© . CORTEX USERS GROUP

T Gray,1 Larkspur Drive,Featherstone,Wolverhampton,West Midland WV1@ 7TN.
E Serwa,93 Long Knowle Lane,Wednesfield,Wolverhampton,West Midland WV11 1JG.
Tel No: T Gray 0902 729078, E. Serwa 0902 732659

CORTEX USER GROUP NEWSLETTER (NOVEMBER 1987)

Issue Number 14

CONTENTS

1. Index

2. Editorial

3. Programming the V.D.P.
17. Programme ¢ 3D Bar graph)

REMEMBER TO SEND IN YOUR ARTICLES FOR THE NEXT NEWSLETTER
L. |

. ,@{:

Editorial

Its not very often that we receive an article so comprehensive
that it takes up most of the user group newsletter but this one
written by Mark Rudnicki explains so much about programming the
V.D.P. in machine code that we thought it best to print it all in
one issue. The routines used also may help to explain the mystery
of machine code programming to some of you who have not had much
experience in this field. Some of the routines are shown as a
Basic programme first and then in machine code after. This is a
technique used a lot by ourselves as most of the debugging can be
done on the basic programme before converting it to machine code.

Mark as also sent in some games programmes for the newsletter and
these will be included in the next issue. e

The other article in this issue is a three dimentional bar graph

programme written by Tim Gray. It generates block bar graphs that
look solid.

3D BAR GRAPH

198@ 1981

REMEMBER TO SEND IN YOUR ARTICLES FOR THE NEXT NEWSLETTER

42

Manipulating the VDP with Machine Code. Mark Rudnicki.

l: The Video Display Processor.

The Cortex boasts a 1large -amount of user memory since the large
amount of RAM necessary for the implementation of high resolution
graphics has been effectively removed from the memory map and put
onto the other side of a two byte port. This leads to some advantages
and some major disadvantages:

+ Frees 16K of RAM for programming
but - All access to VRAM is via two 8 bit ports, causing
programming complications.
- Multiple instructions needed to alter the VRAM contents,
leading to reduced speed.

The VDP port lies at - »F120 and »F121. There are four ways of
accessing the VDP and VRAM:

MSB . LSB Port Ror W

0123456

Write to VDP register f
Byte 1 Data D, D, Dy Dy By I D, Dy YF121 Write

Byte 2 Reg. select 10000O RﬁRﬁRﬂ »F121 Write
Read from Status Reg.

Byte 1 Read data D, D, D, Dy D, D; Dy Dy, dF121 Read
Write to VRAM ‘

Byte 1 Address set up A;ApAg A A A A A, ’F121 Write

Byte 2 01 AA A A A Af YF121 Write

Byte 3 Data write D, D, D, D; D, D D, Dy >F120 Write
Read from VRAM

Byte 1 Address set up A A; A Ay Ay A AL Ay YF121 Write

Byte 2 0 0 AA A A Ay A dF121 Write

Byte 3 Data read O O 0D DL I D, YF120 Read

Data.

In all cases, the data to be written or read 1is in byte form which
means that a little care is needed when transferring data to or from
the VRAM. To move data from a workspace register, MOVB is used ('Move
Byte'). This moves the leftmost i.e. most significant, byte of a
register. Similarly, MOVB @?F120,R1 will read data from the VDP and
move it to the uppermost byte of Register 1.

Address.
This is a 14 bit value to give the full 16384 byte (16K) coverage,

from 20000 to 3
lower byte will hold Agto A, and the upper byte A,to Ag, like this:

MSB [0 0 A A A, Ay Ay Ag[A Ay By Ag Ay A, A A] LSB

To read from the VRAM, bits O and 1 must be clear, but to write, bit

-3

R

\

l must be set. The latter can be done either by ORing with 4000 or
by Adding 24000.

. e.g. LI Rl,address LI Rl,address
ORI RI1, 24000 or Al R1, 24000
etc

The 16K 'VRAM is divided up this way:

GRAPH MODE
0000
As Graph mode is
Pattern table. b the most useful for
l games, the rest of
article will
21800 - concentrate on
x:?'Name table. this.
‘\\QQPOO
22000 Sprite attribute table.
1880 |
Colour table.
|
|
l
3800 :
Sprite pattern table.
24000 q

The Pattern table, the Colour table and the Name table.

The pattern table is 6K long divided into three 2K segments- each .
segment corresponds to a block of 256 character codes for a block of
256 screen locations. |

|
Each 2K block is divided into 256 8 byte blocks. In this way, every
pixel on the screen can be controlled achieving the 256*192
resolution. The Colour table has a similar arrangement with 8 colour
bytes per screen location i.e. one colour code for each row of an
eight row screen character.

The VDP knows which pattern to display by checking the Name table
which indicates which pattern is to be used for each screen location.
In the Cortex, the name table is arranged so that successive name
tables. Hence, it is set up with the numbers O thru' 255 three times.

>00 SCREEN
H—————"7
lJvﬂ"’ m

>0 OkTTERN =],

TAGLE

>f¥

\tf*
g &

NAME TABLE COLN
TRGLE

200 <3

14 &

The consequences of this mode of operation are as follows:

+ Each screen location has a unique pattern/b colour
combination so that each screen pixel can be individually
controlled.

+ This allows for high resolution line graphics to be
displayed i.e. for graphs etc.

but - To create a 'character' requires 16 accesses to VRAM: 8
colour bytes and 8 pattern bytes, which is slow.

Alternat#ve use of the VDP.

The otheJ way to use the graphics mode is to make each entry in the
Name table point to a preset character in the Pattern and Colour
tables, as with TEXT mode. This leads to:

— Lower resolution- Screen data must be moved around in
character sized chunks.

- Individual lines can no longer be drawn.

+ Much faster- only a single byte has to be written to VRAM

. to place a character on the screen.

#+ SGET, or its equivalent, now takes on some meaning, as in

i text mode, rather than moving 8 meaningless bytes around

from one place to another.

i
These are some pros and cons for both methods, but certainly the
second is easier to use and faster.

The Sprite Table.

This table is 128 bytes long, running from »1B00 to »1B80, arranged
with four bytes per sprite:

MSB 0 1 2 3 4 5 6 7 LSB

0 { vertical position -

1 horizontal position ~ SPRITE No.,X,Y,Shape,Colour
2 Name ~_ -/ J//

3 ECB]O JO IO l colour <

The early clock bit, if set, shifts the sprite 32 pixels to the left,
to allow the sprite to bleed in from the left edge of the display.

The Sprite Pattern table stores 256 8-byte blocks of data which make
up the characters as defined by the 'SHAPE' command.

Machine code considerations for the TMS 9928/9.

The CPU reads or writes to the VRAM via a 14 bit auto- 1incrementing
address register— this means that once an initial address has been
set up subsequent locations can be accessed without setting up a new
address every time. The VDP requires 8 Ms to fetch a VRAM byte
following a data transfer, so this delay must be taken into
consideration when programming. This delay can be performed using a
meaningless MOV *R1,*R1 instruction. :

If long routines which alter the VRAM contents are called from Basic,

\ N
then it is wise to preceed them with a LIMI >»0000 instruction (Load
Interrupt Mask Immediate) to disable the processor interrupts, and to
end with a LIMI)O000F. This might be needed to prevent the system,
mucking about with the VRAM in the course of the wuser routine. Note,
the LIMI »>0000 instruction stops the software clock.

Using the Cortex Graphics mode.

Individual points can be accessed using the formula:
Point= X,Y
VRAM byte = 256*INT(Y/8)+8*INT(X/8)+MPD(Y,8)

The relevant bit number is M?D(X,S) RO=MSB, 7=LSB

To see if this bit is set, tfy the following:

Rl= read byte (in LSB of register)
RO= bit number

LI R2,70080

SRL R2,0

COC R2,R1

JNE bit not set

bit set... '

SRL (Shift Right Logical) takes a shift count from RO if the shift
count is zero (as above). If RO is zero, then R2 will be shifted
right sixteen times. Other values give te following effects:

RO Least significant byte of R2

0

1

2 . The bit set in R2

3 ipoints to the bit to be
4 tested in R1

5

6

7

MSB LSB @=bit set
COC R2,R1 (Compare Ones Corresponding), sees whether the bits set in
R2 are also set in Rl; if so, then the equal flag ST2 is set. The JNE
(Jump Not Equal) operates if the relevant screen bit was not set.
Using this, the status of a screen bit can be tested and acted upon.
Colour of a pixel.
The colour of a pixel can be found as follows:

Colour data =)2000 + Screen byte address

If the pixel is set then the foreground colour should be returned,
otherwise the background colour should be given.

Firstly, the screen byte must be calculated:

1. b

RO= X Coord. Rl= Y Coord.

TRUE COLOUR MOV RI1,RI10 R10=Y
ANDI R10,)FFF8 R10=8*INT(Y/8)
SLA RI10,5 R10=32*R10
ANDI R1,20007 R1=MOD[Y,8]
A R1,R10 R10=R10+R1
MOV RO,R4 R4=X
ANDI R4 ,7FFF8 R4=8*INT(X/8)
A R4,R10 R10=Screen byte address
ANDI RO,>0007 RP=MOD(X,8)
BL @)READ ADDRESS Spt up address to read VRAM
CLR RS Rb5=0
MOVB @»F120,R5 Move screen data into RS
SWPB R5 @ Swap it into the lower byte.
Al R10, »2000 Add to access colour table.
BL @YREAD ADDRESS Set up address to read VRAM
CLR R6 R6=0
MOVB @>F120,R6 Move colour data to R6
SWPB R6 Swap it into lower byte.
LI R7,>0080 Test bit start.
SRL R7,0 Shizt RO times right.
COC R7,R5 See|if bit set
JNE BIT NOT SET No.
: SRL R6,4 Yest+ select foreground colour.
BIT NOT SET ANDI R6,?000F Isolate colour code.

rest of program....

To set up the VRAM address, the followidg subroutine is needed. It
takes the VRAM address held in R10 and sets up the VDP for a VRAM
data read.

READ ADDRESS SWPB R10 Least sig. byte first.
MOVB R10,@>F121 Move| top byte.
MOV RI10,R10 Delaly
SWPB R10
MOVB R10,@F121
MOV *R10,*R10 Delay.
RT ’ Return from subroutine.

The BL (Branch and Link) instruction behaves like a GOSUB- its return
address 1is stored in R1l1l, but wunlike a Basic GOSUB, it cannot be
nested. Any attempt to do so will simply overwrite the previous

return address. If nesting of subroutines is required, then the BLWP
‘(Branch and Load Workspace Pointer) command must be used. The operand
must contain the address of two words- the first will be the start
address of a new workspace (32 bytes), and the second the adress of
the subroutine. »F020 and YF040 are two convenient locations for
workspace registers as they are in fast on-chip RAM.

To set up the VDP for a data write, the following code is needed:

WRITE ADDRESS ORI R10,)4000 Set bit 1
JMP READ ADDRESS

1¢-7

This sets bit 1 of the address word, which tells the VDP to expect a
data write. The read subroutine can then be called to transfer the
address.

The to routines can be condensed as follows:

WRITE ADDRESS ORI R10,34000
READ ADDRESS SWPB R10
MOVB R10,@>F121
MOV RI10,RI10
SWPB R10
MOVB R10,@>F121
MOV *R10,*R10
RT ~

The entry point is chosen depending upon whether a VRAM read or write
is required.

Returning values to Basic.

If values need to be returned to Basic, then 'use must be made of the
Basic ADR function, which gives the position of the variable in
memory. :

e.g. for the 'True colour of a pixel' routine, this can be done as
follows:

A=0: CALL "TRUE COLOUR",Address,X,Y,ADR(A)
Where A is any variable, and X and Y are the pixel coords.
ADR(A) will be stored in R2 when the routine is called. R6 contains

the true pixel colour, and can be stored in the variable with the
addition of this code:

INCT R2
INC R2 R2=R2+3
-~ MOV R6,*R2 Store R6 in variable.

R2 has to be incremented three times so that it points to the correct
word to be altered (see Cortex instruction manual, page 2-12).
! A

Setting and resetting pixels.

pixel operations are necessary for line and circle drawing routines,

and for building up characters. Whilst Basic caters for the line
drawing, the routine is not accessible from machine code yet, until
more information about the Basic is released. ?

RO= X Coord.
R1= Y Coord
R2= Colour

R3= 0 for set, 1 for reset

e.g. CALL "PLOT",Address,X,Y,Colour,Plot?

16 %

PLOT

BIT NOT

MOV
ANDI
SLA
ANDI

MOV
ANDI

ANDI
MOV
BL
INC
MOVB
SWPB
SLA
ANDI
MOV
JNE
Al
SRL
SWPB
BL
MOVB
CLR
Al
MOV
BL
MOVB
SWPB
ANDI
SLA

SET

SWPB
BL

MOVB
RTWP

R1,R8

R8,>FFF8

R8,5

R1,70007

R1,R8

RO,R4

R4, YFFF8

R4 ,R8

RO, »0007
R8,R10

@>READ ADDRESS
RO

@>F120,R5

RS

R5,0

R5,?>FFEF

R3,R3

BIT NOT SET
R5,%0100 ‘
RS,0

RS

@>WRITE ADDRESS
R5,@)>F120

RS

R8, ¥2000
R8,R10

@>READ ADDRESS
@»F120,R5

RS

RS, YO0OF

R2,4

R2,R5

RS

@>WRITE ADDRESS
R5,@>F120

Line and circle plotting.

For fast 1line and circle
developed

and Van Dam. This ik important
inherently slow.

Bresenham's Circles.

algorithms,
e.g. Bresenham, in 'Interactive Computer Graphics' by Foley

R8=Screen byte address.

Read current screen byte.

Shift it and reset target bit.
Test R3 for zero.

Branch if zero

Otherwise set bit.

Shift back

Write screen byte.

Set up colour table address.
Read current colour.

Isolate current background.

Add new foreground.

Write new colour byte.
Return from subroutine.

integer routines have

been

since floating point routines are

The best way to describe this routine is to present it in Basic first,
to show its simplicity.

10
20
30
40
50
60
70
80

X=0: Y=R: D=3-2*R: A=128: B=96
IF X)=Y THEN GOTO 80

GOSUB 100

IF DO THEN D=D+4*X+6
ELSE D=D+4*(X-Y)+10:Y=Y-1

X=X+1
GOTO 20

IF X=Y THEN GOSUB 100

1.4

90 END

100 PLOT A+X,B+Y:PLOT A+X,B-Y:PLOT A-X,B+Y:PLOT A-X,B-Y
110 PLOT A+Y,B+X:PLOT A+Y,B-X:PLOT A-Y,B+X:PLOT A-Y,B-X
120 RETURN

The eight plot‘commands mean that only an eigth of the circle needs
to be computed- the rest is derived through symmetry. However, in
machine code, the coding is fairly long and tedious. Use can be made
of the previouslx defined PLOT subroutine, to create this new command:

CALL "CIRCLE",Address,X,Y,Radius,Plot?,Colour
v~
Centre Plot or unplot.

The point plot subroutine needs to the BLWP'd, so 2 additional words
are needed: {
POINT PLOT DATA YF020

DATA ?Start address of PLOT

»F020 will be the new workspace when the PLOT routine 1is called, and
is in fast on-chip memory.

»F020= X Coord of point
>F022= Y Coord of point
7F024= Colour

2F026= Plot or unplot

CIRCLE CLR RS ‘ R5=X

MOV R2,R6 R6=Y
LI R7,>0003 R7=3
SLA R2,1 R2=2*R
S R2,R7 R7= D=3-2*R
LOOP C R5,R6 Is X»=Y?
JHE END Yes, then goto end bit.
BL @PLOT Plot 8 points
MOV R7,R7 Set flags for D
JEQ D»=0 Jump if D equals zero
JGT D»=0 Jump if D) zero
D<0 AT R7,70006 D=D+6
MOV R5,R2 R2=X
SLA R2,2 R2=X*4
A R2,R7 D=D+X*4
INCX INC RS X=X+1
JMP LOOP Loop
D)=0 Al R7,2000A D=D+10
MOV R5,R2 R2=X
S R6,R2 R2=X-Y
SLA R2,2 R2=4%*(X-Y)
A R2,R7 D=D+4*(X-Y)
DEC R6 Y=Y-1
JMP INCX Jump back and inc. X
END C R5,R6 Compare X and Y
JEQ PLOTIT X=Y? If yes, then jump
RTWP Otherwise end
PLOTIT BL @PLOT Plot 8 points
RTWP Then end

[.10

PLOT
AGAIN

LI R9,2 Loop counter

MOV R4,@)F024 Store colour

MOV R3,@)>F026 Store plot?

MOV 'RO,@%F020

MOV R1,@)F022

A R5,@>F020 PLOT A+X,B+Y -
A R6,@>F022 and PLOT A+Y,B+X
BLWP @POINT PLOT

MOV R4,@>F024

MOV RO,@>F020

MOV R1,@>F022

A R5,@>F020 PLOT A+X,B-Y
S R6,@>F022 and PLOT A+Y,B-X
BLWP @POINT PLOT

MOV R4,Q@YF024

MOV RO,@>F020

MOV R1,@>F022

S R5,@)F020 PLOT A-X,B+Y
A R6,@%F022 and PLOT A-Y,B+X
BLWP @POINT PLOT

MOV R4,Q@>F024

MOV RO,@»F020

MOV R1,@>F022

S RS5,@>F020 PLOT A-X,B-Y
S R6,87F022 and PLOT A-Y,B-Y
BLWP @POINT PLOT

MOV R5,RS8 Reverse X and Y
MOV R6,R5

MOV R8,R6

DEC R9 End of loop?

JNE AGAIN Not yet

RT Now it ist!

There are probably better ways of doing this- I'll leave this one to

you!

Bresenham's line algorithm.

Again, in Basic, this goes as follows:

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

The call

INPUT X1,Y1,X2,Y2

F=0: DR=1

DX=ABS(X2-X1): DY=ABS(Y2-Yl)

IF DY>DX THEN A=X1:X1=Yl:Y1=A:A=X2:X2=Y2:Y2=A:F=1:G0T030

D=(2*DY)-DX:11=2*DY:12=2*(DY-DX)

IF X1>X2 THEN X=X2:Y=Y2:XE=X1:YE=Y1l
ELSE X=X1:Y=Y1:XE=X2:YE=Y2

IF YE{=Y THEN DR=-1

IF F THEN PLOT Y,X
ELSE PLOT X,Y

IF X)=XE THEN END

X=X+1

IF DO THEN D=D+I1
ELSE Y=Y+DR:D=D+I2

GOTO 90

for this is:

CALL "PLOT LINE",Address,X1,Y1,X2,Y2,Colour,Plot?

14 . (]

And the machine code:

PLOT LINE LI R7,>0001
CLR R6
MOV R2,R8
ABS RS,
MOV R3,R9
S R1,R9
ABS R9
C R8,R9
JHE NOSWAP
MOV RO,R10
MOV R1,RO
MOV RI1O,R1
MOV R2,R10
MOV R3,R2
MOV = R10,R3
INC R6
JMP DYDX
NOSWAP C RO,R2
JLE NOMOVE
MOV RO,R10
MOV R2,RO
MOV R10,R2
MOV R1,R10
MOV R3,R1
MOV R10,R3
NOMOVE C R3,R1
JHE HIGHER
LI R7,)FFFF
SLA R9,1
MOV R9,R10
S R8,R10
MOV R10,R3
S R8,R3
MOV R5,@>F026
MOV R4,Q@>F024
MOV RO,@*F020
MOV R1,@>F022
MOV R6,R6
JEQ NOREVERSE
MOV RO,@%F022
MOV R1,@%F020
BLWP @POINT PLOT
C RO,R2
JL NOEND
RTWP
INC RO
MOV R10,R10
JGT ADDI2
JEQ ADDI2
A R9,R10
JMP PLOT LOOP
A R3,R10
A R7,R1
JMP PLOT LOOP

DYDX

HIGHER

PLOT LOOP

NOREVERSE

NOEND

(G2

DR=1

F=0

R8=X2

R8= ABS(X2-X1) =DX
R9=Y2

R9=Y2-Y1

R9= ABS(Y2-Yl) =DY

DX DY?

No swap if DX =DY l

Swap X1,Yl1 ’ \
!

|
|
Swap X2,Y2

F=1

Recalculate DX,DY
Compare X1 and X2
Jump if X1 =X2

Otherwise swap X1 and X2

and swap Yl and Y2

Compare YE and Y
Jump if higher or equal
Else DR=-1
D9=2*DY = Il

R10 (D) = D9

R10 = 2*DY-DX
R3=2*DY-DX
R3=2*(DY-DX) =12
Store Plot?
Store colour
Store X

Store Y

Check for F

Jump if zero
Otherwise reverse X
and Y

Then plot point
Compare X and XE
Jump if lower
Else end

X=X+1

Check D

Jump if D)0

Jump if D=0
Otherwise D=D+11
Loop

D=D+12

Y=Y+DR

Loop

The routine follows almost the same fromat as the Basic program- note
that the actual program loop is short, keeping up the speed.

The use of these routines allows simple vector graphics type displays
to be built wup, especially from machine code where the speed
difference becomes more noticable (the CALLs are. slowed by Basic
checking the passed parameters).

Redefining the Graphics mode.
(

The other wa} to use to graphics mode 1is to store predefined
character/ colodr combinations in the pattern and colour tables, and
to use the Name ‘table to select which character appears on the screen.
Silnce the Pattern and Colour tables are divided into three groups,
each character must be defined three times, once in each section of
the tables. Once accomplished, displays of very colourful characters
exploiting the full resolution of the mode can be built up.

All the routines: have been presented in the Cortex Users Group
newsletter, nos. 2 and 3. Please write to the Users Group if you

require back numbers.

!

Use of the routin%s.

Once redefined, screen data can be thrown around fairly easily e.g.
Burglar, Invaders. The effects in Burglar are created by redefining
the characters which make up the ladders etc. so that they all appear
to move, wherever they are placed.

For more adventurous use of machine code, two more standard routines
are needed. These are for key pickup, and for printing and erasing
gaming characters.

Keyboard pickup

The 2536 keyboard controller sends back either the ASCII code of the
key being pressed, or random data if there is no key down. Hence, any
keyboard routine will have to compare, after a short delay, the
current keyboard data with its previous value to see if the wvalue
remains constant- if yes, then the data is reliable and can be ;acted
upon. This suitable delay could be the program loop, if short enough.

Keyboard data can be read using the following:

CLR RI12 . BASE 0O

STCR RO,0 RO=CRF[0]

SWPB RO Swap data to LSByte
ANDI RO,>00FF AND to clear rubbish

RO=ASCII code of key/ random data

A spare word can be used to hold the 'LAST DATA' i.e. the previous
value read from the keyboard chip. The present value can be checked
against this, and if they are equal, then the key is valid. Otherwise,
the new value is stored in 'LAST DATA' and the routine left.

13

The routine may continue:

C - RO,@LAST VALUE
JEQ DATA VALID ‘
MOV R1,@LAST VALUE
RTWP
DATA VALID CI RO,KEYCODEL
JEQ ROUTINE 1
CI RO,KEYCODE2
JEQ ROUTINE 2

etc.

Printing and clearing characters.

; .
Often it is necessary to print player or other characters which are
made up of more than one block. This can be done using an offset
table and a character code table. However, because all the characters
have to be user defined, they can be arranged successively.

q%gfg; aﬁy s q#gtl

ofset 3 | 24e ;";; oA 33

e.g. for a 2 by 2 character:

The offset table looks like this:

OFFSET DATA » 0001
DATA » 2021

and can be printed using:

LI RO,start screen location
LI Rl,first character number
CLR R2
LOOP . CLR R3

MOVB @OFFSET(R2),R3
SWPB R3

: A RO,R3

g MOV R3,@>F020
MOV R1,@)F022
BLWP @PUT CHAR

INC Rl
INC R2
CI R2,4
JNE LOOP
RT(WP)

To clear the character, blanks (ASCIT 32), can be moved to >F022
during a similar routine. The fifth instruction above is an example
of indexed addressing- R2 is added to 'OFFSET' to create the address
for the data to be moved.

I A4

Full listing of line and circle plots.

Commands are:

MON

Monitor Rev. 1.

[JU 6200 6406

6200
6204
6206
620A
620C
620E
6212
6214
6216
621A
621C
6220
6222
6226
6228
622C
622E
6230
6234
6236
623A
623C
6240
6242
6246
6248
624A
624E
6250
6252
6256
6258
625A
625E
6262
6264
6268
626A
626E
6272
6274
6278
627A
627C
627E
6282

026A
06CA
D8OA
C28A
06CA
D80A
C69A
0458
F020
0000
0300
€201
0248
0AS8
0241
A201
100
0244
A204
0240
288
06A0
0580
D160
06C5
0A05
0245
coc3
1602
0225
0905
06C5
06A0
D805
04C5
0228
288
06A0
D160
06C5
0245
0A42
AL42
06C5
06A0
D805

ORI
SWPB
MOVB
MOV
SWPB
MOVB
MOV
RT
SOCB
DATA
LIMI
MOV
ANDI
SLA
ANDI
A
MOV
ANDI
A
ANDI
MOV
BL
INC
MOVB
SWPB
SLA
ANDI
MOV
JNE
Al
SRL
SWPB
BL
MOVB
CLR
Al
MOV
BL
MOVB
SWPB
ANDI
SLA
A
SWPB
BL
MOVB

CALL "POINT PLOT",6220H,X,Y,Colour,Plot?
CALL "CIRLE",6300H,X,Y,Radius,Plot?,Colour

CALL "DEMO",6248H
CALL "LINE PLOT",6380H,X1,Y1,X2,Y2,Colour,Plot?

1 1982

R10, 4000
R10
R10,@)F121
R10,R10
R10
R10,@)>F121
*R10,*R10

@>621C,RO
20000
70000
R1,R8

R8, >FFF8
R8,5
R1,70007
R1,R8
RO,R4

R4 ,>FFF8
R4 ,R8

RO, »0007
R8,R10
@)6204

RO
@>F120,R5
RS

R5,0

RS, YFEFF
R3,R3
76256

R5, 0100
RS,0

RS

@>6200
R5,@>F120
RS

R8, »2000
R8,R10
@26204
@>F120,R5
RS

RS, »000F
R2,4
R2,R5

RS

@76200
R5,@%F120

YANES

6286
6288
628C
6290
6294
6298
629C
62A0
62A4
62A8
62AC
62B0
62B4
62B8
62BC
62C0
62C4
62C8
62CC
62D0
62D4
62D8
62DC
62E0
62E4
62E8
62EC
62F0
62F2
62F4
62F6
62F8
62FA
62FC
6300
6302
6304
6308
630A
630C
630E
6310
6314
6316
6318
631A

0380
0209
C804
€803
€800
€801
A805
A806
0420
C804
€800
€801
A805
6806
0420
C804
€800
€801
6805
A806
0420
C804
€800
€801
6805
6806
0420
C205
Cl46
€188
0609
16C9
045B
0300
04C5
C182
0207
0A12
61C2
8185
1414
06A0
ClC7
1308
1507
0227

RTWP
LI
MOV

MgV
MOV

MOV

BLWP
MOV
MOV
MOV

BLWP
MOV
MOV
MOV

BLWP
MOV
MOV
MOV

BLWP
MOV
MOV
MOV
DEC
JNE
RT
LIMI
CLR
MOV
LI
SLA

JHE
BL
MOV
JEQ
JGT
Al

R9,50002
R4 ,8>F024

RO,@>F020
R1,@>F022
R5,@)F020
R6,@YF022
@y6216
Ra,@YF024
RO, @ YF020
R1,@yF022
RS,@>F020
R6,@YF022
@)6216
R4,@YF024
RO,@YF020
R1,@%F022
RS5,@>F020
R6,@ YF022
@6216
R4,0@YF024
RO, @3»F020
R1,@%F022
RS5,@»F020
R6,@YF022
@216
RS5,R8
R6,R5
R8,R6

R9

>628C

»0000

RS

R2,R6
R7,20003
R2,1
R2,R7
R5,R6
>6338
@56288
R7,R7
Y6328
56328
R7, Y0006

|
y

R3,@3F026

631E
6320
6322
6324
6326
6328
632C
632E
6330
6332
6334
6336
6338
633A
633C
633E
6342
6344
6346
6348
634A
634E
6352
6356
635A
635E
6362
6364
6368
636C
6370
6372
6376
6378
637A
637C
637E.
6380
6384
6388
638A
638C
638E
6390
6392
6394
6396
6398
639A
639C
639E
63A0
63A2
63A4
63A6

C085
0A22
AlC2
0585
10F2
0227
C085
6086
0A22
AlC2
0606
10F6
8185
1301
0380
06A0
0380
FO40
6300
04C3
0200
800
0200
€800
c803
04EQ
C003
0240
C800
0420
0583
0283
16E9
0380
0000
0000
0000
0300
0207
04C6
€202
6200
0748
C243
6241
0749
8248
1408
c280
c001
CO4A
282
c083
COCA
0586

MOV
SLA
A
INC
JMP
Al
MOV

SLA

DEC
JMP
JEQ
RTWP
BL
RTWP
SOCB
S
CL
LT
MOV
LI
MOV
MOV
CLR
MOV
ANDI
MOV
BLWP
INC
CI
JNE
RTWP
DATA
DATA
DATA
LIMI
LI
CLR
MOV

ABS
MOV

ABS

JHE
MOV
MOV
MOV
MOV
MOV
MOV
INC

-R5,R2

R2,2
R2,R7
RS
Y630C
R7, Y000A
RS5,R2
R6,R2
R2,2
R2,R7
R6
6324
R5,R6
Y633E

@56288

RO,R1
RO,R12

R3

RO, >0080
RO,@>F040
RO, Y0060
RO,@>F042
R3,@>F044

@JF046

R3,RO

RO, Y000F
RO,@)F048
@>6344

R3

R3, Y005F
634A

20000
»0000
»0000
%0000
R7, 50001
R6
R2,R8
RO,R8
R8
R3,R9
R1,R9
R9
R8,R9
63AA
RO,R10
R1,RO
R10,R1
R2,R10
R3,R2
R10,R3
R6

1416

_63AC 1206

63A8 10F0 JMP
63AA 8080 C
JLE
63AE C280 MOV
63B0 C002 MOV
63B2 CO8A MOV
63B4 C281 MOV
63B6 C043 MOV
63B8 COCA MOV
63BA 8043 C
63BC 14p2 JHE
63BE 02p7 LI
63C2 0A}9 SLA
63C4 C289 MOV
63C6 6288 S
63C8 COCA MOV
63CA 60C8 S
63CC C805 MOV
63D0 C804 MOV
63D4 C800 MOV
63D8 C801/MOV
63DC C186| MOV
63DE 1304 JEQ
63E0 C800| MOV
63E4 C801' MOV
63E8 0420 BLWP
63EC 8080 C
63EE 1A03 JL
63F0 0300 LIMI
63F4 0380 'RTWP
63F6 0580 INC
63F8 C28A MOV
63FA 1503 JGT
63FC 1302 JEQ
63FE A289 A
6400 10E7 UMP
6402 A283 A
6404 AO4T A
6406 10E4 JMP

>638A
RO,R2
$63BA
RO,R10
R2,RO
R10,R2
R1,R10
R3,R1
R10,R3
R3,R1
263C2
R7, 2 FFFF
R9, 1
R9,R10
R8,R10
R10,R3
R8,R3
R5,@>F026
R4,@>F024
RO,@>F020
R1,@YF022
R6,R6

"763E8

RO, @>F022
R1,@F020
@76216
RO,R2
Y63F6
Y000F

RO
R10,R10
%6402
76402
R9,R10
763D0
R3,R10
R7,R1
763D0

‘THREE DIMENTIONAL BAR GRAPH FROGRAMME Tim Gray.
This programme could be wused as a subroutine of a larger

programme for displaying data in 3D form. It generates block ‘bar
graphs that look sclid.

1@ REM #%% 3D BAR GRAPH DEMO PROGRAMME ¥

20 REM *%x* TIM GRAY * K
30 REM

40 COLOUR 15,1: GRAFH

S50 REM

60 REM %% B= Baseline

7@ REM ¥¥ H = Hight up to 100

80 REM *x BLE = Block Number

9@ REM %% Ct €2 C3 = Front,Side,Top Colours

100 REM ¥*%x Set random data for block *%%

11@ B=180 ' . ‘

120 BLEK=1: H=RND#*15@: C1=5: C2=4: C3=7: $£A="1980"
130 GOSUEB 260

140 BLK=2: H=RND¥*150: C1=9: C
15@ GOSUER 260

160 BLEK=Z: H=RND*150: Ci=
178 GOSUR 266

180 BLK=4: H=RND¥*150: C1=9: C2=
190 GOSUB 260

200 BLK=5: H=RND¥*150@: Ci1=11: C2=10: C3=9: *A="1984"

218 GOSUB 260

226 COLOUR 15,0: PRINT @(1,1);"PRESS ANY KEY": GOSUB 450
23 REM

240 REM *¥¥ Draw the block **x

250 REM

260 COLOUR 15,6: PRINT @(BLE*S-1,23);%A

278 COLOUR C1,C2: D=BLK*40Q+16 :

280 FOR F=B TO B-6 STEFP -1

290 COLOUR C1,C2: PLOT BikK¥40,F TO BLKE*40+15,F

300 COLOUR C2,0: PLOT BLK*4Q+16,F T0 D,F

310 D=D+1: NEXT F

320 FOR F=B-7 T0 B-H-7 STEF -1

330 COLOUR C1,C2: PLOT BLK*4Q,F TO BLE*40+15,F

340 COLOUR C2,C2: FLOT BLEK*40+16,F

358 NEXT F i

360 C=BLE#40: D=C+16

378 FOR T=B-7-H TO B-13-H STEPFP -1

380 COLOUR C3,@: PLOT C,T TO BLK*4Q0+15S,T

390 C=C+1

400 COLOUR C3,C2: PLOT BLE*40+16,.T TO D,T

410 D=D+1 :

420 NEXT T

430 RETURN

440 REM *%*% Loop for another go *x¥

450 LET K=KEYLO]

4650 1IF K<>0 THEN PRINT "<QC>": WAIT 1@0: GOTO 60

470 ELSE GOTO 450

N
Il
@

C3=11: *#A="1981"

(]

C3=14: $A="1982"

O
+J
I
)

o

: C3=13: #A="1983"

| & 17

1

CORTEX USERS CLUE SALE
$=FOUNDS PLEASE NOTE S0OME ITEMZS HAVE INCREASED IN FRICE DUE

TO IC AND COMPONENT FPRICE INCREASE \\x\
RGE INTERFACE BARE BOARD $&.00 EIT $25.00
CENTRONICS INTERFACE BARE ROARD $7.00 ; - KIT $15.00
. E BUS -ALL IC"Z KIT $20.00
SEMICONDUCTORS
TMS9902 $2.00
74L5612 (3 AVALAEBLE) i $25.00
ON OFFER .
74L5611/774L5411 (NEED PULL URP RESISTORS) $10.00

E BUS EPANSICON
E BUS (4K RAM,ZK EFPROM SCKT,14& IN/OUT LINES) $135.00
NOTE-THESE CARDS ARE EX EGUIFMENT TESTED AND WORKING
E RUS (2x&8K EFROM SCKT CARD ERUILT NO EFROMS FITTED) $320.00

NEW E BUZ 512Kk DRAM “THRO“ PLATED BARE BOARD $40.00
USES TMS4500 AND TMS4444 OR EQUIVELENT + & COMMON SUPFORT CHIFS

CORTEX EXPANSION

EXTERNAL VIDICO INTERFACE BARE BOARD $15.00 KIT $20.00

DISK CONTROLER (WD 2797+BOARDO) CORTEX I $33.00

OISk CONTROLER (WD 27%7+RBOARDO) CORTEX II $4£0.00
CORTEX SOFTWARE ‘

ODISK QOFPERATING SYSTEM CDOS 1.20 AND 2.00 $45.00

Chos 2.00 FOR 2797 SYSTEM CDOS 2.0 FOR 2797 SYSTEM ALL FORMATES
NEW FORMAT 3" 40T SINGLE SIDED : '
MEMEBERS SOFTWARE '
' WORTEX—-WORD FROCESSING $15.00
INCLUDES SFELLING CHECKER
SENDD TO J = MACKENZIE (NEW ALDDRESSZ)
20 WEST ROAD
BARTON STACY
WINCHESTER
HANTS S021 2SR
(INCLUDE TWO S DD DISKS)
DRAWTECH-GRAPHICS DRAWING FACKAGE $20.00
SEND TQ T GRAY . C/0 CORTEX USERS GROUF ADDRESS
ASSEMEBLER CDOS COMFATIBLE FOR DISK SYSTEM WRITEN BY C J YOUNG
FOR THE USER GROUP (WE RECOMMEND) 4
AVAILARLE FROM CORTEX WUZERS GROUF $15.00
(ALL FORMATS ON DISK)
CORTEX USERS GROUP SOFTWARE MOST NOW ON DISK (ALL FORMATS)
ALL GAMES $2.50 EACH

BURGLAR MUNCHER THE Zood FIRE EBIRL:

FROGGER G DESIGN GOLF RESCLE

INVADERSYASTEROQIDE WALL MICROFED FENGQ

HUNCHBACEK ' ARCHIE SFACE-BUG MOONEBASEI I

MAZE NIGHT ATTACK MAZE ZD , LABYRINTH COF TAG

OLIMPICS NEW CORTELLO FENGO CENTIPEDE
CORRECTION '

ASSEMELER FROM R M LEE IS NOW $14.00 HIS NEW ADDRESS IS
3 RENOWN ROAD
LORDSWOOD
CHATHAM
KENT MES 2=G

