T Gray, 1 Larkspur Drive,Featherstone, Wolverhampton, West Midland WV 10 7TN.
E Serwa, 93 Long Knowle Lane, Wednesfield, Wolverhampton, West Midland WV11 1JG. Tel No: T Gray 0902 729()78, E. Serwa ()902 732659

CONTENTS

1. Index
2. Editorial note
3. Letters
4. Variable listing program
5. More on Disk Inspect
6. Basic programs in EPROM
7. Extra system ROM
8. Better data separiator
9. Short Tips
10. Advert's

Welcome to the first Cortex newsletter produced by Tim Gray and Ted Serwa. We apologise for its late arrival but this is due mainly to the late handover from Kevin Holloway following newsletter 9 , which really should have been published before January. Since announcing our intention to take over the group during February subscriptions have been trickleing in but there are still a lot to come. We have enough information for two newsletters at the moment and so will be producing Them almost at the same time. The next one will be produced as soon as enough material is at hand and from then on hopefully every two months.

The meeting of Cortex users held jointly with TI994A users was a great success in spite of the late notice. Tim Gray and Ted Serwa both had extensive Cortex systems on display showing hardware for external video interface, A.M. X. mouse interface, extended RAM + ROM, a high definition graphics card and lots of CRU based inputoutput systems. Software on display included Sims Drawtech drawing package plus Teds P.C.B design C.A.D. package and a multipass assembler editor.
machines were John Makenzie demonstrating his Wortex and Speltex package and Alan Badcock with his Disk Menue Generator system. Among the other visitors to the stand were Prem Holdaway from London Dave Hunter from Kent and O.W.Hulme from Hendsford. In fact it was such a good meeting we hope to hold another one later in the year.

We are very short of Program submissions at the moment so please have a look to see if you have anything that may be useful to another member and send it in for printing in a future newsletter. If at all possible please try to send in Typewritten articles or printed programme listings and remember to include your name and a short description of the programme.

We will start this issue off by trying to answer some of your letters sent in recently. Can you please note that if you require a personal reply a stamped addressed envelope must be included, the user group is none profit making and has not got the funds for extra postage. Also on the subject of postage we must ask any overseas members wishing to receive their newsletters by air mail to pay an additional $£ 7.50$ per six issues to cover the extra cost. This will make the total cost per year for air mail users £12.50.

LETTERS

Paul Sheridon. Dursley Glostershire
Is the series on machine code programming to be continued as I would like to learn more about it ?

Yes we hope to get some more articles from Kevin Holloway as soon as he can find time to write some.

Alen Badcock. Chandlers ford Hanks.
Has anyone found a way of putting basic programmes in ROM. It would be nice to be able to load several programmes at once and switch between them. I am writing a batch file utility programme and also working on a simple multitasking program triggered from clock tics. Also does anyone know how to make the MDEX SAVEX command work so that compiled code can be run. Are the MPE 9901 parallel $I / 0$ cards still available.

There is a machine code program with details of how to save basic programmes in ROM and recall them using the * Command later in this issue. I don't know however how several could be loaded at once and pointers changed between them. The system pointers are held in such awkward places distributed throughout the Cortex memory map. It would however be possible for one Basic program to branch to another by using the $*$ Command to load in the second program but any parameters would have to be passed by using some un-used memory location or possibly RAM-DISK.
We look forward to seeing your Batch file and Multitasking programmes when they are finished.
I don't know about the MDEX SAVEX problem, mayby some other user will know and write in with the answer. We have not had much user information on MDEX yet. The MDEX system its self and anything else from MPE should be available through the group as soon as we can find time for a trip to southampton to collect it all.

Prick O’Leary. Eire.
I would appreciate any information on fitting Disk Drives to the Cortex but understand that there is no operating system for the new controller yet.

Any shugart compatible drives can be fitted to the Cortex both 8" and 5" systems are in use. A version of CDOS is available now for the new controller and can be obtained from the group for £45.0日. So far we do not have a good PCB design for the new controller although the circuit has been built and tested using wire-wrap techniques.

LETTERS

D.Raison. Hampshire

If anyone is interested I have a small program that allows the graphics mode of the VDP to be used as a 64 column screen. If anyone is interested I will supply a listing or tape. Can you still supply Cortex hardware especially the R.G.B. Kit.

We'r sure lots of people would be interested in your 64 column screen program, why don't you send it in along with anything else that may be of interest to other users. We can supply some Cor tex hardware and will be issueing a list soon.
D. Fisher. Workington Cumbria.

Since I have had my Cortex I have had problems with the cassette interface even after trying several tape decks has anyone a foolproof cure.

Lots of people have had problems with Cassette loading in the past. One suggestion is to add a inf capasitor between pins 1 and 2 of I.C. 70 and also to connect pin 3 to +5V. I use a diode clipper on the input and it seems to work on most offending tapes see short tips in this issue.

O.C. Walden

My system is based on $8^{\prime \prime}$ double density disks so I have been forced to " roll my own " as far as system software is concerned although I do have MDEX. I would love to here from anyone who has $e^{\prime \prime}$ d:

We don't understand why you have a problem with system software as both MDEX and CDOS work happily with 8" drives. Tim Gray has 8" drive capability on his Cortex.

P.D.Wrighton. Kent.

I would be interested in obtaining newsletters 1 to 4 . Can yỡu supply them ?

Yes all back issues are available from the group for $£ 1.50$ each. Also available as a back issue is M.P.E.s one and only newsletter, Brainstorm one.

LETTERS

R.J. Packer. Slough.

Can you supply any more information on any expansion boards especially the alternative disk controller. Also I have problems loading Cassette tapes.

We do have some alternative disk controller boards but at the moment there is a problem with the P.C.B. layout, although the circuit is correct. We will give more details in a future issue.
P.R. Cross. Kent.

I have a problem when running a program that uses a lot of Put and Get statements. After about 12 runs the error message : " out of memory " is produced.

The early version of CDOS had this problem as it reallocated space for the file variable for every disk access. In the new version 1.20 and later the problem has been cured. The updated version can be purchased from the group for ff. 00 . Please return your original master disk.

VARIABLE LIST ROUTINE
This machine code routine can be used to list all variable names used in a Basic program. All the variable names are stored in encoded form with the program on disc or tape so this routine can be used as soon as the Basic program is loaded without having to run it all the way through first. One interesting thing I have noticed is that Power Basic creates a variable name if it encounters a spelling mistake when expecting a statement. eg. If LOST were typed instead of list a variable name of LOS would be created. The only way to get rid of these " phantom " variables is to do a source save and load.

VARIABLE LISTING DEMO
CALL OF 200 H

53	F26A	$80 C 7$	
54	F26C	1404	
55	F26E	0202	2000
56	F272	DDC2	
57	F274	10FA	
58	F276	1000	
59	F278	C249	
60	F27A	1328	
61	F27C	0202	5800
62	F280	DDC2	
63	F282	C160	EFBE
64	F286	A140	
65	F288	C055	
66	F28A	1309	
67	F28C	COB 1	
68	F28E	2F42	
69	F290	0202	2000
70	F294	DDC2	:
71	F296	COB1	
72	F298	1101	
73	F29A	10F8	
74	F29C	0607	
75	F29E	0202	5000
76	F2A2	DDC2	
77	F2A4	1013	
78	F2A6	04C2	
79	F2A8	DDC2	
80	F2AA	0002	
81	F2AC	OFAD	FE50
82	F2B0	0206	0003
83	F2B4	0207	FES0
84	F2B8	05C0	
85	F2BA	8280	
86	F2BC	1 AAF	
87	F2BE	0287	FES0
88	F2C2	1302	
89	F2C4	OFAD	FES0
90	F2C8	0002	
91	F2CA	0380	
92	F2CC	0287	FE64
93	F2D0	14 EA	
94	F2D2	0202	2000
95	F2D6	DDC2	
96	F2D日	0287	FE64
97	F2DC	1 AFC	
98	F2DE	0206	0003
99	F2E2	10EA	

UNT	EFBC	NUD	EFBE	VLT	EFBE	BUFF	FE50
ENTRY	F200	GETNAM	F21C	TSTDDM	F22C	TSTNNUM	F232
ALPHA	F236	TSP	F24E	NXT	F250	NUM	F258
BUFF4	F26A	NAMEND	F276	DIM	F278	GETDIM	F28C
ENDB	F29C	NPOINT	F29E	PRINT	F2A6	COM1	F2B8
END1	F2CB	FORMAT	F2CC	SNDSP	F2D6	TSTDIM	F22C
NAMEND	F276						

1. If like mine, your CDOS manual makes no reference to DI, and you are struggling in the dark may I attempt to shed some light on on the subject, fut you.

DI
2. If you start by amending a copy ul 5 I to match the listing below, I telieve $1 t$ makes it easilet to use, and therefore understand.
3. The amendments do a number of things to DI:
a. It displays the Hex and ASCII values at the same tame.
b. It accepts Hex values for the rack \& sector requests.

Then displays the decimal values and the sector contents...
(l) To entar a decimal number, entrr the number and press RETURN.
(2) To enter d Hex number stat with a 0 end with a H and piess RETURN, Note if the maximum number of digits is entered then the RETURN is automatic.
c. You can modify the contents displayed either on the Hex or the ASCII displays, the other display is updated as you make the modifications. Which display to modify $1 \leq$ inclacted by an arrow at the bottom of the sereen.
d. The sector byte numbers down the left of the screen are in decimal. The number displayed beifig that of the first byte on that line. (0 LO 127)
4. You should note that $D I$ dones not function for double density (DD) though il does work for double sided (DS) and 80T.

BASIC'S

5. CDOS will produce on a disk:

(1) A byte of information is displayed on the screen by DI as a 2 digit $H e x$ number or a single digit ASCII character.
(2) A Cortex Word is made up of 2 bytes. (16 bits)
g. Track 0 is always the BOOT strap track.
h. Track 1 is always the directory track.
6. Thus the LDIR indication of System over Head of 32 sectors. (Blks in LDIR means sectors)

DISK DIRECTOR X

7. You can now use the modified DI to see on the screen what follows:
8. Track l Sector 0: Bit map of sectors in use. See the User Mag' 6 page 4 for explanation.
9. Track 1 , Sector 1 to 15 is the disk directory, on each sector there is room for the details of two files. Thus the limit of 30 files that can be saved. (DD of course doubles this)
10. Detail of any one of these sectors is:

h. Bytes 2 - 9 Title of thrifile.

d. Bytes 10 - 31 See User Mag 6 page 4.
e. Bytes 32-35 Contain the file disk locations for the first poilu of the file.
32 \& 33 XX XY XXX Track number in Hex.
Y Sector number in Hex.
$34 \& 35$ Total number of sectors in this portion of the file.
(1) The following 7 batches of 4 bytes are the same. giving a total of 8 portions that any file can be split up into to fit it on a disk.
(2) With this modified DI Y out can input $0 \times X X H$ direct to the track request and also $D Y H$ tc the sector request. (To reset the sector you press R or PET:IRN to the command request)
f. Bytes 64-127 Next file erfrysiot.
11. Now that you know what each lyle means and also how to find your files on the disk. you can hazily move about the disk and make modifications.
12. From the command request mind. select whether you want the next sector (press I), the last sector (press D), to modify in Hex (press H) or in ASCII (press A). Then press M to modify. You now use the arrow key to select the byte to modify. Once on the byte change it as you require then:
```
a. RETURN passes the changes to the disk and returns you to the command scanner.
b. E6CAPE aborts the program ie. the changes are not passed to the disk. (type RUN then reselect the sector)
```

13. Note you see how the changes are affecting the other display as you make them.
"MODIFIED DI BY J.MAKENZIE"
Note " \downarrow " is produced by GRAPH + SHIFT + 1 KEYS
120 DIM X[4],B[50]: $\$ M=" H "$
130 AX=ADR[X[0]]: AB=ADR[B[0]]
140 MWD[AX]=0420H: MWD[AX +2$]=06260 \mathrm{H}$
145 MWD[AX+4]=0D8C6H: MWD[AX+6]=02H
150 MWD $[A X+8]=0380 H$
160 ? (0,19);" Drive ": ? " Track ": ? " Sector "
165 ? (11,19); INPUT \#1;D
167 IF D>3 THEN GOTO 165
170 ? (8,20$) ;$: INPUT \#4; T
180 IF T<Q OR T>159 THEN GOTO 170
190 ? (9,21);: INPUT \#3;S
200 IF S<0 OR S>15 THEN GOTO 190
205 GOTO 470
$210 \mathrm{E}=0$
220 CALL AX,D,T,S,ADR[E],AB, \varnothing, \varnothing
230 IF E<>@ THEN ? (16,19);"READ ERROR"; \#E/256 LAND 03FH: GOTO 350
240 ? (16,19);"
250 BB=AB: CB=AB: ? ©"H";
260 FOR R=0 TO 15
270 ? ""000"R*B;" ";
280 FOR C=0 TO 7
290 ? \#; MEM[BB];" ";
$310 \quad \mathrm{BB}=\mathrm{BB}+1$
320 NEXT C
325 ?
340
350 ? e(20,20);" "; ? e"10L";: INPÚT "Command"\#, \$K;
360 IF SK="I" THEN S=S+1: GOTO 430
370 IF $\$ K=" D{ }^{2}$ THEN S=S-1: GOTO 430
380 IF $\$ K=" 0$ THEN GOTO 160
390 IF $\$ K=" A "$ THEN $\$ \mathrm{M}=\$ \mathrm{~K}: ~ ? ~(0,22) ; "$!
400 IF $\$ K=" H$ " THEN $\$ M=\$ K$: ? $(0,22)$;"
410 IF \$K="M" THEN ? $(26,22) ; " \downarrow ": ~ G O T O 720$
420 GOTO 160
430 IF S<0 THEN T=T-1: $S=15$
440 IF $S>15$ THEN $T=T+1: S=\varnothing$
450 IF $T<0$ THEN $T=0$
460 IF $T>159$ THEN $T=159$

480 вото 210
490 CALL $A X, D, T, S, A D R[E], A B, \varnothing, 0 F F H$
500 IF E<>0 THEN ? (20,19);"WRITE ERROR"; \#E/256 LAND 03FH
510 GOTO 350
```
5 1 5 ~ F O R ~ C = 0 ~ T O ~ 7 ~
520 IF MEM[CB]<020H THEN $Q="."
5 3 0
5 4 0
5 4 5
5 4 6
5 5 0
560
5 7 0
580
5 9 0
K=KEY[0]: IF K=0 THEN
610 IF K=0BH THEN C=C-1: BB=BB-1
620 IF K=09H THEN C=C+1: BB=BB+1
630 IF K=0AH THEN R=R+1: BB=BB+8
640 IF K=0BH THEN R=R-1: BB=BB-8
650 IF K=0DH THEN ? (26,22)" ": GOTO 490
660 IF K>01FH THEN MEM[BB]=K: GOTO 1000
670 IF C<30 THEN C=37: R=R-1
680 IF C>37 THEN C=30: R=R+1
690 IF R<0 THEN R=15: BB=AB+127
700 IF R>15 THEN R=0: BB=AB
710 GOTO 570
720 IF $M="A" THEN GOTO S60
730. BB=AB: R=0: C=5
740 ? ((C,R);#;MEM[BB];: ? @"2L";
750 K=KEY[0]: IF K=0 THEN WAIT 1: GOTO 750
760 IF K=08H THEN C=C-3: BB=BB-1
770 IF K=09H THEN C=C+3: BB=BB+1
780 IF K=\triangleAH THEN R=R+1: BB=BB+8
790 IF K=0BH THEN R=R-1: BB=BB-8
800 IF K=0DH THEN ? @(26,22)" ": GOT0 490
810 IF K>02FH THEN IF K<03AH THEN GOSUB 880
820 IF K>040H THEN IF K<047H THEN K=K-7: GOSUB 880
830 IF C<5 THEN C=26: R=R-1
840 IF C>26 THEN C=5: R=R+1
850 IF R<0 THEN R=15: BB=AB+127
860 IF R>15 THEN R=0: BB=AB
870 GOTO 740
880 K=MOD[K,16]
890 MEM[BB]=MOD[MEM[BB],16]*16+K
892 XX=(C-5)/3+30
894 IF MEM[BB]<020H THEN $Q="."
896 ELSE $Q=%MEM[BB]%D
898 ? @(XX,R);$Q;
900 RETURN
1000 XX=(C-30)*3+5
1010 ? @(XX,R); #; MEM[BB];
1020 GOTO 570
```

```
*** STAR BASIC 茾茾
```

ROUTINE FOR LOADING A BASIC PROGRAMME FROM EPROM AS A * COMMAND

The header block is the same as in the disc directory The progranme is saved from 2090 up to $2090+1$ oad length

Alen Badcock from Chandlers Ford has sent in this design for a piggy-back board to allow an extra system ROM to be fitted to the main board. All the ROM socket lines from ROM1 are paralleled to ROM4 exept for -CS4 which comes from pin 7 of IC33, If wire-wrap sockets are used for IC33 and IC76 on the piggy-back board the P.C.B. will plug into the old IC33 and IC76 sockets. The new ROM is mapped in between $6000 H$ and $7000 H$ when ROM select is on.

Soeren Rahbek. from Denmark sent in this circuit diagram and P.C.B. layout for a better data seperator for the TMS9909 floppy disc controller. He also sent in some double sided P.C.B.s for it which are available to anyone who has some software or hardware to swap for them. If you want one send your swap to the user group and we will pass it on. The FDC9126 data seperator is available from Manhatten Skyline.
$=$

酸

Remove ICBA and make following changes on main board

Discoririect:

- IC 88 PIN NUMBERS

IC TE Din 26 to IC69 pin 9

Coririect:

$$
\begin{array}{llllll}
\text { IC 77 pin } 4 & \text { to ICRB pin } 9 \\
\text { IC87 pin } 4 & \text { to ICSA pin } 6 \\
\text { IC 76 pin } 26 & \text { to IC 8 pin }
\end{array}
$$

di. [f. task \cdot per ally mure

$10-14$

SHORT TIPS

D. Fisher sent in the following:-

To change the RS232 port to 8 bit change memory location 5546 from 62F1 to 63F1.

To change the cursor character change memory location 5530 from $007 F$ to the ascii code of the preferred character.

Use the following to replace the standard microsoft statement CHR $\$($) when entering listings from magazines.

```
5 REM EQUIVALENT OF CHR$( )
10 DIM $A(256)
20 FOR A=\emptyset TO 255
30 $A(A)=%A !$A(A) IS USED INSTEAD OF CHR$(A)
40 NEXT A
```

Tim Gray uses the following to improve cassette loading

The diodes clip off any modulation distortion caused by mains hum etc.

The value of workspace pointer for Interrupt 1 is incorrect to set things right change location 0004 from ED24 to ED22 this will allow the Interrupt 1 user vector to be used.

Alen Badcock sent in the following :-
To cure a problem with the cassette motor relay not functioning correctly try changing R24 to $10 K$ and R43 to $2 K 2$ also a diode fitted across the relay coil may help, cathode to $+V$.

A bug in the re-number routine can be cured by changing memory location 2F3E from 1006 to 1007.

The 9909 disk controller timings can be changed directly by the following program. It sets it for 50MS step 35MS settle and 0MS load. The routine may be usefull to people who have trouble booting CDOS for the first time before using Config.
10 MEM F $140 H=050 H$
20 MEM F141H $=015 H$
30 MEM F142H $=011 H$
40 MEM F143H $=047 H$
50 MEM F144H $=064 H$
60 MEM F145H $=046 H$
70 MEM F146H $=00 H$
80 MEM F147H $=0 A 5 H$
CORTEX USERS CLUB SALE
RGB INTERFACE BARE BUARD £8.00 KIT £20.00CENTRONICS INTERFACE BARE BOARD £7.00 KIT £15.00E BUS -ALL IC'SE BUS BACK PLANE
KIT £30.00£15.00
SEMI CONDUCTORS
TMS9901 £3.00
TMS9902 £3.00
74LS612 (3 AVAILABLE) £25.00
74LS611/74LS611 (NEED PULL UP RESISTORS) £15.00
E BUS EXPANSION
E BUS (AK RAM,8K EPROM SCKT,16 IN/OUT LINES) £15.00
NOTE-THESE CARDS ARE EX EQUIPMENT TESTED AND WORKING E BUS ($8 * 8 K$ EPROM SCKT CARD BUILT NO EPROMS FITTED) £28. $0 \emptyset$ E BUS 512K DRAM(ONLY AVAILABLE COMPLETE AT PRESENT) £100.00
CORTEX EXPANSION
EXTERNAL VIDED INTERFACE BARE BOARD £15.0® DISK CONTROLLER (WD 2797+BOARD)
KIT £80.00 £40.00
CORTEX SOFTWARE
DISK OPERATING SYSTEM CDOS 1.20 AND 2.00 £45.00CDOS 1.20 FOR 9909 SYSTEMCDOS 2.00 FOR 2797 SYSTEM
MEMBERS SOFTWARE
WORTEX-WORD PROCESSING £15.00INCLUDES SPELLING CHECKERSEND TO J S MACKENZIE
4 WERSTAN CLOSE
MALVERN WR14 3NH
(INCLUDE TWO 5" DISKS)
DRAWTECH-GRAPHICS DRAWING PACKAGE £20.00
SEND TO TIM GRAY
1 LARKSPUR DRIVEFEATHERSTONEWOLVERHAMPTON WEST MIDLANDS WVID TN
MEMBERS HARDWARE
TAPE CONDITIONER KIT £10.00 BUILT £15.00SEND TOP MOYERS7 PHILIP GROVESUTTONST HELENS
MERSEYSIDE WA STD

