CORTEX USERS GROUP
93, Long Knowle Lane, Wednesfield, Wolverhampton, West Midlands, WV 11 UG
Tel No: T Gray 0902 729078, E. Serwa (0902 732659

19

CORTEX USER GROUP NEWSLETTER (OCT 1988)

Issue Number 19

CONTENTS

1 Index

2 Editorial

3. Adding the Maplin 9938 VDP card.

4. MDEX utilities Mapper setup/screen colours
7 Inside Cortex Basic.

2 Merging basic programmes.

6 Adverts

0"

Editorial

We have had a few complaints that the newsletter is very late
this time. It must be remembered that this is a users newsletter
and as such is reliant on articles sent in by users. If we don’t
get anything sent in we can’t print it. We usually suffer from a
lack of enthusiasm during the summer months but have been
holding this newsletter back in case anything came through. This
issue will wse up all the information. in our file so if you have
any programmes or other interesting articles to send please get
them into us so thet we can produce the next issue without to
much delay.

The 9938 VDP

The most interesting thing on the Cortex scene at the moment is
the possibillity of adding a new updated graphics chip. The
Yamahar 9938 is directly upwardly compatible with the 9929 as
fitted in the Cortex so it is possible to fit it inside and
retain all the existing fetures as well as adding more.

Maplin sell a kit that includes a 9938 VDP and printed circuit
board as part of a framestore project they have. When made up
the PCB can be fitted inside the cortex and wired to a 40 pin
header plug in place of the original VDP. The new maplin PCB
provides outgut as R.G.B. and sync feeds for use with an
analoque R.G.B. monitor.

The new VDP works as a direct replacement for the 9929 so the
cortex will function without any software update. But as well as
the graphics and 40 column text modes you are used to it also
provides other modes of operation including :- '

TEXT MODE 2 80 column text mode

GRAPHICS MODE same as graphics 2 but with sprite mode 2
GRAPHICS MODE pixel mapped 256 X 212 with 16 colours
GRAPHICS MODE pixel mapped 512 X 212 with 4 colours
GRAPHICS MODE pixel mapped 512 X 212 with 16 colours
GRAPHICS MODE pixel mapped 256 X 212 with 256 colours

NNV & W

Al the new éraphics modes can use sprite mode 2 which allows
more sprites and better colour control of them. Plus &ll the
colours in the new VDP are programable via a colour pallette.

Chris Young has written a set of software drivers that allow the
use of all the new graphics modes with the new VDP either fitted
in place of the old one or fitted seperately on the E.bus. .

Ted Serva has written the following guide to fitting the Maplin
board inside the Cortex.

-

a2

DIRECT REPLACEMENT OF TMS9928/29 FOR V9938

*

Hardware required 1 V9938 KIT FROM MAPLIN

—
*

- 64 WAY A&C DIN 41612 CONNECTOR

*

1 40 PIN IC HEADER/IC SCKT
1 * 14 PIN IP HEADER/IC SCKT
RIBBON CABLE - 5"

The following table is the connections required between the TMS59928/29 and

the V9938
40 PIN HEADER/IC SCKT DIN 41612 A&C CONNECTOR
PIN No ‘ PIN No
GRND 12------- d el 32a&ec
MODE AlS 13 -me-mmmmmm e 211
0 e 19¢
CSR 155 mmmm e e e e e e e e 19a
INT 16 -mmmmmmm e e e e e e 23a
LSB DO 17 -= e Bk T 30c
D1 1 g 30a
D2 19= e e 29c
D3 20-- e e 29a
7/ S 28c
DS 22 28a
D6 23— e e e T 27¢c
D7 28-mmmmmm - --27a
RESET 3 mm e e 22221

+SUPPLY ;3 S e lake

(1)Make up a cable with connections as above uéing a 40 pin header
and DIN 41612 connector o

(2)Connect pin 4 and 6 on 14 pin header
(3)Connect pin 8 and 9 on 14 pin header

(4)Replace IC1l on the V9938 board with the header that has Just been made

(5)Replace TMS9928/29 with 40 pin header and’V9938‘board

NOTE The V9938 requires Al4 this is taken from the top track leading to
pin 2 of the TMS9909 sckt and connected to pin 1la on the DIN&41612
connector :

A set of programs to initialise and use all the extra built in
facilaties of the new VDP(V9938) is available on disc.Please state

if the VUDP is used on the E BUS or as a replacement for the TMS59928/29
Disc is priced at TEN POUNDS all inclusive from

C J YOUNG ,107 RINGWOOD ,GREAT HOLLAVNDS ,BRACKNALL ,BERKS

N

1 REM Memory Mapper Setup utility: A.R.C.Badcock @BASIC
{

This utility allows the Memory Mapper
registers to be loaded manually by the

user. Each mapper register holds a

value to which 4kbyte memory block in

the bottom 64k of the memory map will

be vectored. This only occurs after a

CKON opcode switches the mapper on and

ceases after a CKOF opcode switches the

mapper off.

This function allows any 4k page to be
switched -into the lower address area.

This utility has certain safe-guards for

the inexperienced. The user is prevented

from setting the register controlling
00000-00FFF, and the registers from '
OCOO0-0EFFF as there is a danger of fouling-
the operating system. Also the lowest page
that can be vectored is OF000-0FFFF to avoid

a tangle up in lower memory.

However, the experienced programmer can

always get around this in a program if

needs be. This utility provides a direct
method of setting the mapper up when
experimenting.
} .
5 PRINT:PRINT"Memory Mapper Setup Utility v1.0"

PRINT"=z=====z===z=z===z=z=z==z========z=z=z===="

PRINT:PRINT"By A.R.C.Badcock (c) 1988 ":PRINT

MAPLOC% = 0F100 {Mapper base address}
10 errorflag% = 0 {clear error flag}
GOSuB 100 {Input register value}

15 IF errorflag% = 1 THEN 30
20 GOSUB 200 {Input register data }

30 INPUT"More ? ";reply$
IF reply$ = "Y" OR reply$ ="y" THEN 10
PRINT:PRINT"Mapper status":PRINT
PRINT"Register : Mapper value":PRINT

40 FOR OFFSET% = 0 TO 30 STEP 2
MAPREG% = MAPLOC% + OFFSETX
REGVAL% = PEEK(MAPREG%)
PRINT MAPREG%#;" = ";REGVAL%#
NEXT OFFSETS

50 PRINT
PRINT" - Done - "
PRINT
STOP
100 REM - Select Register
INPUT"Which mapper register to set (1 - 11 allowed) ?
" MAPREGY
IF MAPREG% < 1 OR MAPREG% >11 THEN GOSUB 300 {Check valid
register}
IF errorflag% = 1 THEN RETURN

19. 4

OFFSET% MAPREG%: * 2 ' {allow for word increments}
REGVAL% = PEEK(MAPLOC%+O0FFSET%)

PRINT "Current value of register is ";REGVAL%#

RETURN

200 REM Set register value

INPUT"Set mapper register value (15 - 255 allowed)
"sMAPVALUE%
IF MAPVALUE% < 15 ‘
MAPVALUE% = MAPREG% {set default value} :
PRINT "ERROR - value not allowed, default loaded "
"ENDIF
PRINT L
POKE(MAPLOC%+0FFSET%),MAPVALUE% {load value in
register}
—— . RETURN

300 REM Error routine

PRINT"This register not allowed - affects operating system
area."

errorflagk% = 1

RETURN ‘
999 END {End of program}

. MAPPER SWITCH for MDEX by A.R.C.Badcock MDEX ASSEMBLER
. This utiiity switches the mapper on.

IDT "MAP-ON"
COPY "1/3SYS$"

RORG

START CKON .issue mapper on command

JSYS FINISH
FINISH BYTE EXIT$,0
DATA 00000

END START

. MAPPER SWITCH by A.R.C.Badcock MDEX ASSEMBLER
. This utility switches the mapper off.

IDT "MAP-OFF"
COPY "1/JSYS$"

RORG

START CKOF .issue mapper off command

JSYS FINISH N
FINISH BYTE EXIT$,0
DATA 00000

END START
1945

{ COLOUR UTILITY FOR CORTEX SCREEN
Copyright A.R.C.BADCOCK @1988 }

This utiiity allows the Cortex screen
colours - foreground & background -
to be set by the ‘user.

5 PRINT
PRINT"CORTEX Screen colour setup utility v1.0"
PRINT"==z================z=z=z=z===z=z=z=====z=z=z=z====z"
PRINT '
PRINT"By A.R.C.Badcock - (c) 1988"
PRINT

10 PRINT:PRINT"SET SCREEN COLOURS"
PRINT ‘
INPUT"FOREGROUND ";FG%
INPUT"BACKGROUND $sBG% , :
COLOURCODEY% = FG% *16+BG” {Calculate code value to write to
VDP}

REGIDENTY% = 087 {Code to actuate colour load in
VDP}

POKE(OF121),COLOURCODE% {Write colours to VDP command
register} ‘ : .

POKE(OF121), REGIDENTm {Write actuate code to VDP

command reglster}
PRINT:PRINT"OK" :PRINT:PRINT
STOP :
END {of program}

\ -6

INSIDE CORTEX BASIC

This article is intended to show how BASIC programmes are stored in the CORTEX memory
with descriptions of the various tables that are employed. The article will not cover
programming in BASIC but will try to describe HOW the BASIC works. Some users who
obviously have an in depth knowledge of the subject, judging from past newsletters will

have to bear with me. However I hope the articles will be of use to the user group. I have -
been investigating the BASIC in order to find a method of getting rid of so called Phantom °

Variables. The aim of these articles is to combine my findings with ideas that have been
presented in previous programmes and articles in the newsletters, I will try not to waste
too much space by repeating articles already published in the newsletters but will refer to
some from time to time.

I will include some programmes to demonstrate the items covered and to enable people to

have a look for themselves. The first programmes will be shaort and in BASIC to allow
people to get the feel of what to look for before using the monitor and machine code
routines,

The subjects I intend to cover aret

1. Introduction - Direct & Programme Modes.
2, Basic Pointers and how to find the tables.
2. Keywords Functions and Tokens.

4, Varables, Data, Numbers & Strings,

S« Summing Up

1. Introduction,

So! We have all written programmes in BASIC, but how much thought has been given as to
what is happening, You type in your programme, edit the lines until it works and then run
it, Type LIST and you can see your programme, Simple isn’t it7

Actually the text you type and list is not what actually runs or what is stored in the
computer’s memory. In fact there is always a programme running even when the computer is
apparently idle. Even when users machine codes are not running, the Operating System is
keeping things going, displaying screens to your TV/Monitor scanning the keyboard
waiting for you to type etc, When the RETURN key is pressed the operating system
branches to the EDITOR to process the data you have typed in,

If the data starts with a line number and the.syntax is correct then the line 1s encoded
and the BASIC tables are updated accordingly. No execution of commands is carried out
{except for a few exceptions I shall mention later)s If ther is NO line number and the
syntax is correct then the editor branches to the routines to perform the commands that
have been typed. I refer to this mode of operation as Direct Mode. The branches to the
routines and encoding of BASIC use the tables shown in Newsletter & pages 11&12,

When RUN is typed the editor passes control to another routine the INTERPETER. This
progamme scans through the basic tables and uses the tokens to execute the BASIC
commands! Although the Interpreter and Editor both access the same routines (eg 'PRINT’
does the same thing whether typed directly or within a programme), the way in which these
routines are invoked are different, More will be said of this in section
3(Keywords,functions and tokens.), The action of the interpreter upon the tables is what I
refer to as Programme Mode.

When LIST is typed, control is passed to a machine code routine which decades the data

stored in the BASIC tables back into lines of text which are then displayed. The EDIT key
uses the same routine as LIST to decode a BASIC line and then passes contral to the

19-7

Editor. The Editor and LIST both use a buffer located at EBO4H to hgld the text data. The
monitor does not use this buffer. If you type MON and then examine memory starting at
EB04 you will see the Ascii Codes for M O N terminated by a zero byte, This buffer is
immediately above the variable storage memary.

As always there are exceptions to the rule. Remember what I said about the editor
detecting line numbers, well try this!

Type ‘NEW' to clear the current programme
Enter the line

10 SIZE

Interesting 7
Now type LIST, Nothing there! More about this in section 3!

2. Basic Pointers and Tables.

A BASIC programme in the Cortex is held in four tables, The first three of these are

stored to tape or disk when the SAVE command is used. Because BASIC programmes can
vary widely in size and in the numbers of variables used a system of pointers is used
which hold the starting locations of each table, This system of using pointers is prefered
to a fixed area of memory for each table for the following reasons.

1. Memory use is more flexible, allowing space not taken up by programme lines to be used
by variable tables and vice-versa,
Z, With a fixed adressing method a short programme would take up as much memory as a

long programme. The pointer system leaves memory available for use by machine code .-

routines., Also only the area used by a BASIC programme needs to be stored and can be
stored as a consecutive block of memory, leading to short LOADING times for smaller
programmes,

3/A Disadvantage is that the table contents have to be moved when new lines are typed in
or old ones deleted. .
However, the advantages of 1 & 2 far outway the disadvantage of 3!

The four BASIC tables are as follows:i-

1, Encoded form of the BASIC, each entry being one basic line.

2, Line number table, containg line numbers and offsets to table 1,

3. Variable Name Table,. containing encoded forms of the variable names used in the
programme.

4, Variable address table, containing the addresses of assigned variables,

The pointers to the tables are at the following locations, shown in hex.format.
ED04 - Start of the Basic Code table.

EFBA - Start of the Line No, table,

EFBC - Start of the Variable Name table.

EFBE - Start of the Variable Address table.

EFCO - Start of available memory above BASIC,

The NEW command if used with a parameter alters the address held at ED0O4 (and also at
EDO&). A value of 14H is added to the parameter so NEW &000H puts the start of the Code
table at 4014H,

From now on I will use the @ symbol to mean the word held at an address.
eg the address REFBA is the start address of the Line Table.
This nomenclature is similar to that used by assembly language. .

THE BASIC CODE TABLE - (QEDO4 to QEFBA -Z
Each byte in this table is a token for either a keyword, variable, function, delimiter,

\a-¥

|
I
|
|
|
!
l
|
I
|
I
|
I
I

vad cove et csr soee wes e S room vt e e SaMl PSS B4 S wate Se PSS e AMes PR Sem ceos YA s Sree Fire sem tem e Moee s brm Mows Smt Sere feea 0ech 4oy i amce femm Semt mbe pom

v

operator or part of a number or string, Basic lines are stored in sequence WITHOUT being
preceded by a line number and each line is terminated by a zero byte. Tokens are
effectively pointers to start addresses of commands, functions and variable tables,
meaning that BASIC lines can be interpreted very quickly, Each entry is of vanable length
depending on the length of the original basic line.

THE LINE NUMBER TABLE - (EFBA to QEFBC -

This Table contains line numbers in REVERSE ORDER at every second word.The word
following a line number is the offset to the start of that line in the CODE TABLE. ie code
for a line will start at GED04 + QFFSET, The table is used to locate the code when GOTO
and GOSUB statements are encountered. The table is also used when decadmg lines for
listing or editing.

THE VARIABLE NAME TABLE - QEFBC to @QEFBE -2

Contains encoded names of the variables. It is used in decoding lines for display and
editing. It is also used to examine or alter the value of a variable when a programme is
halted, The first three words of this table are empty and the fourth contains 11D2 which is
the encoded name for RND which is treated like a variable that can be read from but not
written to!

THE VARIABLE ADDRESS TABLE - (@EFBE to @QEFCO -2

Once a variable has been assigned either from the keyboard or from within a programme it
is given an address which is put into this table, The position in this table is equivalent to
the position of its name in the previous table, The first four words of this table are zero
(RND-does not use an address held in this table). Unassigned variables also have a zero
entry. Dimensioned variables only have the address for index (0) stored in the table,
higher index addresses being calculated by the operating systems

The variable addresses are themselves pointers to the data stored in a varable, Variables
are created as they are defined and progressively move DOWNWARDS through memary. The
variables occupy memory upto but not including location EBO4. The lower limit set for
variable storage is the location GEFCO. The start address of the last variable assigned is
stored in the pointer EFC2,

In the next article I shall look at how commands, variables and data are stored in the
Code Table and how the variable names are encoded: I will show how tables are updated
and accessed in both Direct and Pragramme modes.

To round off I have presented some Basic programmes for users to experiment with.

Tans Tt et Lass s Same emm vees e eee et Srm ebe 40w G0mw Se-e IS AV Tere Sesk e 3E ama boe sota 4w S0ms svah Abee SAbn bess vt Mar saee s Sewe seme aren Sven marm seme 4ete semw sems Soem soon l

|

“Pointer - @FPointer DESCRIFTION |

[

0000 Bovs mm sain sime wms bout seos semm sene sase Suve bem Sers Geab Sawd SO FOMD ESN0 GAPS Mt 0108 BOm G0E 800 Sves Soem mir vew bese emt om obed sem Same baet et edt S0t seim ems boom Syem seem Somn came I

|

EDO0A4 7114 Start of Basic |

EFEA 7418 Start of Line Table |
EFRC 744664 Start of Var., Names | :
EFRE 7486 Start of Var, Addresses | !
EFCO 7442 Memory fAbove Rasic, | ‘

EFC2 EADC Last Variable Address, |

|

|

19-9

SEE FOR YOURSELF :

The following listings will allow you to look at the contents of the BASIC CODE TABLE.
Essentially they are BASIC programmes which look at themselves! Please use the same .
line numbering as I have, the reason will become obvious soon. ‘

The first programme ‘LIST!1’ shows the encoded basic in the form of single bytes. This
sort of programme is useful to look for tokens of keywords and variables.

The second programme ‘LISTZ’ shows the CODE TABLE as Ascii characters, This form is
useful for looking at strings and REM statements,

The above two codes show the lines listed. It would be more useful tg show only code upto
line 9000, This will enable users to add lines below 7000 and show the encoded Basic
without having to show the routine which displays the data, To understand how to do this
it would be useful to look at the Line Number Table. The third programme LINES shows
"~ how Line Numbers are stored in the table., Note that the lines are stored in reverse order.,

With the knowledge of how to access line numbers it is possible to modify LIST1 or LISTZ.
The final programme LIST3 will only display encoded Basic upto line Y000, The programme
looks for the value 9000 in the line number table so now it is obvious why I wished the
same line numbering to be used. It is also possible to modify LISTZ in the same way.

I have not included outputs from the programmes as it is more useful to let poeple run the
programmes themselves, The programmes are very shart and do not invelve much typing!

R W= e

2000 REM CODE TO SHOW BASIC ENCODING »

9020 F1=MWDLOEDO4HI: P2=MWDLOEFEAHI-2Z ' START & FINISH OF EASIC STORAGE
9030 7 "<CHS8TART OF EBASIC "j£,F1: ? " END OF EASIC "}£,F2

9500 REM *xx OUTFUT RESULTS xxx

9510 FOR I=F1 TO F2: Z=MEMLI] .
9540 P £373" 3 - G
9550 NEXT I :

L S W=

Q000 REM CODE TO SHOW EASTIC ENCODING

020 PFLl=MRDOOEDOAHITS F2=MWDLCOEFEAHL-Z ! START & FINISH OF BASIC STORAGE

2030 P "SCXSTART OF EASIC “j£,P1: 2 " END OF BASIC "iE£,FZ

2300 REM %% QUTFUT RESULTS XxX

9510 FOR I=F1 TO F2%¢ Z=MEMLI]

@520 C=" "o TF 7 LAND 12837 $C="_"

Q530 X=7Z L.AND 127 IF X432 X=44 'Nom Frintable Characters Show wp as a8 Dot
9534 GCa=$C+AX

4 ? %Cs

2HH0 NEXT I

1a- (0

1

Joo IS

100
900

910

1000
1010
1020
1030
3000

P MCELINE NUMBER TAELE DISFLAY™: 2 ¢

"LINE NUMEER OFFSET (HEX) (DECIMAL) "

 JL L PO RN e e e 2 w1 e o v e rem JUR S I S

ST=MWDLOEFEAHI?! FI=MWDLOEFECHI1-Z

4+

FOR I=8T TO FI STEF 4

©? MWDETId,,£,MWDCI+2], ,MWDEI+2]

NEXT I ,
REM THIS LINE NUMEER IS THE FIRST DISFLAYED

LD

2000
2020
9030
2040
Q050
9060
9070
9080
2090
2100
2500
9510
9540

9550

REM CODE TO SHOW EASIC ENCODING
F1=MWDLOEDOAHT! F2=MWDLOEFBAHI~Z2 ' START & FINISH OF BASIC
P UECESTART OF BASIC “3£,F13 7 " END OF BASIC "3£,P2
LNQ=2000% F3=MWDLOEFECHI-Z
FOR I=F3 TO F2+2 STEF -4
IF MWDLIZ=LNO: GOTO 9100
NEXT T .
? UNO LINE 2000 IN THIS PROGRAMME!'"
END ‘
F2=F1+MWDCI+2]1-2 ! RESETS F2 TO END OF LINE BEFORE 2000
REM xxx OUTFUT RESULTS %xxx
FOR T=F1 TO F2{ Z=MEMLCII]
r? i\;z;n n; !
NEXT X

(q- U

e b e S e et e 4D

STORAGE

MSAVE & MILOAD COMMANDS

Have you ever wanted to merge programmes or get rid of ‘phantom variables’ (See Newsletter 10}
without having to Source List programmes to tape? I have written two commands MSAVE and
MLOAD which save source listings in high memory. ‘

In case anyone does not know what is meant by a source listing, it is a way of storing a
programme as character data in the form of ASCII codes, Normally a programme is stored to disk
or tape as a memory dump of the highly encoded BASIC and line number and variable tables. The
advantage of a source saving is that on retreival any BASIC programme in memory is NOT wiped
out hence allowing merging of routines. Also no variable attributes are stored. Retreiving a
source listing is like ‘retyping’ in all the lines only much faster and with less effort: The
disadvantage with source listings is that much more memory or tapesdisk storage is taken up.

Proqramme Description

The machine code programme UTILS (short for utilities) consists of routines for three commands
FIND,MSAVE,MLOAD, The MSAVE command uses the same type of routines as the FIND command
in newsletter 3 which I have modified slightly to save on memory when combined with MSAVEg The
enclosed listing with added comments shows how the routines work. The choice of buffer locations
is entirely up to the user, I tend to use 70A0H as a general buffer for CAT,FIND,Return vector
storage etc, The buffer for MSAVE should be large in order to store sensible sized chunks of
BASIC source lines, which is why I chose F2Z00H to FEOOH (the last BASIC line stored will exceed
this value). The only reason I have not extended the buffer to FFxx is that I have a problem with
random numbers occuring in locations FEFA to FEFE. Has anyone any ideas about this? Users who
have an EBUS extended memory which I do not, will obviously be able to use quite large storage
buffers! -

The commands are patched into the Command tables at 3A20,3A22 and 3AZ4H. The commands
cannot be used from within a BASIC programme but only in direct mode. Only the first 2
characters of the commands need to be typed eg MSA will dump the current BASIC programme to
memory. This section of the programm intrudes into the beginning of CDOS. This does not provide
any problems as this part of CDOS appears only to be used once at BOOT time!

The first two wards in the storage buffer are used as pointers which MSAVE & MLOAD use when
transfering data between the store and the BASIC environment,

There are branches to two operating sytem routines. The routine at 3CS0H is the routine that
converts a programme line to ASCII format for display, used by LIST and the line editor. The
routine at 3404H converts lines in ASCII format into a programme line, whilst performing syntax
checks, This routine is used by ENTER and the line editor.

It will be noticed that there are two ways to display basic lines. One is using the MID CODE
0002, the other is by using MSG @>EB04, The MID CODE looks for a line number at the start of
the buffer at EBO4 and if found the appropriate BASIC line printed. The MSG simply prints the
whole contents of the buffer at EB04. The latter is used in the MLOAD programme as the line in
the*BASIC table may not exist or be different to that being recalled from high memory. For
* example if MLOADIing a programme after a NEW command has been used, then the MID would only
display line numbers whereas the MSG will display the full line being retrieved.

~

9. 12

USING THE COMMANDS

The FIND is used exactly the same as that in newsletter III.
egs FIND textstring
The space is impartant and the word FIND must be at the beginning of a line.

MSAVE and MLOAD use no parameters and can be typed anywhere on a line:s The two uses are
MERGING codes or SOURCE LOADING to get rid of phantom variables, -

MERGING, MSAVE the routine to be merged. If this is part of another code then delete unwanted
lines and renumber as appropriate. An ## END OF BUFFER WARNING ## is given if the code is
larger than the buffer. In this case use the Monitor to dump the buffer to disk as a non
executable m/c programme. Delete the programme lines that have been saved and repeat the
process. The last MSAVE does not need to be transfered to disk! Load the main programme as
normal. Use MLOAD to merge the new code, MLOAD will replace existing-line numbers - be
careful with your numbering. If the buffer is stored on disk LOAD ‘filename’ - You do not need to
use the monitor and then MLOAD, The code required will now be merged.

DELETING PHANTOM VARIABLES, Firstly MSAVE the basic programme. Most programmes will
have to be done in several stages saving the buffer to disk using the monitor, When all the code
has been saved type NEW. MLOAD the code back into BASIC, retreiving files from disk if
necessary, On completion you will have a copy of the original code but with vacant variable space.

MSAVE will display the basic lines as they are stored. If the end of buffer is reached the last
line stored will be that above the error message: MLOAD displays the basic lines as they are
retreived. ‘

. * ' |
To save the buffered ascii code onto disk use the monitor D command starting at F2Z00H, The data

finishes at the pointer stored in FZ0ZH, however if in doubt storing memoyy upto FEZO0H should
contain all the data required,

1. (3

_ Name

ADDR

FIND

MSAVE

EXIT

MLOAD

6010
6014
6018
601A
601C
6O1E
6022
6026
602A
602E
6030
6032
6034

- 6036

6038
603A

603C

B0O3E

6040

6042
6044
6046

6048
604C
6350
6054
6058
505C
6069
6064
6066
6068
606A
60EC
6070
6074
6076
6078

607C
6O7E

6082
6086
608A
608C
608E
6032
6036
65038
609C
60A2

CODE

0200
0201
DC70
16FE
0002
06A0
06A0
0202
0201
0494
13F8
9C9l
16FC
0581
D451

1303

9C31

16F5
10FA

0002

000A
10ED

0203
Cc803
Cc803
@6A0
06A0
60EQ
0201
DCF1
16FE
0002
Q00A
C803
0283
11F1
0002
QFAQD

0002
0460

0201
COEQ
DC73
16FE
€803
06A0
0002
OFAQ
8820
L1EF

60A4 0201

UTILS

la-lk

INSTR INSTRUCTIONS COMMENTS

LI R@, >EB@S Editor Buffer +5

LI R1,>70A0 Storage buffer

MovB *RO+,*R1+ Store byte

JNE >6018 Next byte

DATA >0002 MID OPCODE - empty line
BL 0>60AE Start Routine :
BL @>60C8 Decode Routine

LI R2,>EB0O4 Buffer - decoded line
LI R1,>70A0 Storage buffer

MOUB #R2,*R2 Check end of line

JEQ »>6022 Jump if at end

CB *R1,*R2+ match?

JNE >602E No - try again

INC R1

MOVB *R1,*R1 Test of Search string
JEQ 260472 End found

CB *R1,*R2+ match?

JNE 2B02A Try again for match
JMP 260356 Next char in search string
DATA >0002 Print empty line

DATA >000A Print BASIC line

JMP 6022 Next BASIC line

LI RZ,>F204 Start of Storage Space
MOV R3,0>F200 Pointer to Start

MOV R3,8>F202 Pointer to End

BL B>60AE Start Routine

BL - @>60C8 Decode Routine

MOV ®>F202,R3 End Pointer in R3

LI R1,>EBO4 Buffer - decoded line
MOUB *R1+,*R3+ Put character into store
JINE >6064 Next character

DATA >0002 MID ~ print empty line
DATA >0004A . MID - print BASIC line
MOV R3,8>F202 Update pointer

CI R3,>FEQQ Check Storage Space
JLT >6058 OK

DATA >0002 Print empty line

MSG @>B0OEA BUFFER FULL MESSAGE
DATA >0002 Print empty line

B 8>021C Back to BASIC

LI R1,>EBQ4 Editor buffer

MOV B>F200,R3 Start pointer in R3
MOVB *R3+,*R1+ Move char to KB buffer
JNE >608A Next character

MOV R3,0>F200 Update pointer

BL @>3404 Enter BASIC line

DATA >0002 Print empty line

MSG ®>EBO4 Display BASIC line

C @>F200,8>F202 End of Stored Data?
JLT >6082 No - Get Next Line

LI R1,>F204 Reset Qtart pointer

START

DECODE

MESSAGE

60A8
60AC

60AE
6080
6082
60B6
6088
60BC
60BE
60C2
60C4
60C6

60C8
60CC
6000
60D2
6004
60D6
6008
60DC

BOEQ

60E4
BOEG

60E8

 p60EA

NAMES

SADDRESS

SETUP

EXITZ2

SAVING

60EC
60EE
60F0
B6OF2
60F4
B6OF6
60F8
6OFA
6OFC
60OFE

6100
6102
6104
6106
6108
610A

610C
6110
6114
6118
611C
611E
6120
6124
6126
612A

>

801
10E7

@4C1
@706
Cc220
0648
8808
12DF
0228
8601
15F9
0458

Cc808
8808
1ADS
Co78
8181
1BD2
06A0
0228
C2E0Q
0458B
1000

605C
2A2A
2045
6EG4
206F
6620
4275
6666
6572
202A
2A20
0000

724C
@CDA
7B1A
6010
6048
6082

0201
0202
0203
0204
CC73
CCB4
0281
1AFB
0460
1000

MOV
JMP

CLR
SETO
MOV
DECT

JLE
Al

J6T
RT

MOV

JL
MOV

JH
BL
Al
MOV
RT
NOP

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA-
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA

LI
LI
LI
LI
MOV
MOV
CI
JL

NOP

R1,@>F200
>607C

R1
RE
@>EFBC,R8

- R8

R8,@>EFBA
>607C
R8,>FFFC
R1,*R8
>60B8

R11,0>60E8

R8,@>EFBA
>607C
*R8+,R1
R1,RE
>607C
©>3C80
R8,>FFFA
@60E8,R11

>605C
>2A2A
>2045
>BEG4
>206F
>6620

- 24275

>6666
>6572
>202A
>2A20
>0000

»724C
>@CDA
>7B1A
>6010
>6048
>6082

RL,>3A20
R2,>3ACC
R3,>6100
R4,>6106
*R3+, *R1+
*R4+, *R2+
RL,>3A28
>611C
@5021C

> D IDT="UTILS"

la-1s

" " u

Exit
Rl Holds 1st Line No

Start of Variable Table

End of Line No Table

Start of Line No Table

Exit

R8=R8-4 7
Compare table to start line
Repeat until Line No found
Return

Store Return VYector

Check end of table

If YES then Exit

Get Offset in BASIC Table
Is it Valid

No then Exit :
Decode BASIC ta ASCII
R8=R8-6

Get Return Vector

Return

End of Buffer
Message '

Name 'FIND’
Name 'MSAVE'
Name *MLOAD’
St. address FIND
St. address MLOAD
St. address MSAVE

Entry adress for Autorun
IS 610CH

Patch Names into Table
Patch addr. into Table
All done ?

No - Next

Back to BASIC

6010,612B,610C Autorun=Y

Cortex User Group Sale Items
Hardware

R.G.B.
Centronics
E.Bus 512K DRAM
Externel Video interface P.C.B
Disk controller WD2797 + P.C.B
Disk controller WD2797 + P.C.B
E.Bus interface complete Kit

interface P.C.B
P.C.B

E.Bus 8 X 8K EPROM socket card built but no EPROMS

Cortex 1
Cortex I

P.C.B plated through hole

I

£8.00

£7.00
£40.00
£15.00
£55.00
£60.00
£30.00
£30.00

E.Bus 4K RAM BK EPROM socket 16 I/0 lines ex equipment £15.00

TMS9902 UART IC's £2.00
74LS612 Mapper IC’s £25.00
74LS611 or 74LS613 Mapper IC's (req pull up R’s) £10.00
Other IC"s in stock please write in for quote

Software all disk formats please specify when ordering

CDOS basic disk system 1.20 for TMS9909 £45.00
CDOS basic disk system 2.00 for WD2797 £45.00
Wortex word processor + spelling check by J.Makenzie £15.00
Orawtech graphics drawing package by Tim Gray £20.00
Menue generator by A.R.C.Badcock £10.00
Two pass assembler by R.M.Lee £14.00
Two pass asembler by C.J.Young £15.00
Cdos utilites disk - copy charge only £2.00
Cdos programes and games all £2.50 each :-

ARCHIE ASTEROID BREAKOUT BURGLAR CATERPIL C-PEDE
CANYON COTELLO FIREBIRD FROGGER GDESIGN GOLF
HUNCHBACK INVADERS MAZE MAZE-3D MBASE MICROPED
MIS-COM MUNCHER NIBBLERS N-ATTACK OLYMPICS P.BOAT
PENGO PONTOON RESCUE S-ATTACK SPACt-BU THE-Zz00
TRAG VADERS WALL X/0

MDEX Software all formats please specify

MDEX CORE with debug monitor text editor and basic £10.00
MDEX ASM & LINK assembler and linker £10.00
MDEX SYSGEN system generation kit £10.00
MDEX WORD word processor ‘ £10.00
MDEX P.D.S. all the above in one package £30.00
MDEX S.P.L. system programming language £10.00
MDEX META compiler generator £10.00
MDEX QBASIC basic compiler £15.00
MDEX PASCAL sequential pascal £10.00
MDEX WINDOW full screen editor £15.00
MDEX SPELL spelling checker . £10.00
MDEX utilities copy charge only £2.00

la-16

