
TGray,l Lark s p u r  Drive,Featherstone,Wolverhampton,West Midland WV10 7TN. 
E Serwa,93 Long Knowle Lane,Wednesfield,Wolverhampton,West Midland WVll lJG. 

Tel No: T Gray 0902 729078, E. Serwa 0902 732659 

CORTEX USER GROUP NEWSLETTER (NOVEMBER 1987) 
--------------------------------------------

Issue Number 14 

CONTENTS 

1. Index 

2. Edi tori al 

3. Programming the V. D. P. 

17. Programme ( 3D Bar graph) 

REMEMBER TO SEND IN YOUR ARTICLES FOR THE NEXT NEWSLETTER 

I 4.. I 



I 

r 

.4r. 

Editorial 

Its not very often that we receive an article so comprehensive 

that it takes up most of the user group newsletter but this one 

written by Mark Rudnicki explains so much about programming the 

V. D. P. in machine code that we thought it best to print it all in 
one issue. The routines used also may help to explain the mystery 

of machine code programming to some of you who have not had much 

experience in this field. Some of the routines are shown as a 
Basic programme first and then in machine code after. This is a 

technique used a lot by ourselves as most of the debugging can be 
done on the basic programme before converting it to machine code. 

Mark as also sent in some games programmes for the newsletter and 

these will be included in the next issue. 

The other article in this issue is a three dimentional bar graph 

programme written by Tim Gray. It generates block bar graphs that 
look solid. 

3D BAR GRAPH 

1980 1981 1 Q L. --I 
_' c· c.. 1 Q 81 '-I -" . .,) 1984 

REMEMBER TO SEND IN YOUR ARTICLES FOR THE NEXT NEWSLETTER 

14--2. 



Manipulating the VDP with Machine Code. Mark Rudnicki. 

1: The Video Display Processor. 

The Cortex boasts a large amount of user memor y since the large 
amount of RAM necessary for the implementation of high resolution 
graphics has been effectively r emoved from the memory map and put 
ont6 the other side of a two byte port. This leads to some advantages 
and some major disadvantages: 

but 
+ Frees 16K ot RAM for programming 

All access to VRAM is � v ia two 8 bit ports, 
pr ogr amming complications. 
Multiple instructions nee ed to alter the VRAM 
lea ding to reduced speed. 

1 

causing 

contents, 

The VDP port lies at )F120 and )FI21. There are four ways of 
accessing the VDP and VRAM: 

MSB LSB Port R or W 
0 1 2 3 4 5,6 7 

Write to VDP register 
I 

I 
Byte 1 Data Do D, � DJ I\. q. [D6 14 )F121 Write 
Byte 2 Reg. select 1 0 0 0 0 R"I�' RfJ )F121 Write 

Read from Status Reg. 
Byte 1 Read data D, D, D1 l>J Dif D. D, � >F121 Read 

Write to VRAM 
Byte 1 Addr ess set up At At. At, At �, At, �1 A II >F121 Wr ite 
Byte 2 o 1 A, A, Al Al � AI )F121 Write 
Byte 3 Data write D" D, D1 D] D� Df" D, 14 >Fl20 Write 

Read from V RAM 
Byte 1 Address set up � A, As A., A.. A" Au. AIJ )F121 Wr ite 
Byte 2 o 0 A., A, Al AJ A-tAr >F121 Wr ite 
Byte 3 Data read 11 Q 11 DJ Df- It D, Dr )F120 Read 

Data. 

In all cases, the data to be written or read is in byte f orm which 
means that a little care is needed when transferring data to or fr om 
the VRAM. To move data from a workspace register, MOVB is used ('Move 
Byte'). This moves the leftmost i.e. most significant, byte of a 
register. Similarly, MOVB @�F120,Rl will read data from the VDP and 
move it to the uppermost byte of Register 1. 

Address. 

This is a 14 bit value to give the full 16384 byte (16K) coverage, 
from �OOOO to >3 FFF. In a register containing a VRAM address, the 
lower byte will hold A,to A�, and the upper byte Aoto A�, like this: 

To read from the V RAM , bits 0 and 1 must be clear, but to wr ite, bit 

J 



1 must be se t. The latte r can be done e ithe r by ORing with >4000 or ; 
by Adding )4000. 

. . . _ _ _ _ _ _ e .g. LI Rl,addre ss 
ORI Rl,>4000 
etc 

LI 
AI 

Rl,addre ss 
Rl,>4000 or 

The 1 6K'VRAM is divide d up this way: 

GRAPH MODE 

)0000 

P 

.. � � Name table . 
BOO 

As Gr aph mode is 
the most use ful for 
game s, the re st of 
ar ticle will 
conce ntrate on 
this. 

>2000 '\ � Sprite attribute 
B80 

tab/Ie . 
1')1 t 

C olour table . I 
)3 800 

I 
S prite patte rn table . 

>4 000 

The Patte rn table , the Colour table and the Name table . 

The patte rn table is 6K long divide d into thre e 2K se gme nts- e ach � 
se gme nt corr e sponds to a block of 256 char acter code s for a block of 
256 scre e n  locations. 

Each 2K block is divide d into 256 8 byte blocks. In this way, e ve r y  
pixe l on the scr e e n  can be contr olle d achie ving the 256*192 
re solution. The Colour table has a similar arr angeme nt with 8 colour 
byte s pe r scre e n  location i.e . one colour code for e ach r ow of an 
e ight row scr e e n  char acter. 

The VDP knows which patte rn to display by che cking the Name table 
which indicate s which patte rn is to be use d for e ach scr e e n  location. 
In the Corte x, the name table is ar range d so that succe ssive name 
table s. He nce , it is se t up with the numbe r s  0 thru' 255 thr e e  time s. 

)DO SctZ£etJ � 
>00 Olrri�eN )1f 

1A6Lf 
.,6D 

!I:I 
NAME 7AA�E � 

1�6�£ 



The conseque nces of this mode of operation are as follows: 

+ Each screen location has a unique pat tern/ c o l our 
combination so that each screen pixel can be individually 

controlled. 

+ This allows for high resolution line graphics to be 
displayed i.e. for graphs etc. 

but - To create a 'character' requires 16 ac cesses to VRAM: 8 
colour bytes and 8 p attern bytes, which is slow. 

A1 ternat�ve use of the VDP. 

The othe� way to use the graphics mode is to make each e ntry in the 

Name table point to a preset character in the Pattern and Colour 

t ab l es , as with TEXT mode . This leads to: 

Lower resoluti on- Screen data must be moved around in 

character siz ed chunks . 

- Individual lines can no longer be dra wn . 

+ Much faster- only a single byte has to be written to VRAM 
to place a character on the screen. 

� SGET, or its equivalent, now takes on some meaning, as in 
text mode, rather than moving 8 meaningless bytes around 
from one place to another. 

These are some pros and cons for both methods, but certainly the 

second is easier to use and faster . 

The Sprite Table. 

This t able is 1 28 bytes long, running from >IBOO to � B 80 , ar r a nged 

with four bytes per sprite : 

MSB 0 1 2 3 4 5 6 7 LSB 
o 
1 
2 

3 

i 
vertical position 

horizontal position 

Name 
ECB10J 0 I Ol colour 

'II! 

� 
.. 

SPRITE 
" 
,Y,Shape,Colour No. ,X 

/' ---J/ / 
The e arly clock bit, if set, shifts the sprite 32 pixels to the left, 

to allow the sprite to ble e d  in from the le ft edge of the display. 

The Sprite P attern table stores 256 8-byte blocks of data which make 
up the ch a r act er s as defined by the 'SHAPE' command. 

Machine code considerations for the TMS 9928/9. 

The CPU reads or writes to the VRAM via a 14 bit auto- inc rementin g 

addr ess re gister- this means that once an initi a l  add ress has been 
set up subsequen t  locations can be accessed without setting up a new 
address every time. The VOP requires 8�s to fetch a VRAM byte 

following a d a ta transfer, so this delay must be taken into 
consideration when programming. This delay can be per f ormed using a 

meaningless MOV *Rl,*RI instruction. 

If long routines which alter the VRAM contents are called from Basic, 

14.-$ 



\ 

then it is wise to preceed them with a LIM I )0000 instructidn (Load 
Interrupt Mask Immediate) to disable the processor interrupts, and toc): 
end with a LIMI )OOOF. This might be needed to prevent the systemUi 
mucking about cwith the VRAM in the course of the user routin'e. Note," 
the LIMI >0000 instruction stops the software clock. 

Using the Cortex Graphics mode. 

Individual points can be accessed using the formula: 

Point= X,Y I 
VRAM byte = 2S6*INT(Y/8)+8*INT(X/8)+M�D(y,8) 

The relevant bit number is M�D(X,8) 
'

O=MS B, 7=LSB 
I 
i 
I 

To see if this bit is set, try the following: 

Rl= read byte (in LSB of register) 
RO= bit number 

LI R2, )0080 
SRL R2,0 
CDC R2,Rl 
JNE bit not set 
bit set. • .  

SRL (Shift Right Logical) takes a shift count from RO if the shift 
count is zero (as above). If RO is zero, then R2 will be shifted 
right sixteen times. Other values give te following effects: 

RO Leas t significant byte of Rl 

o 
1 
2 The bit set in R2 
3 points to the bit to be 
4 tested in Rl 
5 
6 
7 

MSB LSB .=bit set 

CDC R2,Rl (Compare Ones Corresponding), sees whether the bits set in 
R2 are also set in Rl; if so, then the equal flag ST2 is set. The JNE 
(Jump Not Equal) operates if the relevant screen bit was not set. 
Using this, the status of a screen bit can be tested and acted upon. 

Colour of a pixel. 

The colour of a pixel can be found as follows: 

Colour data =)2000 + Screen byte address 

If the pixel is set then the foreground colour should be returned, 
otherwise the background colour should be given. 

Firstly, the screen byte must be calculated: 



RO= X Coord. RI= Y Coord. 

TRUE COLOUR MOV RI,RIO RIO=Y 
ANDI RIO,)FFFS RIO=S*INT(Y/S) 
SLA RIO,5 RIO=32*RIO 
ANDI RI,)0007 RI=MOD[Y,S] 
A RI,RIO RIO=RIO+RI 
MOV RO,R4 R4=X 
ANDI R4,)FFFS R4=S*INT(X/S) 
A R4 ,R'�O RIO=Screen byte address 
ANDI RO,>0007 RfMOD (X'S) 
BL @>READ ADDRESS S t up address to read VRAM 
CLR R5 R =0 
MOVB @)Fl40,R5 M ve screen data into R5 
SWPB R5 I Swap it into the lower byte. 

I 

AI RIO, )2000 Add to access colour table. 
BL @)READ ADDRESS Set up address to read VRAM 
CLR R6 R6=0 
MOVB @>FI20,R6 Move colour data to R6 
SWPB R6 Swag it into lower byte. 
LI R7,>OOSO TeSt bit start. 
SRL R7,0 Shi t RO times right. 
COC R7,R5 Seer if bit set 

B IT NOT SET 

JNE B IT NOT SET No.1 
SRL R6,4 Yest select foreground colour. 
ANDI R6,>000F Isolate colour code. 

rest of program .... 

To set up the VRAM address, the followir).g subroutine is needed. It 
takes the VRAM address held in RIO and sets up t he VDP for a VRAM 
data read. 

READ ADDRESS SWPB RIO Least sig. byte first. 
MOVB RIO,@)Fl21 Movei top byt e. 
MOV RIO,RIO Delaiy 
SWPB RIO 
MOVB RIO,@)FI21 
MOV *RIO,*RlO Delay. 
RT Return from subroutine. 

The BL (Branch and Link) instruction behaves like a GOSUB- its return 
address is stored in Rll, but unlike a Basic GOSUB, it cannot be 
nested. Any attempt to do so will simply overwrite the previous 
return address. If nesting of subroutines is required, then the BLWP 
(Branch and Load Workspace Pointer) command must be used. The operand 
must contain the address of two words- the first will be the start 
address of a new workspace (3i2 bytes), and the second the adress of 
the subroutine. )F020 and )F040 are two convenient locations for 
workspace registers as they are in fast on-chip RAM. 

To set up t he VDP for a data write, the following code is needed: 

WRITE ADDRESS ORI RlO,)4000 
JMP READ ADDRESS 

14·, 

Set bit I 



This sets bit 1 of the address word, which tells the VDP to expect a 
data write. The read subroutine can then be called to transfer the 
address. 

The to routines can be condensed as follows: 

WRITE ADDRESS ORI RI O,>4000 
READ ADDRESS SWPB RI O 

MOVB RI O,@ >F121 
MOV RI O,RI O 
SWPB RI O 
MOVB RI O,@ >F1 21 
MOV *RI O,*RI O 
RT 

The entry point is chosen depending upon whether a VRAM r ead or wr ite 
is r equir ed. 

Returning values to Basic. 

If values need to be returned to Basic, then use must be made of the 
Basic ADR function , which gives the position of the variable in 
memory. 

e. g. for the 'True colour of a pixel' r outine, this can be done as 
follows: 

A=O: CALL "TRUE COLOUR",Addr ess,X,Y,ADR(A) 

Wher e A is any var iable, and X and Y ar e the pixel coords. 

ADR(A) will be stor ed in R2 when the r outine is called. R6 contains 
the true pixel colour, and can be stor ed in the variable wi th the 
addition of this code: 

INCT R2 
INC R2 
MOV R6,*R2 

R2=R2+ 3 
Stor e R6 in var iable. 

R2 has to be incremented three times so that it poin'ts to the cor r ect 
word to be altered (see Cortex instruction manual, page 2-12). 

Setting and resetting pixels. 

pixel operations are necessar y for line and cir cle dr awing r outines, 
and for building up char acter s. Whilst Basic caters for the line 
dr awing, the routine is not accessible fr om machine code yet, until 
mor e information about the Basic is released. 

RO= X Coor d. 
Rl= Y Coord 
R2= Col our 
R3= 0 for set, 1 for r eset 

e.g. CALL "PLOT",Address,X,Y,Colour ,Plot? 

j� 



----------- -------- --- -- --- ------ ----. - -- - ----- - --- - - ��,----------

PLOT MOV R 1 ,R8 
ANDI R8, )FFF8 
SLA R8,5 
ANDI R1, >0007 
A R 1 ,R8 
MOV RO,R4 
ANDI R4,)FFF8 
A R4,R8 
ANDI RO,}0007 
MOV R8,R10 R8=Screen byte address. 
BL @>READ ADDRESS 
INC RO 
MOVB @>Fl20,R5 Read current screen byte. 
SWPB R5 
SLA R5,0 
ANDI R5 ,�FFEF Shift it and reset target bit. 
MOV R3,R3 Test R3 for zero. 
JNE BIT NOT SET Branch if zero 
AI R5,)0100 Otherwise set bit. 

BIT NOT SET SRL R5,0 Shift back 
SWPB R5 
BL @>WRITE ADDRESS 
MOVB R5,@>Fl20 Write screen byte. 
CLR R5 
AI R8,'r2000 
MOV R8,R10 
BL @>READ ADDRESS Set up colour table address. 
MOVB @)F120,R5 Read current colour. 
SWPB R5 
ANDI R5, >OOOF Isolate current background. 
SLA R2,4 
A R2,RS Add new foreground. 
SWPB R5 
BL @>WRITE ADDRESS 
MOVB R5,@ >Fl20 Write new colour byte. 
RTWP Return from subroutine. 

Line and circle plotting. 

For fast line and circle algorithms, integer routines have been 
developed e.g. Bresenham, in 'Interactive Computer Graphics' by Foley 
and Van Dam. This i� important since floating point routines are 
inherently slow. 

Bresenham's Circles. 

The best way to describe this routine is to present it in Basic first, 
to show its simplicity. 

10 X=O: Y=R: D=3-2*R: A=128: B=96 
20 IF X)=Y THEN Goro 80 
30 GOSUB 100 
40 IF D<O THEN D=D+4*X+6 
50 ELSE D=D+4*(X-Y)+10:Y=Y-l 
60 X=X+l 
70 GO TO 20 
80 IF X=Y THEN GOSUB 100 



90 END 
100 PLOT A+X,B+Y:PLOT A+X,B-Y:PLOT A-X,B+Y:PLOT A-X,B-Y 
110 PLOT A+Y,B+X: PLOT A+Y,B-X:PLOT A-Y,B+X:PLOT A-Y,B-X 
120 RETURN 

The eight plot 
i
commands mean that only an eigth of the circle needs 

to be computed- the rest is derived through symmetry. However, in 
machine code, the coding is fairly long and tedibus. Use can be made 
of the previousl� defined PLOT subroutine, to create this new command: 

t 
. 

CALL "CIRCLE'� ,Address ,X, Y ,Radius ,Plot? ,Colour 
\...rJ 1 

Centre Plot or unplot. 

The point plot subroutine needs to the BLWP 'd, so 2 
are needed: 

additional word� 
i 

POINT PLOT DAllA )F020 
DATA >Start address of PLOT 

>F020 will be the new workspace when the PLOT routine is called, and 
is in fast on-chip memory. 

CIRCLE 

LOOP 

INCX 

D)=O 

END 

PLOTIT 

)F020= X Coord of point 
)F022= Y Coord of point 
)F024= Colour 
>F026= Plot or unplot 

CLR RS 
MOV R2,R6 
LI R7 , >0003 
SLA R2,1 
S R2,R7 
C RS,R6 
JHE END 
BL @PLOT 
MOV R7,R7 
JEQ D)=O 
JGT D)=O 
AI R7,">0006 
MOV RS,R2 
SLA R2 , 2 
A R2,R7 
INC RS 
JMP LOOP 
AI R7,}000A 
MOV RS,R2 
S R6,R2 
SLA R2,2 
A R2,R7 
DEC R6 
JMP 
C 
JEQ 
RTWP 
BL 
RTWP 

INCX 
RS,R6 
PLOTIT 

@PLOT 

I� .10 

RS=X 
R6=Y 
R7=3 
R2=2*R 
R7= D=3-2*R 
Is X )=Y? 
Yes, then goto end bit. 
Plot 8 points 
Set flags for D 
Jump if D equals zero 
Jump if D ) zero 
D=D+6 
.R2=X 
R2=X*4 
D=D+X*4 
X=X+l 
Loop 
D=D+IO 
R2=X 
R2=X-Y 
R2=4*<X-Y) 
D=D+4*<X-Y) 
Y=Y-l 
Jump back and inc. X 
Compare X and Y 
X=Y? If yes, then jump 
Otherwise end 
Plot 8 points 
Then end 



PLOT LI 
AGAIN MOV 

MOV 
MOV 
MOV 
A 
A 
BLWP 
MOV 
MOV 
MOV 
A 
S 
BLWP 
MOV 
MOV' 
MOV 
S 
A 
BLWP 
MOV 
MOV 
MOV 
S 
S 
BLWP 
MOV 
MOV 
MOV 
DEC 

JNE 
RT 

R9,2 
R4,@)F024 
R3,@)F026 

'RO,@�F020 
R1,@}F022 
Rs,@}F020 
R6,@>F022 
@ POINT PLOT 
R4,@>F024 
RO,@>F020 
R1,@)F022 
Rs,@>F020 
R6,@>F022 
@POINT PLOT 
R4,@'>F024 
RO,@>F020 
R1,@>-F022 
Rs,@>F020 
R6,@')F022 
@POINT PLOT 
R4,@>F024 
RO,@>F020 
R1,@)F022 
Rs,@ ;>F020 
R6,@>F022 
@POINT PLOT 
Rs,R8 
R6,Rs 
R8,R6 
R9 
AGAIN 

Loop counter 
Store colour 
Store plot? 

PLOT A+X,B+Y . 
and PLOT A+Y,B+X 

PLOT A+X,B-Y 
and PLOT A+Y,B-X 

PLOT A-X,B+Y 
and PLOT A-Y,B+X 

PLOT A-X,B-Y 
and PLOT A-Y,B-Y 

Reverse X and Y 

End of loop? 
Not yet 
Now it is! 

There are probably better ways of doing this- I'll leave t his one t o  
you! 

Bresenham's line algorithm. 

Again, in Basic, this goes as follows: 

10 INPUT X1,YI,X2,Y2 
20 F=O: DR=l 
30 DX=ABS(X2-Xl) : DY=ABS(Y2-YI) 
40 IF DY>DX THEN A=Xl: Xl=Yl: Yl=A:A=X2:X2=Y2: Y2=A: F=1: GOT030 
50 D=(2*DY) -DX: Il=2*DY: I2=2*(DY-DX) 
60 IF Xl)X2 THEN X=X2:Y=Y2: XE=Xl: YE=Yl 
70 ELSE X=Xl:Y=Yl:XE=X2: YE=Y2 
80 IF YE<=Y THEN DR=-l 
90 IF F THEN PLOT Y,X 
100 ELSE PLOT X,Y 
110 IF X>=XE THEN END 
120 X=X+l 
130 IF D(O THEN D=D+Il 
140 ELSE Y=Y+DR:D=D+I2 
150 GOTO 90 

The call for this is: 

CALL "PLOT LINE",Address,Xl,Yl,X2,Y2,Colour,Plot? 

14- .(1 



And the machine code: 

PLOT LINE LI R7,)OOOl DR=l 
CLR R6 F=O 

DYDX MOV R2,R8 R8=X2 
ABS &:8 R8= ABS(X2- Xl) =DX 

I 

MOV R3�R9 R9=Y Z 
S Rl,R9 R9=Y 2-Y l  
ABS R9 R9= ABS(Y 2-Yl) =DY 
C R8,R9 DX >DY? \ 
JHE NOSWAP No swap if DX =DY 
MOV RO,RIO 
MOV Rl,RO Swap Xl ,Y l 
MOV RIO,Rl 
MOV R2,RIO i 

MOV R3,R2 Swap X2,Y Z 
MOV RI O,R3 
INC R6 F=l 
JMP DYDX Recalculate DX,DY 

NOSWAP C RO,R2 Compare Xl and X2 ( JLE NOMOVE Jump if Xl =XZ 
MOV RO,RI O I ' MOV R2,RO Otherwise swap Xl and X2 
MOV RI O,R2 I MOV Rl,RlO 
MOV R3,Rl and swap Y l  and Y2 
MOV RI O,R3 

NOMOVE C R3 ,Rl Compare Y E  and Y 
JHE HIGHER Jump if higher or equal 
L1 R7, )FFFF Else DR=-l 

HIGHER SLA R9,1 D9=2*DY = II 
MOV R9,RIO RlO (D) = D9 
S R8,RIO RIO = 2*DY-DX 
MOV RlO,R3 R3=2*DY-DX 
S R8 ,R3 R3=2*(DY-DX) =12 
MOV RS ,@> F 026 Store Plot? 

PLOT LOOP MOV R4 ,@} F024 Store colour 
MOV RO,@> F02 0 Store X 
MOV Rl,@ > F 022 Store Y 
MOV R6 ,R6 Check for F 
JEQ NOREVERSE Jump if zero 
MOV RO,@).F022 Otherwise reverse X 
MOV RI,@).F020 and Y 

NOREVERSE BLWP @POINT PLOT Then plot point 
C RO,R2 Compare X and XE 
JL NOEND Jump if lower 
RTWP Else end 

NO END INC RO X=X+l 
MOV RIO,RIO Check D 
JGT ADDI2 Jump if D>P 
JEQ ADDI2 Jump if D=O 
A R9,RIO Otherwise D=D+ I l  
JMP PLOT LOOP Loop 
A R3 ,RIO D=D+ I2 
A R7,Rl Y=Y+ DR 
JMP PLOT LOOP Loop 



The routine follows almost the same fromat as the Basic program- note 
that the actual program loop is short, keeping up the speed. 

The use of these routines allows simple vector graphics type displays 
to be built up, especially from machine code where the speed 
di fference becomes more noticable (the CALLs are slowed by Basic 
checking the passed parameters) . 

R�defining the Graphics mode. 
I 

The other wa� to use to graphics mode is to store predefined 
character/ col04r combinations in the pattern and colour tables, and 
to, use the Name ;table to select which character appears on the screen. 
Si�ce the Pattern and Colour tables are divided into three groups, 
each character must be defined three times, once in each section of 
the tables. Once accomplished, displays of very colourful characters 
exploiting the full resolution of the mode can be built up. 

All the routines have been presented in the 
newsletter, nos. � and 3. Please write to the 
require back numb�rs. 

, 

Use of the routin4s. 

Cortex Users Group 
Users Group if you 

Once redefined, screen data can be thrown around fairly easily e.g. 
Burglar, Invaders. The effects in Burglar are created by redefining 
the characters which make up the ladders etc. so that they all appear 
to move, wherever �hey are placed. 

For more adventurous use of machine code, two more standard routines 
are needed. These are for key pickup, and for printing and erasing 
gaming characters. 

Keyboard pickup 

The 2536 keyboard controller sends back either the ASCII code of the 
key being pressed, or random data if the�e is no key down. Hence, any 
keyboard routine will have to compare, after a short delay, the 
current keyboard data with its previous value to see if the value 
remains constant- if yes, then the data is reliable and can be ,acted 
upon. This suitable delay could be the program loop, if short enough. 

Keyboard data can be read using the following: 

CLR R12 
STCR RO,O 
SWPB RO 
ANDI RO,)OOFF 

BASE ° 
RO=CRF[O] 
Swap data to LSByte 
AND to clear rubbish 

RO=ASCII code of key/ random data 

A spare word can be used to hold the 'LAST DATA' i.e. the previous 
value read from the keyboard chip. The present value can be checked 
against this, and if they are equal, then the key is valid. Otherwise, 
the new value is stored in 'LAST DATA' and the routine left. 



The routine may continue: 

DATA VALID 

C RO,@LAST VALUE 
JEQ DATA VALID 
MOV Rl,@LAST VALUE 
RTWP 
CI 
JEQ 
CI 
JEQ 

etc. 

RO,KEYCODEI 
ROUTINE 1 
RO,KEYCODE2 
ROUTINE 2 

Printing and clearing characters. 

; 
Often it is necessary to print player or other characters 
made up of more than one block. This can be done using 
table and a character code table. However, because all the 
have to be user defined, they can be arranged successively. 

which are" 
an offset 
characters 

e.g. for a 2 by 2 character: 
ChAII 

" 
d1M 
X-fl· 

The off�et table looks like this: 

OFFSET DATA) 0001 
DATA> 2021 

and can be printed using: 

LOOP 

LI RO,start screen location 
LI Rl,first character number 
CLR R2 
CLR R3 
MOVB @OFFSET(R2),R3 
SWPB R3 
A RO� R3 
MOV R3,@>F020 
MOV Rl,@)F022 
BLWP @PUT CHAR 
INC Rl 
INC R2 
CI R2,4 
JNE LOOP 
RT(WP) 

cJtv. 
X f/ 

� 
xt1 

To clear the character, 
during a similar routine. 
of indexed addressing- R2 
for the data to be moved. 

blanks (ASCII 32), can be moved to 
The fifth instruction above is an 
is added to 'OFFSET' to create the 

)F022 
example 
address 



Full listing of line and circle plots. 

Commands are: CALL "POINT PLOT",6220H,X,Y,Colour,Plot? 
CALL "CIRLE",6300H,X,Y,Radius,PIot?,Colour 
CALL "DEMO",6248H 

-�-� ---,.--

CALL "LINE PLOT",6380H,Xl,Yl,X2,Y2,Colour,Plot? 

MON 
Monitor Rev. 1.1 1982 
[ 1 U 6200 6406 
6200 026A ORI R10,)4000 
6204 06CA SWPB RIO 
6206 D80A MOVB R10,@)F121 
620A C28A MOV R10,RI0 
620C 06CA SWPB RIO 
620E 080A MOVB RlO,@>F121 
6212 C69A MOV *R10,*RlO 
6214 045B RT 
6216 FOlO SOCB @>621C,RO 
621A 0000 DATA )0000 
621C 0300 LIMI )0000 
6220 C201 MOV R1,R8 
6222 0248 ANDI R8, )FFF8 
6226 OA58 SLA R8,5 
6228 0241 ANDI R1, 70007 
622C A201 A Rl,R8 
622E C100 MOV RO,R4 
6230 0244 ANDI R4,)FFF8 
6234 A204 A R4,R8 
6236 0240 ANDI RO,/0007 
623A C288 MOV R8,R10 
623C 06AO BL @)6204 
6240 0580 INC RO 
6242 0160 MOVB @>F120,R5 
6246 06C5 SWPB R5 
6248 OA05 SLA R5,0 
624A 0245 ANDI R5,>FEFF 
624E COC3 MOV R3,R3 
6250 1602 JNE >6256 
6252 0225 AI R5,)OlOO 
6256 0905 SRL R5,0 
6258 06C5 SWPB R5 
625A 06AO BL @>6200 
625E 0805 MOVB R5,@>F120 
6262 04C5 CLR R5 
6264 0228 AI R8,)2000 
6268 C288 MOV R8,R10 
626A 06AO BL @>6204 
626E 0160 MOVB @>F120,R5 
6272 06C5 SWPB R5 
6274 0245 ANDI R5,)000F 
6278 OA42 SLA R2,4 
627A A142 A R2,R5 
627C 06C5 SWPB R5 
627E 06AO BL @16200 
6282 0805 MOVB R5,@)F120 

14-· I S 

6286 0380 RTWP 
6288 0209 LI 
628C C804 MOV 
6290 C803 MqV 
6294 C800 MOV 
6298 C801 MOV 
629C A805 A 
62AO A806 A 
62A4 0420 BLWP 
62A8 C804 MOV 
62AC C800 MOV 
62BO C801 MOV 
62B4 A805 A 
62B8 6806 S 
62BC 0420 BLWP 
62CO C804 MOV 
62C4 C800 MOV 
62C8 C801 MOV 
62CC 6805 S 
6200 A806 A 
6204 0420 BLWP 
6208 C804 MOV 
620C C800 MOV 
62EO C801 MOV 
62E4 6805 S 
62E8 6806 S 
62EC 0420 BLWP 
62FO C205 MOV 
62F2 C146 MOV 
62F4 C188 MOV 
62F6 0609 DEC 
62F8 16C9 JNE 
62FA 045B RT 

R9,)0002 
R4,@ >F024 
R3,@>F026 
RO,@)F020 
Rl,@)F022 
R5,@)F020 
R6,@)-F022 
@)6216 
R4,@>.F024 
RO,@)F020 
Rl,@>F022 
R5,@>:F020 
R6,@)F022 
@)_62 1-6 
R4,@.W024 
RO,@>F020 
Rl,@)F022 
R5,@>F020 
R6,@ >F022 
@)6216 
R4,@>F024 
RO ,@)F020 
R1,@ iF022 
R5,@ )F020 
R6,@)F022 
@ )6216 
R5,R8 
R6,R5 
R8,R6 
R9 
'>628C 

62FC 0300 LIMI )0000 
6300 04C5 CLR R5 
6302 C182 MOV R2,R6 
6304 0207 LI R7,)0003 
6308 OA12 SLA R2,1 
630A 61C2 S R2,R7 
630C 8185 C R5,R6 
630E 1414 JHE )6338 
6310 06AO BL @)6288 
6314 CIC7 MOV R7,R7 
6316 1308 JEQ )6328 
6318 1507 JGT >6328 
631A 0227 AI R7,�0006 



631E C085 MOV R5,R2 
6320 OAn SLA R2,2 
6322 A1C2 A R2,R7 
6324 0585 INC R5 
6326 10F2 JMP )630C 
63280227'AI R7,)900A 
632C C085 MOV R5,R2 
632 E 6086 S R6,R2 
6330 OAn SLA Ri'2 , 
6332 A1C2 A R2,R7 
6334 0606 DEC R6 
6336 10F6 JMP >6324 
6338 8185 C R5,R6 
633A 1301 JEQ )633E 
633C 0380 RTWP 
633E 06AO BL @>6288 
6342 0380 RTWP 
6344 F040 SOCB RO,R1 
6346 6300 S RO,R12 

--6348 04C3 CLR R3 
634A 0200 LI RO,>0080 
634E C800 MOV RO,@>F040 
6352 0200 LI RO,>0060 
6356 C800 MOV RO,@)F042 
635A C803 MOV R3,@)F044 
635 E 04EO CLR @>F046 
6362 C003 MOV R3,RO 
6364 0240 ANDI RO.>OOOF 
6368 C800 MOV RO,@).F048 
636C 0420 BLWP @>6344 
6370 0583 INC R3 
637 2 0283 CI R3,>005 F 
6376 16E9 JNE >634A 
637 8 0380 RTWP 
637A 0000 DATA 
637 C 0000 DATA 
637 E. 0000 DATA 
6380 0300 LIMI 
6384 0207 LI 
6388 04C6 CLR 
638A C202 MOV 
638C 6200 S 
638E 07 48 ABS 
6390 C243 MOV 
6392 6241 S 
6394 07 49 ABS 

>0000 
>0000 
>0000 
ioooo 

R7,)0001 
R6 
R2,R8 
RO,R8 
R8 
R3,R9 
R1,R9 
R9 

6396 8248 C R8,R9 
6398 1408 JHE >63AA 
639A C280 MOV 
639C COOl MOV 
639E C04A MOV 
63AO C282 MOV 
63A2 C083 MOV 
63A4 COCA MOV 
63A6 0586 INC 

RO,R10 
Rl,RO 
R10,R1 
R2,RIO 
R3,R2 
R10,R3 
R6 

J4-.lb 

63A8 10FO JMP )638A 
63AA 8080 C RO,R2 
63AC 1206 JLE )63BA 
63AE C280 MOV RO,R10 
63BO C002 MOV R2,RO 
63B2 C08A MOV R10,R2 
63B4 C281 MOV R1,R10 
63B6 C043 MOV R3,Rl 
63B8 COCA MOV R10,R3 
63BA 80�3 C R3,R1 
63BC 14 2 JHE >63C2 
63BE 02 7 L I  R7,>YFFF 
63C2 OA 9 SLA R9,1 
63C4 C289 MOV R9,R10 
63C6 6288 S R8,R10 
63C8 COCA MOV R10,R3 
63CA 60G8 S R8,R3 
63GC G805 MOV R5,@YF026 
63DO G804 �OV R4,@>j024 
63D4 G800!MOV RO,@>�020 
6308 C801

1
/MOV R1,@>F022 

630C C1861 MOV R6,Rb 
63DE 13041 JEQ >63E8 
63EO c800 1 MOV RO,@>F022 
63E4 C801 1MOV R1,@)F020 
63E8 0420 BLWP @>6216 
63EC 8080 C RO,R2 
63EE 1A03 JL >63F6 
63FO 0300 i LIMI >·OOOF 
63F4 0380iRTWP 
63F6 0580 INC RO 
63F8 C28A MOV 
63FA 1503 JGT 
63FC 1302 JEQ 
63FE A289 � 
6400 10E7 �MP 
6402 A283 A 

RI0,RI0 
">6402 
>6402 
R9,RI0 
>63DO 
R3,RIO 

6404 A047 A R7 ,Rl 
6406 10E4 JMP )6300 



THREE D IMENTIONAL BAR GRAPH PROGRAMME Tim Gray. 

This progrpmme could be used as a subroutine of a larger 

programme for displaying data in 3D form. It generates block 
:bar 

graphs that look solid. 

1� REM *** 3D BAR GRAPH DEM O PROGRAMME *** 

2� REM *** TIM GRAY *** 

3� REM 
4� COLOUR 15,1: GRAPH 
50 REM 

60 REM ** B= Baseline 

70 REM ** H = Hight up to 100 

80 REM ** BLK = Block Number 

90 REM *� Cl C2 C3 = Front,Side,Top Colours 
1�0 REM �** Set random data for block *** 

110 B= 180 

12� BLK=l: H=RND*1 5�: 
130 GOSUB 260 

14� BLK=� : H=RND*150: 

15� GOSUB 260 

160 BLK=3: H=RNO*150: 

17� GOSUB 260 

180 BLK=4: H=RNO*150: 

190 GOSUB 260 

Cl=5: C2=4: 

C l =9 : C2=8: 

Cl=3: C,/=,/' 

Cl=9: C2=6: 

C3=7: $A=" 1980" 

C3=11 : $A = " 1981 " 

C3=14: $A= " 1 98 2 " 

C3=13: $A="1983" 

2�� BLK=5: H=RNO*150 : Cl=11: C2=10: C3=9: $A="1984" 

210 GOSUB 26� 

2212i COLOUR 15 , 0: PRINT @(l,I);"PRESS ANY KEY": GOSUB 45� 

230 REM 

240 REM *** Draw the block *** 

25� REM 

26� COLOUR 15,O: PRINT @(BLK*5-1,23);$A 

270 COLOUR Cl,C2: D=BLK*40+16 

280 FOR F=B TO B-6 STEP -1 

290 COLOUR Cl,C2: PLOT BLK *40 , F TO BLK*40+15,F 

300 COLOUR C2,0: PLOT BLK*40+16,F TO O,F 

310 0=0+1: NE XT F 

320 FOR F=8-7 TO B-H-7 STEP -1 
330 COLOUR Cl,C2: PLOT BLK*40,F TO BLK*40+15,F 

340 COLOUR C2,C2: PLOT BLK*40+16,F 

350 NEXT F 

36� C=BLK*40: 0=C+16 

370 FOR T=B-7-H TO B-13 - H STEP -1 

38� COLOUR C3,�: PLOT C,T TO BLK*4�+15,T 

390 C=C+l 

400 COLOUR C3,C2: PLOT BL K*40+ 1 6 , T TO O,T 

4 UZl 0=0+ 1 

420 NEXT T 

430 RETURN 

440 REM *** Loop for another go *** 

450 LET K=KEY[0J 

460 IF K<>0 THEN PRINT " < 0C > " : WAIT 1��: GOTO 6� 

470 ELSE GOTO 450 

I � ./7 



CORTEX USERS CLUB SALE 

$=POUNDS PLEASE NOTE SOME ITEMS HAVE INCREASED IN PRICE DUE 

TO IC AND COMPONENT PRICE INCREASE 

RGB INTERFACE 

CENTRONICS INTERFACE 

E BUS -ALL IC"'S 

SEMICONDUCTOR8 

BARE BOARD $8.00 

BARE BOARD $7.00 

KIT $25.00 
KIT $15.00 

KIT $30.00 

TMS9902 $2.00 

-------��:��::----��-���:��::�---------------------L--------�:����-------------
ON OFFER 

74LS611/74LS611 (NEED PULL UP RESISTORS) 

E BU8 EPANSION 

$10.00 

E BU8 (4K RAM.8K EPROM SCKT.16 IN/OUT LINES) $15.00 
NOTE-THESE CARDS ARE EX EQUIPMENT TESTED AND WORKING 

E BUS (8*8K EPROM SCKT CARD BUILT NO EPROMS FITTED) $2:0. 00 
, . 

---------------------------------------------------:------------------'�--------

NEW E BU8 512K DRAM .' THRO" PLATED BARE BOARD $40.00 
USES TMS4500 AND TMS4464 OR EQUIVELENT + 6 COMMON SUPPORT CHIPS 

CORTEX EXPAN8ION 

EXTERNAL VIDIO INTERFACE BARE BOARD $15.00 

DISK CONTROLER (WD 2797+BOARD) CORTEX I 
KIT $80.00 

DISK CONTROLER (WD 2797+BOARD) CORTEX II 

CORTEX SOFTWARE 

DISK OPERATING SYSTEM CD OS 1.20 AND 2.00 
CDOS 2.00 FOR 2797 SYSTEM CDOS 2.0 FOR 2797 SYSTEM 

NEW FORMAT 3" 40T SINGLE SIDED 

MEMBERS SOFTWARE 

WORTEX-WORD PROCESSING 

INCLUDES SPELLING CHECKER 

SEND TO J S MACKENZIE (NEW ADDRESS) 

20 WEST ROAD 

BARTON STACY 

WINCHESTER 

HANTS S021 3SB 

(INCLUDE TWO 5"" DD DISKS) 

DRAWTECH-GRAPHICS DRAWING PACKAGE 

SEND TO T GRAY . C/O CORTEX USERS GROUP ADDRESS 

$55.00 

$60.00 

$45.00 
ALL FORMATS 

$15.00 

$20.00 

ASSEMBLER CD OS COMPATIBLE FOR DISK SYSTEM WRITEN BY C J YOUNG 

FOR THE USER GROUP (WE RECOMMEND) 

AVAILABLE FROM CORTEX USERS GROUP $15.00 
(ALL FtiRMATS ON DISK) 

CORTEX USERS GROUP SOFTWARE MOST NOW ON DISK ( ALL FORMATS 

ALL GAMES $2.50 EACH 

BURGLAR 

FROGGER 

INVADERS&ASTEROIDS 

HUNCHBACK 

MAZE 

OLIMPICS NEW 

CORRECTION 

ASSEMBLER FROM R M LEE 

8 RENOWN ROAD 

LORDSWOOD 

CHATHAM 

KENT ME5 8SG 

MUNCHER 

G DESIGN 

WALL 

ARCHIE 

NIGHT ATTACK 

CORTELLO 

IS NOW $14.00 

THE ZOO 

GOLF 

MICROPED 

SPACE-BUG 

MAZE 3[1 

PENGO 

HIS NEW ADDRE:::S 

FIRE B IRIh 

RESCUE 

PENGO 

MOONBASEII 

LABYRINTH 

CENTIPEDE 

IS 

OF TAG 

i 
--' 


