N

. CORTEX USER GROUP -

¥

NEWSLETTER ISSusE NO. S May 1986
CONTENTS
2 .. EDITORIAL News, future products, & new software/hardware.
F .. Bl BYTES Froblems in Cortex hardwars and programming.
£ .. FPROGRAMS CDOS modification

2D plane plotter
Automatic NEW

10 .. USER INFD Your reguests and information sxchange.
11 .. FEATURE Adding extra BASIC statements.
i%Z .. BHORT TIFS Frogramming and hardware tips.

14 .. MACHINE CODE Fart two : Addressing modes.
i6 .. EXTRA FEATURE Generating magic sguaares.

17 .. USER’'S ADVERT

We regret that KPH Computaware cannot accept responsibility for the
contents of any letters or programs printed in this newslestter.

61

ol computauace

63 inuhlainds Road, Andover, Hants. SP10 2P1

EDITORIAL L . g

Greetings Cortex owners, and welcome to @ the sixth issus of the
User 's Group Newsletter. In this issus we have six whole pages of
programs, another feature by Tim Gray, part 2 of the machine code
programming articlie, and lots of useful information. If you have any
items of interest then please send them in. We will try and publish
sverything that is sent, although certain items may have to be
edited to Fit 1in the available space. We are still marketing user
written software, and so if you have written any suitable programs
then send us a copy along with a +full description, - and
loading/saving instructions. We pay rovalties for each copy of your
program that we sell.

We regret that we can at present only supply our softwars on
cassette. We are in the process of instaliing disc drives, and so
disc software will eventually be available.

For those of vyou who are still without discs we are planning to
produce a replacement board for the TMS5990%. The circuit has been
agreed with Neil Guarmby, and he will shortly be completing a
compatabile version of CD05. Enquiries about this board are welcome,
but we cannot state a definite price at pressnt.

Anybody wishing to purchase CDOS or upgrade early versions of CDOS
should contact Neil Buarmby at the following address.

Neil (uarmby
? Moriston Road
Brickhill
Bedford

NEW SOFTWARE

THE LABYRINTH OF TRAG is the first adventure game +or the Cortex. In
this text based game vyou have to explore a series of underground
rooms and passageways. Your aim is to stay alive by eating and
drinking on the way, whilst looking for keys to open boxes. Your
eventual goal 1s to open the treasure chest, remove its contents,
and find your way out again. The main problem is that every four
hours the caverns flood, and so you must not be slow.

{(Price : £6.00)

Newsletter & programs will be available on a tape with the programs
to ke included in newsletter 7. In this way we hope to reduce the
selling price of the tape.)

HARDWARE

We have access to most of the <chips reguired by the Cortex
expansions, and would be willing to supply them to Cortex users. All
enquiries are welcome, and prices of some components are shown
below.

THMS 9201 @& £5.50

™S 702 @ £6.30
™S 2911 @ £25.00
TMS 97927 @ £22.00
2737 FDC @ £356.00
745612 @ £25.00

6-

BUG E=EYTES

This section 1is for ironing out problems
which users experience with their Cortices.
If you have any, problems then we will be
glad to include them here. If you think
that vyou know a solution to any of these
problems then please 1let us know, and we
will pass it on.

Dur problems this time start with one or two disc difficulties.

Syd Chawmpkin of Skirlaugh has recently fitted

Cortex, but finds he is unable to fully load the CDOS 1.20 operatlng
system. When operating the "BOOT" command the drive loads track "6oO"
as normal, but when the operating system “"core" attempts to load, an
error message, "Controller Error” 1is displayed, and the machine
aborts the search. Syd has tried changing R70 and C2Z2? to no avail.
Can anyone offer any words of wisdom, and maybe someone local to him
could help him- by checking his disk on a working system.
[S.Champkin., 16 Caweed Crescent, Skirlaugh, North Humberside.]

Hr.J.5tephens of Northumberland cannot save{(or load}) to tape when
using CDES 1.1i. Upon attempting a 1load the message "TAFPE READ
ERRDOR" results. Any suggestions would be greatly appreciated..

C.N.Sedmell of Christchurch is having trouble with a timing related
fault somewhere around the TMS ¥4500, which corrupts the RAM/VRAM on
a cold start. Again any help will be gratefully received.

Julian Terry of Rainham would 1like some help with a programming
problem. He has tried to use FO020 to store WP registers for call
routines, but wupon passing more than one parameter the arror
"ILLEGAL DELIMITER" occurs.

Finally in this section, a couple of suggestions for improving the
quality of the Cortex display.

#Hr .0.H.Hulpe of Staffordshire suggests that by parting the inner and
screen of the coax cable at the aerial socket end the picture can be
"pulled” to the right. This would relieve the common problem of left
picture shift in GRAFH mode.

Mr.A.HiIliams of Sydney, Australia tells wus that his display
problems were caused by interference between the power supply cables
and the disc interface cable. Hence to solve this he merely moved
the cables around within the case.

63

FFROGRAMS

The following programs and routines have been sent in to us by
Cortex wusers. Our theme this time seems to be biased towards disc
software. We would, however, like to point out that our selection is
obviously limited by the typé of software sent in. We welcome all
contributions, no matter how short, and will trvy to include as many
as possible in each issue.

Following on from his CDOS modification in issue 5, C.#.Gale has

also sent another program, with a comprehensive explanation.

The reason +for the development of this program was the occasional
overwriting of a disc. Therefore it was decided to investigate the
workings of the disc drive handler.

The disc. drive handler keeps an account of the sectors in use in
the +form of a bitmap, which is stored on track 1 of sector O of the
disc. Each sector on the disc is represented by one bit in a word,
i.e.track 0 sector 0 is represented by word O bit 0. A set bit
represents a sector in use, and a clear bit represents a free
sector. The first two bytes represent the sixteen sectors of track ©
which holds the boot file, and these should all be set. The next two
bytes represent the sixteen sectors of track 1 which hold the bitmap
and the directory, all of which should also be set.

CDOS thens fills the disc in a sequential manner, starting from
track 2 sector 0. Details of the file are stored in the directory
which starts at track 1 sector 1. The first word indicates whether
that entry slot is in use,and a zero indicates that the entry slot
is free. If the file is a program,BASIC or code, then the first word
is set to ASATH for autorun, and SASAH for not autorun. Any other
value indicates the record size of a relative file.

The next eight bytes contain the title of the file in ASCII format,
followed by the BASIC pointers in the case of a BASIC file, or the
beginning and entry point for machine code. The word starting at
byte number 16 contains the length of the file. The word starting at
byte 32 contains the disc address <followed by the number of
contiguous blocks from that point. The next seven pairs of words are
similar and this allows the file to be split into eight different
areas on the disc if necessary.

The program starts by displaying the title, and then asking which
drive to use. The drive number is used to index into a list of
pointers, which indicate the locations in memory where the discdrive
parameters are stored. The parameters contained in memory include
the number of blocks per track, the total number of blocks, the
number of files, the number of tracks, the number of sides and the
number of bytes per sector. It was decided to use these parameters
rather than fixed values so that the program will hopefully work on
all density drives.

The program then calculates the position of the bitmap and directory
and passes this information onto the read/write disc routine. The
bitmap and directory are retrisved from the disc and stored from
location AOOOH onwards. A temporary buffer starting from location
F000H is cleared and another bitmap is created using the information
from the directory of the disc. A check is built in to make sure any
disc address indicated by directory entries are wvalid.

&4

When
the

listed.
or the
"ones"
a Ffile,

7100
7104
7108
710C
71i0E
7112
7114
7116
7118
711cC
71i1E
7120
7124
7126
7128
712A
71Z2E
7132
7134
7136
71ZA
713C
713E
7140
7144
7148
714C
714E
7150
7154
7158
715A
71SE
7140
71464
7166
7188
718C
718E
7170
7174
7178
- 717A
717C

the
actual

START:

DRIVEND:

OK1:z
ABAIN:

NEXTFILE:

717

7180
7182
71846
7188
718A
718C
7120

OKZ2:

directory track,
using the disc inspect utility.

then the best course of action is to copy all of the files
to a new disc using the "filecopy"” utility.

LWFPI
MS6
MSE
EED
ANDI
MOV
SWPE
SLA
MOV
MOV
MOV
MOV
INCT
MOV
CLR
MOV
MOV
MPY
DIV
MOV
MPY
MOV
MOV
LI
LI
BLWF
MOVE
JE@
B

LI
CLR
CI
JINE
LI
SETD
SETO
Al
MOV
JE@
MOV
MOV
JEG&
MOV
SRL
C
JLE
MSG
JMP
MOV
SLA
ANDI
CLR

second bitmap has been created, it is then compared with

bitmap
If any a discrepancy is found in the bitmap for the bootfile
the bitmap on the disc can be set to all

from the

>FOZ20

a@x7000

@x7016

R1

R1, >0OFQO

Ri,R2

R2

rR2,1

@x6382(R2) ,R3

*R3I+,R4
*R3+,R?

R9,8>70FE

R3

*#R3,R12

RB

@x>56372 (R2) ,R3
@>0004(R3) RS

R4 ,RS

R&,RE

a@r6362(R2) ,R3
3,R4

RS,R2

RS,R4

RO ,. 0000

R3, »AC00

a>6180

RO ,RO

OK1

@>4550

R1,>2000

*R1+

R1, >A0C0
ABGAIN

R1, >32000

*#R1+

*#R1

R3, »>0080

*R3Z, *R3

NEXT

a>0022(R3) ,R4
@x0020(R3) ,RS

NEXT

RS,R6

Rb6,4

R&6,RB

DOK2

@>7028

BADADD

R6,R2

R2,1

RS, »000GF

Ré6

6-5

disc,

set bits

with - any discrepancies being

If a discrepancy is found in

print title

print "which drive"
get drive number
mask ASCII

put in lower byte

pointer to drive
blocks per track
total number of blocks

number of files

pointer to drive
number of sides

number of tracks

bytes per sector
jcalculate disc address
Jof bitmap

no. of bytes to transtfer

actual bitmap buffer
get bitmap % directory
check status

print error message

clear buffer

set bits for bootfile

for directory

get file
no file?
number of blocks
disc address

directory

is it valid disc address?
print "invalid address®

calculéte which block

7192 Al R&, *BOOO
7196 MoV RS,RS
7138 JEQ SETBIT
7194 MDRESEC: SRL R6,1
7139C DEC RS
71%E JNE MORESEC - -
71A0C JMF SETBIT
71AZ MOREBLOK: SRL R6,1 '
71A4 JNC SETBIT
7146 INCT RZ
71A8 LI R&, *BOO0O
71AC SETBIT: A R&6,@8>F000(R2) set bit in map
71BO DEC R4
71B2 JNE MOREBLOK any more blocks?
71B4 NEXT: Al RE, »0040 next file entry
71E8 DEC R12 any more files?
71EBA JNE MEXTFILE
718BC LI R1, >A000
71C0 LI R2, >9000
71C4 MOV a>70FE,R3
71C8 SRL R34 ,
71CA cC *R1+,%*R2+ compare actual to
7iCC JE@ OoK3 calculated bitmap
71CE MSE @>7044 bootfile error
71D2 OK3: c - *R1+,¥R2+ '
71D4 JER OK4 ,
71D6 MSG: @>704b6. directory error
71DA 0OK4: DECT R3
71DC NEXTBLOK: T *R1+,%R2+
71DE JE& DKS
71E0 MSG. @>7088 file error
71iE4 OKS=: DEC. R3 :
71iE6 JNE NEXTBLOK
71E8 ANOTHER: MSG @>70Ab ask if another disc
71EC EKO R1
71EE CI R1,>53900 yes?
7IiF2 JE@ DRIVENDG.
71F4- cI R1,>4EQ0Q
71F8 JINE: ANOTHER
71FA B @>0080 back to monitor
71iFE DATA 0)
7200 BADADD: MOV R3,R6 print file name
7202 LI RO, >0007 with bad address
7206 INCT Ré&
7208 NEXTCHAR: MOVB *R6+,R7
72047 WRIT R7
720C DEC RO
720E JNE NEXTCHAR
210 JHP NEXT
The next program is by J.#.Terry ,and is a 3ID plane pliotter.
fAlthough we have already featured a 3D graph program, this is
different 1in- - that it produces an image with hidden lines ommited,
thus adding to the 3D effect. There is also the facility to call a
suitable screen dump routine, such as previously featured in the

newsletter.

The program is written entirely in BASIC,

computing power of the Cortex.

6-b

and shows the

1000
1010
1370
1410
1420

1450
1480
1300
1510
1520
1530
1540
1550
1560
1570
1580
1520
160G
1610
1620
15630
1640
1650
1660
1670
1680
1730
1740
1750
1760
1790
1800
1810

1820

1830
1840
1850C
1850
1870
1880
1820

1200
1910
1720
1230
1240
1250
1960
197¢C
1980
1990
2020
2030
2040
2050
20560
2070

REM *%* 3D PLAME FLOTTER #*%

REM #% BY J.M.TERRY #*%

REM # Initialisation *

PI=3.14133246536 /DEFINE PI

DIM $FUNL221,UPYLZ23553,LYLIZ25S] /BIHENSION VARIABLES
REM = Ccmmand level =) :

TEXT

FRINT * 2D PLANE.FPLOTTER™

FRINT

505UB 2070 /GET INPUT DATA

GOSUEB 1680 fPLOT THE GRAPH

FRINT @(0,23):;"Do you want a screen dump?(Y/N}";

INPUT #F13FINP fREAD IN ONE CHARACTER

PRINT @{0,23);" - " /CLEAR S.D.HESSAGE

IF FINP="Y" THEN GOTO 1600
IF #INF="N" THEN GOTO 15610

G0TO 1540 SGET A VALID INPUT
GOSUER 19560 /DUYRP SCREEN TO FRINTER
TEXT '

PRINT "Do you want to plot another function?{¥/N)";
INFUT #1;FINF
IF #INF="Y" THEN GOTO 1490 fRESTART PROGRAH
IF $INP="N" THEN GOTO 1&70C fEND PROGRAH
5070 14620 ‘
END '
REM % Plot graph routine *
GRAFH
FOR A=0 TO 253 JFILL UPPER Y LIHIT HITH 121 TQ ALLOH PLOTTIHG
URPYLA1I=121
NEXT A
FOR Z=5 TO WID+& fZ—AXIE COUNT FROM HEAR TQ FAR
FOR X=5 TO WID+& 7X—AXIS COUNT ACROSS SCREEN
REM LINE 1820=0NLY PRINT IF CORRECT LINE POSITION REACHED AND
AND DIRECTION SELECTED
IF (DIR< »30)%(MDODL(Z-5) ,DhNI=0) OR (DIR<>B8#*(MODL (X-5) ,DNNI=0
) THEN GOTO 1830
VZI=LZ+(Z-S)*{UZ-LZ) /WID: VX=LX+(X—J)*KUX—LX)KNID IVIRT. X,2
PTX=X+Z#ZITX PLOTTIHG VALUE OF X
=FNALVX,VZI1 /GET ¥ VALUE AT X,Z CORRECTED FOR VERTICAL TILT
G0OTO 1870
IF Y<LY OR Y>UY THEN BOTO 1930 /OFF SCREEN POINT NGT PLOTTED
PTY=186—18B&/ {UY-LY)*(Y-LY)-Z#ZXV /GET PLOTTING VALUE OF Y
IF PTY>LYLFPTX]Y THEN LYLFTXI=PTY : GOTD 1710 JIF POQINT IS
VISIBLE BELOW ANY POINT ALREADY THERE, THEN PLOT IT
IF PTY>UPYLPTX1: GOTD 1930 /IF POINT HIDDEHN THEN DON'T PLOT
FLOT FPTX,FTY FPLOT POINT ON SCREEN
IF PTYZUFYLPTX1 THEN UFYEPTX]-PTY fSAVE IF NEW LIMIT
NEXT X
NEXT Z
RETURN
REM * Screen dump *
REM
REM Call your screen dump routine here
REM
FRIMT "The function : F(X,Z)="3;%FUNLO;123
FRINT "X—-range is ";LX3;" to "j;UX
PRINT "Z—range is "3;LZ:;" to ";UZ
FRINT "Y-range is ";LY:;" to *;uy
PRINT "Vertical tilt is ";ZXV
FRINT "Side tilt is "3;ZITX

2080 RETURN

2090 REM #* Data input routine *

2140 INPUT "Please give a function of Y in terms of X and Z<0A><{0A*
<OD>"3;#¥FUNLO] 7INPUT FUNCTION

2150 REM * Get max and min axes values *

2160 PRINT "<DA><0A>Please give€ the value of"

2170 INPUT * laower X ="3LX;" upper X :";UX fGET X COORD RANGE

2180 INFUT ™ lower Z :"3LZ3;" upper Z :"3;UZ fGET Z COORD RANGE

21920 INPUT * lower Y :"3LY3:" upper Y :";UY fGET ¥ COORD RANGE

2200 INPUT "<DA»<0A*Please give side tilt O to 1:";ZTX

2210 INPUT "<0DA><0OA>FPlease give vertical tilt O to 1:";ZXV

2220 PRINT “<DA>»<DA>Do you want lines in both X and Z directions?"

2230 INPUT #1; "1+ ves then enter Y, else enter X or Z";#%DIR

2240 DIR=ASCL#DIR]

2250 IF DIR<>88 AND DIR<:>B% AND DIR<>%0C THEN GOTO 2220

2260 INPUT "<0A*How many lines do you want in each direction (1 to 3
07?)"; DEN v

2270 FFUNLC; 11=/"2290 DEF FNALX,Z1= " FCREATE LINE STRING

2280 ENTER $FUNLO3] JENTER LINE INTQ PROGRAM

2290 REM * This line is replaced by the ENTER command *

2300 WID=245/(1+ZTX) SCALCULATE X PLOTTING DISTANCE NEEDED

2310 DNN=INTL{(WID)/(DEN-1}1 /CALCULATE SPACE BETKEEN PLOTTED LINES

2320 WID=DNM*DEN-DNN = sABJUST HIDTH 50 THAT ALL LINES ARE PLOTTED

2330 RETURN

W.P.Eaves sent in the next program and the following explanation of
what it does.

Some programs which use BASIC and M/C reguire that the NEW command
is wused to load the BASIC at a higher address. so that when the M/C
is 1loaded it will overwrite the BASIC. Examples of this are the
games PENGO and FIREBIRD. On the tapes the NEW address is shown as
part of the loading instruction. However, 1if such a program is
transferred onto a disk then there is no written instruction and the
program can be loaded without first typing NEW xxxx. Obviously the
program will not work as the M/C will overwrite the BASIC. Ewven
typing NEW xxxx does not overcome the problem as the BASIC checks a
location to see if the M/C has been loaded. However, if the BASIC is
at the default address then this check is sometimes fooled by
reading part of the BASIC program, and the M/C will not be loaded.

The following example shows how a program can be loaded at any NEW
address, and if it is not correct will reload the program at the
correct address. The default NEW parameter is unaltered so that when
the program is +finished the original NEW address will be selected
just by typing NEW.

Memory location EDO4 contains the address at which a BASIC program
will be 1loaded <{This is the NEW address + 14H}. Location EDO&
contains the xuxxx specified by NEW or the default address. Thus by
checking the value of the word at EDO4 and modifying if necessary, a
program <can be 1loaded at the correct address. (ses lins & in the

example). Not altering the word at EDO6 leaves the NEW default value
intact.

If the word at EDO4 is not correct then the program goes to the

subroutine shown in the examplie at line BOOO., This routine resets
the check 1location to =zero ({line 8Q05), and then reads data to

6%

assemblie the M/C shown in the example below the BASIC. I+ the M/C is
assembled at &090H then the first four data lines in the BASIC are
valid in ail cases except the data for the BASIC address marked #.
The last 1line contains the program name, 1in this case PENGO
terminated by O00. {see the routine on p.5 of newsletter III by Tim
Gray.? The branch to OF1i8 at 4098 initialises the BASIC memory at
the new address.

Flease note that this routine works only with disk drives as it uses
part of the CDOS software, and in any case would be incapable of
rewinding a tape! However, the memory check at 1ine S and the
message at line 8000 can be used with any data storage medium.

EXAMPLE OF AUTOMATIC “NEW-

4 MOTOR O N :

S IF MWDLOEDO4HI<»09014 THEN GOTO 8000 Jcheck BASIC start address
6 IF MWDLO7810H1 THEN GOTO 30 scheck if H/C loaded

8 COLOUR 1140

8000 7 "<0OC>You forgot to type "'NEW xxxx ' ":?"I"11 do it automaticall
yt" .

8005 MWDLO7810HI=0 /set to ¢ as H/C net lcaded

8050 READ C1,C3: FOR I=C1 TO CZ STEF 2 fassemble H/C

8052 READ C: MWDILII=C: NEXT I

8O53 CALL C1 freleads program at new address

B0GS4 DATA 60%0H, &0OAEH

8056 DATA 513, F01aHY, —14335,-4850

8058 DATA 1&6%6, S04, 1217, S514

BOLHO DATA 24746, 523, 128, 1120, 26012

BO&Z DATA 20549, 20037, 20224 fprogram rname

MACHINE CODE TO RELOAD PROGRAM

60590 LI Ri,}9014* /set BASIC start address

&0%4 MOV R1,@-EDO4

6098 BL @>01F8B fexecute NEW, detault Ieft Iintact

609C CLR R1

609 LI R2,>60AA /address of program name start

60A2 LI R11l,>0080 fload program

&0Ab6 B @8x657C

&60AA DATA »5045 fFASCII codes of program name, 0O terminated

&0AC DATA >4E47
L0RE DATA »4FQ0

Well that’'s all for this issue. If you have any interesting programs
or routines that you would like published, then please send them in.
We would ask that you also send a description of the way in which
the program works, so as to help other users.

The programs published in this issue will be available on tape.
Flease see page 2 for details.

USER INFD

John Mackenzie has written recommending the ‘COMMTEX® communications
package by MARKRO SOFT. It is very flexible and written/structured
in such a way that makes it very adaptable by the user. For users of
WORTEX, there 1is a special version of COMMTEX which receives and
sends WORTEX pages. John will supply this free to any Wortex user
who sends him a disk with Commtex on it. {(As proof of purchase of
Commtex.)

John also informs us that version 1.5 is now avaiiable. To get an
updated copy send your original Wortex disk back to him.

For those of you who are new to the user group WORTEX is a complete
word processor (disc based) for the Cortex. For details write tos;
John Mackenzie,4 Werston Close, Malvern, Worcs. WR14 3NH

COMMTEX is available fromj
P.Roe, 53 Broughton Road, Croft, Leics. LE? &ER

Phillip Marsden from Leeds wrote in search of some information. He
has bought the memory card from MFE, and plans to make a
half—-megabyte board. He has thoughts about a RAM disc routine to
allow +aster disk access, and wonders i+ any other users have
already achieved this.

In addition +to this, he would like to produce amn 8C column screen
output, and would 1like any relevant information on the screen
output.

If you can help with either of these requests then we will be glad
&0 pass on information.

Ladisiav VFig of Switzerland wote to us asking if arnyone else is
using the MDEX software. He would like to exchange some information.

A.R.C.Badcock wrpote +to express his praise for CDOS, particularly
because it 1is easily modified, and well supported by its author,
Meil Guarmby. He also uses the MDEX system, and asks the following
guestionss

1} Has anyon2 a utility to read and write to CDOS discs from MDEX,
or to transfer files intact (like "RDCFM’ does for the MSDGS) 7

[

Has anyone a utility to read and write to cassettes whilst in
MDEX, so that I can tape softwares for safer archiving.

A

Has anyone a fix for the bug in the MDEX BASIC interpreter that
prevents the SAVEX command from saving compiled code. The
interpreter recognises the Ffirst 4 letters as a SAVE command
which it rejects as sowce is no longer present. Although the
BASIC is a simple one,. it would 'be useful if the compiled
feature could be exploited. Perhaps the command table could be
patched to rename the command 7

610

FEATURE : ADDING EXTRA BASIC STATEMENTS (By 7Tim Grav)

BASIC statements are stored in memory in encoded form. When entering
BASIC program lines,a check is made to see if the statement entered
is included in a table during the normal syntax checking procedure.
When the name is found, its position from the start of the table
becomes the token in the program. Now when the program is running,
this token 1is used to access a routine start address in another
table, and a branch made to the start address of the statements
routine. . -

Having said all that,it’'s possible to add extra statements by adding
extra names to the name lookup table, and start addresses to the
start address table.

As some statements have more than three letters there are actually
two name tables, one for the first three letters and one for the
rest of the name. A list of all the tables is included. Note that
this 1is the list after loading CDOS, and includes some changes and
extra words used by the file system.

The +First table for
table encoded as follows:-—
bit O ‘ bit 15
00000 00CG00 00000 O

1]] -

H i if set then this name has more than 3 letters
i ——— ascii code for ist letter
————————— ascil code for Znd letter

ascii code for 3rd letter

- - e we

- I¥ the LSRR of the word is set to one,then the second name table is
used to encode the second part of the name. This second table starts
at 3ADAH. The start address for the routines are in a table starting
at 3FCCH. Once your new statement,name and start address is included
in these tables, any program can use them.

When the program comes across your new statement it will branch to
the routines start address. This is a direct branch so yvour routine
must preserve some of the registers, especially R8 and RiS. Dn
completion, your extra routine will have to branch back to a
location to continue running the BASIC program. This branch back
address is different depending on the type of parameters used. 1
don’'t know all the rules for this part of BASIC, but I have found
that some retwrn addresses are IFZ2C 3IF30 IF3I6 etc—-you will have to
experiment. ' ‘

Aisa included 1in the table lists ére th2 tables for functions and
some more three letter statements. ‘

STATEMENTS

"ADR1 WD 1 ADRZ WD 2 TABLE SADR NAME

JAZE AZCF FADA O01E 3ZFCC 24FC GOTO
FAZI0 9BCF ZADC 00AA IFCE 2500 GOSUB
JAZZ2 9BOB FADE 000A IFDO 3FDO ELSE
JAZ4 6764 ZAEC 4700 IFD2 3F3& REM
3A36 PICC ZAEZ FFBO ZIFDA 2146 FOR

&l

STATEMENTS
ADR1 WD 1 ADRZ WD Z TABLE SADR NAME
FAZ8 0000 FTAE4 0000 IFDE 2772
FAZA AQ4T 3IAESL 000Z IFDE IF346 DaTA
ZA3C CIiSD 3AEB 0028 3IFDA 2240 NEXT
3ASE 24BB ZAEA 049t IZFDC 1EA4 ERROR
ZA40 4CA1 ZAEC 0OS1C IFFDE ZABB PRINMT
IA42 6047 ZAEE 0018 3IFEQ 1IFIE CALL
JA44 OBDY? 3AFOC 0008 3IFEZ2 46580 LOAD
IA4& BIF3 3AF2 05S2A 3FE4 262E INFPUT
ZA48 0245 ZAF4 0008 IFES ZCFA READ
ZA4A 99465 ZAFS& ?3EB 3FEB 2D346 RESTOR
ZR4C Al165S ZIAFB 74AA ZFEA 256C RETURN
IA4E 7D27 3IAFA 0020 IFEC 1EZ20 S5TOR
IASO 4BaAB 3IAFC 002B IZFEE I1E4 UNIT
IAS2 LALT IAFE 000A IFFO F13C TIME
ZAS4 BOA&T7 3BOO 0O00A IFFZ 6790 SAVE
ZASH 9845 3BOZ 000A 3IFF4 1FS845 BASE
3JASB ICCE 3R04 2002 IFFS6 2138 ESCAFE
SATA 2BDD 3B0SH OGESL IFFB 2Z13E NOESC
FASC 704685 ZEO0B OALB 3IFFA ZC9E RANDOM
ZASE AB4S 3BOA 0OOB 3FFC 01464 BAUD
ZA&60 A3ZBB SBOC 0487 ZFFE 20F& ENTER
3A62Z 7BZ1 3BOE 00Z8 4000 5142 FPLOT
SA&d BIEABR 3SBI10 ASDE 4002 S13E UNFLOT
IA66 L3ICT7 3R1Z 255E 4004 1ADB COLOUR
ZA6E 5461 ZBi14 O14E 4006 2BFC PURBE
3A6A OCBF 3IEl1é6 0220 4008 1484 GRAFH
3A6E C1469 3E18 002B 300A 1A7E TEXT
ZA6E 486F IB1lA 00Z8 400C 1BSE WAIT
FA70 0A07 3BIC 0024 S00E 1ABE CHAR
ZA72 6DSD 3BiE 9144 4010 2Z2CT NUMBER
3IA74 FATST 3B20 0028 4012 3ICOA LIST
JAa76 7165 FBZZ O0Z6A 4014 2Z2D78 RENMLM
ZA78 9427 3FRZ4 2D12 4016 1BIE SFPRITE
ZA7A OAZ7 IBR26 0140 4018 1B&A SHAPE
ZA7C ACZ7 3B28 (028 401A 19FC SPUT
ZA7E Z25E7 3IB2A 0028 401C 17992 SBET
FaB0 7BCS 3IB2C 0028 J401E 321iA BOOT
JFABZ ODE7 3ZRZE 0020 40320 I3Z48 SHWAF
ZAB4 7BO7 IB3IO 0102 4022 1734 CLOAD
3ABS AZDE 3B32 04%E 4024 186E HMOTOR
IABB OCCY 3BF4 016C 4026 4540 CSAVE
FABA Z2C1F 3B346 001C 4028 6A00 OFEN
SA&BC 7B07 3B3EIB 01466 4024 4900 CLOSE
3ABE A14E 3IBIFA 0000 40Q02C &AED BET
3A20 ASSL0 IBE3IC 0000 402E 6AES PUT
JATFZ QGO0 3BIE 0000 4030 0000
ZA4 GO0 ZE40 0G00 4032 Q000
IAF4 0000 ZIB4Z 0000 4034 0000
ZATFE 0000 3B44 0000 40348 Q000
IHFA 0000 3IB46 0000 4038 0000
FAPC 0000 3BR48 0000 403A Q000

613

wmr MM e BN me MG e W e W e MO e M e N e M e MR e M e W e e WH e M e W e W e M e W e N e M ke M e WAL e e R e W e e e

e

= LETTER STATEMENTS

ADR1 WD 1 TAELE SADR NA&ME
3APE 3B85A 403C 1BFA MAB
3IAA0 33EE 403E 3IIDE TOF
IAAZ2 73ES 4040 3iD& TON
ZAA4 BIEOD 4042 2IS59C FOP
IAAL LA4S 4044 2032 DIM
ZAA48 a&l158 40446 2772 LET
IFAAA 0000 4048 ZARSB

3IRAAC 73ICO 4044 Z9FA ON
IFAAE 3240 404C 2SAE iF
FABO I148 404E ZOOE DEF
IABZ BYSC 4050 OQICE NEW
ZAR4 238A 4052 1E3ZA END
FABS& O0O0 4054 ZAEBS8

IARB 0000 3054 LE40

IJABA AZ44 4058 4Eé6A BIT
3ABC 1486 40SA 1FAL CFRB
IZABE 3486 40SC 1FBC CRF
ZACo &95A 405E 2908 MEM
ZACZ 25DA 3060 2Z9FE MWD

FUNCTIONS

3B4A 882 48CA 2446 ABS
3B4C 91i0C 4BCC 2FC8 ADR
3B4E iICC2 48CE 2936 ASC
3ES0 7502 4BDO 18E4 ATN
3BSZ FBC4 48D2 S3Z44 COS
3BS4 8&40A 48D4 4AZB EXF
3BS6 OCBC 48D&6 2A9A FRA
3ZES8 A39Z 48DB 2440 INT
3BS5A 3BDS 48DA S056 LOG
IBSC C956 48DC 2482 KEY
IBSE 726& 48BDE 5354 SIN
IB&D 446 4BEC S3IES SER
IBLZ FEAL 48EZ 2410 5BYS
IE64 1A68 48E4 31FB TIC
3B&6 7136 4BES 3038 SGN
3IB&6B AZ44 48BE8 4ETE BIT
3BbA 1484 48BEA IFEE CRE
IR6Z 3486 4BEC IFC4 CRF
IBAE &9SA 4BEE 2924 MEHM
IB70 ZSDA 48F0 2988 MWD
3B7Z 7158 48F2 IF7C LEN
IB74 40DA 4BF4 1F&GE MCH
3IB76 9BEC 48F6 1F4A FOS
3B73 &3C6 48FB 1RiA COL
IB7A 23DAa 48F4 24C8 MOD
IB7Z =3CAa 4BFC 6918 ECOF
IB7E QOO0 48FE COQO0

ZBEBOD o000 490G0 Q000

3ZB32 COGG 4902 0000

SHORT TIirFrrs

The first tip this issue comes from A.R.C.Badcock 4 and is concerned
with the RGBB interface circuit. Upon building this board it oniy
gave out black. To solve this he adjusted the biasing of TR8, TRiZ,
‘and TR1&6. To achieve the correct colow balances he changed RZZ, R37
and R48 to 1KO.

Mr.Badcock would also 1like to warn users not to do the "Z.3K FREE
RAM" mod, as this is a non—-reversible alteration. By installing the
memory mapper chip, with no PCB changes (other than removing links)
all 4K is accessible under software control.

Prem Holdaway is one’ of our newer members from London.He has been
going through the older newslestters, and has this suggestion +for
correcting the lower case data from issue 2 (Andy Kendall’'s letter).
Line B0 should read; ’

80 DATA 3,-28087,8942,7,4673,1024,3,-28624,99384,16655,4161,8960

Bill Eaves has two tips about CDGS. In issue 3 page 5 there are some
suggested: modifications, which do not apply to CDOS 1.2. This
version already has an auto—-load facility which loads a file calied
AUTOEXEC +from the BOOT commamd. The routine which performs the
auto—lioad is situated at &6940H. I+ users of CDOS 1.2 wish to Ioad
filenames of there own choice the hex ASCII codes should be entered
at &6738H to &6F3EH. I+ a +ilename of less than 8 characters is used,
it should be terminated by O0OH.

Bill also informs us that certain programs will not work properiy
atter CDOS has been loaded. The praoblem is that some programs were
written before a way was known to correct the COL function, checked
pixels For the latest foreground and backgroumd colours. CDOS
corrects the fault se such a program checks for the wrong colours !
The simplest way {though perhaps not the most eleganty is to set
location 1D12H to EE9SH which is the value when the Cortex is reset
or switched on. Remember to change the the valiue back to F1iZ0H when
the program has +inished. CDROS 1.2 performs the COL correction at
location &9EEH. »

Julian Terry tells wus that printing character 10H wili stop the
cursor from being piotted. Unfortunately there is no way of getting
it back without clearing location ED&6AH, as reported by Robert in
newsletter 2. ' :

John HRackenzie has a number of points to make about CDOS.

1} Th= AUTOEXEC program is useful for holding all the little mods.
and debugs to BOOT the Cortex as you reguire. Here is = little bit
for you to add to it.

wxxx BAUD 22,1200 : BASE 0BOH

6-13

T TN

2z

This wiil set up the R5Z32 port to 1200 Baud, {(or amend to suit your
printer) and 8 bit. This allows vyour printer to print all the
characters above ASCII 127. dNow when you want the printer Jjust type
UNIT 2. Retype BAUD Z,1200 tn reset to 7 bit. :

2) CDDS does not have a system D¥_marking /85 sectors on the disk
directory during formating. @A method of doing this comes from the
way CDDS saves the files to disk. If during a SAVE to disc you get a
persistent disk error {ie a sector is faulty), the system will have
already updated the directory. If you rename that file RUBEBISH, then
whan next you save to that disk the bad sector is not used. I+ you
are very clever vyou can identify the offending sector, and save a
very short program over it.

3} With reterence to the AUTOLOAD program in issue S, i+ ydu amend
the 1listing as follows then all files will be listed on the screen
with no scrolling if the directory is long.

I+ you «call this program AUTOZ, then add this last line to your
AUTOEXEC programs:

xxxxx LOAD O, "AUTOZ"
fiow change these liness
;" Auto file load from disk 1":7

Save this program‘as AUTO3. Now copy AUTOZ and AUTOS on teo all your
disks. Remember to amend line 2030 for each disk. '

MaCHINME CODE FROGRAMMING

21 Addressing Modes (by Kevin Holloway)

In part 1 we dealt with moving data between registers, and
incrementing/decrementing. registers. We will obviously want to
access data in the main memory as well, and there are a number of
ways of doing this. These are called addresslng modes, and the main
ones will be discussed in this article.

We have already seen an example of immediate addressing , where a
register is loaded directly with data (eg LI Ri,>1234). We have also
seen register addressing , where another register holds the data (eg
MOV R1,R2). - '

The next mode is register indirect'adﬁressing_. A register haids the
address at which the required data is stored. Thus if memory
10cation 7000H contains our data, then we can load it into RZ bys

egl) LI R1,>7000 fioad RI with 70004
MOV #Ri,R2 fCopy the data stored at the address Iin RI
' /inte RZ2

The register R2 will now contain a copy of the data stored at

location 7000H. The #* indicates that the content of Rl is an address
at which the required data is stored.

614

&

In the above example it would have been simpler to use indirect

memory addressing . In this mode the data is loaded directly from
Memory .

eqg) MoV a-7000,R1 {Copy the data from location 7400H into RIE
The @ sign indicates that indirect addressing is being used.

Do not be worried if there seems to be so many ways of doing the
same thing. Once esach of the addressing modes is understood, you
should be able to ses that each one has its own particular use in
different types of program.

if we want to use many related data items, say for example, a list
of coordinates, then we will probably want to form a table of them.
To do this we use indexed addressing .This is best iliustrated by
another example.

eg3) memory location 7O0OOH ——> { dataQ |
7001H | datal :
7002H | dataz i
7003H i data3 i
7004H | datas i

To access one of the entries we could just calculate the relevant
address, but 1t is easier to use the start address (7000H) as a
reference, and a register as an index pointer. Thus toc load data3
into register RZ2 we would do the follewingj; '

LI R1,3

MOVE @>7000(R1),R2

This copies the data from address 7000H+R1(=3}), [ie 7003H1, into RZ.
fis an extension to the register indirect addressing, we may want to

access several data items which are stored sequentially in memory.
This may be achieved by using auto-incrementing .

eg4) MOV *R3+,R2

The plus sign following R3 indicates +that the contents of the
register are to be incremented by two immediately after copying the
contents of the address in R3 into RZ2.

I+ R3=7000H, and the location 7000H contains the value 1234H, then
after executing the above instruction, R2=1234H, and R3=700ZH

So far we have only discussed ways of moving data from one place to
ancother (excluding increment/decrament). In the next issue we will
move on to look at how we can perform logical operations and simple
arithmetic. If there are any points which you would like covered in
more detail, then please write and let me know.

_6-15

EXTRAa FEATLIIRE ::MASGIC SGUARES v

On our newsletter program tapes we usually incilude a short feature
BASIC program written by our staff. There are many interesting
mathematical problems which can be solved numerically, and therefore
are suitable material for programming. It was opur intention to
market a series of such programs, but it was decided that it would
be more useful to print separate articles in the newsletter.

This program calculates and prints out odd magic sguares using very
simple rules. Any size of square is possible, although the screen
size restricts the display to a 9%7 sguare. The method of generating
sven maglc squares 1is a little more complex, and so will not be
shown here.

For those of you who do not know, a magic sgquare is guite simply a
square array of numbers 1in which every row, column, and long
diagonal adds up to the same number. {(ses fig.1?

?ig.i every row,column and long diagonal
adds up to 15.

g
Ny
(IR S

The method of producing an odd magic square is guite simple. You
start off by filling in the middle eslement of the top row with a 1.
You then procesed to move diagonally upwards to the right filling
in successively Z,3,..2tc.{NB imagine the sqguare to wrap around
itself. ie2 if vyou move off the left side then you must rejoin the
right side.). If vyou come to a square which is already filled in
then you move down two, left ocne and continue as before.

10 REM ODD MAGIC SRUARES

15 TEXT :
20 INPUT "HOW MANY NUMBERS TO A SIDE (ODD)Y7?Y3iN _
Z0 N=INTINI:zIF INTILN/Z21=N/2 : GOTO 20 ! make sure N iz Int & odd

40 DIM SBLN,NI
S0 FOR I=1 TO N
60 FOR J=1 TO N

70 S&LI, Ji=0 ! clear all elements of sqguare
BO NEXT J E
F0 NEXT 1

set Z,i to middle of top row

set this element to i1

rest of elements

move diagonally upwards and right
allow Tor wmrap—arcund

100 I=1+INTIN/Z2]1:J=1

1405 8RILI,Jd1=t1

110 FOR C=2 TOD N=N

1306 I=I+1:J=J-1

140 IF I>N THEN I=I-N

1453 IF I<1 THEN I=I+N

iZ0 IF Jd<1 THEN J=J+N

133 1IF J=N THEN J=J-N ‘ ‘ ‘

160 IF SRCLI,JI<>G THEN J=J+2:1=I-1:50T0 140 ' if new position ¥ull
then move Jdown two, left cne and try agairn

i65 S5GLI,J1=C ! new position empty, 50 set to count value

170 NEXT C

175 REM PRINT HMAGIC SERUARE

180 FOR I=1 TO N

1?20 FOR J=1 TO N

200G TE{{I#3) , (I%23);50L1,J3

210 NEXT J

220 NEXT 1

Ve pey em e b

6-16

LORTE:

It runs wnder CDOS
zided
—av bBe

Thiz is a Word Procsszor for the Cortex,
1.20. The system runs usind Twin 40 track =in3le
sindle denzity disk drives. Oreration with one driwve
e .
MODES 1. InPut text

2. ImPut Pase from dizk

3. Return inPut Lext

4, YWiew disk pPa3e

5. Sawe Pale to diszk

&. Print Pag=/Piges

7. SPzlling check J<reduires SPelhex)

o)

FURCTTON
1. Text inPut with full characher sdifiine
2. P39e formating with:

a. Ruto Page number

k. Center tewt oPtion

. Right Justifs option

o Aute left Justification

e.. L=2ft mar3in control

.. Right margin control

.. Rubn: return

e Word: wrap

i. 15 Tab markers

Je Page lendth contral

k. Pa2e edifting
2. CoPy from disk Pafe &0 memory Page
4. Mlti page Printirm

15.98 Plus 2 Si/4 blank disk
SPELTE

The: spelling: checker for Wortex. This runs. under COOS 1.20.
The sysktem uses. twin 40 track single: sided disks with drive
g4 Single Density: and driver 1’ Doubler Den=zity. (NOTE onlu
the: most recent: version CDOS 1.20 suPports Double Densitu.),
This. iz a must for- Wortex users. Comes with sbout 7099 words
and: the dictionary: can 20 uP to around. 20092 words.. :

MODES. 1. Check Page sPelling:
2. Edit ther Dicktionary-:
3. Return to Wortex

4. Correct errors
FUMCTIONS .
1. YView the srrors.
2. Correct the errors
3. Store the gsrror word in the dictionary
4. Add words to Dictionary dirrect fraom kegboged
. Delete words from the Dicticmars

£ 18.99 Plus two S1.4 DD Disks #o
~! = Mackenrn=zi=s
<4 kMMerstan CTlos=s
Ma 1lwer-nm
LR14 =M

call B6345-65613 eweninssz

- ' 617

