You can, however, use GTL, GTO, SBL, and SBR as
program instructions to execute specific routinesin a
file. The reference section at the end of this chapter
describes how to do this.

To run a program as a file:
1. Press [RUN].

The calculator displays:

(where aaa is the name of
an optional Constant
Memory cartridge)

Note: Your display may not show all the menu
selections shown here. For example, if you have the
calculator’s file space partitioned as zero bytes, the
MEM selection does not appear.

8-8 File Operations

Procedure
(Continued)

Example

2. Select the directory that contains the program.

The calculator displays:

(where aaa, bbb, and ccc
are names of program
directory)

3. If your program requires you to enter a number into
the display before running the program, enter the
number.

4. Select the program you want to run. (If necessary,
press {-->> until you see the name of the program.)

The calculator runs the program, beginning at
program step 0000.

Run the sample program file that you saved under the
name SPL. (This example assumes you entered and
saved the program from page 1-11 as directed by the
example on page 8-7. If you have saved other program
files, the names of those files will also be listed on the
{MEM) menu.)

Procedure Press Display

Begin SELECT:

PGM MEM ESC

Select the file space (MEM?> SELECT FILE:
SPL —

Enter a value 5 5
Calculate 5% ¢SPL) 125.

File Operations §-9

Loading a Program File

Although you can run a program without loading it into
program memory, you might want to load the program to list
or edit it. When you load a program file, the entire program
memory is cleared, and the file is copied into program
memory starting at program step 0000.

Procedure To load a program file into program memory:

1. Make sure program memory does not contain a
program you may need later.

2. Press to display the FILE STORAGE menu.

3. Press (GET). (If a Constant Memory cartridge is
installed and you have file space partitioned, you
must then select either the cartridge or the file space
as the current directory.)

The calculator displays:

4. Press (PGM>.

The calculator displays the following. (If you selected
the cartridge as the current directory, the name of the
cartridge is shown instead of MEM.)

5. Enter the same three-character name you used to
save the program file and press (ENT).

The calculator displays:

(where aaa is the name of
the file)

8-10 File Operations

Example Use the following sequence of keystrokes to load the
program you saved back into program memory.

Procedure Press Display
Load a file FILES

(GET» LOAD PGM OR REGS
Specify that the
file is a program {PGM> DIR=MEMFILE=____
File name is SPL SPL {ENT> FILE SPL READ

After loading the program file, you can use the learn
mode to confirm it has been loaded into program
memory.

File Operations 8-11

Saving Data as a File

When you create a data file, you specify both the number of
data registers to be saved and the starting register of the
series that contains the data.

Procedure

To save a series of data registers as a file:
1. Press to display the FILE STORAGE menu.

2. Press (PUT). (If a Constant Memory cartridge is

installed and you have file space partitioned, you
must then select either the cartridge or the file space
as the directory.)

The calculator displays:

. Press (REG>.

The calculator displays:

. Specify both the number of registers to be saved and

the address of the first register by entering a number.
The number must be in the form:

nnmn.sss

where nnn specifies the number of registers, and sss
(including any leading zeros) specifies the starting
register. If you do not include sss, the calculator
assumes the starting register to be 000.

. Press (ENT) to enter the number.

The calculator displays the menu shown on the next
page.

8-12 File Operations

Procedure When you press ¢ENT>, the calculator displays the

(Continued) following. (If you selected the cartridge as the current
directory, the name of the cartridge is shown instead
of MEM.)

6. Enter two characters following the + as a name for
the data file and press (ENT>. (The calculator supplies
the required + as the first character.)

»= If the named file does not already exist, the
calculator displays a message to confirm that the
file has been created.

» If the named file already exists, the calculator
displays the menu shown on the next page.

(continued)

File Operations 8-13

Saving Data as a File (Continued)

Procedure If the current directory already contains a data file with

(Continued) the name you have specified, the calculator displays a
menu to let you either replace the existing file or cancel
the save operation.

(where +nnisthe name of
the file)

» Toreplace the existing file, press <YES>. The new file
does not have to be the same size as the existing file.

» Tocancel the save operation and leave the existing

file unaltered, press {NO>. The data registers are not
saved.

8-14 File Operations

Example

Make sure you have file space partitioned and then use
the following sequence to store three valuesin data
registers 010, 011, and 012 and save them as a data file
named + SPin the file space.

Procedure Press Display
Clear data registers [cms) 0.
Store three values 10 010 10.
11 o011 11
12 [sTO] 012 12,
Save registers*
{PUT>
] <REG> ENTER # OF REGS
3 registers, starting
with register 010 3010 <ENT> DIR=MEM,FILE=+__
Name the file +SP SP {ENT> FILE + SP SAVED

*If you have a Constant Memory cartridge installed, you
must select (MEM? as the current directory after
pressing (PUT).

File Operations 8-15

Loading a Data File

When loading a data file, you specify the starting register into
which the data is to be loaded—usually the same register
from which the data was saved. The entire data file is loaded
into memory, replacing the previous contents of the registers.

Procedure

Toload a data file into data registers:

1. Make sure the data registers to be filled do not contain

data you may need later.

. Press [FILES] to display the FILE STORAGE menu.

. Press ¢(GET>. (If a Constant Memory cartridge is

installed and you have file space partitioned, you
must then select either the cartridge or the file space
as the directory.)

The calculator displays:

. Press (REG>.

The calculator displays:

. Enter the lowest of the registers into which data is to
- beloaded and press ¢ENT).

The calculator displays the following. (If you selected
the cartridge as the current directory, the name of the
cartridge is shown instead of MEM.)

8-16 File Operations

Procedure
(Continued)

Example

6. Enter the two characters you specified following the
+ when you saved the data file and press <ENT>.

The calculator displays a message confirming that the
data has been read.

Use the following sequence of keystrokes to load the
three data values you saved into registers 020, 021, and
022. This example shows that you can load the data into
a different series of registers than those from which it
was saved.

Procedure Press Display
Clear display CLEAR
and data registers [cms] 0.
Load a data file*
(GET>
{REG> ENTER 1st REG #
Specify register 20 20 ¢ENT> DIR=MEMFILE=+__
Specify filename +SP SP{ENT)> FILE +SP READ
Confirm load was OK 020 10.
021 1.
022 12.

*If you have a Constant Memory cartridge installed, you
must select (MEM) as the current directory after
pressing (GET>.

File Operations 8-17

Listing the Catalog of a Directory

The {CAT (catalog) selection of the FILE STORAGE menu lets
you examine the name and size of each file in a specified
directory. This selection also lists the amount of available
storage space remaining. If a printer is attached and
operational, the list is automatically printed.

Procedure

To list the files saved in a directory:

1. Press to display the FILE STORAGE menu.

2. Press (CAT). (If a Constant Memory cartridge is
installed and you have file space partitioned, you
must then select either the cartridge or the file space
as the current directory.)

The calculator displays the following.

» The name of the directory.

» The name of each file and the file’s size in bytes.

» The number of bytes free (available for saving
additional files). The calculator also places this
number in the numeric display register.

If you do not have a printer attached, the calculator

normally pauses for one second before displaying each
item.

However, you can use the [=] key to control the speed of
the listing.

» To pause the listing indefinitely, hold down the [=]
key.

» Toadvance to the next group of file names without
the one-second pause, press and release the [=] key.

8-18 File Operations

Example Use the following sequence of keystrokes to list all files
currently saved in your directory.

Procedure Press Display
Select menu FILES FILE STORAGE
Select file catalog* {CAT> DIRECTORY = MEM
Sample program file SPL: 8 BYTES
Sample data file +SP: 24 BYTES
Available space BYTES FREE: 5144

*If you have a Constant Memory cartridge installed, you
must select (MEM) as the current directory after
pressing {CAT>.

If you have saved other files in addition to the sample
program and data files, the additional files are included
in the listing. The free space shown by your calculator
may vary from the example, depending upon the size of
the file space and the number of files you have saved.

File Operations 8-19

Deleting Files

You can either delete a specified file orclear all filesin a
specified directory.

CAUTION

Deleting a
Specified
File

Example

You cannot recover files after deleting them. Before you
delete a file or clear a directory, make sure you no longer
need the information.

To delete a specified program file or data file:

]2

2.

Make sure you no longer need the file.

Press to display the FILE STORAGE menu.

. Press <DF> (delete file). (If a Constant Memory

cartridge is installed and you have file space
partitioned, you must then select either the cartridge
or the file space as the directory.)

. Enter the name of the file you want to delete and

press (ENT>. If the file is a data file, you must enter +
as the first character.

The calculator displays a message to confirm the file
has been deleted.

Use the following sequence of keystrokes to delete the

data file you saved.
Procedure Press Display
Select delete file FILES

{DF> DIR=MEM,FILE=____

Enter the file name SP

{ENT> FILE + SP DELETED

8-20 File Operations

Clearing a
Directory

Example

To clear all files in a specified directory:

1. Make sure you no longer need any filesin the
directory you are clearing.

2. Press to display the FILE STORAGE menu.
3. Press (-->) <CD> (clear directory).

The calculator displays:

(where aaa is the name of
the cartridge, if installed)
4. Select either the name of the directory you want to
clear or <ESC>.
» [f youselect the name of a directory, the calculator
displays a message to confirm that the directory
has been cleared.

» If youselect ¢ESC», the directory is not cleared.

Use the following key sequence to clear the calculator’s
file space of all files.

Procedure Press Display

Select

clear directory* {==>) CLEAR DIRECTORY
<CD> MEM ESC

Specify file space {MEM> DIR CLEARED

*If you have a Constant Memory catridge installed, the
calculator displays the name of the cartridge in addition
to MEM.

File Operations 8-21

Performing File Operations in a Program

You can design a program so that it performs its own file
operations. After you are familiar with using the file
operations from the keyboard, read this section to learn how
to use them within a program.

important The key sequence for entering file operations into a

Concept program is different from that used in keyboard
commands. In the learn mode, the calculator prompts
you only for the type of file operation and does not
display menus for other information, such as the file
name.

Within a program you must specify:

» Which data registers are to be used (if the file is a data
file).

» Which directory is to be used.

» The name of the file, including the required + sign if

the file isa data file.
Specifying For a program that saves data, you must ensure the
the Data value nnn.sss (as described on page 8-12)isin the
Registers numeric display register before executing <PUT>.

For a program that loads data, you must ensure the
number of the starting register is in the numeric display
register before executing <GET>.

Specifying For a program that performs a file operation using a

the Directory Constant Memory cartridge, you must use the [INV] key
immediately preceding the function to specify the
cartridge as the directory to be used. The only exception
to this is the (NAM> function, which always accesses the
cartridge and does not require [INV].

To specify the cartridge as the directory, press [INV]
before you select any of the file operations <PUT),
{GET>, <DF>, <CD?, or <CAT>.

If you do not use [INV], the calculator uses the file space
(MEM) as the directory.

8-22 File Operations

Specifying
the Name and
Type of File

Sample
Key Sequences

For any file operation that requires a file name, such as
{PUT» and <GET>, you must enter the file name
immediately following the operation. If you use fewer
than three characters, the calculator adds trailing
spaces. (You do not activate the alpha mode to enter the
name; the calculator interprets the keys as alpha
characters.)

If the file is a data file, you must include the required +
as the first character of the file name (for example,
+5Q).

The following samples show some key sequences typical
of those you might enter in the learn mode for
performing file operations from a program.

10.002 Saves 10 registers (starting with

[INV] ¢PUT> +GP register 002) as a data file named
+GP in the cartridge.

5 (GET> +CA Loads the data file named +CA
from the file space into data
registers, starting at register
005.

[INV]<DF> ABC Deletes the program file named
ABC from the cartridge.

File Operations 8-23

Reference Section

Use this section as a source of reference information for file
operations.

File Operations

Program Files

Data Files

—Displays a menu of file operations. The menu lets
you save ({PUT>) programs and data as named files in
one of two directories: the calculator’s file space or an
installed Constant Memory cartridge. You also use the
menu to load ((GET>) a file you have saved, show a
catalog of files in a directory (¢CAT?), delete a specified
file (<DF>), clear all files from a directory (¢(CD>»), or
name a Constant Memory cartridge (<NAM>).

Before carrying out a save or load operation, the
calculator checks the destination to make sure enough
room exists for the file. If insufficient room exists, the
save or load is not performed, and the destination is not
altered. When you replace an existing file with a new file
of the same name, the new file need not be the same size
as the old file. The calculator repositions other files to
accomodate any difference in size.

When you save a program as a file, you assign a three-
character file name. The first character must notbe a +
because that character identifies a data file. The entire
program is saved, starting with the instruction at
program step 0000 and ending with the last instruction
in the program. (Because a program file is saved in
multiples of eight bytes, the calculator might include a
few NOP instructions at the end of the program.) When
you load a program file into program memory, the file is
loaded starting at program address 0000.

When you save a data file, you assign a three-character
file name. The first character of the name mustbe a +.
This gives the calculator a way to identify the fileasa
data file. You specify the starting data register and the
number of registers to save. When you load a data file,
the entire file is loaded into data registers, beginning at
the register you specify. You can load a data file into a
different series of registers than those from which the
data was saved.

8-24 File Operations

File
Directories

Keyboard
Commands

Program
Instructions

The calculator treats each file-storage area (either a
Constant Memory cartridge or the calculator’s file space)
as anamed directory.

The directory name MEM refers to the calculator’s file
space. The name NEW is assigned by the calculator to any
Constant Memory cartridge when you first use the
cartridge. You can assign a different name to a cartridge.
If you use <CD? (clear directory) to clear all files in the
cartridge, the calculator reassigns the name NEW to the
cartridge.

When you use the FILE STORAGE menu from the
keyboard, you are prompted for information such asa
file name or the number of a starting register.

If you specify fewer than three characters for a file name
or directory name, the calculator supplies trailing
spaces. If you make a mistake while entering such
information, you must press torestart the entry.

If you press while the calculator isin the learn
mode, the calculator displays the menu but does not
prompt for file names, directory names, or numeric
information such as a starting register. Instead, you must
supply the required information as either an instruction
field or a number in the numeric display register. When
you execute the function as a program instruction, the
function uses the information you stored.

If you specify fewer than three characters for a file name
or directory name, the calculator supplies trailing
spaces.

(continued)

File Operations 8-25

Reference Section (Continued)

Save

Program File:

Keyboard
Command

Save

Data File:
Keyboard
Command

(PUT> ¢<PGM> aaa ¢<ENT>—Saves the program
contained in program memory as a file named aaa in the
current directory. If a Constant Memory cartridge is
installed and file space is partitioned, you are prompted
to select either the cartridge or the file space as the
current directory. The first character of file name aaa
must not be a + because that character identifies a data
file.

If file aaa already exists, the calculator prompts you to
choose whether you want to replace the file or cancel
the file save function.

{PUT> <REG> nnn.sss <ENT) +aa {ENT>—Savesa
series of data registers as a file named + aa in the current
directory. If a Constant Memory cartridge is installed
and file space is partitioned, you are prompted to select
either the cartridge or the file space as the current
directory. The calculator supplies the required + as the
first character of file name +aa. The number nnn.sss
specifies the number of registers to be saved (nnn) and
the address of the starting register (sss). You must
include any leading zeros in sss. If you omit sss, the
calculator uses 000 as the starting register.

If file + aa already exists, the calculator prompts you to
choose whether you want to replace the file or cancel
the file save function.

8-26 File Operations

Load
Program File:
Keyboard
Command

Load

Data File:
Keyboard
Command

Name Cartridge:

Keyboard
Command

(GET> <PGM> aaa (ENT>—Clears any program
currently contained in program memory and loads
program file aaa from the current directory into
program memory. If a Constant Memory cartridge is
installed and file space is partitioned, you are prompted
to select either the cartridge or the file space as the
current directory. The first character in the file name
mustnotbea +.

{GET> (REG) sss <ENT> +aa (ENT>—Loads the
data file named + aa from the current directory into a
series of data registers. If a Constant Memory cartridge is
installed and file space is partitioned, you are prompted
to select either the cartridge or the file space as the
current directory. The file data is loaded starting at
register sss and replaces any data already in the
destination registers. Register sss need not be the same
register from which the data was saved. The calculator
supplies the required + as the first character of +aa.

{NAM)> aaa (ENT>—Assigns the name aaa to the
currently installed Constant Memory cartridge. You
should not use the names MEM and PGM because these
names refer to the file space and program memory.

(continued)

File Operations 8-27

Reference Section (Continued)

Show Directory
Catalog:
Keyboard
Command

Delete File:
Keyboard
Command

Clear
Directory:
Keyboard
Command

{CAT>—Displays the name of the current
directory, the name of each file in the directory, the
file's size in bytes, and the total number of bytes free in
the directory. If a Constant Memory cartridge is installed
and file space is partitioned, you are prompted to select
the cartridge or the file space as the current directory.
The calculator places the number of bytes of free space
in the numeric display register.

To stop the listing before it finishes, press the or
key.

If a printer is attached, the list is automatically printed.
Otherwise, the calculator pauses one second after
displaying each item. Holding down || pauses the listing
indefinitely. Pressing and releasing [=] advances
immediately to the next item.

{DF>» aaa <ENT>—Deletes the data or program file
named aaa from the current directory. If a Constant
Memory cartridge is installed and file space is
partitioned, you are prompted to select either the
cartridge or the file space as the current directory. If the
file is a data file, you must specify + as the first
character of the file name.

You cannot recover a file after deleting it.

(CD> ¢Directory>—Clears the directory named
{Directory? by deleting all the files in that directory. The
directory can be either the calculator’s file space

(¢{MEM)) or a Constant Memory cartridge. (The name of
the directory appears as a menu selection.) When you
use {CD> with a cartridge, the calculator renames the
cartridge as NEW.

You cannot recover files from a cleared directory.

8-28 File Operations

Save

Program File:

Program
Instruction

Save

Data File:
Program
Instruction

<PUT) aaa

or
[INV] <PUT> aaa—Saves the program contained in
program memory as a file named aaa. <PUT> (without
[INV]) saves the file in the calculator’s file space. [INV]
{PUT) saves the file in the installed Constant Memory
cartridge. The first character of aaa must notbe a +
because that character identifies a data file.

If file aaa already exists, the calculator replaces the file.

[FILES] <PUT) +aa

or
[INV] ¢<PUT> +aa—Saves a series of data registers as
a file named + aa. {PUT> (without [INV]) saves the file in
the calculator’s file space. [INV] <PUT> saves the file in the
currently installed Constant Memory cartridge. You
must use + as the first character of the file name. When
the function is executed, the numeric display register
must contain a number in the form nnn.sss, specifying
the number of registers to be saved (nnn) and the
address of the starting register (sss). You must include
any leading zeros in sss. If you omit sss, the calculator
uses 000 as the starting register.

If file +aa already exists, the calculator replaces the file.

(continued)

File Operations 8-29

Reference Section (Continued)

Load

Program File:

Program
Instruction

Load

Data File:
Program
Instruction

(GET> aaa

or

[INV] ¢<GET> aaa—Clears the program currently
contained in program memory and loads program file
aaa into program memory. <GET) (without [INV]) loads
the file from the calculator’s file space. [INV] ¢GET? loads
the file from the installed Constant Memory cartridge.
The first character in the file name must notbe a +.

[FILES| <GET) +aa

or
[INV] <GET> +aa—Loads the data file named +aa
into a series of data registers. ¢GET> (without [INV]) loads
the data from the calculator’s file space. [INV] (GET>
loads the data from the installed Constant Memory
cartridge. You must use + as the first character of the
file name. When the function is executed, the numeric
display register must contain a number in the form sss
specifying the starting register. The file data replaces
any data already in the registers. Register sss need not be
the same register from which the data was saved.

8-30 File Operations

Name Cartridge:

Program
Iinstruction

Show Directory
Catalog:
Program
Instruction

[FILES] <NAM> aaa— Assigns the name aaa to the
currently installed Constant Memory cartridge.

The calculator assigns the name NEW to a Constant
Memory cartridge until you assign another name.

(CAT>

or
[INV] <CAT>—Displays the catalog of the specified
directory, including the name of the directory, the name
and size of each file in the directory, and the total
number of bytes free in the directory. <CAT> (without
[INV]) specifies the calculator’s file space as the directory.
[INV] ¢<CAT> specifies the installed Constant Memory
cartridge as the directory. The calculator places the
number of bytes of free space in the numeric display
register.

If a printer is attached, the list is automatically printed.
If a printer is not attached, the calculator normally
pauses one second after displaying each item. In this
case, holding down |- pauses the listing indefinitely.
Pressing and releasing |- | advances immediately to the
nextitem.

(continued)

File Operations 8-31

Reference Section (Continued)

Delete File:

Program
Instruction

Clear
Directory:
Program
Instruction

[FILES] <DF> aaa

or

[INV] <DF» aaa—Deletes data or program file aaa.
<DF) (without [INV]) deletes the file from the calculator’s
file space. [INV] <DF> deletes the file from the installed
Constant Memory cartridge. If the file is a data file, you
must specify + as the first character of the file name.

You cannot recover a file after deleting it.

<CD»
or

[INV] <CD»—Clears all files from the specified
directory. <CD> (without [INV]) clears files from the
calculator’s file space. [INV] <CD)> clears files from the
installed Constant Memory cartridge and renames the
cartridge as NEW.

You cannot recover files from a directory you have
cleared.

8-32 File Operations

Run

Program File:
Keyboard
Command

{MEM) <File Name>

or

<Directory> <(File Name>—Begins execution of the
program named {File Name> in either the calculator’s file
space ({MEM?) or the installed Constant Memory
cartridge named <Directory>. (The actual directory and
file name appear as menu selections.) The program runs
directly from the file space or from the cartridge; it is not
loaded into program memory.

Note: If the program expects a number to be in the
numeric display register, you can enter the number
anytime before selecting (File Name>.

(continued)

File Operations 8-33

Reference Section (Continued)

Execute
Routine:
Program
Instruction

GTLlaa

[sBLlaa

(iINV] [2nd] lGTLI nnnn

[sBL] nnnn—Transfers control to a routine

or calls a subroutine in either the calculator’s file space,
the installed Constant Memory cartridge, or program
memory. This instruction lets your program execute
routines that are not located in the same area in which
your program is running. A program running from the
file space, for example, can call a subroutine ina
cartridge or in program memory. You cannot use this
function as a keyboard command.

When the routine is part of a file located in the file space
orin a cartridge, the first six charactersin the alpha
register must contain the names of the directory and the
file in the form DIRFIL where DIR is the directory name
and FIL is the file name (for example, MEM + SB).

When the routine is in program memory, the first three
characters in the alpha register must contain the
characters PGM before RUN is executed. Any remaining
characters in the register are ignored.

Note: If the routine expects a number to be in the
numeric display register, you must enter the number
before executing this instruction.

8-34 File Operations

Chapter 9: Cassette Tape Opérations

Table of Contents

This chapter describes how to use the optional Cl-7 cassette
interface cabie, which lets you connect the TI-85to a
cassette tape recorder. You can then use the recorder to store
and retrieve files on tape. You can perform tape operations
directly from the keyboard or from within a program.

Cassette Tape Operations

Introduction

Cassette tape operations are similar to the file operations
described in the previous chapter. You can store either
program files or data files on a tape and then retrieve them
whenever they are needed.

Types
of Files

File Names

Types of
Tape
Operations

You can create two types of files.

= A program file is a copy you make of the contents of
program memory.

» A data file is a copy you make of the contentsof a
series of data registers.

After afile is stored on tape, you must first load it back
into the calculator’s memory before you can use it.

Note: There is one difference between a program file
stored on tape and one stored in the calculator’s file
space. In the file space, a program file does not have to
be reloaded before you can use it.

When you create a file, you must specify a three-
character name for the file. The name can include
letters, numerals, and punctuation symbols.

You must identify a data file by using a + as the first
character of the file name (for example, +$Q). You
cannot use + as the first character for a program file.
This lets the calculator distinguish between a program
file and a data file.

When entering a file name, you can use the key to
erase the current name and start over.

You can perform three types of tape operations. These
are:

> Writing (storing) a program or data as a file on tape.

» Reading (loading) a program or data back into
memory.

» Verifying that the program or data in memory is
identical to the tape file. (Normally, you should verify
afile after writing it to tape. This ensures that the file
was written properly.)

9-2 Cassette Tape Operations

Selecting a Cassette Recorder and Tapes

The CI-7 cassette interface cable and the TI-95 are
compatible with most standard cassette recorders and tapes.
However, some types of recorders and tapes give better
performance than others. Use the following information to
help you select the types that give you the best results.

Selecting a In order to properly connect the CI-7 cassette interface
Recorder cable, you should select arecorder that has a:

» Microphone jack.
» Earphone or external speaker jack.
= Remote control jack.

For better performance and extra convenience, you may
want to select arecorder that has a:

» Digital tape counter. (When you have more than one
file on the same tape, the counter lets you keep track
of the location of each file.)

» Optional AC adapter. (This avoids problems that are
often caused by weak batteries, such as uneven
recording or playback speeds.)

Selecting To ensure maximum reliability, use the following
Tapes guidelines when you select cassette tapes.

» Choose tapes with low-noise characteristics. Tapes
with extended frequency response, such as digital
tapes, are unnecessary and cost more than common
audio cassettes.

» Choose high-quality cassette tapes. Low-quality tapes
tend to break or tangle.

= Use the type and length of tape recommendod by the
manufacturer of your recorder.

Cassette Tape Operations 9-3

Guidelines for Good Recording

The following guidelines can help you avoid potential
problems that may occur when you perform tape operations.

Tips for
Recording
on Tape

Using the
Tape Counter

When you record a file on a cassette tape:

» Do not record on the leader (the non-magnetic
segment at the beginning of the tape).

*» Donotrecord too close to the end of the tape. If the
tape runs out before the recording is complete, the
entire file is unusable.

» Leave afew seconds of space between files that you
record on consecutive sections of the tape. If a new
file overlaps an old one, the old file is no longer
usable.

= Record and play tape files on the same cassette
recorder. Because of calibration differences between
recorders, files recorded on one recorder may not
read reliably on another one.

The reading on a tape counter is useful only if you ensure
that zero corresponds to the beginning of the tape. If
your cassette recorder has a tape counter, always be
sure the counter is set properly before you use it.

» Rewind the tape to the beginning.
» Set the tape counter to zero.

Each time you write a file on tape, be sure to note the
counter setting at the beginning and at the end of the
file. By noting both settings, you can perform tape
operations more quickly and efficiently.

» Toread or verify an existing file, you need to find the
beginning of the file.

» To write a new file following an old one, you need to
know where the old file ends so that you do not
overlap the two files.

9-4 Cassette Tape Operations

Making a If you want to copy a file from one cassette tape to
Copyofa another, you should always read the file into the TI-95
Fileon Tape and then write the file on the new tape.

Duplicating a tape file by connecting one recorder to
another may affect the accuracy of the copy.

Preventing If a tape contains files that you want to keep
Accidental permanently, you may want to ‘‘write-protect’’ the tape
Erasure to prevent you from accidentally erasing any of the files.

To write-protect each side of the tape, break off the left
tab on the back of the tape. When the tab is removed,
you cannot press the RECORD button on the recorder.

Side Tw
Tab broken out ey

Tape to allow
re-recording
onside two

Write-protects
side one

Write-protects
side two

Side One

Note: If you need to record on a tape that has a tab
missing, place a piece of cellophane tape over the tab
opening.

Cassette Tape Operations 9-5

Connecting Your Recorder to the TI1-95

The CI-7 cassette interface cable contains electronic
circuitry that enables the T1-95 to exchange information with
your recorder. Always make sure the calculator and recorder
are properly connected before you begin any tape operations.

Connecting To connect your cassette recorder to the TI-95:
Thacmeoeti 1. Besure the TI-95 is turned off.

2. Insert the three plugs at one end of the CI-7 cassette
interface cable into your recorder as described below.

» Insert the plug on the red wire into the microphone
jack (usually labeled MIC).

» Insert the plug on the white wire into the jack for
the earphone, monitor, or external speaker
(usually labeled EAR or MONITOR).

» Insert the plug on the black wire into the remote
control jack (usually labeled REM).

Black wire to remote
control jack

White wire to

earphone jack \

Red wire to
microphone jack

3. Plug the other end of the cable into the peripheral
port on the back of the TI-95 or into the connector on
the PC-324 printer.

9-6 Cassette Tape Operations

Finding the Correct Volume Setting

The volume and tone settings that you normally use when
listening to cassette tapes may not work for tape storage.
Although the tone should work fine on a medium setting,
ditferent recorders may require different volume settings.
Before you attempt to store or retrieve important files, find
the setting that works best for your recorder.

Method

When you first use the procedures in this chapter, use
the following instructions to experiment with different
volume settings. For most recorders, one volume setting
works fine for all TI-95 cassette operations. (With some
types of recorders, the recording level is set
automatically and is not affected by the setting of the
volume control.)

To find the correct volume setting for your recorder, use
a small program or a series of data registers as a test file.

1. Adjust the volume control to its highest setting.
2. Write the test file on tape.
3. Using the same volume setting, read or verify the file.

»= If the message FILE aaa READ or FILE aaa OK is
displayed (where aaa is the name of the file), note
the volume setting and use it for all subsequent
tape operations.

» If the message CASSETTE ERROR is displayed, lower
the volume slightly and repeat the procedure
beginning at step 2. (If your recorder has automatic .
recording level, you only need to lower the volume
and read or verify the file again.)

Note:If the above procedure does not work, you may
need to use a different volume setting for writing files
than you use for reading them. Experiment until you
find the settings that work with your recorder.

Cassette Tape Operations 9-7

Using the TAPE STORAGE Menu

The TAPE STORAGE menu lets you choose the type of tape
operation you want to perform. However, this menu cannot be
displayed directly from the keyboard. You must first display
the INPUT/OUTPUT menu and then select the option for tape
operations.

Selecting
Tape
Operations

The
TAPE
STORAGE
Menu

Before you can perform a tape operation, you must first
press [I10] to display the INPUT/OUTPUT menu.

From this menu, select <TAP> to display the TAPE
STORAGE menu shown below.

When you select <TAP> from the INPUT/OUTPUT menu, the
calculator displays:

<{RD> Reads a program or data file that was
previously stored on tape and loads it into the
calculator’s memory.

(WRT> Writes (saves) a program or data file onto
tape.

(VFY> Compares the program or data in memory
with a file stored on tape, and then verifies if
the two are identical.

Each of these operations is discussed on the following
pages.

9-8 Cassette Tape Operations

Writing a File on Tape

The procedure on this and the following pages describes how
to write (store) a file on tape. You can write either a program
file or a data file.

Initial To begin writing a file on tape:

Steps
1. Press [I/0] <TAP> to display the TAPE STORAGE menu.
2. Select <WRT> from the menu.

The calculator displays:

3. Press the applicable key for the type of file you want
to write.

* For a program file, press {PGM> and proceed to
“Entering the File Name’’ on the next page.

» Foradatafile, press (REG> and proceed to the top
of next page.

Cassette Tape Operations 9-9

Writing a File on Tape (Continued)

If the File
Is a Data File

Entering the
File Name

If you selected <REG», the calculator displays:

1. Specify both the number of registers to be written and
the address of the first register by entering a number.
The number must be in the form:

nnn.sss

where nnn specifies the number of registers, and sss
specifies the starting register. You must include
leading zeros in sss. If you do not specify sss, the
calculator assumes the starting register to be 000.

2. Press ¢<ENT) to enter the number.

The calculator then prompts you to enter the name of
the file.

After you specify the type of file (and, if necessary, the
data registers to be written), the calculator displays:

1. Enter a three-character name for the file. (If you
specified a data file, a + is automatically displayed as
the first character in the name.)

2. Press (ENT>.

The calculator then prompts you to begin operating the
recorder,

9-10 Cassette Tape Operations

Operating
the Recorder

Before you begin using the recorder, set the volume,
tone, and tape counter to their correct positions.

The following table lists the sequence of prompts that
are displayed when you are writing the file on tape. The
110 indicator appears when POSITION TAPE is displayed and
remains visible until PRESS STOP appears.

Use the fast forward and
rewind controls to position
the tape where you want to
write the file. Then press
<OK>.

Press the RECORD button.
(On some recorders, you must
press the PLAY and RECORD
buttons at the same time.)
Then press (OK>.

The file is being recorded on
the tape.

The recording is completed.
Press the STOP button. Then
press <OK>.

Confirms that file aaa has
been stored. Be sure to record
the setting of the tape
counter.

Anytime a tape operation menu contains the (ESC>
selection, you can press {ESC> to cancel the operation.

Cassette Tape Operations 9-11

Reading or Verifying a File on Tape

The procedure on this and the following pages describes how
to read (load) or verify a file on tape. You can use eithera
program file or a data file.

Initial To begin reading or verifying a file on tape:
Steps

1. Press [/0] <TAP> to display the TAPE STORAGE menu.

2. Select the applicable key for the type of tape
operation you want to perform.

» Toread afile, press {RD>.

» To verify that a tape file matches the contents of
memory, press (VFY>.

The calculator displays a menu that lets you select the

type of file you want to use. If you pressed <RD>, for
example, the calculator displays:

3. Pressthe applicable key for the type of file you want
to use.

» For a program file, press {PGM» and proceed to
‘‘Entering the File Name’’ on the next page.

» Foradatafile, press {REG) and proceed to the top
of the next page.

9-12 Cassette Tape Operations

If the File
Is a Data File

Entering the
File Name

If you selected <REG?, the calculator displays the screen
shown below.

Enter the number of the starting register into which the
data is to be loaded or from which it is to be verified, and
press {ENT>.

After you specify the type of file (and, if necessary, the
starting data register), the calculator displays:

- Enter a three-character name for the file. (If you
specified a datafile, a + is automatically displayed as
the first character in the name.)

[u—

2. Press (ENT>.

The calculator then prompts you to begin operating the
recorder.

(continued)

Cassette Tape Operations 9-13

Reading or Verifying a File on Tape (Continued)

Operating
the Recorder

Before you begin using the recorder, set the volume,
tone, and tape counter to their correct positions.

The following table lists the sequence of prompts that
are displayed when you are reading or verifying the file
on tape. The 10 indicator appears when the POSITION
TAPE message is displayed and remains visible until PRESS

Use the fast forward and
rewind controls to position the
tape to the beginning of the
file. Then press (OK>.

Press the PLAY button. Then
press OK>.

The caJ(;ulator is searching for
the beginning of the file.

The file has been found and is
being read or verified.

The operation is completed.
Press the STOP button and
then press (OK>.

4
:
2
7

Confirms that file aaa has
been read or verified.

If you do not see either message indicating the operation
is complete, refer to the next page.

9-14 Cassette Tape Operations

Operating
the Recorder
(Continued)

If You Have
Problems

If the first file encountered after you pressed PLAY hasa
different name than the one you specified, the
calculator displays:

(where aaa is the name of the
file)

» To continue searching for the specified file, press
<YES>.

» Tocancel the search, press (NO>. The calculator then
prompts you to stop the recorder and press (OK>.

After you press (OK», the message WRONG FILE FOUND
is displayed. You must press to continue.

Several factors can affect the success of a read or verify
operation.

» The cassette interface cable may not be correctly
connected to the calculator or to the recorder.

» The volume and tone settings on the recorder may
need to be adjusted.

» The tape may have been positioned incorrectly.

If an error message appears, press and then retry
the procedure. (For a list of error messages, refer to
Appendix Bin the TI-95 User’s Guide.)

If the calculator is unable to identify the file you specify,
it continues to search. You cannot interrupt this process
except by pressing the RESET button. If the search is
unsuccessful, the calculator terminates the search after
a period of time.

Cassette Tape Operations 9-15

Examples of Tape Operations

These examples demonstrate how to write and read a data

file on a cassette tape.

Example:
Writing a
Data File

9-16

Use the following sequence to store three values in data
registers 010, 011, and 012 and write them on tape asa

data file.

Before you begin using the recorder, be sure to set the
volume, tone, and tape counter to their correct

positions.
Procedure Press Display
Clear data registers [cms]
Store three values 10 [STO] 010

11 [STO] 011

12 012
Display TAPE STORAGE
menu [/0] <TAP> TAPE STORAGE
Write from registers {WRT>

{REG> ENTER # OF REGS
3 registers, starting
with register 010 3.010 {ENT> ENTERFILE= +__
Name the file +SP SP(ENT> POSITION TAPE
Position tape; write
down counter setting <(OK> PRESS RECORD
Press RECORD button <OK> WRITING. ..

PRESS STOP

Press STOP button;
write down counter
setting {OK> FILE + SPWRITTEN

Cassette Tape Operations

Example:
Reading a
Data File

Use the following sequence of keystrokes to read the
three data values you saved into registers 020, 021, and

022.

Before you begin using the recorder, be sure to set the
volume, tone, and tape counter to their correct

positions.
Procedure Press Display
Clear display CLEAR
and data registers [cms] 0.
Display TAPE STORAGE
menu [/0] <TAPY TAPE STORAGE
Read to registers <{RD>
(REG> ENTER 1st REG #
Specify register 20 20 {<ENT> ENTERFILE= +__
Specify data
file +SP SP{ENT> POSITION TAPE
Position tape
to start of file {OK> PRESS PLAY
Press PLAY button {OK> SEARCHING. ..
READING...
PRESS STOP
Press STOP button {OK> FILE +SP READ
Confirm load was OK 020 10.
021 1.
022 12,

Cassette Tape Operations 9-17

Performing Tape Operations in a Program

You can design a program so that it performs its own tape
operations. After you are familiar with using the tape
operations from the keyboard, read this section to learn how
to use them within a program.

Important When you perform tape operations within a program,
Concept you use a different sequence of keystrokes.

In the learn mode, the calculator prompts you only for
the type of tape operation; it does not display menus for
otherinformation, such as the file name. (When you run
the program, however, the calculator still displays
prompts for operating the recorder.)

Within the program, you must specify:

» Which data registers are to be used (if the file is a data
file).

» The name and type of the file.

Specifying For a program that writes data, you must ensure that the

the Data value nnn.sss (as described on page 9-10 of this guide) is

Registers in the numeric display register before the program
executes {WRT>.

For a program that reads or verifies data, you must
ensure that the number of the starting register is in the
numeric display register before the program executes
<{RD> or <VFY).

9-18 Cassette Tape Operations

Specifying
the Name and
Type of File

Sample
Instruction
Sequences

To specify a file name, enter the file name immediately
after the tape operation key. If you use fewer than three
characters, the calculator adds trailing spaces. (You do
not activate the alpha mode to fill in this field.)

If the file is a data file, you must include the required +
as the first character of the file name.

The following examples show instruction sequences
typical of those you might use for performing tape
operations within a program.

)0 <TAP> Writes 10 registers (starting with

10.002 <WRT> +GP register 002) as a data file named
+GP.

[0] <TAP> Reads the data file named +CA

5<RD> +CA into data registers, starting at
register 005.

[o] <TAP> Verifies that the program in

<VFY> MTK memory matches the program file
named MTK.

When the program performs any of these key sequences,
the calculator then prompts you to begin operating the
recorder.

Cassette Tape Operations 9-19

Reference Section

Use this section as a source of reference information for tape
operations.

Tape Functions

[/0] ¢<TAP>—Displays the TAPE STORAGE menu. The menu
lets you write (¢(WRT)) programs and data as named tape
files, as well as read (<RD>) or verify (<VFY?>)files you
have written. All the functions, whether used as
keyboard commands or program instructions, show
prompts (such as PRESS RECORD) for operating the
recorder.

The write function saves a series of data registers or the
program contained in memory as a tape file.

The verify function compares a tape file with a series of
data registers or the program contained in memory.
After the comparison, the calculator indicates whether
the file matches the contents of memory.

The read function loads a tape file into memory,
replacing the data or program previously in memory. If
there is insufficient room for the file, the read is not
performed and the contents of memory are unchanged.

Before carrying out a read or verify function, the
calculator must find the named file on the tape. While
searching for the file, the calculator displays the
message SEARCHING. If the calculator is unable to find the
file immediately, it will continue to search for at least 30
seconds before displaying an error message. During the
search, you can reposition the tape if necessary. If you
realize that you have made a mistake and you prefer not
to wait for an error message to appear, pressing the
RESET button cancels the function. If a file with a
different name is found, the calculator lets you decide
whether to continue searching for the original file.

Note: The calculator cannot detect whether a recorder is
connected. If the recorder is not connected, any attempt
to read or verify eventually displays an error message
because the search is unsuccessful. A write operation,
however, may appear to be successful.

9-20 Cassette Tape Operations

Program
Tape Files

Data
Tape Files

Keyboard
Commands

Program
Instructions

A program tape file must be assigned a three-character
file name. The first character of the name cannotbe a +
because that character identifies a data file.

When you write a program file, the entire program is
written, starting with the instruction at program step
0000 and ending with the last instruction in the program.
Because a program is written in multiples of eight bytes,
the calculator might include a few NOP instructions at
the end of the file. When you read a program file into
program memory, program memory is cleared and the
file is loaded into memory starting at program address
0000.

A data tape file must be assigned a three-character file
name. The first character of the name must be a +. The
+ gives the calculator a way to identify the file as a data
file.

If you use the TAPE STORAGE menu from the keyboard,
the calculator prompts for information such as a file
name or the number of registers.

If you specify fewer than three characters for a file
name, the calculator supplies trailing spaces. If you
make a mistake while entering a file name, you must
press torestart the entry.

If you use the TAPE STORAGE menu while the calculator is
in the learn mode, the calculator does not prompt for file
names or required numeric information. Instead, you
must supply the required information as either a field
following the function or a number in the numeric
display register.

When you execute the tape function as a program
instruction, the function uses the information you
stored.

(continued)

Cassette Tape Operations 9-21

Reference Section (Continued)

Write Program
File to Tape:
Keyboard
Command

Write Data
File to Tape:
Keyboard
Command

Read Program

File from Tape:

Keyboard
Command

Read Data

File from Tape:

Keyboard
Command

9-22

@l ({TAP> {WRT> {PGM?> aaa {ENT>—Begins the
sequence for writing the program contained in program
memory as a tape file named aaa. The first character of
file name aaa must not be a + because that character
identifies a data file.

[/0] ¢<TAP) ¢WRT) (REG) nnn.sss ¢<ENT) +aa <ENT)—
Begins the sequence for writing a series of data registers
as a tape file named + aa. The calculator supplies the
required + asthe first character of file name +aa. The
number nnn.sss specifies the number of registers to be
written (nnn) and the address of the starting register
(sss). The number nnn must be greater than zero. You
must include any leading zeros in sss. If you omit sss, the
calculator uses 000 as the starting register.

[10] <TAP) ¢<RD> <PGM)> aaa ¢<ENT>—Begins the sequence
for reading the program file named aaa from the tape
into program memory. The first character in the file
name must notbea +.

[i/0] <TAP> ¢<RD> ¢<REG) sss <ENT) +aa {ENT>—Begins the
sequence for reading the data file named + aa from the
tape into a series of data registers. The calculator
supplies the required + as the first character of +aa.
The file contents replace any data already in the
destination registers, starting at register sss. Register sss
need not be the same register from which the data was
written.

Cassette Tape Operations

Verify

Program File:

Keyboard
Command

Verify Data
File:
Keyboard
Command

[/0] <TAP> <VFY> <PGM> aaa <ENT>—Begins the
sequence for comparing the program tape file named
aaa with the contents of program memory, starting at
step 0000. The first character in the file name must not
be a +. The file is used only for comparison. After the
comparison, the calculator displays a message indicating
whether the file matches the program memory. When
the file matches but memory contains additional
instructions beyond the area compared, the message
MORE DATA IN PGM is displayed.

[/0] <TAP) <VFY) (REG) sss {ENT) +aa {ENT>—Begins
the sequence for comparing the data tape file named
+aa with a series of data registers. The calculator
supplies the required + as the first character of + aa.
The file is used only for comparison. The comparison is
made starting at register sss. The calculator displays a
message indicating whether the file matches the
contents of the data registers.

For a verify that follows writing the file, register sss
should be the starting register from which the data was
written.

For a verify that follows reading the file, register sss
should be the starting register into which the data was
read.

(continued)

Cassette Tape Operations 9-23

Reference Section (Continued)

Write Program
Fileto Tape:
Program
Instruction

Write Data
File to Tape:
Program
Instruction

Read Program

File from Tape:

Program
Instruction

Read Data

File from Tape:

Program
Instruction

9-24

[10] <TAP> <WRT> aaa—Begins the prompting sequence
for writing the program in program memory to the tape
as a file named aaa. The first character of aaa must not
bea +.

[10] <TAP> <WRT> +aa—Beginsthe prompting sequence
for writing a series of data registers as a tape file named
+aa. The first character of the file name mustbe a +.
When the instruction is executed, the numeric display
register must contain a number in the form nnn.sss,
specifying the number of registers to be written (nnn)
and the address of the starting register (sss). The number
nnn must be greater than zero. You must include any
leading zeros in sss. If you omit sss, the calculator uses
000 as the starting register.

[’0] <TAP) <RD» aaa—Begins the prompting sequence for
reading program file aaa from the tape into program
memory. The first character in the name aaa must not be
a+.

[i/0] <TAP> <RD> +aa—Begins the prompting sequence
for reading the data file named + aa into a series of data
registers. You must use + as the first character of the file
name. When the instruction is executed, the numeric
display register must contain a number in the form sss
specifying the starting register into which the file data is
to be read. Register sss need not be the same register
from which the data was written. The file data replaces
any data already in the registers.

Cassette Tape Operations

Verify

Program File:

Program
Instruction

Verify
Data File:
Program
Instruction

[il0] <TAP> <VFY> aaa—Begins the prompting sequence
for comparing the program tape file named aaa with the
contents of program memory. The first character in the
file name must not be a +. The file is used only for

comparison.

If the file matches and all program memory beyond the
program contains NOP instructions, the calculator
displays the message FILE aaa OK.

If the file does not match or if a problem occurs, the
calculator displays a corresponding error message and
halts the program.

Note: The message MORE DATA IN PGM indicates that the
file matches but memory contains additional
instructions beyond the area compared.

[10] <TAP> <VFY> +aa—Begins the prompting sequence
for comparing the data file named +aa with a series of
data registers. You must use + as the first character of
the file name. When the instruction is executed, the
numeric display register must contain a number in the
form sss specifying the starting register where the
comparison is to begin. Register sss should be the same
register from which the data was written or into which it
was read. The file is used only for comparison.

If the file matches the contents of the specified registers,
the calculator displays the message FILE aaa OK.

If the file does not match or if a problem occurs, the

calculator displays a corresponding error message and
halts the program.

Cassette Tape Operations 9-25

s5n9upes Pilgmotq o1 erigsf—oos YV (AT
ofit dliw ono bemen olit 9gal metgorq o ynitegmon 10l
o3 mi 10tomeds fealt odT yromam me1gorq Yo xinstnos
v01 vhao baay &l ofit odT . + 5 9d ton Jetn smsn offf

S T

art beovysd viomem mewoiqg s bre ssdotem olif ods 1
Toislunies s snoburieni 90U snigitos meigoiq
A0 sas 3IA opesesm o) eysiqeib

=13 puroo meldowg & 1 1o dodam ton aseh ol adi 11
bmsummwhmqumswm

sonsupoe Bnilgmorq ol eaigsfl—nn + (YIV) (SAT) [0
1o aoives g rliiw v+ bomaa oIl sisb o) gahegmons 10}
to19iastsdo feil adi a8 + sew Jausm poY .z193eigot aleh
a4ld betumaxe el nolyvwrvent ot nodW .smen oift e

osii ni adousn B nisinos taum eieigst algeib shemon
orf$ sradw oot Jninnke e yaiyviivege see mrrol

smse 9iii od bluode see 1ariged .aiged of &l sozlisgmon

H dotdw oditl 10 nediivw ssw sisb sl doldw movl weizigon
-nosi1aqinos 101 yino baai ei ol 54T .besy ssw

#rodaiam bsitiveqz 9 Yo 21800 add asrigm olil et 1

o) a0 soldong § 30 diam Jomsssh silt ads il

bas agessom 1019 RnibnogesTioo & eyelgeib voisivolen
Janigoq ol eted

88-8 aschiesqO sqgaT osrsessd

hbk

2% mawpn9

mswgn9
noijomniant

yHhaV

oid pial
mewgerd
naitouden!

Chapter 10: Developing Your Own Programs

This chapter describes how to use the programming
concepts discussed in previous chapters to develop your own
programs.

Table of Contents

Developing Programs

Programming Considerations

The next few pages contain reminders and some general
information you should keep in mind while developing your
OWn programs.

Setting Initial
Program
Conditions

Example

Programs usually include an initialization routine to
establish a known set of conditions. Such a routine may,
for example, set calculator parameters and store initial
values for the program.

Typically, the initialization routine resides at the
beginning of the program and is executed only once.

Although the size and complexity of the routine depend
on the complexity of the program, you should consider
at least:

» Setting default conditions ([HELP]). (Executing
in a program is identical to pressing <YES) from
the keyboard.)

» Setting partitions for user memory ([2nd] [PART]). This
may not be necessary if you use [HELP].

» Clearing any pending operations, clearing the display,
and cancelling scientific notation ([CLEAR]). This is not
necessary if you use [HELP].

» Clearing (resetting) user flags 00-14 ([FLAGS] <CLR>).

» Clearing data registers ([2nd] [CMS]) or storing initial
values in specific registers.

As an example of an initialization routine, the following
program segment clears all data registers, selects the
decimal number base, clears flags 00-14, and stores the
value 12 in data register A.

PC= Program Mnemonics Comments

0000 CMS Clear data registers
0001 DEC Select decimal format
0002 CFG Clear flags 00-14
0003 12 STO A Initialize register A

10-2 Developing Programs

AQS™
Considerations

Angle-Unit
Considerations

As explained in the TI-95 User’s Guide, elements of an
expression are not necessarily evaluated in the same
sequence in which you enter them.

For example, the AOS feature evaluates the sequence
RCLO001 +3* 6asRCLO001 +(3 * 6). If you want the
expression to be evaluated differently, such as

(RCL 001 +3) * 6, include the parentheses in the
program.

Animmediate function operates only on the displayed
value; it does not complete a pending operation before
executing.

For example, if you attempt to evaluate the expression
(2 * 32 by entering 2 [x] 3 7], the expression is instead
evaluated as 2 * 32. To avoid this problem, enter the

expression as either [(] 2 [x]3 D] [x8 or 2 [x] 3 [=] [xZ].

Keep in mind that if you use [=] in a subroutine, it
completes all pending operations, including any that
were pending when the subroutine was called.

Before using a trigonometric function in a program, you
must ensure that the appropriate angle unit has been
selected. You can use the following table for setting
angle units to a known condition from within a program.

Key Sequence Sets Angle Mode To
(iNV] [2nd] (DRG] Degrees
[INV] [2nd] [DRG]
[2nd]IDRG] Radians
[INV] [2nd] DRG]
[2nd][DRG]
[2nd] [DRG] Grads
(continued)

Developing Programs 10-3

Programming Considerations (Continued)

Using Labels
Correctly

Avoiding
Memory
Conflicts

Using program labels simplifies writing and modifying a
program. When assigning labels, however, make sure to
use a different label for each section of the program.

If you inadvertently assign the same label to two
segments of a program, transfer instructions that refer
to that label will always transfer control to the first
occurrence of the label. You cannot transfer control to
another segment that has the same label.

If your program stores an alpha message in memory,
keep in mind that each message stored—even a short
message—occupies 10 contiguous data registers. If you
do not allow a sufficient number of registers for a
message, it could conflict with other data.

For example, if you have stored a numeric value in data
register 018 and then store an alpha message starting at
register 015, the numeric value will be overwritten by a
portion of the message.

You should also keep in mind that the ¢<QAD) and {CUB>
selections of the EXTENDED FUNC menu use data registers.
For information on the specific registers involved, refer
to the ‘*‘Math Operations’’ chapter in the TI-95 User’s
Guide.

By planning specific locations for each numeric value
and each alpha message, you can avoid such conflicts.

You do not need to avoid conflicts between data
registers and the registers used for built-in statistical
functions; statistical registers reside in a separate area of
the TI-95 memory.

10-4 Developing Programs

Saving the
t-Register
Contents

A few of the calculator’s functions, such as polar/
rectangular conversions, leave a result in the t-register
or expect an input value to be stored there. Each time
your program executes such a function, the previous
contents of the t-register are lost. If this causes a
problem, you can save the t-register contents in a data

register.

As an example, the following program segment saves the
contents of the t-register in data register 005 without
altering either the t-register or the display.

PC= Program Mnemonics
0000 Xt

0001 STO 005

0004 Xt

Developing Programs 10-5

Planning Your Program

Although it is possible to write a program using the “trial-and-
error” method, planning gives you several advantages. It
minimizes rewriting and generally results in a more efficient
program. A well-planned program is also easier to modify and
is less likely to contain errors.

Step 1:
Define the
Problem

Step 2:
Develop
a Solution

Clearly defining the problem minimizes the time you will
spend developing a solution. In defining the problem, try
asking the following questions.

» What elements of the problem are already known?

» What information must be supplied from the
keyboard as the program runs?

» What elements of the problem must the program
calculate?

» What types of calculations will be necessary?

A complex problem can be simplified by breaking it
down into ‘‘modules,’’ or program segments, that each
deal with a specific task in the overall solution.

A device called a flowchart can help you design modules
and show relationships between modules. A flowchart
uses symbols to illustrate the planned solution.
Generally, arectangle is used to indicate a task and a
diamond is used to indicate a test.

+

y
accept
input

ithin no
range?,

10-6 Developing Programs

Step 3:
Determine
Messages and
Prompts

Step 4:
Determine
Memory
Allocation

Try to design messages so that they consist of 16 or fewer
characters. Although you can create a message of as
many as 80 characters, short messages are easier to read.

You may find it useful to draw templates such as the one
below to record planned messages, columns for merged
numbers, and function-key labels.

10 8983nda 6 8 7 8.8 10,11 12 13 14 156 16

| fossfoatod] | | olodpos] [| [| | | |
[fofaladiz] T] frofodn Imllliﬁll

F1 F2 F3

Large programs (and some small programs that generate
long lists of data) require careful allocation of available
memory.

At this stage of planning, you should:

» Determine the approximate amount of memory your
program will occupy. Plan to partition enough
program memory to allow for possible modification of
the program.

» Determine the number of registers the program will
need for stored alpha messages and for numeric
values, such as counters and results of calculations.
Record the planned location of each message and
value. Plan to partition enough data registers.

(continued)

Developing Programs 10-7

Planning Your Program (Continued)

After developing a solution and deciding on messages and
memory Ic:cations for program data, you are ready to translate
your solution into a sequence of program Instructions.

Step 5: You should now be ready to write the program on paper,

Write the translating each symbol from the flowchartinto a

Program Steps sequence of instructions. Writing the planned program
steps on paper lets you use your own form of
“‘shorthand’’ and lets you include comments about what

the program does at each point.

LABEL AA POINTER-ADJUST ROUTINE
recall 015 Get pointer
+ recall 016 = Add offset

store 017 Store pointer + offset

You can use these written steps to mentally test the
solution before entering the keystrokes. If you find that
you are repeating the same sequence of program
instructions, consider using the sequenceasa

subroutine.
Step 6: When you are satisfied that the program instructions
Enter the will accomplish the program's task, the next stepisto
Keystrokes enter the keystrokes.

While translating the written steps into keystrokes,
remember to use the [2nd] and [INV] keys as necessary. For
example, if you have written an instruction as LABEL
AA, you must press ILBLIAA. For alisting of
instruction mnemonics and their corresponding
keystrokes, refer to Appendix C.

10-8 Developing Programs

Step 7:
Test and Edit
the Program

After you have entered the keystrokes for your
program, test the program by running it. In many cases,
the program will contain errors and will not run
correctly the first time.

If the program does not stop after a reasonable time,
press [BREAK], and then press ¢PC> to display the
part of the program that was executing when you
pressed [BREAK]. (You can also insert BRK as a program
instruction to periodically check the progress of the
program.) After exiting the learn mode, you can turn on
the trace function and press (GO’ to resume program
execution. When trace is on, the calculator displays the
program mnemonics and the audit trail as the program
runs. If you have a printer connected, the mnemonics
and audit trail are also printed.

You can activate trace either from the keyboard or from
within the program itself. If you have isolated the
problem to a particular segment of the program, insert a
TRC instruction before the segment and an INV TRC
instruction after the segment.

If you only need to see a specific value or message to
determine that your program is running correctly, you
may prefer to insert a PRT or a PAU instruction rather
than tracing each instruction.

If you want to examine a labeled instruction or an
instruction whose program step you know, you can use
[aTL]or [INV] [aTL]from the keyboard to set
the program counter to the desired step. Then press
¢PC) to display the instruction.

Continue to test and edit until the program runs
correctly. You should test the program using ‘‘worst
case’' data to ensure that it can handle a wide range of
situations.

(continued)

Developing Programs 10-9

Planning Your Program (Continued)

Step 8:
Save and
Document
the Program

When your program is finished, you may want to save it
as a file (either in the calculator’s file space orin a
storage device such as a Constant Memory™ cartridge).

You should also prepare any written documentation for
using and maintaining the program. Your written notes
and program steps can be useful. If you have a printer,
print a listing of the program and its labels.

If you will be using the program infrequently or if others
will use the program, it is a good idea to compile written
instructions for its use. This is particularly important
with a complex program that requires a great deal of
input from the keyboard.

10-10 Developing Programs

Appendix A: Advanced Memory Funciions

Table of Contents

This appendix is for experienced programmers who want
direct access to the system memory of the TI-95. To use this
information, you should be experienced in using hexadecimal
numbers and conducting operations that involve the
manipulation of bytes.

Advanced Memory Functions

Introduction

All memory in the T1-95 is organized as a series of eight-byte
registers. These Iinclude data registers and system registers.
Normally, system registers are protected and you can access
only the data registers. By removing system protection,
however, you can gain direct access to all registers.

The System-
Protected
Mode

The System-
Unprotected
Mode

Each time you turn on the calculator, the system is
protected. In the system-protected mode, you can:

» Access the 16 user flags (00-15) using the SF, RF, and
TF instructions.

» Access data registers using functions such as STO,
RCL, and DSZ followed by a three-digit register
address.

» Enter a program into the program memory by using
the learn mode.

» Store and retrieve files in the file space orina
Constant Memory™ cartridge using the file
operations.

Besides the functions available in the system-protected
mode, the system-unprotected mode lets you:

» Access the system flags (16-99) using the SF, RF, and
TF instructions. (Refer to ‘‘System Flags’’ in
Appendix C for alist of the system flags.)

» Access data registers or system registers using
functions such as STO, RCL, and DSZ followed by a
four-digit register address.

» Store or recall a single byte in any user memory area,
system register, or Constant Memory cartridge by
using the STB and RCB functions.

» (Call an assembly-language subroutine by using the
SBA function.

Note: You can use any of the system functions from the
keyboard or from within a program. To store a system
function as a program instruction, however, you must
remove the system protection before entering the learn
mode.

A-2 Advanced Memory Functions

Precaution The procedure described on the next page shows you

for Using the how to remove the system protection.
Unprotected
Mode Unless you have a specific reason for accessing a system

register, always leave the calculator in the protected
mode. This prevents you from inadvertently changing
any system registers that may affect the operation of the
calculator.

Each system register has a fixed use that is determined
by the design of the calculator. If you accidentally or
indiscriminately change the contents of a system
register, you could alter option settings or destroy
important data.

In extreme cases, you could temporarily disable the

keyboard or the display. In such a case, you must press
the RESET button to restore normal operation.

Advanced Memory Functions A-3

Changing the System-protection Mode

This section shows you how to change the system-protection
mode. You can always determine the current protection mode
by looking for the SYS indicator in the display. If the indicator
is displayed, the system is unprotected; if not, the system is

protected.
Removing From the keyboard, you can remove system protection
System by using the following procedure. (You cannot remove
Protection system protection from within a program.)

1. Press the [FUNC] key.

The calculator displays:

2. Press (SYS).

The calculator displays:

3. Press <YES) to unprotect the system.

The calculator turns on the SYS indicator and displays
a menu that lets you choose from the available system
functions.

(STB> Stores a value in a single byte.
{RCB> Recalls the contents of a single byte.
{SBA> Calls an assembly language subroutine.

Each of these system functions is discussed later in
this appendix.

A-4 Advanced Memory Functions

Restoring
System
Protection

If the system is unprotected, you can restore system
protection in either of two ways.

» Turn the calculator off and then back on.
» Usethe HELP function.

When you press [HELP], the calculator displays:

> [f you want to both restore system protection and
restore other calculator settings to their default
values, press (YES).

» If you only want to restore system protection without
affecting any other settings, press {NO> repeatedly

until the following message appears.

Then press <YES).

Advanced Memory Functions

A-b6

Storing or Recalling a Single Byte

Two of the system functions, STB and RCB, let you store and
recall single bytes in memory. The valid range for byte values
is 0-255 in decimal mode (00-FF in hex mode). Regardless of
the mode in use, you must express the byte address as a
hexadecimal number.

Calculating To calculate the address of a byte in user memory, use
an Address one of the formulas given below. Then convert the
inUser Memory address to hex. (For the address of a byte in system
memory, refer to the ‘““‘Memory Map'' and ‘‘System RAM
Usage'’ sections of AppendixC.)
» Foraspecified byte in a data register, use:
Byte address = 16384 — (8 * Reg) — Byte

where Reg is the number of the data register and Byte
isin the range 1-8.

» Foraspecified step in program memory, use:
Byte address=918%+FS + Step

where FSis the number of bytes partitioned as file
space and Step is the program step number.

» Foraspecified byte in the file space, use:
Byte address=9183 + Byte

where Byte is in the range 1 to the total number of
bytes partitioned as file space.

This illustration, based on the default partitions, shows
how the formulas are derived.

Start of file space — [~ 9184 (23E0 hex)
Files

End of file space— [14383 (382F hex)

Step 000 -+ 14384 (3830 hex)

Programs

Step 0999 — <+ 15383 (3C17 hex)

Register 124 — < 15384 (3C18 hex)
Data

Register 000 — « 16383 (3FFF hex)

A-6 Advanced Memory Functions

The STB and
RCB Functions

Example

{STB) hhhh stores the value in the numeric display in
byte khhh, where hhhh is a four-digit hex memory

address.

{RCB> hhhh recalls into the numeric display register the
value in byte hhhh, where hhhh is a four-digit hex

memory address.

Use STB to store the hex value AA (170 decimal) in the
third byte of data register 000 and then use RCB to recall
the byte in decimal mode. First, use the equation on the
previous page to calculate the address of the byte.

Byte address=16384 (8 * 0)-3=16381
Converted to hex, the byte address is 3FFD.

Procedure Press Display

Clear and
select hex mode (BAS) <HEX> 0.
Remove protection [FUNC] <SYS>

{YES> SYSTEM FUNCTIONS
Enter value AA [A,]

[2nd] (A1 AA
Store at (STB> 3 [F,]
address 3FFD [2nd][F,]

[D,] AA.
Clear and select
decimal mode {BAS> <DEC> 0.
Redisplay system [FUNC]
functions menu {SYS) SYSTEM FUNCTIONS
Recall the value <RCB> 3 [F,]
from address 3FFD IF,]

[D,] 170.
Restore protection

<YES> NORMAL MODE SET

Advanced Memory Functions

A-T7

Using the Unformatted Mode

The unformatted mode gives you a convenient way to treat
the information in a register as a series of bytes ratherthan a
single numeric value.

What Is the
Unformatted
Mode?

Unformatted
Entries

When you enter a number in a formatted mode such as
decimal or hexadecimal, the number is converted to an
internal representation the calculator uses for all
numeric values. (For a description of this method of
representation, refer to page A-13 in this guide.) When
you display a number in a formatted mode, the numberis
converted from the internal representation to the
selected format.

In the unformatted mode, however, no conversion takes
place. This gives you a way to enter a series of bytes
exactly as you want them stored and lets you examine
the contents of a register as a series of bytes.

You can use the same functions in the unformatted mode
that you can use in the hex or octal modes. You can, for
example, perform memory operations such as STO and
RCL. You can also access system registers by removing
system protection, just as you can in the formatted
modes.

When you make an entry using the unformatted mode:

» Each pair of hex digits you enter represents a single
byte.

» The only valid data entry keys are [0] through [8] and
[A4]through [F,]. The calculator ignores
other entry keys, such as [¥/=], [-], and [EE].

» If you do not enter all 16 digits, the digits you enter
are left-justified and the calculator supplies trailing
zeros. For example, if you enter the number 23 in
unformatted mode and then press [=], the display
shows 2300000000000000.

A-8 Advanced Memory Functions

Unformatted
Display

Considerations
for Using the
Unformatted
Mode

When you use the unformatted mode to display a
number, the calculator displays the number as a series of
16 hexadecimal digits, with each pair representing one
of eight bytes.

For example, you might recall a register containing
AABBCCDDEEFFO0011. The first byte in the register is
AA hex, the second byte is BB hex, and so on.

In general, you should confine the use of the
unformatted mode to entering and displaying a series of
bytes. The formatted modes are better suited for
entering, calculating, and displaying numeric values.

To avoid unexpected results when you use the
unformatted mode, keep these considerations in mind.

> Although calculations operate normally in the
unformatted mode, the displayed results are not
formatted. For example, the result of 6!, if displayed
in the unformatted mode, is 7200000000000002.

* You could get unexpected results if you enter a series
of bytes in the unformatted mode and then
inadvertently display the bytes as a formatted
number. For example, the unformatted entry
AABBCCDDEEFF, displayed in the decimal mode, is
10, even though the entry is stored internally as
AABBCCDDEEFF0000.

> Unless you are intentionally entering an unformatted
number, make sure the calculator is in one of the
formatted modes. This is primarily important when
you are entering numbers to be used in calculations,
because the exponent (described on page A-13)is not
computed in the unformatted mode.

(continued)

Advanced Memory Functions A-9

Using the Unformatted Mode (Continued)

Example: Use the unformatted mode to store the bytes
System AB00000000000000 in data register A. Then clear the
Protected display and recall the contents of the register. To see the

effect of attempting to display the bytes as a decimal

number, select the decimal mode.

Procedure Press Display
Clear the display 0.
Select unformatted
mode {BAS>

(UNF> 0000000000000000
Enter the bytes [2nd] [A,]

[B,] AB
Store in register A A AB00000000000000
Clear the display CLEAR 0000000000000000
Recall the bytes A ABOO0O00000000000
Attempt to display
as a decimal number <{DEC> AB

A-10 Advanced Memory Functions

When the
Systemls
Unprotected

When you remove system protection, as described on
page A-4, you can access any TI-95 register—not just
data registers. For this reason, when system protection
is removed, functions such as STO and RCL require a
four-digit field Znnn.

In this field, Z specifies both the type of register and
whether the addressing is direct or indirect. nnn
specifies the register number. Alphabetic (A-Z)
addressing can be substituted for the Znnn field if you
are addressing a data register in the range 000-025.

The following table describes how the calculator
interprets a key sequence such as Znnnor
Znnn.

First Digit

(2) Meaning

0 Specifies that nnn is a data register.

2 Specifies that nnn is a system register.

3 Specifies that nnn is a system register
containing the number of another system
register. (Used for indirect addressing.)

6 Specifies that nnn is a data register
containing the number of a system register.
(Used for indirect addressing.)

To determine system register numbers, refer to ‘‘System
RAM Usage'’ in Appendix C.

(continued)

Advanced Memory Functions A-11

Using the Unformatted Mode (Continued)

Example:
System
Unprotected

A-12

Remove system protection and use STO with the
unformatted mode to store the message Reg 065! (hex
bytes 5265672030363521) in the first eight bytes of the
alpha register (system register 065). Then use the alpha
mode to display the message.

Procedure Press Display
Clear current alpha [ALPHA|
message ALPHA] 0.
Remove system [Func]
protection {SYS>

{YES> SYSTEM FUNCTIONS
Select unformatted
mode {BAS> <UNF> 0000000000000000
Enter the byte
values 5265672030363521 5265672030363521
Store in system
register 065 [sTO] 2085 5265672030363521
Recall as alpha
message {==>)

(RCA> [=] Reg 065!
Restore system
protection <YES> NORMAL MODE SET

Advanced Memory Functions

Internal Representation of Numeric Values

Any numeric value you enter using one of the formatted
modes (including hex and octal) is converted for internal use
as a floating-point decimal number. No such conversion
takes place for bytes you enter using the unformatted mode.

Fioating-
Point
Representation

Numeric values are stored internally as three
components:

> A 13-digit mantissa (with an assumed decimal point
following the first digit).

» A sign digit.
» A two-digit exponent.
For example, the number — .64 is stored as:

6400000000000C01

Exponent

Sign Digit

Mantissa

Location of decimal point

The sign digit may be one of four values, depending on
the sign of the mantissa and the sign of the exponent.
(Values other than those shown here are not used or
indicate an error condition.)

Sign Digit Meaning

0 Positive mantissa, positive exponent
4 Negative mantissa, positive exponent
8 Positive mantissa, negative exponent
C Negative mantissa, negative exponent

(continued)

Advanced Memory Functions A-13

Internal Representation of Numeric Values (Continued)

Example Use the unformatted mode to show the internal,
floating-point representation of a decimal number.

Procedure Press Display
Enter a number 64 -84
Display internal
representation {BAS>

{UNF> 6400000000000C01

Return to decimal
mode {DEC> -064

In the unformatted mode, the sign digit C indicates that
both the mantissa and exponent are negative.
Therefore, the mantissa is — 6.400000000000 and the
exponent is — 01, which is equivalent to — 0.64.

A-14 Advanced Memory Functions

Accessing Assembly-language Subroutines

The SBA function enables you to call assembly-language
subroutines. Some of the system subroutines are listed in

Appendix C.

The SBA
Function

To access an assembly-language subroutine, press (<SBA»
and enter a three-digit hex value that specifies the
location of the subroutine.

The first digit, with a valid range of 1 through 6, specifies
whether the subroutine is located in the system ROM
(read-only memory), a library cartridge, or a file
directory such as the calculator’s file space or a Constant
Memory cartridge.

The last two digits give the pointer offset (in bytes) from
the beginning of the table at the front of each chip.

Sign Digit Meaning

1,3 Specifies a subroutine in system ROM. The

3,or4 system subroutines that can be useful to you
are listed in Appendix C.

5 Specifies a subroutine in the currently
installed library cartridge. (These
subroutines are accessible only by a
program in the cartridge.)

6 Specifies an assembly-language subroutine

saved as a file. With this option, the last two
digits are ignored. Before using the SBA
function, you must place the name of the
directory and file into the alpha register in
the form DIRFIL, where DIR is the directory
name and FIL is the file name (for example,
MEM + SB).

(continued)

Advanced Memory Functions A-15

Accessing Assembly-language Subroutines (Continued)

Example

Running
the Example

One of the system subroutines in the TI-95, number 226,
displays the value contained in the numeric display
register. This subroutine does not pause after showing
the value as the PAU function does.

This example program counts by twos and uses routine
226 to display each count with no pause. Unprotect the
system and then enter the following program.

PC= Program Mnemonics Comments

0000 LBL AA

0003 +2= Counts by twos

0006 SBA 226 Displays without
pause

0009 GTL AA Loops to next count

To run the example, press ¢(PGM). The program
starts with the number in the numeric display register
and rapidly displays each count.

To stop the program, press or [HALT].

A-16 Advanced Memory Functions

Appendix B: Advanced Input/Output Functions

Table of Contents

This appendix discusses the advanced /O (input/output)
functions. The CIO (call I/O) function enables you to control
the operation of a peripheral device. Before using the CIO
function, you should be familiar with the information in
Appendix A. By using the KW (key wait) function, your
program can read individual keystrokes as they occur.

Advanced Input/Output

Introduction

You can use the CIO function to send an I/O command to a
compatible peripheral device, such as the PC-324 Printer.
(CI1O cannot be used to control the Cl-7 cassette interface.)
This section gives a overview of how CIO uses a peripheral
access block (PAB) and a data buffer to send and receive
information from a peripheral device.

When Do You
Need the
CIO Function?

Whatls

aPAB?

Whatls a
Data Buffer?

You must use the CIO function to control any peripheral
device that cannot be accessed directly from the
calculator’s keyboard.

You do not normally need to use the CIO function fora
printer; the TI-95 contains built-in functions for printer
operations. In some cases, however, you may want to
use the CIO function to control a printer.

A peripheral access block (PAB) is an area of memory
that you use to store the necessary parameters for the
CIO function. These parameters include the I/O
command you want to send, the device number of the
device you want to access, and the address of the data
buffer. You can set up the PAB at any location in
memory, provided the PAB starts at the beginning of a
register.

After you use the CIO function, the device returns
certain parameters to the PAB. These parameters
include information that tells you if the I/O operation
was completed successfully.

A data buffer is an area of memory that you use to store
the actual data transferred between the calculator and
the device. You can set up a data buffer at any location
in memory.

» If your program is sending data to a device, it must
store that data in the data buffer before executing the
CIO function.

» If your program is receiving data, the calculator
stores the incoming data in the data buffer after the
CIO function is executed.

B-2 Advanced Input/Output

Overview of
Sending an
1/O Command

Overview of
Accessing a
Device

For each I/O command that you send to a device, you use
the general procedure outlined below. (Each step is
described in detail later in this appendix.)

1. Build a PAB containing the parameters that apply to
the I/0 command you are sending.

2. If you are sending data, store that data in the data
buffer.

3. Execute the CIO function to send the command.

If you want to perform the same operation repeatedly,
you do not have to build a new PAB each time. However,
you may need to change the data in the data buffer.

After the device responds to a command, your program
should:

1. Check the error code returned by the device to see
whether the operation was completed successfully or
an error occurred.

2. Read any data returned to the data buffer by the
device.

Before you can send or receive information from a
device, you must first send a command that ‘“‘opens’’ the
device. Once the device is open, you can perform as
many [/O operations as needed. When you are finished
using the device, send a command to ‘‘close’’ the device.
Unless you close the device, any later attempt to open it
will fail.

Advanced Input/Output B-3

The Parametersina PAB

This section shows the structure of a PAB and gives a brief
description of each PAB parameter. If you use the unformatted
display mode to store the parameters, you must entereach as
a hexadecimal value. If you use STB to store a parameter, you
can enter the byte value using the currently selected number
base. The parameters are shown here as hex values.

Structure
of a PAB

Device
Number

Command
Code

Logical Unit
Number (LUNO)

A PAB consists of 12 bytes that contain the various
parameters. Each parameter is stored in a one-byte or
two-byte field, which is filled as needed for your
particular application.

Note:In thisillustration, LSB means the Least

Significant Byte of a byte pair.
PAB Byte# Parameter

1 Device number
2 Command code
3 LUNO (logical unit number)
4 Record number (LSB first)
5
6 Buffer size (LSB first)
7
8 Data length (LSB first)
9
10 Returned status
11 Buffer pointer (LSB first)
12

The device number specifies the device that you want to
access. For example, the device number for the PC-324
printeris 12 (0C hex). To find the device number, refer
to the manual that comes with the device.

The command code specifies the I/O command you want
to send to the device. For a list of command codes, refer
to page B-6 of this guide.

The LUNO field is used only for devices that may contain
a number of separately addressable files on one physical
unit. (This byte is ignored for other types of devices.) For
example, if you want to use two or more files located on
asingle device, you must assign a unique, nonzero unit
number to each file.

B-4 Advanced Input/Output

Record
Number

Buffer
Size

Length
of Data

Returned
Status

Buffer
Pointer

The record number specifies a particular record in a file.
This is used only with devices that allow you to access
relative (random access) files. Other types of devices,
such as printers, ignore these bytes.

The buffer size specifies the maximum number of bytes
that can be received from the device. (This does not limit
the size of data you can send to the device.)

The length of data specifies the number of bytes of data
being sent to or received from the device.

» [If you are sending data to the device, you must
include this value in the PAB.

» If you are not sending data, you must let the device
know there is no data by specifying 0 as the data
length.

» If you are receiving data from the device, the device
returns the value to the PAB.

The returned status byte is used to indicate to you
whether the I/O command was successful. A returned
status byte of zero indicates no error occurred. A
returned status byte that is nonzero indicates that the
CIO command was not successful.

The buffer pointer contains the address of the first
(highest-numbered) byte in the data buffer.

Advanced Input/Output B-5

Command Codes

Command codes specify the type of I/lO command you want to
send to a device. Not all devices, however, support all
commands. If you are using a printer, for example, commands
such as Read and Delete are invalid. To determine the 1/O
commands that apply to your device, refer to the device
manual.

Commeonly-Used The following table lists the most commonly-used I/O

Commands commands and shows the hexadecimal code for each
one. Some of these commands are discussed in more
detail in this appendix.

HexCode Command

00 Open—Prepares a peripheral device for use.

01 Close—Terminates the use of a device.

03 Read—Reads arecord from a device and
stores it in the data buffer.

04 Write—Sends the data stored in the data
buffer to a device.

06 Delete—Deletes a file from a mass-storage

device. (You must place the name of the file
in the data buffer.)

0C Verify—Verifies that a record was read or
written correctly. (This command applies
only to a mass-storage device.)

0D Format—Formats the storage mediumina
mass-storage device.
FF Reset—Closes any open files on the

specified device and then resets and closes
that device. (If you specify a device number
of 00, the calculator closes all open files and
resets all devices.)

B-6 Advanced Input/Output

The Open Command

The Open command, code 00, establishes a link between the
T1-95 and the device. It also enables you to specify various
file and device options.

Information
Needed for
the Data
Buffer

Device
Options

Before sending an Open command, you must place the
following information into the data buffer.

» Requested I/O buffer size (2 bytes, LSB first)—
Specifies the maximum length of any data you want
toreceive from the device. (You can specify 0000 to
request the device's default value.)

» Device attributes (1 byte)—Specifies the access mode
and the type of file you want to open. Refer to the
next page for information concerning device
attributes and how to determine the correct value for
this byte.

» Device options (if any; length varies accordingly)—
Specifies any device-dependent options that may be
available on your device.

Some devices allow you to use various device options,
which are usually given as a string of alphanumeric
characters. To specify one of these options, use the
ASCII code for each character.

On some printers, for example, the string L =D causes
the printer to use double-spacing. The ASCII codes for
these characters are shown here as hex numbers.

Character: L = D
Hex code: 4C 3D 44

To specify this option, store 4C3D44 in the appropriate
bytes of the data buffer (4C in the fourth byte, 3D in the
fifth byte, and 44 in the sixth byte).

(continued)

Advanced Input/Output B-7

The Open Command (Continued)

Device To determine the value for the device attributes byte in

Attributes the data buffer, you must first know the access mode
and, if applicable, the type of file you want to open. You
can then use the following table.

Bit # Description

7,6 00—append mode (write only at end of file)
01—input mode (read only)
10—output mode (write only)
11—update mode (read or write)

5 0—sequential records
1—relative records

4 0—variable record length
1—fixed record length

3 0—display file
1—internal file

2.1,0 always zero

For each bit, fill in the applicable digit, 0 or 1. Then
determine the value of the byte. (If the device does not
support files, specify only bits 7 and 6 and use zeros for
bits 5-0.)

For example, the following device attributes byte would
be used when opening a device for updating a file with
the attributes display, variable, and sequential. The bit
pattern (11000000) is equivalent to the hex value CO.

I_IlI0[0I010]01_I
765 43 2 1 0« leastsignificant bit

B-8 Advanced Input/Output

Parameters
inthe PAB

After You
Send the
Command

The PAB for an Open command should include the
following parameter values.

» Buffer size—Enter at least 0004. (The device always
returns four bytes of information in response to the
command.)

» Data length—Enter at least 0003. If you are specifying
any device options, be sure to increase this value
accordingly.

After you send an Open command, the device compares
the I/O buffer size you requested in your data with its
own capabilities. It then responds to the command and
returns four bytes of information to the data buffer,
writing over the data you sent.

» Accepted I/O buffer size (2 bytes)
» Record number (2 bytes)

The accepted I/0 buffer size is the device’s response to
your requested size. If the size you requested is
acceptable, the device returns that value as
confirmation. If you requested 0000, the device returns
its default size. You can then use that value in the
buffer-size field of PABs for other commands.

The record number specifies the current record in the
device. (This is used only by devices that allow relative
files; other devices always return 0000.)

If a condition such as a low battery or an unacceptable
buffer size causes the device to return an error, the
device is not opened. If the device was already open, it
returns I/O error 5 (already open). In this case, the device
remains open but ignores the parameters and data you
sent.

Advanced Input/Output B-9

The Read and Write Commands

This section provides additional information for using the
Read and Write commands.

Read
Command

Write
Command

The Read command, code 03, reads the next record in an
open device and then stores that data in the calculator’s
data buffer.

When you send a Read command, pay particular
attention to two of the parameters in the PAB.

» Record number—If you are using a device that allows
you to access relative files, be sure to include the
correct record number. (If you are performing
successive read operations, you must increment the
record number each time.)

» Data length—Enter 0000 (because you are not
sending any data to the device).

After the Read operation is complete, the data length
field of the PAB contains the number of bytes received
from the device.

The Write command, code 04, instructs the calculator to
send the information in the data buffer to the device.

Before you send a Write command, be sure to place the
applicable information into the data buffer. You should
also pay particular attention to two of the parameters in
the PAB.

» Record number—If you are using a device that allows
you to access relative files, be sure to include the
correct record number. If you are performing
successive Write operations, you must increment the
record number each time. For Write commands toa
device where records do not apply, such as a printer,
you can use 0000.

» Data length—Enter the number of bytes of data you
are sending to the device.

B-10 Advanced Input/Output

1/O Error Codes

After you send an /O command to a device, the device returns
a status code which is stored in the returned status byte of
the PAB and in the numeric display register. /O errors do not
halt a running program unless you have set the hait-on-error
flag (flag 15). This allows the program to test the numeric
display register and handle the error.

Commonly-
Used
Error Codes

The following table lists the most commonly-used I/O
error codes and gives a brief description of their
meaning. Refer to your device manual for the specific
error codes that apply to your device.

— Error Code —

Decimal Hex Meaning

0 00 Operation completed successfully

1 01 Device option error

2 02 Attribute error

3 03 File/device not found

4 04 File/device not open

5 05 File/device already open

6 06 Device error (usually a hardware
malfunction)

8 08 Data/file too long

9 09 Write/protect error

12 oC Buffer size error

13 (1)0] Unsupported command error

25 19 Low batteries in the device

29 1B Bus error (check the cable
connections)

2566 FF Bus time-out error (device is not
attached or did not respond within a
specific time period)

Advanced Input/Output B-11

Performing an I/O Operation from a Program

In most cases, you need to perform an /O operation from
within a program. This section describes the steps involved in
using ClO in a program.

General
Program
Sequence

Choosing
Data Registers

The steps generally required for a program that performs
an I/O operation are:

1. Build the PAB and, if necessary, load the data buffer.
2. Execute the CIO function to send the command.

3. Test the returned status and, if applicable, read the
data from the data buffer.

Before writing the program, you should decide which
data registers you want to use for the PAB, the data
buffer, and any variables needed by the program.

» The PABrequires two consecutive data registers.
Because the program uses only one PAB at a time, you
can build the PAB for each command using the same
two registers.

» The data buffer must be large enough to store the
largest piece of information that you want to send to
orreceive from the device. For convenience, you
should begin the buffer at the beginning of a register.

» The variables in the program can use any data
registers that are not used by the PAB or the data
buffer.

B-12 Advanced Input/Output

Choosing
Data Registers
(Continued)

Although you can use any data registers for the
information used by the program, you may want touse a
sequence of registers. One possible way of arranging the
information is shown below.

Data
buffer

PAB —E

Program __|
variables

RegH

Reg G

RegB

(continued)

Advanced Input/Output

B-13

Performing an I/O Operation from a Program (Continued)

Building You must begin a PAB in the first byte of a register.
the PAB Because a PAB contains 12 bytes of information, you
need to store it in two consecutive registers.

When entering values into a PAB, you should follow two
general rules.

» If the device ignores a particular parameter, enter
zeros for that parameter.

» [If a parameter occupies two bytes, enter the LSB first.
For example, the parameter value 0050 should be
entered as 5000.

Tobuild a PAB, use the following procedure.

1. Select the unformatted display mode.

2. Enter the first eight bytes (16 hex digits) of the PAB
into the display.

3. Usethe key to store the first eight bytes.

4. Enter the remaining four bytes into the display. (The
last four bytes of the second register are ignored.)

5. Use the key to store the last four bytes of the
PABin the next consecutive register.

B-14 Advanced Input/Output

Using the
CIO Function

Testing the
Returned
Status

After building the PAB and storing any applicable
information in the data buffer, you can then use the CIO
function to send your I/O command to the device.

1. Press [/0] to display the INPUT/OUTPUT menu.

2. Press (CIO>.

3. Enter the register number that contains the first eight
bytes of the PAB.

The calculator then sends the I/O command to the
device.

There are several ways you can determine the success or
failure of an I/O command after sending it. The method
depends on whether you issued the command from the
keyboard or from within a program.

» When you use CIO from the keyboard, any I/O error
causes the calculator to display an error message
specifying the error code.

» When you use CIO from within a program, no error
message is displayed unless you halt or pause the
program. The calculator does, however, place the
returned status byte in the numeric display register.
Your program can read this value to determine if an
error occurred.

» Regardless of whether you use CIO from the keyboard
or from within a program, your PAB will contain the
returned status byte. You can use the RCB function to
recall the byte. (Keep in mind that you can use the
RCB function only after removing system protection.)

Advanced Input/Output B-15

Example: Using ClO to Control a Peripheral

This section gives an example of using the CIO function to
control the optional PC-324 printer. In actual use, you can
control the printer directly from the keyboard; you are not
required to use the ClO function. The program does, however,
illustrate how to use the function.

Setting Up The sample program prints the message HELLO THERE five

the Program times, using the double-spacing option of the PC-324. It
uses subroutines to send the necessary I/0 commands—
Open, Close, and Write—to the printer.

The device number for the PC-324 printer is usually
given as the decimal number 12. To enter this value into
a PAB, the program uses the hexadecimal equivalent,
which is 0C.

Before writing such a program, you must determine
which registers you want to use for the PAB, the data
buffer, and any variables needed by the program.
(Because this program uses a loop, it needs one register
for the loop counter.)

*» Reg A (000)—Loop counter

» RegB(001)—PAB (bytes 1 through 8)

» RegC(002)—PAB (bytes 9 through 12)

» Reg D (003)—Beginning of the data buffer

The PAB requires the hexadecimal address of the first
byte in the data buffer. By using the formula on page
A-6, you can calculate that the first byte in data register
003 is at address 3FE7.

The example uses the following labels for the
subroutines.

» LBL OP—Subroutine for Open command
» LBL CL—Subroutine for Close command

» LBL WR—Subroutine for Write command

B-16 Advanced Input/Output

The Main
Program

The main program segment calls the three subroutines
listed on the next few pages. This segment sets the halt-
on-error flag because the program does not do its own
error checking.

Note: This program begins by closing the printer. This is
required because the TI-95 automatically opens the
PC-324 printer if the printer is connected when you turn
on the calculator. Because the program closes the
printer at both the beginning and the end, attempting to
run the program a second time produces I/0 error 4 (not
open). Before the program can be run a second time, the
calculator must be turned off and then on.

Program Mnemonics ~ Comments

SF 15 Sets halt-on-error flag
SBL CL Close printer
SBL OP Open printer
‘HELLO THERE' Alpha message
STA D Store message in data buffer
5 STO A Set loop counter at 5
LBL AA

SBL WR Write message

Dsz A

GTL AA
SBL CL Close printer at end of loop
HLT
(remainder of program)

(continued)

Advanced Input/Output B-17

Example: Using CIO to Control a Peripheral (cont,)

Selecting Before you send an Open command, you need to know
Options for the following information in order to store it in the data
the Open buffer.

Command

*» Requested I/0 buffer size—The PC-324 uses a default
buffer size of 24 bytes, which is equivalent to the two-
byte hex value 0018. (In a case where you prefer to let
a device establish the maximum buffer size for you,
use 0000 in this field and read the returned value
after the Open command has executed.)

» Device attributes—Use the output access mode and,
because the printer does not support files, use zeros
for the remaining bits. The resulting byte value is 80
hex.

» Device options—The double-spacing option is
specified by the character string L=D. The ASCII
values for these three characters are 4C3D44.

For the Open command in this example, the data buffer
should contain the following values.

Buffer Byte# Parameter
18 i Requested buffer size (LSB first)
00 2
80 3 Device attributes
4C 4 Device options (in order)
3D b
44 6

B-18 Advanced Input/Output

Subroutine For the Open command, the PAB contains the values
for the shown below.
Open Command

PAB Byte# Parameter
0C 1 Device number—0C
00 2 Open command—00
00 3 LUNO (ignored)
00 4 Record number (ignored)
00 5
04 6 Buffer size—0004 (LSB first)
00 7
06 8 Data length—0006 (LSB first)
00 9
00 10 Status to be returned from device
E7 11 Buffer pointer—3FE7 (LSB first)
3F 12

The following subroutine loads the data buffer, builds
the PAB, and sends the Open command.

Program Mnemonics Comments

LBL OP

UNF Selects unformatted mode
1800804C3D44 Contents of data buffer
STO D

0C00000000040006 First 8 bytes of PAB

STO B

0000E73F Remaining 4 bytes of PAB
STO C

DEC Restores decimal mode
ClO B Sends the command

RTN

(continued)

Advanced Input/Output B-19

Example: Using CIO to Control a Peripheral (Cont)

Subroutine For the Close command, the PAB contains the values
for the shown below.
Close Command
PAB Byte# Parameter
0C 1 Device number—0C
01 2 Close command—01
00 3 LUNO (ignored)
00 4 Record number (ignored)
00 5
18 6 Buffer size—0018 (LSB first)
00 5
00 8 Data length—0000 (LSB first)
00 9
00 10 Status to be returned from device
E7 11 Buffer pointer—3FE7 (LSB first)
3F 12

The following subroutine builds this PAB and sends the

Close command.

Program Mnemonics

Comments

LBL CL
UNF
0C0100000018
STO B
0000E73F
STO C
DEC
Clo B
RTN

Selects unformatted mode
First 8 bytes of PAB
(0C01000000180000)
Remaining 4 bytes of PAB

Restores decimal mode
Sends the command

B-20 Advanced Input/Output

Subroutine
for the
Write Command

For the Write command, the PAB contains the values
shown below.

Because the data consists of the 11 characters HELLO
THERE, the program specifies 000B (the hex equivalent
of 11) as the data length.

PAB Byte# Parameter

0C 1 Device number—0C

04 2 Write command—04

00 3 LUNO (ignored)

00 4 Record number (ignored)

00 5

18 6 Buffer size—0018 (LSB first)

00 7

0B 8 Data length—000B (LSB first)
00 9

00 10 Status to be returned from device
E7 11 Buffer pointer—3FE7 (LSB first)
3F 12

The following subroutine builds this PAB and sends the
Write command. (The main program has already stored
the message in the data buffer.)

Program Mnemonics Comments

LBL WR

UNF Selects unformatted mode
0C04000000180008 First 8 bytes of PAB

STO B

0000E73F Remaining 4 bytes of PAB
STO C

DEC Restores decimal mode
ClO B Sends the command

RTN

Advanced Input/Output B-21

Reading Keystrokes from a Program

The (<KW) (key wait) selection of the INPUT/OUTPUT menu
pauses your program to wait for the next key to be pressed.
This function can be used only in a program; if used directly
from the keyboard, it is ignored.

Key Codes

The Key Wait
Function

Using the
Key Wait
Function

Each key on the keyboard is assigned a specific code
from 0 to 63 (128 to 191 if you press before pressing
the key). A table of these codesis listed in Appendix C.

Note: Do not confuse key codes with program
instruction codes or character codes. For example, the
key code for the (alpha letter ‘‘A’’) key is 16, but the
program instruction code for SIN is 165 (A5 hex) and the
character code for ‘A"’ is 65 (41 hex).

The key wait function lets your program detect which
key has been pressed by placing the code of the key in
the numeric display register. You can use this function
only as program instruction. The calculator executes the
key wait instruction as follows.

» First, the instruction waits for a key (or second
function of a key) to be pressed.

» After akey is pressed, the instruction places the code
for that key in the numeric display register.

*» Program execution then continues.
To include the key wait function in a program:

1. Press [/0] and select <KW> from the INPUT/IOUTPUT
menu.

2. If you are expecting a particular key, use one of the
test instructions to compare the code in the numeric
display register with the code you are expecting.

B-22 Advanced Input/Output

Example
Program

Running
the Example

Write a program that waits for the [1], [2], or [3] key to be
pressed, and then executes a specific routine depending
on which key was pressed.

PC= Program Mnemonics Comments

0000 LBL ST

0003 CLR Clears calculator

0004 ‘ROUTINE (1-3)?' Creates message

0018 KW Waits for key

0019 STO A Stores key code in A

0021 63 IF= A GTL AA If*‘1," executes label
AA

0028 57 IF= A GTL BB If *‘2,"" executes label
BB

0035 41 IF= A GTL cC = If*‘3,” executeslabel
CC

0042 GTL ST Otherwise, repeats
prompt

0045 LBL AA

0048 ‘ONE’ HLT User pressed ‘1"’

0052 LBL BB

0055 TWO' HLT User pressed ‘2"’

0059 LBL CC

0062 ‘THREE' HLT User pressed ‘3"’

Run the program and press either the [1], [2], or [3] key.
The program displays the message that corresponds to
the key and then halts.

Advanced Input/Output B-23

© 2010 Joerg Woerner
Datamath Calculator Museum

Appendix C: Reference Information

The tables in this appendix contain reference information you
may need while using the programming features of the TI-95.

Table of Contents

Reference Information

Character Codes

This table lists each character code and its corresponding
displayable character, if any. The codes can be used with the
CHR selection of the alpha mode to display a characterorto
store a code in the alpha register for controlling your printer.
Your printer may not be able to print some of the characters
you can display.

000 032 BLANK 064 a 096 >
001 033 ! 065 H 097 a
002 034" " 066 E 098 b
003 035 # 067 C 099 <c
004 036 # 068 [100 d
005 037 X 069 E 101 =
006 038 & 070 F 102
007 039 °* (i B C 103 49
008 040 ¢ 072 H 104 h
009 L3 073 2l 106 1
010 042 # 074 I 106 J
011 043 + 076 K i o)
012 044 . e 108 1
013 046 - O 109 m
014 046 . 078 H 110 n
015 047 - 079 0 1710
016 048 @ 080 F 12 F
017 049 1 081 @ 113 =
018 050 2 082 FE 114 e
019 051 3 083 & 116 S
020 052 4 084 T 116=%
021 053 5 085 U 1K Brpss
022 054 & 086 U 118 w
023 055 7 087 119 w
024 056 & 088 =X 120 =
025 057 9 ogg 121w
026 058 @ 090 Z 122 =
027 069 3 091 [J2358 04
028 060 < 092 12451
029 061 = 093 1 1255 5
030 062 > 094]26
031 063 7 095 _ 3 AT

Note: Codes 000 through 031 are control codes. The characters displayed by
these codes may vary.

e Reference Information

BLANK 160 BLANK 192 A9 D04 ipk
BLANK 161 = 193 ¥ 226 a
BLANK 162 < 194 m 226 &
BLANK 163 . 196 7 ALy
BLANK 164 - 196 2P IR]
BLANK 165 - 197 - 229 s
BLANK 166 3 g8 = 230 o
BLANK 167 7 199 = 231
BLANK 168 4 200 % 232 T
BLANK 169 = 200) 233
BLANK 150 202 . o 234 i
BLANK 171 = 208 E 930
BLANK 172 204 D 236 ¢
BLANK 178 a2 25 o 5y
BLANK 1740 a2 206; \ Nt 238 n”
BLANK 176 o T e 239 &
BLANK 1763 208 = 240 b
BLANK 7 P 209 4 241 o
BLANK i I)i 242 8
BLANK 28 5 211 = 243 =
BLANK 180 I 212 F 244 @
BLANK 181 4 213 1 245 U
BLANK i82 N 214 3 246~ ¥
BLANK 188 . ¢ 216 7 247 X
BLANK 184 9 216 U 248 =
BLANK 185 7 217 il 249 u
BLANK 186 '3 218 | 250 F
BLANK Ige 218 -0 261 w®
BLANK 188 = 220 n 252 A
BLANK 189 = 221 -2 268 =
BLANK 190 222 2 254 BLANK
BLANK 19 - Y Zagiees 256 1

Reference Information C-3

Program Codes

This table lists, as hexadecimal numbers, the codes used by
the TI-95 to represent functions and alpha characters in
program memory. Codes 20 through 7E are standard ASCI|
(American Standard Code for Information Interchange)
characters. The codes 80 through 8F represent numeric
values, not characters.

Code Function Code Character Code Character Code Character

00 NOP 20 space 40 @ 60 .
01 CE 21 ! 4] A 61 a
02 CLR 22 = 42 B 62 b
03 CMS 23 # 43 C 63 c
04 x~t 24 $ 44 D 64 d
05 INV 2b % 45 E 65 ©
06 HYP 26 & 46 F 66 f
07 HLP 27 i 47 G 67 g
08 PAU 28 (48 H 68 h
09 HLT 29) 49 I 69 i
0A BRK 2A - 4A d 6A J
0B Y/N 2B + 4B K 6B k
0C EE 2C \ 4C IS 6C 1
0D +/— 2D — 4D M 6D m
0OE s 2E . 4E N 6E n
OF ENG 2F / 4F (0] 6F 0
10 = 30 0 50 P 70 P
11) 31 1 51 Q 71 q
12 (32 2 52 R 72 r
13 SG+ 33 3 53 S 73 s
14 + 34 4 54 T 74 t
16 - 35 5 55 U 75 u
16 - 36 6 56 b4 76 v
17 / 37 7 b7 w 77 w
18 vox 38 8 58 X 78 X
19 CUB 39 9 59 Y 79 y
1A QAD 3A : H5A Z TA o
1B nPr 3B 5B [7B {
1C nCr 3C < 5C \ 7C |
1D LCM 3D = 5D] 7D }
1E PF 3E > 5E i 7E =
1F CD 3F ? 5F P TF -

C-4 Reference Information

Code Function Code Function Code Function Code Function

80 0 A0 1/x co DMS EO RCL
81 1 Al xo2 Cl1 P-R El EXC
82 2 A2 SQR c2 F-C E2 STO
83 3 A3 LN c3 G-L E3 ST+
84 4 A4 LOG C4 i-m E4 ST-
85 5 A5 SIN Cb f-M Eb5 ST*
86 6 A6 COS C6 #-K E6 ST/
87 7 AT TAN Cc7 D-R E7 DSZ
88 8 A8 x! C8 D-G E8 INC
89 9 A9 ABS C9 R-G E9 IF<
8A A AA INT CA DEC EA IF=
8B B AB FRC CB HEX EB IF>
8C C AC SGN CC OCT EC MRG
8D D AD RND CD UNF ED RCA
8E E AE 13d CE 2sC EE STA
8F F AF DRG CF RUN EF RD
90 F1 B0 FRQ DO not used FO WRT
91 F2 Bl CS1 D1 not used F1 VFY
92 F3 B2 CS2 D2 not used F2 CIO
93 F4 B3 S D3 not used F3 WID
94 F5 B4 y D4 not used F4 COL
95 LR B5 MN D5 SF F5 GTL
96 LP B6 m-b D6 RF F6 SBL
97 LL B7 r D7 TF F7 DFN
98 LS B8 Pl D8 DEV F8 IND
99 R# B9 OLD D9 SHW F9 GTO
9A ASM BA INS DA CHR FA SBR
9B PAR BB DEL DB FIX FB DFA
9C CAT BC RTN DC DF FC SBA
9D CFG BD TRC DD NAM FD STB
9E WB BE PRT DE PUT FE RCB
9F KW BF ADV DF GET FF LBL

Reference Information C-5

Ele-

31
56

[sTO]
{[FUNC]|

LIST

-3

[Exc]

30

[2nd]

54

|TESTS|

FLAGS
29

INCR]

28

(HYP]
(NUM|
(RUNJ

x~t

(OLD]

27

[CONV|

code for the second function of a key, such as [2nd| [DEL], add

This table lists the codes returned to the {KW> (key wait)
instruction of the INPUT/OUTPUT menu. Information on using
the key wait function is given in Appendix B. To obtain the
128 to the code shown for the primary function of the key.

STAT
26
LEARN
34

9

[cos]

25

|ALPHA|

|FILES|

HALT

Key Codes

8

[SiN]
(o]

24

{HELP|

32

BREAK

Reference Information

C-6

System Flags

This table lists the system flags that are of general interest.
Use the table to determine the meaning of each system flag
and the effects of setting or resetting the flag. For
instructions on how to set, reset, or test flags, refer to

Chapter 5 of this guide.

Flag
Number Meaning Comments
24 0=F1-F5 are not defined Flag 25 specifies which set
1=F1-F5 are defined of F1-F5 definitions to use.
25 0=F1-F5 defined by system Ignored unless flag 24 =1.
1=F1-F5 defined by user
33 0=Not radian mode If flags 33 and 34 both =0,
1=Radian mode then degree mode. Controls
RAD indicator.
34 0=Not grad mode Controls GRAD indicator.
1 =Grad mode
39 0=Not second function Controls 2nd indicator.
1=Next key is a second function
40 0=Not unformatted mode If flags 40,41, and 42
1 =Unformatted mode all =0, then decimal mode.
41 0=Not octal mode Controls OCT indicator.
1=0ctal mode
42 0=Not hexadecimal mode Controls HEX indicator.
1 =Hexadecimal mode
43 0=Not engineering notation display mode
1 =Engineering notation display mode
44 0= Not scientific notation display mode
1=Scientific notation display mode
49 0= System protected Controls SYS indicator.
1=_System unprotected
(sYs mode in effect)
(continued)

Reference Information

Cc-7

System Flags (Continued)

Flag
Number Meaning Comments
50 0=Remove contents of display, Resetautomatically if next
t-register for [INV] sequence is not [INV] [Z+].
1 =Remove last point
for INV]
51 0=Two-variable statistics mode
1 =One-variable statistics mode
52 0= [INV] was not pressed Flag 52 is a copy of the status
before F1-F5 of the INV flag when F1-F5
1=[INV] was pressed before was pressed. You can test this
F1-F5 flag for an INV Fxr sequence.
53 0=No error was detected Controls ERROR indicator.
1=An error was detected
54 0=Not word-break mode
1=Word-break mode
55 0=Fetch new key System tests before next key
1 =Fetch last key pressed scan (either KW or regular
keyboard operation).
56 0=Do not scroll user alpha Reset automatically each time
message anew alpha display is sent
1=Scroll user alpha message out.
if more than 16 characters
61 0=Do not display a system If flags 61 and 62 both =0,
alpha message the numeric display is sent
1 =Display a system alpha out.
message
62 0= Do not display a user alpha

message

1=Display a user alpha message

c-8

Reference Information

Flag

Number Meaning Comments

63 0= Uppercase lock Controls the LC indicator.
1=Lowercase lock

67 0=Not fixed-decimal mode If flag 67 =1, then byte
1 =Fixed-decimal mode 21 A6 contains the number of

digits to show after the
decimal point.

68 0=Not trace mode
1=Trace mode

72 0=Not two’'s complement mode
1=Two’s complement mode

73 0= Auto power-down enabled
1= Auto power-down disabled

74 0=Specified printer not Set/reset after each print

connected or advance.

1 =Specified printer connected

75 0=Peripheral battery OK Controls P indicator.
1=Low battery in peripheral

76 0=TI-95 battery OK Controls LOW indicator.
1=Low battery in TI-95

77 0=No /O activity Controls /0 indicator.

1=1/0 activity on the I/0 bus

Reference Information Cc-9

Instruction Mnemonics

The table on this and the following pages contains an
alphabetical listing of the mnemonics displayed for program
instructions. For example, the mnemonic #-K represents the
pounds-to-kilograms functnon and is generated by the

#-K>.The program codes in the

table are lncluded foruse by advanced programmers.

Mnemonic Meaning Key Sequence Code (Hex)
#-K Pounds to kilograms CONV] <MET» (#-K> C6
(Open parenthesis [(] 12
) Close parenthesis D] 1
+ Add + 14
- Subtract = 15
. Multiply] 16
/ Divide [+] 17
. Decimal point [-] OE
+/- Change sign +/— 0D
= Equals function =] 10
1/x Reciprocal [1/x] A0
2sC 2’s complement CONV| ¢<BAS) <2sC> CE
0 Numeric 0 0] 80
1 Numeric 1 [1] 81
2 Numeric 2 2] 82
3 Numeric 3 3] 83
4 Numeric 4 4] 84
5 Numeric 5 5] 85
6 Numeric 6 6] 86
it Numeric 7 7] 87
8 Numeric 8 (8] 88
9 Numeric 9 (9] 89
13d Show 13 digits (2nd] [13d] AE
A Hex digit A [A4] 8A
ABS Absolute value [NUM] <-->> <ABS» A9
ADV Paper advance [ADV] BF
ASM Assemble program [2nd][ASM] 9A
B Hex digit B [2nd][B] 8B
BRK Break [BREAK] 0A
¢ Hex digit C 2nd][C,] 8C
CAT Catalog directory [FILES] <CAT> 9C
CcD Clear directory (=22 4GCD) 1F
CE Clear entry [cE] 01
CFG Clear flags {CLR> 9D
CHR Character code {-->) {CHR» DA
ClO CallI/O [wo] <cl0> F2
CLR Clear CLEAR 02
CMS Clear memories [cms] 03
coL Alpha column <COL» F4

C-10 Reference Information

Mnemonic Meaning Key Sequence Code (Hex)
cos Cosine [cos] A6
Cs1 Clear 1-variable Stat Regs [STAT] <CLR> <CS1> B1
Ccs2 Clear 2-variable Stat Regs [STAT] <CLR) <CS2) B2
CuB Cubic equation FUNC] <CUB> 19
D Hex digit D [2nd][D,] 8D
D-G Degrees to grads CONV] ¢<ANG> <D-G> C8
D-R Degrees to radians CONV] ¢<ANG> <D-R> Cc7
DEC Decimal mode CONV] <BAS> <DEC> CA
DEL Alpha delete ALPHA| BB
DEV Printer device number [I/0] ¢PRT» <DEV> D8
DF Delete file <DF» DC
DFA Define absolute Available through ASM FB
DFN Define function key [DFN] F7
DMS Degrees, minutes, seconds <DMS> co
DRG Degrees, radians, grads [2nd] [DRG] AF
DSz Decrement & skip if zero (DSZ> E7
E Hex digit E [E,] 8E
EE Scientific notation [EE] 0C
ENG Engineering notation [ENG] OF
EXC Exchange register El
F Hex digit F [Fyl 8F
F1 F1 key (after DFN) [F1] 90
F2 F2 key (after DFN) F2] 91
F3 F3 key (after DFN) F3] 92
F4 F4 key (after DFN) F4] 93
F5 F5 key (after DFN) F5] 94
F-C Fahrenheit to centigrade [CONV] {MET> (F-C> c2
f-M Feet to meters CONV] <MET> <f-M> C5
FIX Fix decimal [2nd] [FIX] DB
FRC Fractional portion NUM| <FRC> AB
FRQ Frequency STAT| <FRQ» BO
G-L Gallons to liters CONV] (MET> <G-L> C3
GET Load file FILES| ¢GET) DF
GTL Go to label [2nd] [GTL] F5
GTO Go to address [inv] laTL] F9
HEX Hexadecimal display CONV] <BAS)» <HEX) CB
HLP Help HELP 07
HLT Halt program HALT] 09
HYP Hyperbolic function [HYP] 06

Reference Information

C-11

Instruction Mnemonics (Continued)

Mnemonic Meaning Key Sequence Code (Hex)
i-m Inches to millimeters (MET) <i-m> C4
IF= If equal to [TESTS] <IF=> EA
IF> If greater than <IF>) EB
IF< If less than <IF<) E9
INC Increment register ES8
IND Indirect [2nd] [IND] F8
INS Alpha insert <INS> BA
INT Integer portion [NUM] <INT? AA
INV Inverse function [inv] 05
KW Key wait [1o] <Kw> 9F
LBL Label [LBL] FF
LCM Least common multiple [NUM]<-->) <LCM» 1D
Ll List labels <LBL> 97
LN Natural log A3
LOG Common log A4
LP List program <{PGM» 96
LR List registers [LisT] <REG) 95
LS List status (ST> 98
m-b Slope/intercept STAT| (-->> {m-b> B6
MN Mean STAT| (MN> B5
MRG Alpha merge [ALPHA] <MRG» EC
NAM Name cartridge (-->> {(NAM> DD
nCr Combinations [nCr] 1C
NOP No operation [NOP] 00
nPr Permutations [nPr] 1B
OCT Octal display CONV] ¢<BAS) <OCT> CC
OLD Restore display oLD] B9
P-R Polar to rectangular CONV]| ¢<P-R» C1
PAR Partition [2nd] [PART] 9B
PAU Pause [PAUSE] 08
PF Prime factor [NUM] <-->> ¢PF> 1E
Pl n [2nd] [n] B8
PRT Print display [PRINT] BE
PUT Save file <PUT> DE
QAD Quadratic equation [FUNC] <QAD> 1A
r Correlation coefficient [STAT] ¢<-->> <r> B7
R-G Radians to grads [CONV] ¢<ANG) ¢(R-G> c9
R# Random number [NUM] <R#> 99
RCA Recall alpha ¢-->) (RCA) ED

C-12

Reference Information

Mnemonic __Meaning Key Sequence Code (Hex)
RCB Recall byte [FUNC] ¢<SYS> ¢<RCB> FE
RCL Recall register EO
RD Read tape file [i©0] <TAPY <RD> EF
RF Reset flag <RF> D6
RND Round function [NUM] <RND> AD
RTN Return [RTN] BC
RUN Run program file CF
S Standard deviation [STAT] ¢s> B3
SBA Call assembly language [FUNC] (SYS) (SBA) FC
SBL Call subroutine label [2nd][sBL] F6
SBR Call subroutine address [INV] [SBL] FA
SF Set flag {SF» D5
SG+ Z + (sigma +) for statistics 13
SGN Signum function ¢-->)» (SGN» AC
SHW Show statistics data {-->> {(SHW>

F1-F5 D9
SIN Sine [SiN] A5
SQR Square root [vx] A2
ST+ Register addition E3
ST/ Register division (] E6
ST* Register multiplication [x] E5
ST- Register subtraction [=] E4
STA Store alpha {-->) (STA> EE
STB Store byte [FUNC] ¢<SYS> (STB> FD
STO Store register E2
TAN Tangent TAN AT
TF Test flag [FLAGS] <TF» D7
TRC Trace mode [TRACE] BD
UNF Unformatted display {BAS) (UNF> CD
VFY Verify tape file [10] <TAPY <VFY» F1
WB Word break [10] ¢<PRT> <WB» 9E
WID Print width [i10] ¢<PRT> <WID> F3
WRT Write tape file (0] <TAP) <WRT> FO
X2 Square Al
x! Factorial [x!] A8
Xt Exchange t-register x~t 04
YAX Universal power [18
y' Predicted Y (-=>) <y B4
YIN YES/NO test CYIND 0B

Reference Information

C-13

Useful Assembly-language Subroutines

This table lists assembly-language subroutines that you may
want to use in your programs.

SBA Action

128 Performs an /0 operation to determine if the printer
specified by <(DEV) is connected to the calculator.
(The default setting for ¢<DEV? is 012, the device
number for the PC-324 printer.) System flag 74 is set
if the printer is connected. Flag 74 is reset if the
printer is not connected. Flag 74 is also set or reset, as
appropriate, each time a print or advance function is

performed.

216 Performs the {LC> function, toggling the
uppercase/lowercase status and indicator of the alpha
mode.

21A Performs the function, toggling the second

function status of the calculator. The 2nd indicator is
displayed when the calculator is in the second
function condition.

21C Stores in memory address 2107 the ASCII code of the
last key that was pressed. If there is no ASCII code
associated with the key, azero is stored in address
2107. This subroutine can be used after a (KW>
instruction to find the ASCII code of the key that was

pressed.

226 Displays data, similar to a pause instruction, but
without the one-second delay of the pause
instruction.

256 Updates the indicator information in the display.

268 Delays program execution for approximately one
second. The display is not updated.

27C Waits until no keys are held down before permitting
program execution to continue.

358 Performs the function, turning off the
calculator.

36A Clears the alpha register and sets the cursor to column
one.

C-14 Reference Information

SBA

Action

396

Tests whether the cartridge port contains a cartridge. If
there is no cartridge in the port, execution proceeds
normally. If there is a cartridge in the port, the
instruction following this subroutine call is skipped.

3B2

Performs the [F:cLR]function, clearing the function
key definitions from the display.

490

Performs the function. Executing this subroutine
stops program execution, clears the subroutine return
stack, sets the program counter to step 0000, calculates
the memory checksum, and displays the message MEM
MAY BE LOST. The memory message is displayed because
the contents of system memory have changed since the
power off checksum was calculated.

49F

Enables the cassette motor.

4A2

Disables the cassette motor.

Note: Using assembly-language subroutines not included on this list can
produce unexpected results, including loss of data in memory.

Reference Information C-156

Summary of Field Instructions

This table lists, in alphabetic order, the calculator functions
that have fields. (See page xiil of this guide for a description
of the notational conventions used to represent the fields.)
Except for LBL, SHW, DFN, and DFA, all functions with fields
can be indirectly addressed in a program.

Function Field Function Field
CHR nnn LBL aa
CIO nnn!or X MRG nnn! or Xor =
COL nn NAM aaa
DEV nnn PUT aaa
DF aaa INV PUT aaa
INVDF aaa RCA nnn! or Xor =
DFA? Fr.aaa@nnnn RCB hhhh
DFN Fraaa@aa RCL nnn'or X
DFN CLR RD aaa
DFN Fx2 CLR RF nn
DSZ nnn' or X SBA hhh
INV DSZ nnn' or X SBL aa
EXC nnn'or X INV SBL nnnn
FIX n SF nn
GET aaa SHW? n
INV GET aaa ST* nnn' or X
GTL aa ST+ nnn! or X
INV GTL nnnn ST- nnn! or X
IF< nnn'or X ST/ nnn' or X
INVIF< nnn'or X STA nnn'or X
IF= nnn!or X STB hhhh
INVIF= nnn'or X STO nnn'or X
IF> nnn'orX TF nn
INVIF> nnn' or X INVTF nn
INC nnn' or X VFY aaa
INVINC nnn! or X WID nn
IND# nnn'or X WRT aaa
Notes:

1. These numeric register addresses are four digits in system mode.

2. DFA cannot be keyed into a program. DFA instructions are generated by
assembling a program.

3. SHW operates as a field instruction only in a program.

4. INDis used only after an instruction that requires a field.

C-16 Reference Information

Memory Map

This table shows how the T1-95 memory is allocated.

Byte
Address
(hex)
9099 [System RAM (128 bytes)]
?2%% | System reserved area |
2000, [System RAM (992 bytes) |
23E0 File 1
File 2 File space
File 3 (5200 bytes)
382F Catalog
3830 Step 0000
Step 0001 Program memory User Memory
: (1000 bytes) (shown with
; default
3C17 Step 0999 partitions)
SGI3 Register 124
; Data registers
: (1000 bytes)
Register 001 (B)
3FFF Register 000 (A)
199% [cartridgeport (32K bytes) |
%% | System ROM (4 pages, 8K bytes each)|
E%ﬁ;’% | System reserved area]
P9 [system ROM (4K bytes) |

Reference Information C-17

System RAM Usage

This table lists the usage assigned to specific registers and
addresses for the T1-95.

Byte
System Address
Register (hex) Contents
000-003 0000-001F Temporary system usage
004 0020-0023 Temporary system usage
0024 Current program code
0025 Current key code
0026-0027 Temporary system usage
005 0028-0029 User flags 00-15
002A-002F System flags 16-63
006 0030-0034 System flags 64-99
0035 Temporary system usage
0036 AOS stack counter
0037 Temporary system usage
007 0038-003F Numeric display register
008-013 0040-006F Temporary system usage
014 0070-0071 Temporary system usage
0072-0073 1st address in currently running program or
LEARN
0074-0075 End address in currently running program
or LEARN
0076-0077 PC in currently running program or LEARN
015 0078-007F Reserved for use by application cartridges
016 2000-2007 1st AOS operand
017 2008-200F 2nd AOS operand
018 2010-2017 3rd AOS operand
019 2018-201F 4th AOS operand
020 2020-2027 5th AOS operand
021 2028-202F 6th AOS operand
022 2030-2037 Tth AOS operand
023 2038-203F 8th AOS operand
024-026 2040-2067 Temporary system usage
027 2058-2059 If not expected values, memory will be
cleared
205A User subroutine counter
205B Last accepted key code
205C-205F Temporary system usage
028 2060-2067 Operators for AOS operands

C-18 Reference Information

Byte

System Address
Register (hex) Contents
029-033 2068-208F Temporary system usage
034 2090-2093 Temporary system usage
2094 Error code
2095-2097 Temporary system usage
035-036 2098-20A7 Temporary system usage
037 20A8-20AC Temporary system usage
20AD-20AF Name of file currently running
038 20B0-20B1 Number of registers in partition
20B2-20B3 Address of 1st byte in register area
20B4-20B5 Address of 1st byte in program area
20B6-20B7 Program area PC
039 20B8-20BF Characters for user definitions of F1-F5
040 20C0-20C6 Characters for user definitions of F1-F5
20C7 Flags and addresses for user definitions of
F1-F5
041-043 20C8-20DF Flags and addresses for user definitions of
F1-F5
044 20E0-20E4 Flags and addresses for user definitions of
F1-F5
20E5-20E7 Temporary system usage
045-047 20E8-20FF Temporary system usage
048 2100-2106 Temporary system usage
2107 Result of SBA 21C
049-054 2108-2137 Subroutine return stack
055 2138 Cursor position for alpha register
2139 Cursor position for system messages
213A Printer device-number
213B Printer width
213C-213F Temporary system usage
056-065 2140-218F Alpha register
066-067 2190-219F System message
068 21A0-21A5 Temporary system usage
21A6 Value for fix decimal
21A7 Temporary system usage
069 21A8-21AF Temporary system usage

(continued)

C-19

Reference Information

System RAM Usage (Continued)

Byte
System Address
Register (hex) Contents
070 21B0-21B7 Sum of Y's for statistics
071 21B8-21BF Sum of Y~2's for statistics
072 21C0-21C7 N for statistics
073 21C8-21CF Sum of X's for statistics
074 21D0-21D7 Sum of X~2's for statistics
075 21D8-21DF Sum of X*Y's for statistics
076 21E0-21E7 Last X entered for statistics
077 21E8-21EF Last Y entered for statistics
078 21F0-21F7 Frequency for statistics
079 21F8-21FF t-register
080-101 2200-22AF Temporary system usage
102 22B0-22B7 Flags and address for last BREAK command
103 22B8-22BA Flags and address for last BREAK command

22BB-22BF Temporary system usage
104-108 22C0-22E7 Temporary system usage
109-110 22E8-22F7 Printer PAB
111 22F8-22FF Temporary system usage
112-113 2300-230F Random number seed
114-139 2310-23DF Temporary system usage

C-20 Reference Information

Index

Topics listed here are related to the programming features of
the TI-95. Topics related to the scientific-calculator functions
are listed in the T/-95 User’s Guide.

A
Address,
calculating user memory, A-6
determining, 4-10
direct, 6-2
indirect, 6-2
Allocating memory, see partitioning
Alpha characters,
deleting, 3-11, 3-18
inserting, 3-11, 3-18
replacing, 3-10
Alpha cursor, positioning, 3-10, 3-18,
3-19
Alpha delete as an instruction, 3-18
Alpha insert as an instruction, 3-18
Alpha insert, cancelling, 3-11
Alpha merge, 3-12, 3-19
Alpha message,
appending, 3-14
clearing, 3-11
editing, 3-10
entering, 3-5
recalling, 3-9, 3-19, 3-20
rescrolling, 3-5
restoring, 4-21
scrolling, 3-5
stopping a scrolling, 3-5
storing, 3-8, 3-9, 3-20
Alpha mode, 3-2, 3-17
Alpha mode,
activating, 3-4
case of letters, 3-6
keyboard, 3-3
menu, 3-4
Alpha register, 3-17
Appending an alpha message, 3-14
ASCII codes, C-4
Assembling a program, 4-25, 4-29
Assembly-language subroutines,
table, C-14
using, A-15

B
Break, 2-15
Break as an instruction, 2-10

Bym)

C

calculating address of, A-6
storing and recalling, A-6

Calculating address in user memory, A-6
Call, 4-11

Cassette interface, 9-6

Cassette recorder,

connecting, 9-6

operating prompts, 9-11, 9-14
selecting, 9-3

setting volume, 9-7

using, 9-4

Cassette tape, protection of, 9-5
Catalog listing, 8-18, 8-28, 8-31
Character codes, 3-20
Character codes,

table of, C-2
using, 3-7

clo,

overview, B-3
use in a program, B-12

Clearing,

alpha message, 3-11

directory, 8-21, 8-28, 8-32

files, 8-20, 8-28, 8-32

function keys, 4-22, 4-23, 4-28, 4-29
program memory, 1-6, 1-18

Codes,

character, C-2
key, C-6
program, C-4

Command codes for C10, B-6
Comparison tests, 5-4, 5-25
Connecting a cassette recorder, 9-6
Constant Memory cartridge, naming,

8-5, 8-25, 8-27, 8-31

CUB, 2-9
Cursor,

moving in alpha mode, 3-10
moving in learn mode, 1-12
positioning in learn mode, 1-6

Reference Information C-21

Index (Continued)

D
Data buffer for CIO, B-2
Data files, 8-24
Data files,
loading, 8-16, 8-27, 8-30
saving, 8-12, 8-26, 8-29
Data registers, partitioning, 7-7
Decrement, rules with DSZ, 5-7
Defining function keys, 4-16, 4-28
Deleting,
alpha characters, 3-11, 3-18
files, 8-20, 8-21, 8-28, 8-32
instructions, 1-15, 1-19
DFA instruction, 4-25, 4-29
Direct addressing, 6-2
Directory, 8-3
Directory,
catalogof, 8-18, 8-28, 8-31
clearing, 8-21, 8-28, 8-32
names, 8-3
Disassembling a program, 4-25, 4-29
Display with PAU, 2-13, 2-15

E

Editing,
alpha message, 3-10
program, 1-14

Error codes for CIO, B-11

Error conditions, 1-5, 2-9, 4-28, 5-13,
6-11,7-10, 7-15, 9-15, 9-23, 9-25,
B-9, B-11,B-15

F
Field instructions, table of, C-16
Fields, xiii
Fields,
indirect, 6-3, 6-14
storing functions with, 2-3
unprotected mode, A-11

C-22 Reference Information

File operations, from the keyboard, 8-25
File operations, tape, 9-20
File space, partitioning, 7-6
Files,
clear directory, 8-21, 8-28, 8-32
data, 8-24
deleting, 8-20, 8-28, 8-32
reading tape, 9-12, 9-22, 9-24
rules for naming, 8-2, 8-23, 9-2
tape, 9-2
tape operating prompts, 9-11, 9-14
tape operations from keyboard, 9-21
tape operations in a program, 9-18,
9-21
verifying tape, 9-12, 9-23, 9-25
writing tape, 9-9, 9-22, 9-24
Flag, halt-on-error, 5-13, 5-27, B-11
Fla.gs,
setting, resetting, testing, 5-13, 5-27
system, A-2, C-7,C-8,C-9
table of system, C-7
user, 5-13, 5-27
Formatted mode, A-8
Function keys,
clearing, 4-22, 4-23, 4-28, 4-29
defining, 4-16, 4-28
Functions as program instructions, 2-2
Functions, keyboard, 2-9

G-H

{GO>,2-10

Halting a program, 1-20, 2-15
Halt-on-error flag, 5-13, 5-27, B-11
Help function, 2-9, 10-2, A-5

I ‘
Indicators,
ALPHA, 3-4
INS, 1-14, 3-18
110, 9-11, 9-14
LC, 3-6,3-20
RUN, 1-10
SYS, A-4
Indirect addressing, 6-2, 6-14
Indirect addressing,
advantages of, 6-5
field information, 6-14, C-16
restrictions, 6-3
Infinite loop, 4-9
Input, numeric, 2-10
Input/Output with CIO, B-2
Inserting,
alpha characters, 3-11, 3-18
instructions, 1-14, 1-19
Instruction, 1-4
Instruction,
deleting, 1-15, 1-19
determining address of, 4-10
inserting, 1-14, 1-19
labeling, 4-5
replacing, 1-16
Instruction mnemonics, table of, C-10
Internal representation of numbers,
A-13
Interrupting a program for input, 2-10
Inverse functions, storing, 2-2

K
Key codes, table of, C-6
Key wait function, B-22

L
Labels, 4-5, 4-26
Labels,
advantages of, 4-6
assembling and disassembling, 4-25,
4-29
duplication of, 4-5
listing, 4-24, 4-26
using, 10-4
Learn mode, 1-18
Learn mode,
activating, 1-6
definition, 1-6
exiting, 1-7
menu, 1-6
restoring PC, 2-6, 2-15
Levels of subroutines, 4-12
Listing,
file catalog, 8-18, 8-28, 8-31, 8-32
labels, 4-24, 4-26
program, 1-12, 1-21
status, 2-9, 5-13
Listing, controllinga, 1-12
Listing, stoppinga, 1-13
Loading,
data file, 8-16, 8-27, 8-30
program file, 8-10, 8-27, 8-30
Loop, 4-8
Loop,
exiting with a test, 5-22
infinite, 4-9
stopping a, 4-9
Lowercase lock, 3-6, 3-20

M
Memory,
system, C-18
user, 7-2
Memory conflicts, avoiding, 10-4
Memory map, C-17
Memory partitioning,
checking, 7-8, 7-14
effects of, 7-6
from keyboard, 7-9, 7-14
within a program, 7-12, 7-16

Reference Information C-23

Index (Continued)

M (Continued)
Menus,
clearing, 4-22
restoring, 4-21, 4-29
user-defined, 4-3, 4-18
Merge number with message, 3-12, 3-19
Mnemonic, 1-4
Mnemonics, table of, C-10
Mode,
alpha, 3-2
insert, 1-14
learn, 1-6, 1-18
protected/unprotected, A-2, A-3,
A-11
unformatted, A-8

N
Naming files, 9-2
NOP instruction, 1-6, 1-19

Notational conventions, xiii
Numbers, internal representation, A-13

0
OLD, 3-17, 4-21, 4-29

P
Partitioning,
checking, 7-8, 7-14
effects of, 7-6
from the keyboard, 7-9, 7-14
within a program, 7-12, 7-16
Partitions, default, 7-3
Pausing a program, 2-13, 2-15
Peripheral access block (PAB), B-2
Peripheral access block,
building a, B-14
structure of, B-4
Planning a program, 10-6
Pointer register, 6-3, 6-14
Printer control codes, 3-7

C-24 Reference Information

Program,
assembly and disassembly, 4-25,
4-29
editing, 1-14
entering, 1-7
file operationsin, 8-22, 8-25
initialization, 10-2
planning, 10-6
running, x, 1-10, 1-20
saving as a file, 8-6, 8-24
stopping, 1-5, 1-19
table of mnemonics, C-10
tape operations, 9-18, 9-21
testing, 10-9
Program codes, table of, C-4
Program counter, 1-5
Program counter,
restoring, 2-6, 2-15
setting, 4-26
using, 4-10
Program file,
execute routine, 8-34
listing, 1-12, 1-21
loading, 8-10, 8-27, 8-30
running, 8-8, 8-33, 8-34
saving, 8-26, 8-29
Program instructions with fields, C-16
Program memory,
clearing, 1-6, 1-18
partitioning, 7-6
Program step, 1-3
Program step, changing number of, 7-9,
7-12,7-14
Programming, x
Programming considerations, 10-3
Programming features, xi
Protected mode, A-2
Protection, removing system, A-4

Q
QAD, 2-9

R
Reading tape files, 9-12, 9-22 9-24
Recalling alpha messages, 3-9, 3-14,
3-19, 3-20
Recalling bytes, A-6
Register, pointer, 6-3, 6-14
Registers,
system, A-2, A-11,C-18, C-20
use by QAD and CUB, 2-9
Replacing alpha characters, 3-10
Replacing an instruction, 1-16
Representation of numbers, A-13
Restoring,
alpha message, 3-17,4-21
program counter, 2-6, 2-15
user-defined menu, 4-21, 4-29
Return from subroutine, 4-11, 4-27
Return stack, subroutine, 4-28
Running a program, 1-10, 1-20

Running a program file, 8-8, 8-33, 8-34

S
Saving a data file, 8-12, 8-26, 8-29
Saving a program file, 8-6, 8-24, 8-26,
8-29

Secrolling,

in alpha mode, 3-5

stopping, 3-5
Selecting a cassette recorder, 9-3
Selecting tapes, 9-3
Setting cassette recorder volume, 9-7
Setting the program counter, 4-26
Sign digit, A-13
Status, listing, 2-9
Step, 1-3
Stopping a program, options, 2-15
Storing alpha messages, 3-9, 3-20
Storing functions,

bytes, A-6

inverse, 2-2

system-menu, 2-6

with fields, 2-3
Subroutine, 4-11

Subroutine,
assembly-language, A-15
avoiding problems with, 4-14
levels of, 4-12
return from, 4-11
return stack, 4-28
table of assembly-language, C-14
System flags, table of, C-7
System memory usage, C-18
System-menu functions, storing, 2-6
System protection, A-4

System registers, A-2, A-11, C-18, C-20

-
Tapes, selecting, 9-3
Test instructions,
comparison, 5-4, 5-25
DSZ, 5-7, 5-26
flag, 5-13, 5-27
Y/N, 5-11,5-26
Testing a program, 10-9
Tests, 5-2
Tests,
action of, 5-2
types of, 5-2
Transfer instruction,
GTL, 4-8, 4-26
GTO, 4-10, 4-26
SBL, 4-11,4-13, 4-27
SBR, 4-13, 4-27
using with RUN, 8-34
using with tests, 5-16

U
Unassembling a program, 4-25, 4-29
Unformatted mode, A-8
Unprotected mode, A-2, A-11
Unprotected mode, precautions, A-3
Unprotecting the system, A-4, A-11
User memory, organization of, 7-2
User-defined menus, 4-3, 4-18
User-defined menus,

clearing, 4-22, 4-28

restoring, 4-21, 4-29
Using a cassette recorder, 9-4

Reference Information

C-25

Index (Continued)

V-W

Verifying tape files, 9-12, 9-23, 9-25
Writing tape files, 9-9, 9-22, 9-24
[=] key in alpha mode, 3-5, 3-18

[=] key inlearn mode, 1-18

[=] key to control listing, 1-18

[=] key in alpha mode, 3-5, 3-18

[<] key in learn mode, 1-19

C-26 Reference Information

i

VRS
gty
S

L

i

oy

S
P

o

2y

TEXAS
INSTRUMENTS

Printed in Taiwan, R.O.C. 1060338-0103

	p0001
	p0002
	p001
	p002
	p003
	p004
	p005
	p006
	p007
	p008
	p009
	p010
	p011
	p012
	p013
	p014
	p101
	p102
	p103
	p104
	p105
	p106
	p107
	p108
	p109
	p110
	p111
	p112
	p113
	p114
	p115
	p116
	p117
	p118
	p119
	p120
	p121
	p122
	p201
	p202
	p203
	p204
	p205
	p206
	p207
	p208
	p209
	p210
	p211
	p212
	p213
	p214
	p215
	p216
	p301
	p302
	p303
	p304
	p305
	p306
	p307
	p308
	p309
	p310
	p311
	p312
	p313
	p314
	p315
	p316
	p317
	p318
	p319
	p320
	p401
	p402
	p403
	p404
	p405
	p406
	p407
	p408
	p409
	p410
	p411
	p412
	p413
	p414
	p415
	p416
	p417
	p418
	p419
	p420
	p421
	p422
	p423
	p424
	p425
	p426
	p427
	p428
	p429
	p430
	p501
	p502
	p503
	p504
	p505
	p506
	p507
	p508
	p509
	p510
	p511
	p512
	p513
	p514
	p515
	p516
	p517
	p518
	p519
	p520
	p521
	p522
	p523
	p524
	p525
	p526
	p527
	p528
	p601
	p602
	p603
	p604
	p605
	p606
	p607
	p608
	p609
	p610
	p611
	p612
	p613
	p614
	p701
	p702
	p703
	p704
	p705
	p706
	p707
	p708
	p709
	p710
	p711
	p712
	p713
	p714
	p715
	p716
	p801
	p802
	p803
	p804
	p805
	p806
	p807
	p808
	p809
	p810
	p811
	p812
	p813
	p814
	p815
	p816
	p817
	p818
	p819
	p820
	p821
	p822
	p823
	p824
	p825
	p826
	p827
	p828
	p829
	p830
	p831
	p832
	p833
	p834
	p901
	p902
	p903
	p904
	p905
	p906
	p907
	p908
	p909
	p910
	p911
	p912
	p913
	p914
	p915
	p916
	p917
	p918
	p919
	p920
	p921
	p922
	p923
	p924
	p925
	p926
	p1001
	p1002
	p1003
	p1004
	p1005
	p1006
	p1007
	p1008
	p1009
	p1010
	pa01
	pa02
	pa03
	pa04
	pa05
	pa06
	pa07
	pa08
	pa09
	pa10
	pa11
	pa12
	pa13
	pa14
	pa15
	pa16
	pb01
	pb02
	pb03
	pb04
	pb05
	pb06
	pb07
	pb08
	pb09
	pb10
	pb11
	pb12
	pb13
	pb14
	pb15
	pb16
	pc01
	pc02
	pc03
	pc04
	pc05
	pc06
	pc07
	pc08
	pc09
	pc10
	pc11
	pc12
	pc13
	pc14
	pc15
	pc16
	pc17
	pc18
	pc19
	pc20
	pc21
	pc22
	pc23
	pc24
	pc25
	pc26
	pc98
	pc99
	Z3.pdf
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24

