
----�---��----���-�- -�� �� - �---�--� �----------- ---------,

93, Long Knowk Lane, Wedncsfield, Wolverhampton, West Midlands. WV 11 lJG

Tel No: T Gray 0902 729078, E. Serwa 0902 732659
---,

1 9

CORTEX USER GROUP NEWSLETTER (OCT 198��

Issue Number 19

1.
2.
3.
4.
7.

12.
16.

Index
Editorial
Adding the Maplin 993B VDP card.
MDEX utilities Mapper setup/screen colours
Inside Cortex Basic.
Merging basic programmes.
Adverts

Edito r i a l

W e h av e h a d a few c omp l aints that the newsletter i s very l ate
thi s t i m e . I t mu s t b e remembered tha t thi s i s a u s e r s new s l et t e r
an d a s s u c h i s r e l i a n t on artic l e s s en t in by u ser s . If we d o n 't
g e t a n y t hi n g s e n t i n we can't print it. We u su a l l y s uffer fr o m a
l a ck of e n t n u s i � s m d u r i n g the s u mmer m o nt h s b u t h a ve b e e n
h o l d i n g t h is n e w s l e t t e r b a ck i n ca s e a ny t hing cam e t h r o u g h . T h i s
i s s u e w i l l Qse u p a l l t h e inf o rm ati o n.i n o u r file s o i f y o u h a ve
any pr o g r am m e s o r o t h e r i n t e r e s tin g a r t icl e s to s e n d p le a s e g e t
the m int o us s o th et w e c a n pro d u c e t h e n e x t i s s u e w i t h o u t t o
m u c h delay.

The 993 8 V DP

The m o s t i rit e r e s t i n g t h i n g o n t h e C o rt e x scene at t h e m o me n t i s
the possibillity of addin g a n e w u p d a t e d gr aphic s c h i p. The
Y a ma har 9938 i s d i r e c t l y u pwar d ly c o m p a tible w i t h the 9929 a s
fi t t e d i n t h e C o r t e x s o it i s po s s ib l e t o fi t it in s i d e a n d
r e tain a l l t h e e xi s t i n g f e t u r e s a s w e l l a s a d d in g m o r e .

M a p l i n s e l l a kit t h at inc l ud e s a 9938 V DP a n d pr i n t e d c i r c u it
bo a r d as p a r t o f a framestore project th e y h a v e . When made up
t h e P CB c a n be f i t t e d ins i d e t h e cort e x a n d wir e d t o a 4 0 p i n
h e a d e r p l ug i n p l a c e o f the o r i gi n a l V DP. Th e n e w m a plin PCB
p r o v i d e s o u tp u t a s R . G .B. a n d s y nc f e e d s f o r u s e w i t h an
a n a l o gu e R . G . B . m o n ito r .

T h e n e w V D P w o r k s a s a d ir e ct r e p l a c e me n t f o r t h e 9929 s o t h e
c o r t e x will f u n ctio n wit h o u t a n y s oftw a r e u p d ate . B u t a s wel l a s
t h e g r ap h i c s a n d 4 0 c o l u m n t e x t m o d e s y ou a r e used t o i t a l s o
p r ov i d e s oth e r m o d e s of ope r a t i o n i nc lu din g : -

TEXT M O DE: 2 8 U c o l u m n t e x t m o de
GRAPHICS M O D E 3 sam e a s g r ap h i c s '" b u t wi t h s p r i t e m o de 2
GRAPHICS M ODE 4 pix e l mapp e d 2 56 X 2 1 2 wit h 1 6 c o l o u r s
GRAPHICS MO D E 5 pix e l m app e d 512 X 212 w i t h 4 c o l o u r s
GRAPHICS MODE 6 p i x e l m app e d 512 X 212 with 16 c o lo u r s
GRAPHICS MODE 7 p i xe l m a pp e d 256 X 212 with 256 c olou r s

r

Al t h e new gr a p hi c s mod e s can u se s prite m o d e 2 w h ic h a l l o ws
m or e s prit e s a n d be t t e r co l o ur contro l of t h e m . P l u s al l the
c o l o u r s in th e n e w V DP a r e pro g r a m a b l e v ia a c o l o ur p a l l e tt e .

{

C h r is You n g h a s w r i t t e n a s e t o f s o ftw a r e d riv e r s t h a t all o w t he
u s e of a l l t h e n e � g raph i c s m o des w it h t he n e w VDP e ither f i t te d
i n p l a ce o f t h e o l d o n e o r fitted s e p e r a t e ly o n t h e E . bu s .

T e d S e r v a h a s w r i t t e n t he f ol l o w i n g g ui d e t o f i t tin g th e M a p l in
b o a rd ins i d e the C o rt e x.

\C\.2.

DIRECT REPLACEMENT OF TMS9928/29 FOR V9938
'",

Hardware required 1 * V9938 KIT FROM MAPlIN

1 * 64 WAY A&C DIN 41612 CONNECTOR

1 * 40 PIN IC HEADER/IC SCKT

1 * 14 PIN 1p HEADER/IC SCKT

RIBBON CABLE 5"

The following table is the connections required between the TMS9928/29 and
the V9938

40 PIN HEADER/IC SCKT
PIN No

DIN 41612 A&C CONNECTO�
PIN No

GRND
I

l2-------�--------------------------------32a&c
MODE A15 13�----------------------------------�----11c

14�---------------------------�-----------19c
15--19a
16--23a
17-------------------------------�--------30c
18�----------------------------�----------30a
1�---------------------�------------------29c
20--------------------------------�-------29a
21--28c
22--28a
23------------��------------�-------------27c
24-----------�----------------------------27a

CSW
CSR
INT

lSB DO
01
02
03
04
05
06
07 I

RESET
+SUPPlY

34-------------------------------------�--21c
33---------------�------------------------la&c

NOTE

(l) Make up a cable with connections as above using a 40 pin header
and DIN 41612 connector

(2)Connect pin 4 and 6 on 14 pin header

(3) Connect pin 8 and 9 on 14 pin header

(4) Replace ICI on the V9938 board with the header that has just been made

(5) Replace TMS9928/29 with 40 pin header and V9938 ,board

The V9938 req uires A14 this is taken f�om the top track leading to
pin 2 of the TMS9909 sckt and connected to pin lla on the DIN41612
connector

A set of programs to initialise and use all the extra built in
facilaties of the new VDP (V9938) is available on disc.Please state
if th� VDP is used on the E BUS or as a replacement for the TMS9928j 29
Disc is priced at TEN POUNDS all inclusive from

C J YOUNG ,107 RINGWOOD ,GREAT HOllAVNDS ,BRACKNAll ,BERKS

1 REM Memory Mapper Setup utility A.R.C.Badcock
{

}

This utility allows the Memory Mapper
registers to be loaded manually by the
user. Each mapper register holds a
value to which 4kby te memory block in
the bottom 64k of the memory map will
be vectored. This only occurs after a
CK O N opcode switches the mapper on and
ceases after a C K O F opcode switches the
mapper off.
This function allows any 4 k page to be
switched into the lower address area.
This utility has certain safe-guards for
the inexperienced. The user is prevented
from setting the register controlling
O O O O O - O OFFF, and the registers from
OCOO O- OEFFf as there is a danger of fouling
the operating system. Also the lowest page
that can be vectored is O F O O O - O FFFF to avoid
a tangle up in lower memory.
However, the experienced programmer can
always get around this in a program if
needs be. This utility provides a direct
method of setting the mapper up when
experimenting.

5 PRINT: PRINT" Mem ory Mapper Setup Utility vl. O"
PRINT"================================"
PRINT : PRINT"B y A.R.C.Badcoc k (c) 1988 ":PRINT

MAPLOC% = O FI O O

1 0 errorflag% = 0
G O S U B 1 0 0

{ Mapper base address }

{ clear error flag }
{ Input register value }

1 5 IF errorflag% =
20 G O S U B 20 0

1 THEN 30
{ Input register data }

30 INPUT"f1ore ? ";reply $
IF reply $ = " Y" OR reply $ ="y " THEN 10
P R I NT: P R I NT" 11 a p per s tat us" : P R I N T
PRINT"Register Mapper value":PRINT

4 0 F O R O FFSET% = a T O 30 STEP 2
MAPREG% = M A PL OC% + OFF SET%
REG V AL% = PEEK(MAPREG%)
PRINT MAPREG%II;" = ";REGVAU�fI

NEXT OFF S E T�o

5 0 PRINT
PRINT" - Done - "
PRINT
STOP

1 0 0 REM - Select Register

QB ASIC

INPUT"Which mapper register to set (1 - 1 1 allowed) ?
" ; r"1 APR E G �o

IF M AP RE G% < 1 OR M A P R E G% >1 1 THEN GOSUB 3 0 0 { Check valid
register }

IF errorflag% = 1 THEN RETURN

OFF SET% = MAPREG% * 2 {allow for word increments}
REGVAL% = PEEK(M APLOC%+OFF SET%)
PRINT "Current va l ue of register is II;REG V AL%II
RETURN

200 REM Set register value

INPUT"Set mapper register va l ue (15 - 255 allowed)
II; r.., AP V ALUE%

IF M AP V ALUE% < 15
M APVALUE% =. M APREG% {set default value}
PRINT IIERROR - value no t allowed, default loade d "

ENDIF
PRINT
POKE(M APLOC%+OFFSET%), M AP V ALUE% {load value in

register}
RETURN

3 0 0 REM Error rou tine

PRINT"This regis ter not allowed - affects operating system
area."

errorflag% = I
RETURN

999 END { End of program}

• M APPER SWITCH for MDEX by A.R.C.Badcock r� DE X ASS E M B L E R

• This utility switches the mapper on.

IDT "M AP�ON It
COpy "l/J SYS$"

RORG

ST ART CKON .issue mapper on command

JSY S FINI SH
FINISH BYTE EXIT$, O

D ATA 0 0 000

END START

· M APPER SWITCH by A.R.C.Badcock

• This utility switches the mapper off.

IDT " MAP-OFF"
COPY "1/J SY S$1t

RORG

START CKOF .issue mapper off command

JSYS FINISH
FINI SH BYTE EXIT$, O

D AT A 000 0 0

END ST ART

MDEX ASSEMBLER

-- - - - -�-----�--------�

{ COLOUR UTILITY FOR CORT E X SCREEN

{

}

Copyright A .R.C.BA DCOCK @19BB }

This utiilty allows the Cortex screen
colours - foreground & background -
to be sit by the"user.

5 PRINT
PRINT"CORTEX Screen colour setup utilit.y vl.O"
PRINT"======================================="
PRINT

"
,

'

PRINT"By A.R.C.Badcock - (c) 19BB"
PRINT

10 PRINT:PRINT"SET SCREEN COLOURS"
PRINT

VDP}

VDP}

INPUT"FOREGROUND = ";FG%
IN PUT" B AC K G R 0 U N D = " ; B G �o
COLOURCODE% = FG%*16+BG% {Calculate code value to write to

REGIDENT% = OB7 {Code to actuate colour load in

POKE(0�121),COLOURCODE% {Write colours to VDP �ommand
regis ter} ,

POKE(OF121),REGIDENT% {Write actuate code to VDP
command register}

PRINT:PRINT"OK":PRINT:PRINT
STOP
END {of, program }

INSIDE CORTEX BASIC

This article is intended to show how BASIC progr ammes are stored in the CORTEX memory
with descriptions of the various tables that are employed. The article will not cover
programming in BASIC but will try to describe HOW the BASIC works. Some users who
obviously have an in depth knowledge of the subject, judging from past newsletters will
have to bear with me. However I hope the artides will be of use to the user group. I have
been investigating the BASIC in order to find a method of getting rid of so called Phantom·
Variables. The aim of these artides is to combine my findings with ideas that have been
presented in previous programmes and artides in the newsletters. I will try not to waste
too much space by repeating articles already published in the newsletters but will refer to
some from time to time.

I will include some programmes to demonstrate the items covered and to enable people to
have a look for themselves. The first programmes will be short and in BASIC to allow
people to get the feel of what to look for before using the monitor and machine code
routines.

The subjects I intend to cover are:

1. Introduction - Direct & Programme Modes .

2. Basic Pointers and how to find the tables.
3. Keywords Functions and Tokens.
4. Varables, Data, Numbers & Strings.
5. Summing Up

1. Introduction,

So! We have all written programmes in BASIC, but how much thought has been given as to
what is happening. You type in your programme, edit the lines until it works and then run
it. Type LIST and you can see your programme. Simple isn't it?

Actually the text you type and list is not what actually runs or what is stored in the
computer's memory. In fact there is always a programme running even when the computer is
apparently idle. Even when users machine codes are not running, the Operat ing System is
keeping things going, displaying screens to your TV IMonitor scanning the keyboard
waiting for you to type etc. When the RETURN key is pressed the operating system
branches to the EDITOR to process the .data you have typed in.

.

If the data starts with a line number and the syntax is correct then the line is encoded
and the BASIC tables are updated accordingly. No execution of commands is carried out
(except for a few exceptions I shall mention later). If ther is NO line number and the
syntax is correct then the editor branches to the routines to perform the commands that
have been typed. I refer to this mode of operation as Direct Mode. The branches to the
routines and encoding of BASIC use the tables sho wn in Newsletter 6 pages 11&12.

When RUN is typed the editor passes control to another routine the INTERFETER. This
progamme scans through the basic tables and uses the tokens to execute the BASIC
commands! Althoughth� Interpreter and Editor both access the same routines (eg 'PRINT'
does the same thing whether typed directly or within a programme), the way in which these
routines are invoked are different. More will be said of this in section
3<Keywords,functions and tokens.). The action of the interpreter upon the tables is what I
refer to as Programme Mode.

When LIST is typed, control is passed to a machine code routine which decodes the data
stored in the BASIC tables back into lines of text which are then displayed. The EDIT key
uses the same routine as LIST to d ecode a BASIC line and then passes control to the

!
______ _ ..J

Editor. The Editor and LIST both use a buffer located at EB04H to t"\Qld the text data. The
monitor does not use this buffer. If you type MaN and then examine memory starting at
EB04 you will see the Ascii Codes for MaN terminated by a zero byte, This buffer is

immediately above the variable storage memory.

As always there are exceptions to the rule. Remember what I said about the editor
detecting line numbers, well try this:

Type 'NEWI to clear the current programme
Enter the line

10 SIZE

Interesting?

Now type LIST. Nothing there! More about this in section 3!

2. Basic Pointers and Tables.

A BASIC programme in the Cortex is held in foul' tables. The first three of these are
stored to tape or disk when the SAVE command is used. Because BASIC programmes can
vary widely in size and in the numbers of variables used a system of pointers is used
which hold the starting locations of each table. This system of using pointers is prefered
to a fixed area of memory for each table for the following reasons.

1. Memory use is more flexible, allowing space not taken up by programme lines to be used
by variable tables and vice-versa.
2. rhth a fixed �dfessing method a short programme would take up as much memory as a
long programme. The pointer system leaves memory available for use by machine code
routines. Also only the area used by a BASIC programme needs to be stored and can be
stored as a consecutive block of memory, leading to short LOADING times for smaller
programmes.
3.A Disadvantage is that the table contents have to be moved when new lines are typed in
or old ones deleted.
However, the advantages of 1 S! 2 far outway the disadvantage of 3:

The four BASIC tables are as follows:-
1. Encoded form of the BASIC, each entry being one basic line.
2. Line number table, containg l ine numbers and offsets to table 1.

3. Variable Name Table, containing encoded forms of the variable names used in the
programme.
4. Variable address table, containing the addresses of aSSigned variables.

The pointers to the tables are at the following locationst shown in hex.format.
ED04 - Start of the Basic Code table.
EFBA - Start of the Line No. table.
EFBC - Start of the Variable Name table.
EFBE - Start of the Variable Address table.
EFCO - Start of available memory above BASIC.

The NEW command if used w ith a parameter alters the address held at ED04 (and also at
ED(6), A value of 14H is ad ded to the parameter so NEW 6000H puts the start of the Code
table at 6014H.

From now on I will use the @ symbol to mean the word held at an address.
eg the address @EFBA is the start address of the Line Table.
This nomenclature is similar to that used by assembly language • .

THE BASIC CODE TABLE - @ED04 to @EFBA -2
Each byte in this table is a token for either a keyword, variable, function, delimiter,

\q,�

.
operator or part of a number or string. Basle lines are stored in sequence WITHOUT being
preceded by a line number and each line is terminated by a zero byte. Tokens are
effectively pointers to start addresses of commands, functions and va.riable tables,
meaning that BASIC lines can be interpreted very quickly. Each entry is of variable length
depending on the length of the original basic line. .,

THE LINE NUMBER TABLE - @EFBA to @EFBC -2
This Table contains line numbers in REVERSE ORDER at every second word.The word
following a line number is the offset to the start of that line in the CODE TABLE. ie code
for a line will start at @ED04 + OFFSET. The table is used to locate the code when GOTO
and GOSUB statements are encountered . The table is also used when decoding lines for
listing or editing .

THE VARIABLE NAME TABLE - @EFBC to @EFBE -2
Contains encoded names of the variables. It is used in decoding lines for display and
editing. It is also used to examine or alter the value of a variable when a progr amme is
halted. The first three words of this table are empty and the fourth contains 11D2 which is
the encoded name for RND which is treated like a variable that can be read from but not
written to�

THE VARIABLE ADDRESS TABLE - @EFBE to @EFCO -2
Once a variable has been assigned either from the keyboard or from within a programme it

is given an address which is put into this table. The position in this table is equivalent to

the position of its name in the previous table. The first four words of this table are Iero
(RND"doesnot use an address held in this table). Unassigned variables also have a Iero
entry . Dimensioned variables only have the address for index (0) s tored in the table,
higher index addresses being calculated by the operating system.

The variable addresses are themselves pointers to the data stored in a varable. Variables
are created as they are defined and progressively move DOWNWARDS throug,h memory. The
variables occupy memory upto but not including location EB04.· The lower limit set for
variable storage is the location @EFCO. The start address of the last variable assigned is
stored in the pointer EFC2.

In the next article I shall look a.t how commands, variables and data are stored in the
Code Table and how the variable names are encoded . I will show how tables are updated
and accessed in both Direct and Programme modes.

To round off I have presented some Basic programmes for users to experiment with.

\--1

I 1
'I' Pointer @Pointer DESCRIPTION I
I 1

'1--1
I I
I ED04 7114 Start of Basic 1
1 EFBA 7418 Start of Line Table 1

I EFBC 746A Start of Ver t NaMes I
I EFBE 7486 Start of Var. Addresses 1
I EFCO 74A2 MeMor� Above Basic. I
I EFC2 EADC Last Variable Address. 1
1 I
1--1

9000
9020
9030
9500
9�Sl()
9540
95�'30

SEE FOR YOURSELF

The following listings will allow you to look at the contents of the BASIC CODE TABLE.
Essentially they are BASIC programmes which look at themselves! Please use the same
line numbering as I have, the reason will become Obvious soon.

The first programme 'LIST1 ' shows the encoded basic in the form of single bytes. This
sort of programme is useful to look for tokens of keywords and variables.

The second programme 'LIST2' shows the CODE TABLE as Asdicharacters. This form is
useful for looking at strings and REM statements.

The above two codes show the lines listed . It would be more useful to show only code upto
line 9000. This will enable users to add lines below 9000 and show the encoded Basic
without having to show the routine which displays the data. To understand how to d o this
it would be useful to look at the Line Number Table. The third programme LINES shows
how Line Numbers are stored in the table. Note that the lines are stored in reverse order.

With the knowledge of how to access line numbers it is possible to modify LISTl or LISTL.
The final programme LIST3 will only display encoded Basic upto line 9000. The programme
looks for the value 9000 in the line number table so now it is obvious why I wished'the
same line numbering to be used. It is also possible to modify LIST2 in the same way.

I have not included outputs from the programmes as it is more useful to let poeple run the
programmes themselves. The programmes are very short and do not involve much typing!

REM CODE TO SHOW BASIC ENCODING
Pl=MWD[OED04HJ: P2=MWD[OEF8AHJ-2
? "<C)-START OF BASIC ":£,P1: '? "

REM ��* OUTPUT RESULTS ***
FOR 1=P1 TO PZ: Z=MEMCIJ

? £;Z;"
NEXT I

" .
t

! START & FINISH OF BASIC STORAGE
END OF E:ASIC " ; £, P2

L ... :::n::: :!::3; T ::;::�

REM CODE TO SHOW 8ASIC ENCODING
Pl=MWD[OEDO�H]: P2=MWDCOEFBAHJ-2
? "<C>fHAFn OF E:ASIC ";£tPl: ';> "

REM **� OUTPUT RESULTS ***
FOR 1=P1 TO P2! Z=MEMCIJ

!�c"=" " : IF Z LAND 128: �I>C:::" "

! START & FINISH OF BASIC STORAGE
END OF Bt-ISIC " ; £, F'2

9000
9020
9030
9500
9510
9520
9530 X=Z LAND 127: IF X<32: X=46 !Non Printable Characters Show up as a Dot
953�'.'i �� (>:tC+%X
95't(l ? i.e;
95::)0 NEXT 1

1 "I. (0

100
900
910
lOOO
1010
10Z0
1030
3000

'? "<C>LINE NUMBER TABLE DISPLAY": ? ,,-.. - ... -.- -.. --.--.--.- -.. -.--.- -"
: ?

? "LINE NUMBER OFFSET (HEX) (DECIMAL)"
? tI. __ . _______ • __ _ --_. __ • .- . ___ 11 t ?

ST�MWDCOEFBAH]: FI=MWDCOEFBCH]-Z
FOR 1=81 TO 'fI STEP q

? MWDIIJ" £,MWDCI+2J,,MWDEI+2J
NEXT I
REM THIS LINE NUMBER IS THE FIRST DISPLAYED

9000 REM CODG TO SHOW BASIC ENCODING
(1'020 Pt=:MWD[OED041-U: F'2::=M:w.n.cOEFB(.IHJ-·2 � STM<T 8. FINISH OF BASIC STORAGE
9030 ? n<C>STAf-<T ()F E:A::lIC ";£,PU '� " END OF Bf�SIC ";£,F'2
90QO LNO=9000�P3=MWD[OEFBCH]-2
9050
9060
9070
9080
9090
9100
(1500
9510
95 40
9550

FOR I=P3 TO P2+2 �TEP -Q
IF MWD[IJ=LNO: GOTO 9100

NEXT I
? "NO LINE 9000 IN THIS PHOGHAMME�"
END
P2=Pl+MWD[I+Z]-2 � RESETS P2 TO END OF LINE BEFORE 9000
REM ��* OUTPUT ,RESULTS *�*
FOR I=P1 TO PZ: Z=MEM[IJ

? £;Z;"
NEXT I

It·.
I

?

MSA VE s� MLOAD COMMANDS

Have you ever wanted to merge programmes or get rid of Iphantom variables' (See Newsletter 10)
without having to Source List programmes to tape? I have written two commands MSAVE and
MLOAD which save source listings in high memory.

In case anyone does not know what is meant by a source listing, it is a way of storing a

programme as character data in the form of ASCII codes. Normally a programme is stored to disk
or tape as a memory dump of the highly encoded BASIC and line number and variable tables. The

advantage of a source saving is that on retreival any BASIC programme in memory is NOT wiped
out hence allowing merging of routines. Also no variable attributes are stored. Retreiving a
source listing is like 'retyping' in all the lines only much faster and with less effort. The
disadvantage with source listings is that much more memory or tape/disk storage is taken up.

Programme Description

The machine code programme UTILS (short for utilities) consists of routines for three commands
FIND,MSAVE,MLOAD. The MSAVE command uses the same type of routines as the FIND command
in newsletter 3 w hich I have modified slightly to save on memory when combined with MSAV� The
enclosed listing w ith added comments shows how the routines work. The choice of buffer locaJions

is entirely up to the user, I tend to use 70AOH as a general buffer for CAT ,FIND ,Return vector
storage etc. The buffer for MSAVE should be large in order to store sensible sized chunks of
BASIC source lines, which is why I chose F200H to FEOOH (the last BASIC line stored will exceed
this value), The only reason I have not extended the buffer to FFxx is that I have a problem with
random numbers occuring in locations FEF A to FEFE. Has anyone any ideas about this? Users who
have an EBUS extended memory which I do not, will obviously be able to use quite large storage
buffers�

The commands are patched into the Command tables at 3A20,3A22 and 3A24H. The commands
cannot be used from within a BASIC programme but only in direct mode . Only the first 3
characters of the commands need to be typed eg MSA will dump the current BASIC programme to
memory. This section of the programm intrudes into the beginning of CDOS. This does not provide
any problems as this part of CDOS appears only to be used once at BOOT time�

The first two words in the storage buffer are used as pointers which MSAVE &: MLOAD use when
transfering data between the store and the BASIC environment.

There are branches to two operating sytem routines. The routine at 3C80H is the routine that
converts a programme line to ASCII format for display , used by LIST and the line editor. The
routine at 3404H converts lines in ASCII format into a programme line, whilst performing syntax
checks. This routine is used by ENTER and the line editor.

It will be noticed that there are two ways to disp lay basic lines. One is using the MID CODE
0002, the other is by using MSG @)EB04. The MID CODE looks for a line number at the start of
the buffer at EB04 and if found the ap propriate EASIC line printed. The MSG simply prints the
whole contents of the buffer at EB04. The latter is used in the MLOAD programme as the line in
the'BASIC table may not exist or be different to that being recalled from high memory. For

, example if MLOADing a programme after a NEW command has been used, then the MID would only
display line numbers whereas the MSG will display the full line being retrieved.

\ 9- l'L

USING THE COMMANDS

The FIND is used exactly the same as that in newsletter Ill.

ego FIND textstring

The space is important and the ward FIND must be at the beginning of a line.

MSAVE and MLOAD use no parameters and can be typed anywhere on a line. The two uses are

MERGING codes or SOURCE LOADING to get rid of phantom variables.

MERGING. MSAVE the routine to be merged . If this is part of another code then delete un wanted

lines and renumber as appropriate. An ** END OF BUFFER WARNING ** is given if the code is
larger than the buffer. In this case use the Monitor to dump the buffer to disk as a non
executable mic programme. Delete the programme lines that have been saved�d repeat the
process. The last MSAVE does not need to be transfered to disk� Load the main programme as
normal. Use MLOAD to merge the new code. MLOAD will replace existinQ'-line numbers - be
careful with your numbering. If the buffer is stored on disk LOAD {filename' - You do not need to
use the monitor and then MLOAD. The code req�...Jired will now be merged.

DELETING PHANTOM VARIABLES. Firstly MSAVE the basic programme. Most programmes will
have to be done in several stages saving the buffer to disk using the monitor. When all the code
has been saved -type NEW. MLOAD the code back into BASICt retreiving files from disk if
necessary. On completion you will have a copy of the original code but with vacant variable space.

MSAVE will display the basic lines as they are sto(ed. If the end of buffer is reached the last
line stored will be that above the error message. MLOAD displays the basic lines as they are
retreived.

1.
To save the buffered asdi code onto disk use the monitor D command starting at F200H. The data

finishes at the p ointer stared in F202Ht however if in dO\Jbt storing memorY upto FE50H should
contain all the data required.

\ OJ, (�

UTILS

NgMe AOOR CODE INSTR INSTRUCTIONS COMMENTS

FINO 6010 0200 LI R0 ,)EB0 9 Ed it or Buffer +5
6014 02 0 1 LI R1, >70A0 Storage buffer

601S DC70 MOVB *R0+,*R1+ Store byte

601A 16FE JNE >6018 Ne;>(t byte
60lC 0002 DATA >0002 MID OPCOOE - eMpty line

60lE 06A0 BL @>60AE Start Routine

6022 06A0 BL @)60C8 Decode Routine

6026 0202 LI R2,>EB04 Buffer - decoded 1 i ne
602A 0201 LI R1. >70A0 Storage buffer
602E 0494 �lOVB *R2,*R2 Check end of line

6030 13F8 JEQ)6022 JUMp if at end

6032 9C 91 CB *Rl,*R2+ Match?

6034 16FC JNE > 602E No - try again

6036 0581 INC R1
6038 0451 MOVB *Rl,*Rl Test of Search string

603A 1303 JEQ >6042 End found
603C 9C91 CB *Rl,*R2+ Match?
603E 1 6F5 JNE :>602A Try again for' Match

6040 1 0FA JMP >6035 Next char 1n search 5tring

6042 0002 DATA)0002 Print eMpty line
6044 000A DATA)000A Print BASIC .\ ine
6046 10ED JMP >6022 Next BASIC line

MSAVE 604 8 0203 LI R3,>F204 Start of Storage Space

604C C803 MOV R3,@>F200 Pointer to Start

6050 C803 MOV R3,@>F202 Pointer to End

6054 06A0 BL @>60AE Star t Routine

6 058 06A0 BL @>60C8 Decode Routine

605C 60E0 MOV @>F202 , R3 End Pointer in R3
506 0 0201 LI Rl,>EB04 Buffer - decoded line

5064 OCF1 MOVB *R1+, *R3+ Put character into store

6066 16FE J NE >6064 Next character

6068 0002 DATA >0002 MID - print eMpty 1 i ne

6 06A 000A DATA >000A MID - print BAS IC line
60BC C803 MOV R3,@)F202 Update 'pointer
6'170 028 3 CI R3,>FE00 Check Storage Space

6074 11F1 JLT >6058 or:
6076 0002 DATA >0002 Print eMpty line
6078 0FAIZl MSG @>60EA BUFFER FULL MESSAGE

EXIT 607C 101002 DATA)0002 Print eMpty line

607E 0460 B @)02 1 C Back to BASIC

MLOAD 6082 0201 LI Rl,>EB04 Editor buffer

6086 C0E0 MOV @>F200,R3 Start pOinter in R3
608A DC?3 MOVB *R3+,*Rl+ Move char to �:B buffer

608C 16FE JNE >608A Next character

608 E C803 MOV R3,@)F200 Update pointer

6092 06A0 BL @>3404 Enter BASIC line

6096 0002 DATA)0002 Print eMpty line

6098 0FA0 MSG @>EB04 Display BASIC 1 i ne

609C 8 8 20 C @)F200,@>F202 End of Stored Data?

60A2 liEF JLT >6082 No - Get Next Line

60M -0201 LI R 1 , >F 2 04 Reset S,tart painter

l " ·l�

60A8 C801 MOV

60AC 1 0E7 JMP

START 60AE

60B0

60B2

60B6

60B8

60BC

60BE

60C2

60C4

60C6

DECODE 60C8

60CC

6000

6002

6004

6006

6008

60DC

.60E0

6 0E4

60E6

MESSAGE 60E8

� 60EA

60EC

60EE

60F0

60F2

60F4

60F6

60F8

60FA

60FC

60FE

NAMES 6100

6102

6104

SADDRESS 6106

6108

610A

SETUP

EXIT2

610C

6110

6 114
6118

6 11C

611E

6 120

6124

612 6

612 A

04C1 CLR

0706 SETa

C220 MOV
0648 DECT

8808 C
120F JLE

0228 AI

8601 C

15F9 JGT

045B RT

C808 MOV

8808 C

l ADS JL
C078 MOV

8181 C
1B02 JH
06A0 BL

0228 AI

C2E0 MOV

0458 RT
1000 Nap

605C

2 A2A

2045

6E64

2 06F

662 0

4275

6666

6572

202A

2A20

0000

724C

0CDA

7B1A

6010

6048

6082

DATA

DATA

DATA

DATA

DATA

DATA

DATA
DATA­

DATA

DATA

DATA

DATA

DATA

DATA

DATA
DATA

DATA

DATA

0201 LI
0202 LI

0203 LI

0204 LI

CC73 MOV

CC84 MOV

0281 CI

lAF8 JL

0460 B

1000 Nap

R 1,@>F200
>607C

R1

R6

@>EFBC,R8

R8

R8,@)EFBA

>607C

R8,>FFFC

R1, *R8

>6088

R11 ,@>60E8

R8,@>EF8A

>607C

*R8+,R1
Rl,R6
)607C

@>3C80

R8,>FFFA

@60E8,R11

)605C

>2A2A

>2045
>6E64

>206F

>6620

>4275
>6666

>6S72
> 202A

>2A20

>0000

>724C
>0CDA

)7BIA

)6010

>6048

)6082

R1, >3A20
R2,>3ACC

R3,>6100

R4,>6106

*R3+,*Rl+

*R4+,*R2+

Rl,>3A28

)611C

@)021C

SAVING ----) ----) -----) 0 IDT="UTILS"

Exit

Rl Holds 1st Line No

Start of Variable Table

End of Line No Table

Start of Line No Table

Exit

R8';R8-4

COMpare table to start line

Repeat until Line No found
Return

Store Return Vector

Check end of table
If YES t hen Ex i t
Get O ffset in BASIC Table
ls i t Va 1 i d
No then Exit
Deriode BASIC to ASCII
R8=R8-6

Get Return Vector

Return

End of Buffer

Message

NaMe 'FIND'

NaMe ' MSAVE ' -
NaMe 'MLOAD'

St. address FIND

St. address MLOAD

St. address MSAVE

Entry adress for Autorun
IS 610CH

Patch NaMes into Table

Paich addr. into Table

All done ?

No - Next

Back to BASIC

6010,612B,610C AutoruncY

C o r t e x U s e r G r o u p S a l e I t e m s

H a r d w a re

R . G . B . int e r f a ce P . C . B
C e n t r o n i c s P . C . B
E . Bus 5 1 2 K D R A M P . C . S p l a t e d t h r o u g h h o l e
E xt e r n e l V i d e o i n t e r f a c e P . C . S
D i s k c o n t r o l l e r W D 2 7 9 7 + P . C . B C o r t e x I
D i s k c o n t r o l l e r W D 2 7 9 7 + P . C . B C o r t e x I I
E . B u s i n t e r f a c e c o m p l e t e K i t
E . B u s 8 X 8 K E P R O M s o c k e t c a r d b u i l t b u t n o E P R O M S
E . B u s 4 K R A M 8 K E P R O M s o c k e t 1 6 I / O l i n e s e x e q u i p m e n t

T M S 9 9 0 2 U A R T I C � s
7 4 L S 6 1 2 M a p p e r I C ' s
7 4 L S 6 1 1 o r 7 4 L S 6 1 3 M a p p e r I C ' s (r e q p u l l u p R ' s)

O t h e r I C ' s i n s t o c k p l e a s e w r i t e i n f o r q u o t e

S o f t w a r e a l l d i s k f o r m a t s p l e a s e s p e c i f y w h e n o r d e r i n g

C D O S b a s i c d i s k s y s t e m 1 . 2 0 f o r T M S 9 9 0 9
C D O S b a s i c d i s k s y s t e m 2 . 0 0 f o r W D 2 7 9 7
W o r t e x w o r d p r o c e s s o r + s p e l l i n g c h e c k b y J . M a k e n z i e
D r a w t e c h g r a p h i c s d r a w i n g p a c k a g e b y T i m G r a y
M e n u e g e n e r a t o r b y A . R . C . B a d c o c k
T w o p a s s a s s e m b l e r b y R . M . L e e
T w o p a s s a s e m b l e r b y C . J . Y o u n g
C d o s u t i l i t e s d i s k - c o p y c h a r g e o n l y

C d o s p r o g r a m e s a n d g a m e s a l l £ 2 . 5 0 e a c h : -

£ 8 . 0 0
£ 7 . 0 0

£ 4 0 . 0 0
£ 1 5 . 0 0
£ 5 5 . 0 0
£ 6 0 . 0 0
£ 3 0 . 0 0
£ 3 0 . 0 0
£ 1 5 . 0 0

£ 2 . 0 0
£ 2 5 . 0 0
£ 1 0 . 0 0

£ 4 5 . 0 0
£ 4 5 . 0 0
£ 1 5 . 0 0
£ 2 0 . 0 0
£ 1 0 . 0 0
£ 1 4 . 0 0
£ 1 5 . 0 0

£ 2 . 0 0

A R C H I E A S T E R O I D B R E A K O U T B U R G L A R C A T E R P I L C - P E D E
C A N Y O N C O T E L L O F I R E B I R D F R O G G E R G D E S I G N G O L F
H U N C H B A C K I N V A D E R S M A Z E M A Z E - 3 D �l B A S E M I C R O P E D
M I S - C O r-, ['1 U N C H E R N I B B L E R S N - A T T A C K O L Y M P I C S P . B O A T
P E N G O P ON TO ON R E S C U E S - A T T A C K S P A C E - B U T H E - Z O O
T R A G V A D E R S IrJ A L L X / O

M D E X S o f t w a r e a l l f o r� a t s p l e a s e s p e c i f y

M D E X C O R E w i t h d e b u g m o n i t o r t e x t e d i t o r a n d b a s i c
M D E X A S M & L I N K a s s e m b l e r a n d l i n k e r

£ 1 0 . 0 0
£ 1 0 . 0 0
£ 1 0 . 0 0
£ 1 0 . 0 0
£ 3 U . 0 0
£ 1 0 . 0 0
£ l U . O O
£ 1 5 . 0 0
£ 1 0 . 0 0
£ 1 5 . 0 0
£ 1 0 . 0 0

M D E X S Y S G E N sy s t e m g e n e r a t i o n k i t
M D E X W O R D w o r d p r o c e s s o r
M D E X P . D . S . a l l t h e a � o v e i n o n e p a c k a g e
M D E X S . P . L . s y s t e m p r o g r a m m i n g l a n g u a g e
M D E X M E T A c o m p i l e r g e n e r a t o r
M D E X Q B A S I C b a s i c c o m p i l e r
M D E X P A S C A L s e q u e n t i a l p a s c a l
M D E X W I N D O W f u l l s c r e e n e d i t o r
M D E X SP E L L s p e l l i n g c h e c k e r
MDE X u t i l i t i e s copy c h a r g e o n l y

1 4 ' 1 f,

£ 2 . 0 0

'- ' J

