MSX2 TECHNICAL HANDBOOK

Edited by: ASCI1 Systems Division

Published by: ASCII Coprporation - JAPAN

First edition: March 1987

Text files typed by: Nestor Soriano (Konami Man) - SPAIN
March 1997

Changes from the original:

In Figure 4.3, "Port#l17" indication is corrected to "R#17".

In Figure 4.4, 00" field in R#17 is corrected to "10".

- In section 3.2.2, subsection ""Pattern name table™, text "12 low order bits
o0 the address (A9 to AO0)" is corrected to "12 low order bits of the address
(A1l to AO)"

- In Figure 4.17, the numerations of the two last rows in the Screen
correspondence table, originally "22" and "23", are corrected to "25" and
"'26" respectively.

- In section 3.2.2, subsection "Blink table'", the text 'the 9 low order bits
of the address (A9 to AO)" is corrected to "the 8 low order bits of the
address (A8 to AD)".

- In Figure 4.25, indication "Specifies the value of the screen (0 to 15)" is
changed to "Specifies the border colour (0-15)".

- In Figure 4.34, in the screen correspondance table, the three stages of the
screen are named "'Upper stage of screen™ in the original. This iIs corrected,
and the stages are named "Upper', "Middle™ and "Lower".

- The title of section 3.6.3 is "Screen colour mode specification” iIn the
original. The word "mode" is erased.

- In section 3.8.2, the text by writing the 2 high order bits"™ is corrected
to "by writing the high order bit".

- The title of Figure 4.63 is "Judging the conflict (sprite mode 2)" in the
original. This is corrected to "Judging the conflict (sprite mode 1)".

- In Figure 4.68, indication "Color code = 8 or 4 or 12" is changed to "Color
code = 8 or 4 = 12".

CHAPTER 4 - VDP AND DISPLAY SCREEN (Parts 1 to 5)

The MSX2 machines uses an advanced VDP (video display processor) for its
display screen, the v9938 (MSX-VIDEO). This LSI chip allows for several new
graphics features to be accessed by the MSX2 video display. It is also fully
compatible with the TMS9918A used in the MSX1.

Chapter 4 describes how to use this video display processor. It describes
functions not accessible by BASIC. For mode details (e.g. hardware
specifications, see V9938 MSX-VIDEO Technical Data Book (ASCII)).

1. MSX-VIDEO CONFIGURATION

The following features of the MSX-VIDEO give it a better display capabilities
than the TMS9918A:

512 colours with a 9-bit colour palette

Max. 512 x 424 dot resolution (when using the interlace)
Max. 256 colours at the same time

Full bitmap mode which makes graphic operations easy

Text display mode of 80 characters per line

LINE, SEARCH, AREA-MOVE executable by hardware

Up to 8 sprites on the same horizontal line

Different colours can be specified for each line In a sprite
Video signal digitizing feature built-in

Superimpose feature built-in

X R X o % % % %

1.1 Registers

MSX-VIDEO uses 49 internal registers for its screen operations. These
registers are referred to as "VDP registers" in this book. VDP registers are
classified by function into three groups as described below. The control
register group and status register group can be referred to using VDP(n)
system variables from BASIC.

(1) Control register group (R#0 to R#23, R#32 to R#46)

This is a read-only 8-bit register group controlling MSX-VIDEO actions.
Registers are expressed using the notation R#n. R#0 to R#23 are used to set
the screen mode. R#32 to R#46 are used to execute VDP commands. These VDP
commands will be described in detail in section 5. Control registers R#24 to
R#31 do not exist. The roles of the different control registers are listed in
Table 4.1.

Table 4.1 Control register list

Corres- |
R#n ponding Function |

VDP(n) |
___ I
R#0 VDP(0) mode register #0 |
R#1 VDP(1) mode register #1 |

+ +	
R#2	VDP(2)
[[|

|
R#3 VDP(3) colour table (LOW) |
R#4 VDP(4) pattern generator table |
R#5 VDP(5) sprite attribute table (LOW) |
R#6 VDP(6) sprite pattern generator table |
R#7 VDP(7) border colour/character colour at text mode |
R#8 VDP(9) mode register #2 |

| R#9 | VDP(10) | mode register #3 |

| R#10 | VDP(11) | colour table (HIGH) |

| R#11 | VDP(12) | sprite attribute table (HIGH) |

| R#12 | VDP(13) | character colour at text blinks |

| R#13 | VDP(14) | blinking period |

| R#14 | VDP(15) | VRAM access address (HIGH) |

| R#15 | VDP(16) | indirect specification of S#n |

| R#16 | VDP(17) | indirect specification of P#n |

| R#17 | VDP(18) | indirect specification of R#n |

| R#18 | VDP(19) | screen location adjustment (ADJUST) |
| R#19 | VDP(20) | scanning line number when the interrupt occurs |

| R#20 | VDP(21) | colour burst signal 1 |

| R#21 | VDP(22) | colour burst signal 2 |

| R#22 | VDP(23) | colour burst signal 3 |

| R#23 | VDP(24) | screen hard scroll |

| | | |

| R#32 | VDP(33) | SX: X-coordinate to be transferred (LOW) |

| R#33 | VDP(34) | SX: X-coordinate to be transferred (HIGH) |
| R#34 | VDP(35) | SY: Y-coordinate to be transferred (LOW) |

R#35	VDP(36)	SY: Y-coordinate to be transferred (HIGH)
R#36	VDP(37)	DX: X-coordinate to be transferred to (LOW)
R#37	VDP(38)	DX: X-coordinate to be transferred to (HIGH)

| R#38 | VDP(39) | DY: Y-coordinate to be transferred to (LOW) |
| R#39 | VDP(40) | DY: Y-coordinate to be transferred to (HIGH) |

R#40	VDP(41)	NX: num. of dots to be transferred in X direction (LOW)
R#41	VDP(42)	NX: num. of dots to be transferred in X direction (HIGH)
R#42	VDP(43)	NY: num. of dots to be transferred in Y direction (LOW)
R#43	VDP(44)	NY: num. of dots to be transferred in Y direction (HIGH)
R#44	VDP(45)	CLR: for transferring data to CPU

| R#45 | VDP(46) | ARG: bank switching between VRAM and expanded VRAM |
| R#46 | VDP(47) | CMR: send VDP command |

(2) Status register (S#0 to S#9)
This is a read-only 8-bit register group which reads data from MSX-VIDEO.

Registers are expressed using the notation S#n. The functions of the
registers are listed in Table 4.2.

Table 4.2 Status register list

| | Corres- | |

| S#n | ponding | Function |

| | VOP(n) " | |

| ------ Fom e ——_— oy |
| S#0 | VDP(8) | interrupt information |

| S#1 | VDP(-1) | interrupt information |

| S#2 | VDP(-2) | DP command control information/etc. |
| S#3 | VDP(-3) | coordinate detected (LOW) |

| S#4 | VDP(-4) | coordinate detected (HIGH) |

| S#5 | VDP(-5) | coordinate detected (LOW) |

| S#6 | VDP(-6) | coordinate detected (HIGH) |

| S#7 | VDP(-7) | data obtained by VDP command |

| S#8 | VDP(-8) | X-coordinate obtained by search command (LOW) |

| S#9 | VDP(-9) | X-coordinate obtained by search command (HIGH) |

(3) Colour palette register group (P#0 to P#15)

These registers are used to set the colour palette. Registers are expressed
using the notation P#n where "n® is the palette number which represents one
of 512 colours. Each palette register has 9 bits allowing three bits to be
used for each RGB colour (red, green, and blue).

1.2 VRAM

MSX-VIDEO can be connected with 128K bytes VRAM (Video RAM) and 64K bytes
expanded RAM. MSX-VIDEO has a 17-bit counter for accessing this 128K bytes
address area. Note that this memory is controlled by MSX-VIDEO and cannot be
directly accessed by the CPU.

Expanded RAM memory cannot be directly displayed to the screen as can that of
VRAM. However, it can be manipulated the same as VRAM when using the video
processor commands. This large work area is very useful when processing
screen data. Note that the MSX standard does not include instructions
regarding expanded RAM, so taking advantage of this in program design could
result in compatibility problems with other MSX machines.

Figure 4.1 VRAM and expanded RAM

Address counter

————————————————— 00000H ———————————
| | | | |

| | | | |

| | | | |

| | | | |
|----—-———-——---————- | OFFFFH -\~
| | | RAM

| | | (data use)

| | |

| | |

————————————————— 1FFFFH

VRAM
(screen use)

1.3 1/0 ports

MSX-VIDEO has four 1/0 ports that send data back and forth the CPU. The
functions of these ports are listed in Table 4.3. The ports are accessed by
the CPU through its 1/0 addresses in the table below, addresses expressed as
n, n" are stored at address locations 6 and 7 in MAIN-ROM. Although n = n* =
98H normally, this can be different on some machines, so port addresses

should be obtained from these addresses for reliable results.

It is generally recommended that BIOS be used for 1/0 operations for purposes
of compatibility. However, the screen display often requires high speed, so

these 1/0 ports are capable of accessing MSX-VIDEO directly.

Table 4.3 MSX-VIDEO ports

| Port | Address | Function |
| ----------------- Fom e ——_— gy |
port #0 (READ)	n	read data from VRAM
port #0 (WRITE)	n*	write data to VRAM
port #1 (READ)	n + 1	read status register
port #1 (WRITE)	n"+ 1	write to control register
port #2 (WRITE)	n*+ 2	write to palette register
port #3 (WRITE)	n*+ 3	write to indirectly specified register

Note: The value of n should be obtained by referring to address 6 in MAIN-ROM
The value of n"should be obtained by referring to address 7 in MAIN-ROM

2. ACCESS TO MSX-VIDEO

MSX-VIDEO can be accessed directly through the 1/0 ports without going
through BI0S. This chapter describes how to do this.

2.1 Access to Registers

2.1.1 Writing data to control registers

The control registers are write-only registers. As described above, the
partial contents of control registers (R#0 to R#23) can be obtained by
referring to VDP(n) from BASIC. This only reads the value which has been
written in the work area of RAM (F3DFH to F3E6H, FFE7H to FFF6H) used for
writing to registers.

There are three ways, described below, to write data to control registers.
Since MSX accesses MSX-VIDEO inside the timer interrupt routine to examine
the occurrence of sprite conflicts, note that access procedure will not
inhibiting the interrupt when the registers are accessed in the proper way as
described below.

(1) Direct access

The First way is to directly specify the data and where it is to be written
to. Figure 4.2 illustrates the procedure. The data is first written to port#l
and then the destination register number is written to port#l using the five
least significant bits. The most significant bit is set to 1 and the second
bit is set to 0. Thus the value would be 10XXXXXB in binary notation where
XXXXX is the destination register number.

Figure 4.2 Direct access to R#n

MSB 7 6 5 4 3 2 1 0 LSB

Port #1 | : : : Data : : : | 1.Puts data to port
#1.

Port #1]| 1 | O | R5 | R4] R3] R2 | R1 | RO | 2. Then puts register
——— number with two
| | | high bits set to
Fom e R e + 10" to port #1.
fixed register number (0O to 46)
at 10"

Port#l is also used to set VRAM addresses and is described in section 2.2.
The most significant bit of the second byte sent to this port is the
address/register flag and determines the operation to take place. When the
bit is set to "1, writing data to a control register as described here will
take place.

(2) Indirect Access (non-autoincrement mode)

The second way is to write data to the register specified as the objective
register (R#17 contains the objective pointer). To begin with, store the
register number to be accessed in R#17 by direct access. The most significant
bit is set to 1 and the second bit to 0. Thus the value would be 10XXXXXB in
binary notation where XXXXX is the objective register number. After this is
done, data can be written to the objective register by sending data to
port#3. This method is used for sending data to the same register
continuously. An example would be for the execution of VDP commands.

Figure 4.3 Indirect access to R#n (nhon-autoincrement mode)

First byte
MSB 7 6 5 4 3 2 1 0 LSB

R#17 | 1] O | RS 1 RA | R3] R2]R1L] RO| 1.Set register number n

——— to R#17, with two high

| | | order bits set to "10".

Fom e —_——_ gy +

fixed n (0O to 46)

at lIloll
Port#3 | : : : Data : : : | 2.Send data to
port#3.

——— The data is stored
in register R#n.

Port#3 | : : : Data : : : | 3._After these
are done,

——— data can be written to
register R#n only by
sending to port #3.

(3) Indirect Access (autoincrement mode)

The third way is to write date to the register indicated by R#17. R#17 is
incremented each time data is sent to port#3. To begin with, store the
beginning register number to be accessed In R#17 by direct access. The two
most significant bits are set to 0. Thus the value would be OO0XXXXXB in
binary notation where XXXXX is the beginning register number.

Since this method allows writing data to continuous control registers
effectively, it is useful when several continuous registers are to be changed
at once. One example would be when the screen mode is changed.

Figure 4.4 Indirect access to R#n (autoincrement mode)

MSB 7 6 5 4 3 2 1 0 LSB
R#17] O] O | RS R4 R3] R2]R1L]| RO| 1.Set register number n
——— to R#17, with two high
| | | order bits set to "00".

Port#3 | : : : Data : : : | 2.Send data to

——— The data is stored
in register R#n.

Port#3 | : : : Data : : : | 3.Data sent to
next
——— port#3 is stored to
register R#(n+1l).

2.1.2 Setting a palette

To set data in the MSX-VIDEO palette registers (P#0 to P#15), specify the
palette register number in the four lowest significant bits of R#16 (color
palette pointer), and then send the data to port#2. Since palette registers
have a length of 9 bits, data must be sent twice; red brightness and blue
brightness first, then green brightness. Brightness is specified in the lower
three bits of a four bit segment. Refer to Figure 4.5 for details.

After data is sent to port#2 twice, R#16 is automatically incremented. This
feature makes it easy to initialize all the palettes.

Figure 4.5 Setting a colour palette register

MSB 7 6 5 4 3 2 1 0 LSB

R#16 | O J] O] O] O J R3] R2]R1L | RO| 1.Set palette number n
——— to R#16, with four

| | | high order bits set
o + to "0000".
fixed at "0000" n (0 to 15)
Port#2 | | Red bright. | | Blue bright. | 2.Send red and blue
——— brightness to port#2.
| (. |
o - + o - +
0 to 7 0 to 7
Port#2 | | | | | | Green bright.| 2.Send green
brightness
——— to port#2. (*)
| |
Fo o +
0 to 7

(*) Since R#16 is iIncremented at this point, setting next palette can be done
by sending data to port#2 continuously.

2.1.3 Reading status registers

Status registers are read-only registers. Their contents can be read from
port#l by setting the status register number in the least significant four
bits of R#15 (status register pointer) as shown in Figure 4.6. The four most
significant bits are set to 0. Thus the value would be O0000XXXXB in binary
notation where XXXX iIs the status register number. Interrupts should be
inhibited before the status register is accessed. After the desired task is
completed, R#15 should be set to 0 and the interrupts released.

Figure 4.6 Acessing status registers

MSB 7 6 5 4 3 2 1 0 LSB

R#15 | O] O 1 O] O J] R3] R2]R1L | RO| 1.Set register number n
——— to R#15, with four

| | | high order bits set
S S + to ""0000".
fixed at "0000" n (0O to 9)
Port#l | : : : Data : : : | 2.Read data from

2.2 VRAM Access From the CPU

When a VRAM address is to be accessed from the CPU, follow the procedure
described below.

(1) Bank switching

The first 64K bytes of VRAM (0O0000H to OFFFFH) and the 64K bytes of expanded
RAM both reside at the same address space as viewed by MSX-VIDEO. Bank
switching is used so that they can both be online at the same time. Since
MSX2 does not to use expanded VRAM, always select the VRAM bank. Bank
switching is controlled by bit 6 of R#45.

Figure 4.7 VRAM/expanded RAM bank switching

MSB 7 6 5 4 3 2 1 0 LSB
R#45 | - I X | - | - 1 - 1-1-"1- | When bit 6 of R#45 is "0"
——— VRAM is selected; when it
| 0:VRAM is 1, expanded RAM is
+——> selected.

1:Expanded RAM

(2) Setting the VRAM page (three high order bits)

The 17-bit address for accessing the 128K bytes of VRAM is set in the address
counter (A16 to AO). R#14 contains the three high order bits (A16 to Al4). So
this register can be viewed as switching between eight 16K byte pages of
VRAM.

Figure 4.8 Setting the VRAM page (3 high order bits)

MSB 7 6 5 4 3 2 1 0 LSB
R#14] O] O | O | O | O | Ale|] Al5] Al4] Set 3 high order bits of
——— address counter in the
field from bit 2 to bit O
on R#14.

(3) Setting the VRAM address (14 low order bits)

The 14 low order bits of the address should be sent to port#l in two bytes.

Figure 4.9 shows the details. Make sure that the most significant bit of the
second byte sent is set to 0. This sets the address/register flag to address
mode. The second most significant bit sets the read/write flag. 1 signifies

writing to VRAM and 2 signifies reading from VRAM.

Figure 4.9 Setting 14 low order bits

MSB 7 6 5 4 3 2 1 0 LSB

Port#l | A7] A6 | A5 | A4 | A3 | A2] AL | AO] 1.Send A7 to AO to

——— port#l.
Port#1 | 0 | | A13] Al2] A11] Al1l0] A9 | A8 | 2.Send A13 to A8 to
——— port#l, continuously.
| | O:reading VRAM Bit 7 must be set to
"o +—=> "0". Bit 6 determines
1l:writing VRAM reading/writing data.

(4) Reading/writing VRAM

After setting the value in the address counter, read or write data through
port#0. The read/write flag is set the same time as Al13 to A8 of the address
counter, as described above.

The address counter is automatically incremented each time a byte of data is
read or written to port #0. This feature allows for easy access of continuous
memory in VRAM.

Figure 4.10 Access to VRAM through port#0

MSB 7 6 5 4 3 2 1 0 LSB

Port#0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO | Access to VRAM is done
——— through port#0. Address
counter is automatically
incremented.

3. SCREEN MODES OF THE MSX2

The MSX2 has ten different modes as shown in Table 4.4. Six screen modes
marked with "*" in the table below (TEXT 2 and GRAPHIC 3 to GRAPHIC 7) have
been introduced for the MSX2. The other modes have been improved due to the
change from TMS9918A to MSX-VIDEO. Fetures of these ten screen modes and how
to use them are described below.

Table 4.4 Screen modes listing of MSX2

| Mode Name | SCREEN mode | Description |
|---——————-———- o Ty Sy Sy Sy iy |
| TEXT 1 | SCREEN O | 40 characters per line of text, one colour |
| | (width=40) | for each character |
|----——-——--——-- - N N L |
| * TEXT 2 | SCREEN O | 80 characters per line of text, |
| | (width=80) | character blinkable selection |
|---——-———-———- o gy |
| MULTI-COLOR | SCREEN 3 | pseudo-graphic, one character |

| | | divided into four block |
|---————--——-- - N N L |
| GRAPHIC 1 | SCREEN 1 | 32 characters per one line of |

| | | text, the COLOURed character available |

|---————————- TS S Sy Sy Sy Sy Sy |

| GRAPHIC 2 | SCREEN 2 | 256 x 192, the colour is |
| | | specififed for each 8 dots |

| ------------- o e |
| * GRAPHIC 3 | SCREEN 4 | GRAPHIC 2 which can use sprite |
| | | mode 2 |
|---——-—-——--———- o gy gy |
| * GRAPHIC 4 | SCREEN 5 | 256 x 212; 16 colours are |

| | | available for each dot |
|---————--——-—- - N e N L |
| * GRAPHIC 5 | SCREEN 6 | 512 x 212; 4 colours are |
| | | available for each dot |

| ------------- o e |
| * GRAPHIC 6 | SCREEN 7 | 512 x 212; 16 colours are |

| | | available for each dot |
|---————————- TS S Sy Sy Sy Sy Sy |
| * GRAPHIC 7 | SCREEN 8 | 256 x 212; 256 colours are |

| | | available for each dot |

3.1 TEXT 1 Mode

TEXT 1 screen mode has the following features:

|

| screen: 40 (horizontal) x 24 (vertical) |

| background/character colours can be selected from |
| 512 colours |

| character: 256 characters available

| character size: 6 (horizontal) x 8 (vertical) |
| memory requirements: for character font ... 2048 bytes

| (8 bytes x 256 characters) |

| for display 960 bytes

| (40 characters x 24 lines) |

| BASIC: compatible with SCREEN O (WIDTH 40) |

| |

3.1.1 Setting TEXT 1 mode
MSX-VIDEO screen modes are set by using 5 bits of R#0 and R#1. Figure 4.11
shows the details. The 3-bit mask in R#0 is 000B and the 2-bit mask in R#1 is
10B when using the TEXT 1 mode.

Figure 4.11 Setting TEXT1 mode

MSB 7 6 5 4 3 2 1 0 LSB

3.1.2 Screen structure of TEXT 1 mode

* Pattern generator table

The area in which character fonts are stored is called the pattern generator
table. This table is located in VRAM, and, although the font is defined by
using 8 bytes for each character from the top of the table, the 2 low order
bits of each byte representing the right two columns are not displayed on the
screen. Thus, the size of one character is 6 x 8 pixels. Each character font
set contains 256 different characters numbered from O to 255. Use this code
to specify which character should be displayed on the screen.

Specify the location of the pattern generator table in R#4. Note that the 6
high order bits of the address (A16 to All) are specified and the 11 low
order bits of the address (A10 to AO) are always O (*'00000000000B™). So the
address in which the pattern generator table can be set always begins at a
multiple of 2K bytes from 00000H. This address can be found using the system
variable BASE(2) from BASIC. Figure 4.12 shows the structure of the pattern
generator table.

Figure 4.12 Structure of the pattern generator table

MSB 7 6 5 4 3 2 1 0 LSB

R#4] O | O | Al6] A15] Al4] A13] A12] All] —-——+

gy +

|

| MSB 7 6 5 4 3 2 1 0 LSB

] - +

+-—-> 0 | | 1 # | | | | | 1
|----+----+----+----+----+----+----+----| |
1] 1 # | 1 # 1 | | | 1
|--——-+-———-t+————]| |
2 1 # | | | 1 # 1 | (I I |
|--——+-———F———] |
31 # 1 | | | # 1| | 1 1 | Pattern #0
|----+----+----+----+----+----+----+----| |
4al# 1 # 1 # 1 # | # | | | 1
|-+ttt] |
S1# | | | | | [
|----+----+----+----+----+----+----+----| | ------
61 # | | | | # | | (I I |1 =0
|--——-+-———-t+————]| | --——--
71 | | | | | | | (|
|---——+-——-+———F—— | -+
sl # 1 # 1 # | # | | | | (|
|--——-+-———-t+————]| | --——--

mp# 1 # 1# 1 # 1 | | | |
| -———4————F—— | | Pattern #1
12 | # | | | 1 # | | (I |
|--——-+-———-t+————]| |
131 # | | | 1 # 1 | (I I |
|--—+-———F———tF] |
M4 1# 1 # 1# 1 # | | | | 1
|----+----+----+----+----+----+----+----| |
15 | | | | | | | | 1
___ +
S +
2040 | # | | # | 1 # 1 | (I I |
|--—+-———F———tF] |
2041 | | # | 1 # 1 1 # | | 1
|----+----+----+----+----+----+----+----| |
2042 | # | 1 # | 1 # | | (I I |
|---——+-——-t+———t] |
2043 | 1 # | 1# 1 1 # | | |
| -———F————F—— | | Pattern #255
2044 | # | 1 # | 1 # | | (I |
|---—-+-———-t+————F]| |
2045 | 1 # | 1# 1 1 # | | |
|--——+-———F———] |
2046 | # | 1 # | 1 # | | (I |
|----+----+----+----+----+----+----+----| |
2047 | 1 # | 1# 1 1# | | (|
___ +
| |
o —_— +

2 low order bits are not displayed

Pattern generator table

* Pattern name table

The pattern name table stores the characters to be displayed at each position
on the screen. One byte of memory is used for each character to be displayed.
Figure 4.13 shows the correspondence between memory location and screen
location.

Specify the location of the pattern generator table in R#2. Note that the 7
high order bits of the address (A1l6 to Al10) are specified and that the 10 low
order bits of the address (A9 to AO) are always O ('0000000000B™). So the
address in which the name table can be set always begins at a multiple of 1K
bytes from 00000H. This address can be found by using the system variable
BASE(0) from BASIC. Figure 4.13 shows the structure of the pattern generator
table.

Figure 4.13 Structure of TEXT1 pattern name table

MSB 7 6 5 4 3 2 1 0 LSB

R#2 | O | Al6] A15] Al4] A13] Al2] All] A10] ---+

B L +

|

: | |

+--->0] (0,0 | 0 1 2 3 39 X
R | s s
11 (,00 | ojo 1112 |3 | | 39 1|
l---—-—-—-—-1 |---- ot — —t———
21 (2,00] 1] 40 | 41 | 42 | 43 | I 79 |
| --------- | ———e e —_—t

| |
39 | (39,0) | = mmmmmmmmmmee e

|-————————- | 22 | 880] 881] | 919]

40 | (0,1) | e e —+-——-]
|-———--—-—- | 23 | 920] 921] | 959]
- . |l e
. . Y
| | Screen correspondence table

Pattern Name Table

3.1.3 Specifying screen colour

The screen colour is specified by R#7. The background colour is the palette
specified by the 4 low-order bits of R#7; the 4 high-order bits specify the
foreground colour (see Figure 4.14). A "0" in the font pattern is displayed
in the background colour and a "1" is displayed in the foreground colour.
Note that in TEXT 1 the border colour of the screen cannot be set and it is
the same as the background colour.

Figure 4.14 Colour specification in TEXT 1

MSB 7 6 5 4 3 2 1 0 LSB
R#7 | : : : | : |
| | |
e o +
Specifies the colour of "1" Specifies the colour of "0" of the pattern

of the pattern (0 to 15) and of the background colour (0 to 15)

3.2 TEXT 2 Mode

The screen mode TEXT 2 has the following features:

screen: 80 (horizontal) x 24 (vertical) or 26.5 (vertical) |
background colour/character colour can be selected |
from 512 colours |

character: 256 characters available
character size: 6 (horizontal) x 8 (vertical) |
each character blinkable |

memory requirements: 24 lines |

for character font ... 2048 bytes
(8 bytes x 256 characters) |
(80 characters x 24 lines) |
for blinking 240 bytes (= 1920 bits) |
26.5 lines |
for character font ... 2048 bytes |
(8 bytes x 256 characters) |
for display 2160 bytes |
(80 characters x 27 lines) |
for blinking 270 bytes (= 2160 bits) |
BASIC: compatible with SCREEN O (WIDTH 80) |

|
|
|
|
|
|
|
|
|
|
| for display 1920 bytes |
|
|
|
|
|
|
|
|
|
|

3.2.1 Setting TEXT 2 mode

Set TEXT2 mode as shown in Figure 4.15.

Figure 4.15 Setting TEXT2 mode

MSB 7 6 5 4 3 2 1 0 LSB

* Setting number of lines (24 lines/26.5 lines)

TEXT2 mode can switch the screen to 24 lines or 26.5 lines depending on the
value of bit 7 in R#9. Note that, when the screen is set to 26.5 lines, only
the upper half of the characters at the bottom of the screen are displayed.
This mode is not supported by BASIC.

Figure 4.16 Switching number of lines

MSB 7 6 5 4 3 2 1 0 LSB

R#O LN - 1 - - - - |- - |

1:26.5 lines
3.2.2 Screen structure of TEXT 2

* Pattern generator table

The pattern generator table has the same structure and function as the one of
TEXT1. See the descriptions for TEXT1.

* Pattern name table

Since the number of characters to be displayed in the screen has been
increased to 2160 (80 x 27) characters maximum, the maximum area occupied by
the pattern name table is 2160 bytes.

Specify the location of the pattern name table in R#2. The 5 high order bits
of the address (Al6 to Al12) are specified and the 12 low order bits of the
address (A1l to AO0) are always 0O ("*'000000000000B'™). So the address in which
the pattern name table can be set always begins at a multiple of 4K bytes
from OOOOOH.

Figure 4.17 Structure of TEXT2 pattern name table
MSB 7 6 5 4 3 2 1 0 LSB

R#2 | O | A16] Al5] Al4] A13] A12] 1 | 1 | ———+

gy +
|
I [|
+--->0] (0,0 | 0 1 2 3 79 X
11 (1,00 1| o]0 11 12 |3 | | 79 |
————————]] -—-- S (TR "SRRI R e ——
21 2,00 | 1]800] 81] 8] 83| | 159]
| --------- | ————t e —_—t
- . | [| | | | |
| | - - -
————————— | I I
79 | (79,0) | R — —+--=-]
|-———————- | 25]2000]2001] |2079]
80 | (0.1) | R —+--—-|

|--——————= | 26]2080]2081] 12159]

Pattern Name Table

* Blink table

In TEXT2 mode, it is possible to set the blink attribute for each character.
The blink table stores the information of the screen location of the
characters blinked. One bit of the blink table corresponds to one character
on the screen (that is, on the pattern name table). When the bit is set to
"1™ blinking is enabled for the corresponding character; when the bit is "0"
blinking is disabled.

Figure 4.18 Blink table structure of TEXT2

MSB 7 6 5 4 3 2 1 0 LSB

___ +
|

e +
|
| MSB 7 6 5 4 3 2 1 0 LSB
I ___
#2011 0,0 1 (1,0) 1 2,0) 1 G.0) | (4:0) | (5:0) | (6,0) | (7.0) |

______________ S St SOt RS RU SRRt SR

: | (8. 0) | (9.0) 1(10,0) |(i1, 0) 112, 0) 113, 0) 114, 0) 1(15,0) |

______________ B By SOy SOyt SRRt S

T T N T | | L

T | | | |

——————— S S S S

Blink table

Specify the starting address of the blink table by setting the 8 high order
bits (A16 to A9) in R#3 and R#10. The location of the blink table is set by
writing the 8 high order bits of the address (A16 to A9) in R#3 and R#10. The
9 low order bits of the address (A8 to A0) are always 0O (*'000000000B"™). So
the address in which the blink table can be set always begins at a multiple

of 512 bytes from O00O0O0OH.

3.2.3 Screen colour and character blink specification

The foreground colour is specified by the 4 high order bits of R#7 and the
background colour by the 4 low order bits of R#7. Characters with a blink
attribute of 1 defined by the blink table alternate between the blink colour
and the colour specified in R#12.

Figure 4.19 Setting screen colour and blink colour
MSB 7 6 5 4 3 2 1 0 LSB
R#7 | : : : | : : : | <-- original character
——— colour
| | |
e e +
Specifies the colour Specifies the colour of "0" of the pattern
of "1" of the pattern and of the background colour
R#12 | : : : | : : : | <-- character colour

——— when blinking

Specifies the colour of "1" Specifies the colour of "0" of
of the pattern when blinking the pattern when blinking

The blinking rate is set in R#13. The 4 high order bits define the display
time in the original colour, and the 4 low order bits define the display time
in the blink colour. The period of time is defined in units of 1/6 seconds.

Figure 4.20 Setting blink rate

MSB 7 6 5 4 3 2 1 0 LSB
R#13 | : T1 : | TO |
| | |
e o +
time to display the colour time to display the colour
specified by R#12 specified by R#7
———————————————————————————— --... colour specified
|<- TO/6 seconds ->]<- T1/6 seconds -> | in R#7
——— colour specified
normal colour blinking colour in R#12

List 4.1 Blink example

1000 -

1010 * LIST 4.1 BLINK SAMPLE

1020 *

1030 *

1040 SCREEN O : WIDTH 80 "TEXT 2 mode

1050 ADR=BASE(1) "TAKE COLOR TABLE ADDRESS
1060 *

1070 FOR 1=0 TO 2048/8

1080 VPOKE ADR+1,0 "reset blink mode

1090 NEXT

1100 *

1110 VDP(7) =&HF1 "text color=15, back color=1
1120 VDP(13)=&H1F "text color=1, back color=15
1130 VDP(14)=&H22 "set interval and start blink
1140 *

1150 PRINT "Input any character : '';

1160 *

1170 K$=INPUTS(1)

1180 IF K$<CHR$(28) THEN 1230

1190 IF K$>" " THEN GOSUB 1280

1200 PRINT K$;

1210 GOTO 1170

1220 -

1230 VDP(14)=0 "stop blink
1240 END

1250 -

1260 "---——- set blink mode ----—-

1270 -

1280 X=P0OS(0) : Y=CSRLIN

1290 A=(Y*80+X)\8

1300 B=X MOD 8

1310 M=VAL("&B"+MI1D$(**000000010000000",8-B,8))
1320 VPOKE ADR+A,VPEEK(ADR+A) XOR M

1330 RETURN

3.3 MULTI COLOUR Mode

The MULTI COLOUR mode is described below:

screen: 64 (horizontal) x 48 (vertical) blocks |
16 colours from 512 colours can be displayed |
at the same time

block: block size is 4 (horizontal) x 4 (vertical) dots |

memory requirements: for setting colours 2048 bytes |
for specifying locations 768 bytes |

sprite: sprite mode 1 |

BASIC: compatible to SCREEN 3 |

|
|
|
|
|
| colour can be specified to each block |
|
|
|
|
|

3.3.1 Setting MULTI COLOUR mode

Set MULTI COLOUR mode as shown in Figure 4.21.

Figure 4.21 Setting MULTI COLOUR mode

MSB 7 6 5 4 3 2 1 0 LSB
R#0 | - | - I - |1 - 10 |JO JO | |
R#L | - |- 1 - 10 11 | | | |

* Pattern generator table

In this mode, patterns are constructed as 2 x 2 blocks and one pattern name
corresponds to four patterns. The starting address on this table is specified
in R#4. Since only the 6 high order bits (A16 to All) of the address is
specified, the pattern generator table can be located at intervals of 2K
bytes from O0000H (see Figure 4.22).

Figure 4.22 Pattern generator table structure of MULTI COLOUR

2 blocks
<-(8 dots) -> MSB 7 6 5 4 3 2 1
LSB
_____________ N 7
l A	B		2 blocks	1 "A" colour code	"B" colour code
-—---- +-———		(8 dots) 2 bytes]---———————————————- Fom			
l C	1 D	1	l I "C* colour code	"D colour code	
_____________ v Vo					
MSB 7 6 5 4 3 2 1 0 LSB					
R#4] O	O	Al6] Al5] Al14] Al13] Al2] A1l ----- +		
___ I					
gy +					
MSB 7 6 5 4 3 2 1 0 LSB					
		o			
+——>	-	O	l Al B]	"A" col. code	"B" col. code
Pattern name #0	l---+---1 - Fom 1D				
(8 bytes)		l CI D]] "C*col. code	"D" col. code		
_________________	8 e				
Pattern name #1					
(8 bytes) /]l @ -					
—————————————————	16	l EI FI]1 1 "E" col. code	"F" col. code		
. e B e — oo 1					
- |l G]JT H] | "G col. code | "H" col. code |

| Pattern name#255]| | 1] . .
| (8 bytes) | |———;———| | -——=mmmm Fmm e 1(3)

| M| NJ | "M col. code | "N" col. code |
e B oo &)
|l O] P]] "0 col. code | "P" col. code |

(1) This table is in effect when Y is 0, 4, 8, 12, 16, or 20

(2) This table is in effect when Y is 1, 5, 9, 13, 17, or 21

(3) This table is in effect when Y is 2, 8, 10, 14, 18, or 22

(4) This table is in effect when Y is 3, 7, 11, 15, 19, or 23

* Pattern name table

This is the table for displaying specified patterns at desired locations on
the screen. One of four patterns in a pattern name is displayed at its
Y-coordinate value. BASIC sets the contents of this table as shown in Figure
4_23. The starting address of the pattern name table is specified by R#2.
Since only the 7 high order bits of the address (Al16 to A10) are specified,
the address at which this table can be set is at increments of 1K bytes from
00000H (see Figure 4.24).

Figure 4.23 Setting BASIC pattern name table

Pattern O
X 0 1 2 3 4 5 - - 26 27 28 29 30 31

_________ Y e S
| [| Ol1O0]1 212131415101 ---126] 27] 28] 29] 30] 31]
|-—+-—--1 |-+ttt - R e e e |
| [| 110111213141 | 27] 28] 29] 30] 31]
|--——+-—-—] ———> |-+t —+- e e At |
| [| 2101112 3] | 28] 29] 30] 31]
|---+---| |---+---+---+---+- -+---+---+---+---|
| [| 31012121310 --+-- - - < < - - -1 28] 29] 30] 31]
|-—+——-1] |-—-+——+———+———+- Rt e e e |
| | 1 4 | 32] 33] 34] 35] | 60] 61] 62] 63]
|---+---| |---+---+---+---+- -+---+---+---+---|
| [| 5] 32] 33] - - | 62] 63]
|-—+-—--1 |-—+———+-. ot ——
[6 | 32| - - | 63]
e I : .]
| 71 32] - - | 63]
————————— |-—-+- . . —+-——]

8 | 64] - (64 x 64 blocks) . | 95]
Pattern O |---+- .) ——
appears - | 64] . . | 951
here as a - -t - . —-+-——]
result . -

- - | | | 1 data unit . .
. |---+---1 corresponds . —+-——=

- |128] . | | |] to a2 x 2 block]159]
|--——+- L mmee——— —+——]

20 |160] . |]191]
|---+---+-_ _-+---+---|

21 |1e0]161] -]190]191]
|-—-+———+———+———+- ettt ———]

22]160]161]162]163] |]188]189]190]191]
|---+---+---+---+---+---+- -+---+---+---+---+---+---|

23 |160]161]162]163]164]165]

|186]187]188]189]190]191]

Figure 4.24 Pattern name table structure of MULTI COLOUR mode
MSB 7 6 5 4 3 2 1 0 LSB
R#2 | O | Al6] A15] Al4] A13] Al2] Al11l] Al10| ---+
___ I
|
gy +
|
I I I
| |-=--=mm=-
+---> 0] (0,0 | 0 1 2 3 31 X
I ______________________________________
11 (.00 | ol1o0 11 12 13 1. | 31 |
l---—-—-—-—-1 |---- ot —t———
21 @,00 | 1132]33]3]3] - | 63 |
| --------- | ————t e —_—t
-1 - | (. | | | | |
| | - - -
|-=--==-=- | I I
31 | (31,0) | e —+--=-]
|--————- | 22 | 704] 705] | 735]
321 (0,1) | | --——t-mmt- —-m—|
|---——————- | 23 | 736] 737] | 767]
- . |l B T
. . Y
| | Screen correspondence table
767 | (31,23) |

Pattern Name Table

3.3.3 Specifying the screen colour in MULTI COLOUR mode

The border colour of the screen can be specified by R#7 (see Figure 4.25).

Figure 4.25 Border colour specification

MSB 7 6 5 4 3 2 1 0 LSB

invalid specifies the border colour
of the screen (0 to 15)

3.4 GRAPHIC 1 Mode

GRAPHIC 1 Mode is the screen mode as shown below:

| |

| screen: 32 (horizontal) x 24 (vertical) patterns |

| 16 from 512 colours can be displayed |
| at the same time

| pattern: 256 kinds of patterns are available

| pattern size is 8 (horizontal) x 8 (vertical) dots |
| any Figure can be defined for each pattern

| different colour for each 8 pattern can be set |
| memory requirements: for pattern font_.._._..... 2048 bytes |
| for colour thale 32 bytes |
| sprite: sprite mode 1 |

| BASIC: compatible with SCREEN 1 |

3.4.1 Setting GRAPHIC 1 mode

GRAPHIC 1 mode can be set as shown in Figure 4.26.

Figure 4.26 Setting GRAPHIC 1 mode

MSB 7 6 5 4 3 2 1 0 LSB
R#0 | - | - 1 - 1 - 10 10 10] |
R#L | - |- 1 - 10 10 | | | |

3.4.2 Screen structure of GRAPHIC 1 mode

* Pattern generator table

In this mode, 256 kinds of patterns, corresponding to codes 0 to 255, can be
displayed on the screen. Fonts of each pattern are defined in the pattern
generator table (see Figure 4.27). The starting address of the pattern
generator table is specified by R#4. Note that only the 6 high order bits of
the address (Al6 to All) are specified.

Figure 4.27 Pattern generator table of GRAPHIC 1 mode

MSB 7 6 5 4 3 2 1 0 LSB

R#A | O | O | Al6] A15] Al4] Al3]| A12] All] ---+

B L +
|
| MSB 7 6 5 4 3 2 1 0 LSB
| --- +
+---> 0 | | 1 # | | | | | (I
|--——-+-———-t+————]| |
1] 1 # | 1 # 1 |1 | | |
|--—+-———F———tF] |
21 # | | | 1 # | | (I |
|----+----+----+----+----+----+----+----| |
31 # 1 | | | # 1 | 1 1 | Pattern #0
|---——+-——-t+———t] |
4a1# |1 # 1 # | # | # | | | 1
|----+----+----+----+----+----+----+----| |
S # | | | 1 # | | (I |
|---—-+-———-t+————F]| | --———-
61 # | | | 1 # 1 | (I I I | | =
|--——+-———F———] | ——--
71 | | | | | | | (I
|----+----+----+----+----+----+----+----| "
81 # 1# 1 # | # | | | | [
|---——+-——-t+———t] | -——--
91 # | | | | | 11 1 1 # 1=
|----+----+----+----+----+----+----+----| | ------
10 | # | | | | # | | (I |
|--——-+-———-t+————]| |
1y # 1 # 1# 1 # 1 | | | [
|--—-——+-—-+———t——t] | Pattern #1
12 | # | | | | # | | (I |
|----+----+----+----+----+----+----+----| |
131 # | | | 1 # | | (I I |
|-+ttt] |
M1 # 1 # 1 # 1 # 1 | | | 1
|----+----+----+----+----+----+----+----| |
15 | | | | | | | | (I
___ +
S +
2040 | # | 1 # | 1 # | | (I I |
|-+ttt] |
2041 | | 1# 1 1 # | | 1
|----+----+----+----+----+----+----+----| |
2042 | # | | # | | # | | (I |
|--——-+-———-t+————]| |
2043 | 1 # | 1# 1 1 # | | [
|--—-—-+-—-+———t——] | Pattern #255

2044 | # | I # | I # | I I

e Lt S e e e | |
2045 | | # | 1 # 1 1 # | | 1

----+----+----+----+----+----+----+----| |
2046 | # | 1 # | 1 # | | (I I |

e e et Bt | |
2047 | 1 # | 1# 1 1 # | | (|

Pattern generator table

* Colour table
The colour specification for each of the 8 patterns are done by the colour
table. Colours for "0" and "1" of the bit of each pattern can be specified
(see Figure 4.28). The starting address of the colour table is specified by
R#3 and R#10. Note that only the 11 high order bits of the address (Al16 to
AB) are specified.

Figure 4.28 Colour table structure of GRAPHIC 1 mode

MSB 7 6 5 4 3 2 1 0 LSB

——— + |
|
o +
|
| Pattern 1" colour code Pattern 0" colour code
| e e +
| | | |
| MSB 7 6 5 4 3 2 1 0 LSB Pattern number
|
+---> 0 | FC3 | FC2 | FC1 | FCO | BC3 | BC2 | BC1 | BCO | 0 to 7
|-—-- e e e e e e e +
1] FC3 | FC2 | FC1 | FCO | BC3 | BC2 | BC1 | BCO | 8 to 15
| ----- R — R — R — R — R —— R —— R —— +
r - - 1r-1r-1r-1r-1r-1 -1
| | | 1 | | (.
| ----- R — R — R — R — R —— R —— R —— +

31 | FC3 | FC2 | FC1 | FCO | BC3 | BC2 | BCL | BCO | 248 to 255

Colour table

* Pattern name table

The size of the pattern name table is 768 bytes and the table corresponds to

the pattern on the screen, one by one (see Figure 4.29). The starting address
of the pattern name table is specified by R#2. Note that only the 7 high
order bits of the address (A16 to A10) are specified.

Figure 4.29 Pattern name table structure of GRAPHIC 1 mode
MSB 7 6 5 4 3 2 1 0 LSB

R#2 | O | A16] A15] Al4] A13] Al2]| All] A10] ---+

- +
|
I | |
+---> 0] (0,0 | 0 1 2 3 31 X
|l-—————-—- |l -
11 (@.00 | o10 11 12 |13 | | 31|
| ————————————— -ttt —_—t————
21 2,00 | 1] 32]33] 3] 35| | 63 |
|--———-——- | ———t e —4———
- | - | 1 | | | | |
| | . . .
|---—-——- R I I
31 | (31,0) | e —+--—-]
|--———----- | 22] 704] 705] | 735]
321 0.1 | e — —+--=-]
|--———————- | 23 | 736] 737] | 767]
- - |l et
. . Y
| | Screen correspondence table

Pattern Name Table

3.4_.3 Specifying the screen colour

The border colour of the screen can be specified by R#7 (see Figure 4.30).

Figure 4.30 Screen colour specification of GRAPHIC 1 mode
MSB 7 6 5 4 3 2 1 0 LSB
N T T |
| | |
e e +

invalid specifies the border colour

of the screen (0 to 15)

3.5 GRAPHIC 2, GRAPHIC 3 modes

GRAPHIC 2 and GRAPHIC 3 modes are the screen modes as described below:

| |

| screen: 32 (horizontal) x 24 (vertical) patterns |

| 16 from 512 colours can be displayed |
| at the same time |

| pattern: 768 kinds of patterns are available

| pattern size is 8 (horizontal) x 8 (vertical) dots |
| any Figure can be defined for each pattern

| only two colours can be used in horizontal 8 dots |
| memory requirements: for pattern font _._._..__.____.._. 6144 bytes |
| for colour thale .. _._..__..__.... 6144 bytes |
| sprite: sprite mode 1 for GRAPHIC 2 |

| sprite mode 2 for GRAPHIC 3 |

| BASIC: compatible to SCREEN 2 for GRAPHIC 2 |
| compatible to SCREEN 4 for GRAPHIC 3 |

3.5.1 Setting GRAPHIC 2, GRAPHIC 3 modes

GRAPHIC 2, and GRAPHIC 3 modes are set as Figure 4.3.1.

Figure 4.3.1 Setting GRAPHIC 2, GRAPHIC 3 modes

GRAPHIC 2 mode setting

MSB 7 6 5 4 3 2 1 0 LSB
R#0 | - | - | - 1 - 10 JO |1 | |
R#L | - | - | - 10 10 | | | |

MSB 7 6 5 4 3 2 1 0 LSB
R#O | - I - 1 - 1 - 10 11 10 1] |
R#L | - |- 1 - 10 10 | | | |

3.5.2 Screen structure of GRAPHIC 2, GRAPHIC 3 modes

* Pattern generator table

In this mode, there are three pattern generator tables which are compatible
with GRAPHIC 1 and 768 patterns can be displayed. It cannot display patterns
which are overlapped on the screen, and operating the pattern generator table
in this case causes the 256 x 192 dot graphics display to be simulated. The
starting address of the pattern generator table is specified by R#4. Note
that only 4 bits of the address (Al16 to A13) are specdified, so the address
which can be set is located at interval steps of 8K bytes from O0000H (see
Figure 4.32).

Figure 4.32 Pattern generator table structure of GRAPHIC 2, GRAPHIC 3
MSB 7 6 5 4 3 2 1 0 LSB

R#A | O | O | Al6] A15] Al4] A13] 1 | 1 | ——+

|l @ - —+
+---> | Pattern 0 | O | ### | o 1
|---—-------—- | | # #1 1]
| Pattern 1 | 1 | # # | 2
|-————— - | | # # | 3 | Pattern
Pattern |] | - | ##u#### | 4] O
generator . . | # # | 5 1
table . . | # # | 6 |
for block 1 | | | | 7 |
|--——-—-===———- | # # # # # # | 8 -+
| Pattern 254 | | # # | 9 |
e —— I | # # 10 |
| Pattern 255 | 255 | # # # # # # | 11 | Pattern
_______________ | # # | 12] 1
| # # | 13 |
_______________ | # # # # # # 1 14|
| Pattern O | 256 | | 15-+
e |
| Pattern 1 |
|-----———-—-———- .
Pattern | - | | # # # # |
2040 -+
generator - | # # # #] 2041 |
table . | # # # # | 2042 |
for block 2 | | | # # # #] 2043 | Pat.
|-—-—————— - | | # # # # | 2044 |
255
Pattern 254		# # # #] 2045	
-		# # # #	2046
Pattern 255	511	# # # #] 2047	

| Pattern O | 512 | |

Pattern | - | - | | |
generator . . |l - | |
table . . I | | |
for block 3 | | 1 1 Block 2 | |
|- | 1 I
| Pattern 254 | | | |
o ——— I 1 I
| Pattern 255 | 767 pattern | | Block 3 |
——————————————— 1 I
| |
Pattern generator table | |
Screen

* Colour table
The size of the colour table is the same as that of the pattern generator
table and colours for "0" and "1" bits of each horizontal line of each
pattern can be specified (see Figure 4.33). The starting address of the
colour table is specified by R#3 and R#10. Note that only the 4 high order
bits of the address (Al16 to Al13) is specified.

Figure 4.33 Colour table structure of GRAPHIC 2, GRAPHIC 3 modes

MSB 7 6 5 4 3 2 1 0 LSB
R#3 | A231 2 11 |1 |11 11 11 11 | |

I
R#HIO | O | O | O | O | O | Al6| Al5] Al4] 11

+
+---> | Pattern O | O | Pattern]Pattern | 0 |
e | vor vt 11 |
| Pattern 1 | 1 | colour | colour | 2 |
l----——-——-——- | (O to 15) | 3 | Pattern
| - l - | | | 4 1 O
Colour - - | | | 5]
table . . | | | 6 |
for block 1 | | | | | 7
- | | | 8 -
| Pattern 254 | | | | 9 |
o — | | | 10 |
| Pattern 255 | 255 | | | 11 | Pattern
——————————————— | | | 121 1

| - | | | | 2040 -+
Colour - | | | 2041 |
table . | | | 2042 |
for block 2 | | | | | 2043 | Pat.
|---—————-——-—- | | | | 2044 | 255
| Pattern 254 | | | | 2045 |
R — | | | | 2046 |
| Pattern 255 | 511 | | | 2047 |
__________________________________ -+
Pattern O	512			
--—-————-				
Pattern 1	1 1			
---—————-——-—-	I 1 Block 1			
-	-			
Colour . .	l -			
table . . 1 1				
for block 3		1 1 Block 2		
--—-—-—-—-—-	1 1			
Pattern 254		l ------——-———		
--—--———-—- I 1				
Pattern 255	767 pattern		Block 3	
——————————————— 1 1 | |
I ________________________
Colour table | |

* Pattern name table

The pattern name table is divided into three stages - upper, middle, and

lower; each displays the pattern by referring to 256 bytes of the pattern
generator (see Figure 4.34). This method enables each of 768 bytes on the
pattern name table to display a different pattern font.

Figure 4.34 Pattern name table for GRAPHIC modes 2 and 3
MSB 7 6 5 4 3 2 1 0 LSB

R#2 | O | A16] A15] Al4] A13] Al2]| All] A10] ---+

1 (0,0) I(31,0) |

+-> | Upper stage of screen
pattern display area (256 bytes) |

Middle stage of screen
attern display area (256 bytes) |

O -

(0,15) (31,15) |

|

| (0,16) (31,16) |
| |

Lower stage of screen |
attern display area (256 bytes) |

O -

I 1
767 | (31,15) | 767 bytes
|--------- | -+

Actual contents of fixed pattern name table

X axis
0 8 16 240 248 255
Y axis 0] &HO | &H8 | | &HFO | &HF8 |
&H1	&H9		&HF1	&HF9
&H2	&HA		&HF2	&HFA
&H3	&HB		&HF3	&HFB
&H4	&HC		&HF4	&HFC
&H5	&HD		&HF5	&HFD
&H6	&HE		&HF6	&HFE
&H7	&HF		&HF7	&HFF
---------- oo oee		---------- ommmmmme		
8	&H100	&H108		&H1FO
&H101	&H109		&H1F1	&H1F9
&H102	&H10A		&H1F2	&H1FA
&H103	&H10B		&H1F3	&H1FB
&H104	&H10C	.	&H1F4	&H1FC
&H105	&H10D		&H1F5	&H1FD
&H106	&H10E		&H1F6	&H1FE
&H107	&H1O0F		&H1F7	&H1FF

. . . (256 x 192 dots)

184 | &H1700 | &H1708 | | &HI7FO | &H17F8 |

| &H1701 | &H1709 | | &H17F1 | &H17F9 |

| &H1702 | &H170A | | &H17F2 | &H17FA |

| &H1703 | &H170B | | &H17F3 | &H17FB |

| &H1704 | &H170C | | &H17F4 | &H17FC |

| &H1705 | &H170D | | &H17F5 | &H17FD |

| &H1706 | &H170E | | &H17F6 | &H17FE |
191 | &H1707 | &H170F | | &H17F7 | &H17FF |

Note: The values are offset from the base address of the pattern generator

table.

3.5.3 Screen colour specification

The border colour of the screen can be specified by R#7 (see Figure 4.35).

Figure 4.35 Screen colour specification of GRAPHIC 2, GRAPHIC 3 modes

MSB 7 6 5 4 3 2 1 0 LSB

invalid specifies the border colour
of the screen (0 to 15)

3.6 GRAPHIC 4 Mode

GRAPHIC 4 mode is described below:

screen: 256 (horizontal) x 212 (vertical) dots |

(or, 192 vertical) |

16 colours can be displayed at the same time

each of 16 colours can be selected from 512 colours]
command: high speed graphic by VDP command available |
sprite: mode 2 sprite function available |

memory requirements: Tfor 192 dots

|
bitmap screen 24K bytes (6000H bytes) |
(4 bits x 256 x 192) |
for 212 dots |
bitmap screen _...__.. 26.5K bytes (6A00H bytes) |
(4 bits x 256 x 212)
compatible to SCREEN 5 |

3.6.1 Setting GRAPHIC 4 mode

Set GRAPHIC 4 mode as shown in Figure 4.36.

Figure 4.36 GRAPHIC 4 mode setting

MSB 7 6 5 4 3 2 1 0 LSB
R#O | - | - 1 - 1 - 10 11 11] |
R#L | - |- 1 - 10 10 | | | |

3.6.2 Screen structure of GRAPHIC 4 mode

* Pattern name table

In GRAPHIC 4 mode, one byte of the pattern name table corresponds with 2 dots
on the screen. The colour information of each dot is represented by 4 bits
and 16 colours can be specified (see Figure 4.37). The starting address of
the pattern name table is specified by R#2. Only the 2 high order bits of the
address (A16 to Al15) are specified and the 15 low order bits are considered
as "0". Thus, the four addresses at which the pattern name can be set are
0O0O000OH, 0O8000H, 10000H, and 18000H.

Figure 4.37 Pattern name table structure of GRAPHIC 4 mode
MSB 7 6 5 4 3 2 1 0 LSB

R#2 | O | A6] A1511 |1 |1 |1 |1 | ——+

Sy +
|
| Pattern name table
|
| MSB 7 6 5 4 3 2 1 0 LSB
I ___
+t--->0 | : (0,0) | (1.0) |
S T T T R R A A +
11 1 (2,0) | 3.0 |
T T T T S S T S T S T +
-1 |
-1 |
I —— I —— I e A A A S +
127 | : (254,0) | (255,0) : |
T T T T S S T S T S T +
128 | > (0,1) | 1.1 |
o — R T T T T T T +

e o o e e e e RN +
27134 | - (252,211) : | - (253,211) : |

e S S S e S S S S S S S e S e S +
27135 | - (254,211) : | : (255,211) : |

o ——— > X
|
| e L L e
| | 0,0 | 1,0 | | 254,0 | 255,0 |
vV |--————-—-- o ——_— + o —_— o —_—
I 0,1 | | 255,1 |
L + oo |
| C e |
- I XyY I -
| |
— + Hommmmm |
| 0,191 | LN =0 | 255,191 |
| |
__________ + B
| 0,211 | LN = 1 | 255,211 |

Screen correspondence table

The dot at (X,Y) coordinate on the screen can be accessed by using Expression
4.1. The program of List 4.2 illustrates the use of Expression 4.1.

Expression 4.1 The expression for accessing the dot at (X,Y) coordinate

(The colour of the dot is represented by 4 high order bits in the case that X
is even and by 4 low order bits in the case that X is odd.)

List 4.2 PSET for GRAPHIC 4 mode written in BASIC

100 " HFFFFFIII ARSI A AR KA A A A AR AK

110 * LIST 4.2 dot access of GRAPHIC 4 mode

120 Ll e o R R R R e S e R e R R R S R e R e R e R e S R S S e e
130 -

140 SCREEN 5

150 BA=0

160 FOR 1=0 TO 255

170 X=l1:Y=I\2

180 COL=15

190 GOSUB 1000

200 NEXT

210 END

220 -

1000 TAAAAAIIETAAAAAAAXITEAAAAAAAARAAAAAAAAAALAAAAXAAX
1010 * PSET (X,Y),COL

1020 - COL:color BA:graphics Base Address
1030 -
1040 -
1050 ADR=X\2+Y*128+BA

1060 IF X AND 1 THEN BIT=&HFO0:C=COL ELSE BIT=&HF:C=COL*16
1070 D=VPEEK(ADR)

1080 D=(D AND BIT) OR C

1090 VPOKE ADR,D

1100 RETURN

3.6.3 Screen colour specification

The border colour of the screen can be specified by R#7 (see Figure 4.38).

Figure 4.38 Screen colour specification in GRAPHIC 4 mode
MSB 7 6 5 4 3 2 1 0 LSB
R#7 | : : : | : |
| | |
Ry o +
invalid specifies the border colour

of the screen (0 to 15)

3.7 GRAPHIC 5 Mode

GRAPHIC 5 mode is described as follows:

|

| screen: 512 (horizontal) x 212 (vertical) dots |
| (or, 192 vertical) |

| 4 colours can be displayed at the same time

| each of 4 colours can be selected from 512 colours |
| command: graphic command by hardware available |
|
|
|
|
[

sprite: mode 2 sprite function available |
memory requirements: Tfor 192 dots |
bitmap screen _...__. 24K bytes (6000H bytes) |

(2 bits x 512 x 192) |
for 212 dots |

| bitmgp screen 26.5K bytes (6A00H bytes) |
(2 bits x 512 x 212) |
| BASIC: compatible to SCREEN 6 |

3.7.1 Setting GRAPHIC 5 mode

Set GRAPHIC 5 mode as shown in Figure 4.39.

Figure 4.39 GRAPHIC 5 mode setting

MSB 7 6 5 4 3 2 1 0 LSB
R#0 | - I - I - 1 - 11 10 10] |
R#L | - |- 1 - 10 10 | | | |

3.7.2 Pattern name table

In GRAPHIC 5 mode, one byte of the pattern name table corresponds with 4 dots
on the screen. The colour information of each dot is represented by 2 bits
and 4 colours can be specified. As with GRAPHIC 4 mode, the pattern name
table is set by writing 2 high order bits of the address in R#2. The
addresses can be set at either 00000H, 08000H, 10000H, or 18000H (see Figure
4.40).

Figure 4.40 Pattern name table structure of GRAPHIC 5 mode
MSB 7 6 5 4 3 2 1 0 LSB

R#2 | O | A6] A1511 |1 |1 |1 |1 | -+

S M Sy +
|
| Pattern name table
|
| MSB 7 6 5 4 3 2 1 0 LSB
| e
+-——->01] (0,00 | @01 (.00 | G.0) |
| ----- R — R — R — R — R —— R —— R —— +
1] ¢.00 | G011 6,00 | 7,0 |
|-——-- R T —— T —— R T —— R —— T —— R T —— S —— +
- |
- | |
----- TR R ——
127 | (508,0) | (5609,0) | (510,0) | (G11,0) |
|-—-- R T —— R - R - R - S - S - S T —— +
128] (0,1 | (@@.,1) 1| 2,1 | G, |

o > X
|
| | 0,0 | 1,0 | | 510,0 | 511,0 |
vV |-——-———---—- TSRS + S TSRS ——- S TS |
I 0,1 | | 511,1 |
Yo e + oo |
| . e |
- | X,Y | -
| |
— + ommmmm e |
| 0,191 | LN =0 | 511,191 |
| |
__________ + e
| 0,211 | LN = 1 | 511,211 |

Screen correspondence table

The dot at (X,Y) coordinate on the screen can be accessed by using Expression
4_.2. The program of List 4.3 confirms Expression 4.2.

Expression 4.2 The expression for accessing the dot at (X,Y) coordinate

(The colour of the dot is represented by bit 7 and 6, or 5 and 4, or 3 and 2,
or 1 and 0, when X MOD 4 is 0, or 1, or 2, or 3, respectively.)

List 4.3 PSET for GRAPHIC 5 mode written in BASIC

100 -
110 = LIST 4.3 dot access of GRAPHIC 5 mode

120 LR e e S R R R S R e S e R e R R R S B e R e R e R e S R S e e e
130 *

140 SCREEN 6

150 BA=0

160 FOR 1=0 TO 511

170 X=1 : Y=I\2
180 COL=3

190 GOSUB 1000
200 NEXT

210 END

220 -

1000 TEAAIXKAEAXAAXXAAXTXAALTAAXATXAAITXAAXATXAAIXAIAXAXAXAXdhAdhi*dx

1010 * PSET(X,Y)

1020 - COL:colour BA:graphic Base Address
1030 Ml e e e R R e R e R e R e R e R e e R e R R e R e e e e
1040 -

1050 ADR=X\4+Y*128+BA

1060 LP=X MOD 4

1070 IF LP=0 THEN BIT=&H3F:C=COL*&H40

1080 IF LP=1 THEN BIT=&HCF:C=COL*&H10

1090 IF LP=2 THEN BIT=&HF3:C=COL*&H4

1100 IF LP=3 THEN BIT=&HFC:C=COL

1110 D=VPEEK(ADR)

1120 D=(D AND BIT) OR C

1130 VPOKE ADR,D

1140 RETURN

3.7.3 Setting the screen colour

In GRAPHIC 5 mode, hardware tiling is done for the border colour of the
screen and sprites. As with the other modes, these colours are specified by 4
bits; 2 high order bits of 4 bits represents the dot colour at even
locations, and 2 low order bits for the dot colour at odd locations (see
Figure 4.41).

Figure 4.41 Screen colour specification in GRAPHIC 5 mode
MSB 7 6 5 4 3 2 1 0 LSB
R#7 | : : : | : | |
| | | |
e Fom o Fom o +
invalid | border colour (0 to 3) at even dots

+----> border colour (0 to 3) at odd dots
+--> even dots (0,2,...,510)
I odd dots (1,3,...,511)
i_____i ______ | <-- graphic 2 dots

| | | <-- sprite 1 dot is automatically done by
————————————— tiling function

MSB | : | : | LSB sprite colour specification (4 bits)

right left
side side
colour colour
(0 to 3) (0 to 3)
3.8 GRAPHIC 6 Mode

GRAPHIC 6 mode is described as follows:

| |

| screen: 512 (horizontal) x 212 (vertical) dots |
| (or, 192 vertical) |

| 16 colours can be displayed at the same time

| each of 16 colours can be selected from 512 colours]
| command: graphic command by hardware available |
| sprite: mode 2 sprite function available |

| memory requirements: for 192 dots |
| bitmap screen 48K bytes (COOOH bytes) |
| (4 bits x 512 x 192) |

| for 212 dots |

| bitmap screen _...__.. 53K bytes (D400H bytes) |
| (4 bits x 512 x 212)

| Note that this mode cannot be used at all with |
| 64K byte VRAM because of the hardware |
| BASIC: compatible to SCREEN 7 |

3.8.1 Setting GRAPHIC 6 mode

Set GRAPHIC 6 mode as shown in Figure 4.42.

Figure 4.42 GRAPHIC 6 mode setting

MSB 7 6 5 4 3 2 1 0 LSB

3.8.2 Pattern name table

In GRAPHIC 6 mode, one byte of the pattern name table corresponds with 2 dots
on the screen. The colour information of each dot is represented by 4 bits
and 16 colours can be specified (see Figure 4.43). The starting address of
the pattern name table is set by writing the high order bit of the

address in R#2. The two addresses at which the pattern name table can be set
ae either O0O00OH or 10000H. The dot at (X,Y) coordinate on the screen can be
accessed by using Expression 4.3. The program of List 4.4 illustrates this.

Figure 4.43 Pattern name table structure of GRAPHIC 6 mode

MSB 7 6 5 4 3 2 1 0 LSB
R#2 |] O J]O JA16] 1 1212 J1 |1 11 | - +
"""""" T |
o |)) |
This bit is used to specify a page to be displayed on the screen. |

The bit position of Al6 is different only in the GRAPHIC 6 and 7 modes. |

e +
|
| Pattern name table
|
| MSB 7 6 5 4 3 2 1 0 LSB
|
+---> 0 | : (0,0 | (1,0) |
|--——- T T T T T T T +
1] > (2,0 | G3.0) |
| ----- R — R —— B — R — R —— R —— R p—— +
- |
- |
| ----- R — R —— B — R — R —— R —— R p—— +
255 | = (510,0) | (511,0) : |
|-——-- e —— e —— e —— e —— e —— o —— o —— +
256 | : (0,1 | (1,1) |
|--——- T T T R R A A +
- |
- |
|-—-- R T —— R T —— R T —— R - R TR S - S T —— +
54270 | : (508,211) : | : (609,211) : |
----- TSR -y - ——— - —
54271 | : (510,211) : | : (511,211) : |

| | 0,0 | 1,0 | | 510,0 | 511,0 |
vV |--————-—-- o ——_— + o —_— o —_—

I 0,1 | | 511,1 |
Yoo e + Ao |

| C e |

) | XY |)

| |

| --------- + Fom e ——_—

| 0,191 | LN =0 | 511,191 |

| |

E— + Ao |

| 0,211 | LN = 1 | 511,211 |

Screen correspondence table

The dot at (X,Y) coordinate on the screen can be accessed by using Expression
4_.1. The program of List 4.2 illustrates the use of Expression 4.1.

Expression 4.3 The expression for the access to the dot
at (X,Y) coordinate

(The colour of the dot is represented by 4 high order bits in the case that X
is even and by 4 low order bits in the case that X is odd.)

List 4.4 PSET for GRAPHIC 6 mode written in BASIC

100 TEAAIXEAEAXAAXTXAAXTXAAXTXAAXLTXAAXTXAAXTXAAXITXAAXTXAXA XA XA XA Xhidhik

110 = LIST 4.4 dot access of GRAPHIC 6 mode

120 bl e R e R R e e e o R e R e R R R R R e R e B e e e e e e

130 *

140 SCREEN 7

150 BA=0

160 FOR 1=0 TO 511

170 X=1: Y=I\2: COL=15: GOSUB 1000

180 NEXT

190 END

200 "

1000 TAAAAARALITEITEAAAAAAA A LT AT AAAAAA A A A AAAAAAAAAAAAAAAAA A AAXKX
1010 * PSET (X,Y)

1020 - COL:color BA:graphic Base Address

1030 " HrxFAskkkkkkkkkdk ko kdeokok

1040 *

1050 ADR=X\2+Y*256+BA

1060 IF X AND 1 THEN BIT=&HF: C=COL ELSE BIT=&HFO: C=COL*16
1070 VPOKE ADR, (VPEEK(ADR) AND BIT) OR COL

1080 RETURN

3.8.3 Setting screen colour

The border colour of the screen can be specified by R#7 (see Figure 4.44).

Figure 4.44 Screen colour specification in GRAPHIC 6 mode
MSB 7 6 5 4 3 2 1 0 LSB
R#7 | : : : | : |
| | |
e e +
invalid specifies the border colour

of the screen (0 to 15)

3.9 GRAPHIC 7 Mode Use

GRAPHIC 7 mode is described as follows:

screen: 256 (horizontal) x 212 (vertical) dots |
(or, 192 vertical) |
256 colours can be displayed at the same time |

command: graphic command by hardware available |
sprite: mode 2 sprite function available |
memory requirements: Tfor 192 dots |

(8 bits x 256 x 192) |
for 212 dots |
bitmap screen _..._.. 53K bytes (D400H bytes) |
(8 bits x 256 x 212) |
Note that this mode cannot be used with 64K byte |
VRAM machines, as in the case of GRAPHIC 6 |
BASIC: compatible to SCREEN 8 |

|
|
|
|
|
|
| bitmap screen 48K bytes (COOOH bytes) |
|
|
|
|
|
|
|

3.9.1 Setting GRAPHIC 7 mode

Set GRAPHIC 7 mode as shown in Figure 4.45.

Figure 4.45 GRAPHIC 4 mode setting

MSB 7 6 5 4 3 2 1 0 LSB

3.9.2 Pattern name table

Configuration of GRAPHIC 7 mode is the simplest of all modes; one dot on the
screen corresponds with one byte in the pattern name table. The value of one
byte written in the table represents 256 kinds of colours. The starting
address of the pattern name table is set by R#2. The two addresses at which
the pattern name table can be set are either 00000H or 10000H (see Figure
4.46).

One byte of data represents the intensity of 3 bits for green, 3 bits for

red, and 2 bits for blue, as shown in Figure 4.47. The dot at (X,Y)
coordinate on the screen can be accessed by using Expression 4.4.

Figure 4.46 Pattern name table structure of GRAPHIC 7 mode

MSB 7 6 5 4 3 2 1 0 LSB
R#2] O J]O JA16] 1 11 J1 |1 11 | —-———————————————— +
"""""" !
o |)) |
This bit is used to specify a page to be displayed on the screen. |

The bit position of Al6 is different only in the GRAPHIC 6 and 7 modes. |

MSB 7 6 5 4 3 2 1 0 LSB
--->0 | : : : (0,0) |
|-—-- R T —— B - R - R - S - S - S T —— |
1] : : : (1,0) |
| ----- R — R — R — R — R —— R —— R —— |
- |
- |
| == |
| Green level | Red level | Blue level]
-~ |
- |
- |
| ----- R — R — R — R — R —— R —— R —— |
255 | : : : (255,0) : : : |
|-—-- e e e e T Fm——— Fm——— |
256 | : : : (0,1 |

54270 | : : (254,211) : |
————— R Lt e e e At e |
54271 | : : : (255,211) : |

o ——— > X
|
I __
| | 0,0 | 1,0 | | 254,0 | 255,0 |
vV |--————-—-- o ——_— + o —_— o —_—
I 0,1 | | 255,1 |
Yo e + Ao |
| C e |
- I XyY I -
| |
E— + Ao |
| 0,191 | LN =0 | 255,191 |
| |
E— + Ao |
| 0,211 | LN = 1 | 255,211 |
Screen correspondence table
Figure 4.47 RGB brightness information
MSB 7 6 5 4 3 2 1 0 LSB
R#2 | GREEN : RED : BLUE |
| | | |
Fo o oo Fom e ——_— - +
| | Blue level (0 to 3)
| |
| e > Red level (0 to 7)
|
Fom > Green level (0 to 7)

Expression 4.4 The expression for accessing to the dot
at (X,Y) coordinate

3.9.3 Setting the screen colour

The border colour of the screen can be specified by R#7 (see Figure 4.48).

Figure 4.48 Screen colour specification in GRAPHIC 7 mode
MSB 7 6 5 4 3 2 1 0 LSB
T |
| |
o +

specifies the border colour of the screen (0 to 255)

4. MISCELLANEOUS FUNCTIONS FOR THE SCREEN DISPLAY
Detailed settings for the screen display are available in MSX-VIDEO. These

include screen ON/OFF and specification of the display location. These
MSX-VIDEO functions are described in this function.

* Screen ON/OFF

The screen ON/OFF function is controlled by bit 6 of R#1 (see Figure 4.49).
When set OFF, the entire screen changes to the colour specified by the 4 low
order bits of R#7 (8 bits in GRAPHIC 7 mode). Drawing with the VDP commands
is faster when the screen is set OFF.

Figure 4.49 Screen ON/OFF

MSB 7 6 5 4 3 2 1 0 LSB

| 0: Screen OFF
>
1: Screen ON
BASIC program lines:

VDP(1)=VDP(1) AND &B10111111 <-- Screen OFF
VDP(1)=VDP(1) OR &B01000000 <-- Screen ON

* Adjustment of the display location on the screen

R#18 is used for adjusting the display location on the screen (see Figure

4_.50). This corresponds with the "SET ADJUST" instruction of BASIC.
Figure 4.50 Adjustment of the screen display

MSB 7 6 5 4 3 2 1 0 LSB

R#18 | v3 | v2 | vi | vO | h3 | h2 | hi | ho |

Ry Ry gy +
vertical adjustment horizontal adjustment
(-8 to +7) (-8 to +7)
__ V=7
| n |~
| | 1
|/l - 1
| | | I
| | | |
| | | .
| | | 1
| <—- 1| Display screen | -—>1 1
| | | I
| | | |
| | | .
| | | 1
|/l - 1
| | ||
| v | Vv
—— V=8
H=7" < > H=8

* Switching the number of pixels in the Y direction

The number of dots displayed in the Y direction on the screen can be switched
to either 192 dots or 212 dots by setting bit 7 of R#9 to 0 or 1. This
function is only valid for five screen modes, TEXT 2, and GRAPHIC 4 to
GRAPHIC 7 modes. When 212 dots are set in TEXT 2 mode, the number of text
lines is 26.5 (=212/8) and on the 27th line only the upper halves of
characters are displayed.

Figure 4.51 Switching the number of dots in the vertical direction

MSB 7 6 5 4 3 2 1 0 LSB

| 0: 192 dots
T

1: 212 dots
BASIC program lines:
VDP(10)=VDP(10) AND &B01111111 <-- 192 dots
VDP(10)=VDP(10) OR &B10000000 <-- 212 dots
* Switching the display page

In GRAPHIC modes 4 to 7, the display pages can be easily switched by setting

the starting address of the pattern name table using R#2. In fact, the second
parameter of the "SET PAGE"™ BASIC instruction switches the display page this
way .

Figure 4.52 Switching pages

* GRAPHIC modes 4 and 5

MSB 7 6 5 4 3 2 1 0 LSB VRAM
___ 00000H
R#2 | O |IX IX |J1 |1 |1 11]1 | | page O |
___ |-—————————————] 08000H
| | | page 1 |
e + |-~ | 10000H
| 00: page O | page 2 |
+---> 01: page 1 l----———-—- | 18000H
10: page 2 | page 3 |
11: page 3 @ = @———————————————

* GRAPHIC modes 6 and 7

--- 00000H

——— | page O |

* Automatic alternate screen display

In GRAPHIC modes 4 to 7, two pages can be displayed alternately by using the
following method. Either page O and page 1, or page 2 and page 3 can be
displayed alternately.

To begin the alternate display, select the odd-numbered page (1 or 3) using
R#2 and set the screen alternation rate in R#13. The 4 high order bits of
R#13 represent the time for displaying the even page and the 4 low order bits
represent the time for displaying the odd page. The time is set in 1/6
seconds interval. Setting 0 for both time periods causes only the odd page to
be displayed.

Figure 4.53 Setting the rate of the screen alternation

R#13 | : EVEN : | - ODD : | setting the cycle

| even numbered page | odd numbered page |

|<- EVEN/6 seconds ->]<- ODD/6 seconds ->|

* Setting the interlaced mode

The interlaced mode allows an apparent screen resolution in the Y direction
of double the normal mode. A resolution of up to 424 dots in the Y direction
can be achieved using this mode. This is done by alternating at high speed
the normal screen and a screen whose scanning lines are offset vertically by
half a line. In MSX-VIDEO the interlaced mode is specified by setting bit 3
of R#9 ro "1". The two screens are switched 60 times a second.

When the odd page is selected in GRAPHIC 4 to GRAPHIC 7 screen modes and the
alternate screen display mode is selected, the screen is normally switched at
slow rates specified In units of 1/6 seconds. However, combinig this function
and the interlaced function can make the number of the vertical dots of the
display screen seem double.

Figure 4.54 Setting the interlaced mode

MSB 7 6 5 4 3 2 1 0 LSB
R#O | - I - I - I - I X I X | | |

| | 0: one screen is displayed
| +—=>
| 1: two screens are displayed
| alternately
|
| 0: non-interlace mode (normal mode)
o>

1: interlace mode

First screen

e
I |
[|
212 | - |
dots | |
|l |- |l -—=
| lr - |~
I | oo [
o e > | - | | Apparent
| | 424 dots
Second screen | ---———-—- | | resolution
Bttt e R | |
[| | - 1
[1 |l Vv
212 | i |l 00 -
dots | | interlace mode table
| | (The first and second screens are
| | | displayed alternately at 1/60 seconds

| | each cycle.)

List

4.5 Interlaced mode example

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220

" List 4.5 1interlace mode
FAAIEAEIAAAAAAAAXITAITAAAXAAAAAAAAXAATAXAAXAAAAAAXAIAXAIAAAAAAAAAX
COLOR 15,0,0 : SCREEN 5,,,,,0 "noninterlace mode
SET PAGE 0,0 : CLS

LINE (32,0)-(64,120),15,BF
SET PAGE 1,1 : CLS
LINE (192,91)-(224,211),15,BF

VDP(10)=VDP(10) OR &B00001100 "interlace mode!!!

FOR 1=32 TO 192
SET PAGE 1,0
LINE (1,0)-STEP(0,120),0
LINE (1+33),0)-STEP(0,120),15
SET PAGE 1,1
LINE (256-1,91)-STEP(0,120),0
LINE (221-1,91)-STEP(0,120),15
NEXT |

VDP(10)=VDP(10) AND &B11110011 "interlace off

* Vertical scroll of the screen

R#23
this

is used to set the line at which display begins on the screen. Changing
register enables vertical scrolling of the screen. Note that, since the

scroll is done every 256 lines, the sprite tables should be moved to another
page. List 4.6 shows an example.

List

4.6 Vertical scroll example

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

TEAIAEAIAEALA A AL A AL EAAXA A AKX XXX XXX AAXAAAXAAAXAAXAXAALAAAXAXAAXAXAAAXAAXAXAAAAAAXAK

" List 4.6 Hardware scroll

SCREEN 5,2: COLOR 15,0,0: CLS
COPY (0,0)-(255,43) TO (0,212),,PSET "erase (212,0)-(255,255)
FOR 1=1 TO 8: D(1)=VAL(MID$(*'00022220",1,1))-1: NEXT
OPEN "GRP:" AS #1
FOR 1=0 TO 3

PRESET (64, 1%64): PRINT #1,"Hit CURSOR Key"
NEXT

1130 -

1140 J=STICK(0)

1150 P=(P+D(J)) AND &HFF
1160 VDP(24)=P

1170 GOTO 1140

* Specifying the colour code 0 function

Among the 16 colour codes, only code O can be made as a "transparent'™ colour
(the border colour of the screen can be set transparently), the colour set in
palette P#0. Setting bit 5 of R#8 to "1" disables thsi function and the
colour code 0 changes to the colour defined by the palette P#0.

Figure 4.55 Colour code O function

MSB 7 6 5 4 3 2 1 0 LSB

| O: Colour code 0 transparent function is enabled
+—=>
1: Colour code 0 function disabled

- When the TB bit is 0", colour code 0 becomes transparent.
- When the TB bit is "1™, colour code 0 changes to the colour defined by
palette P#0.

* Generating interrupts by the scanning line location

In MSX-VIDEO an interrupt can be generated just after the CRT finishes
displaying a specific scanning line. Set in R#19 the number of the scanning
line at which the interrupt should be generated, and set bit 4 of R#0 to "1"
(see Figure 4.56).

Figure 4.56 Generating the scanning line interrupt

MSB 7 6 5 4 3 2 1 0 LSB

R#0 Il - 1 - 1 - 1TEX2) - 01 -1-1- | Mode register O

| 0: Normal condition

1: Interrupt at specific line mode

MSB 7 6 5 4 3 2 1 0 LSB

R#19 | IL7] 1L6] IL5] IL4] I1L3] 1L2] IL1] ILO] Interrupt line register

5. SPRITES

Sprites are used to display movable character patterns of 8 x 8 or 16 x 16
dots on the screen. This function is especially useful in the programming of
games.

The parameters specified are the X and Y coordinates, the character number,
and the colour code. The sprite is displayed by writing this data to the
preset sprite attribute table.

There are two modes for MSX2 sprites. Mode 1 is compatible to the TMS9918
used in the MSX1 machines. Mode 2 includes several improved functions and has
been implemented on the MSX2. This section summarises the sprite function and
describes the two modes.

5.1 Sprite Function
Up to 32 sprites can be displayed on one screen at a time.

Sprites have two sizes, 8 x 8 and 16 x 16 dots. Only one size can be
displayed on the screen at a time. The size of one dot of the sprite is
usually the same as one pixel, but in the case of GRPAHIC5 and 6 modes (for
both, the resolution is 512 x 212) the horizontal size is two pixels, that
is, the absolute size of the sprite is the same in any mode.

The Sprite mode automatically selected is determined by the screen mode in
use. Shown below are the default settings:

Sprite mode 1 selected: GRAPHIC 1 (SCREEN 1)
GRAPHIC 2 (SCREEN 2)
MULTI colour (SCREEN 3)
Sprite mode 2 selected: GRAPHIC 3 (SCREEN 4)

GRAPHIC 4 (SCREEN 5)
GRAPHIC 5 (SCREEN 6)
GRAPHIC 6 (SCREEN 7)
GRAPHIC 7 (SCREEN 8)

5.2 Sprite mode 1

Sprite mode 1 has the same functions as the sprite mode of MSX1 machines.
Thus programs using this mode can also be run on the MSX1

5.2.1 Number of sprites to be displayed

There are 32 sprites numbered from O to 31. Sprites with the smallest numbers
have the highest priority. When sprites are placed on the same horizontal
line of the screen, up to 4 sprites are placed in their order priority, and

the portions of the 5th sprite or higher which conflict with the existing
four sprites on a given line are not displayed.

Figure 4.57 Number of sprites to be displayed (sprite mode 1)

5.2.2 Sprite display settings

The following descriptions are settings to display the sprite.

* Setting the size of the sprite
8 x 8 dots or 16 x 16 dots can be set (see Figure 4.58). By default, 8 x 8
dots is selected.

Figure 4.58 Setting the size of the sprite

MSB 7 6 5 4 3 2 1 0 LSB

+-—>
1: 16 x 16 dots
8 x 8 dots 16 x 16 dots
| | | | "
	1		
	8 dots		
	1		
Y%			
—————————————— -		16 dots	
<- 8 dots ->			
[
	\		
]<--- 16 x 16 dots -—=>]			

* Expanding the sprite

Figure 4.59 shows how to select whether one dot of the sprite corresponds to
one dot of the screen or whether it is expanded double in both the horizontal
and vertical directions. By default, the one dot to one dot size is selected.

Figure 4.59 Expanding the sprite

MSB 7 6 5 4 3 2 1 0 LSB

| 0: normal mode

1: expansion mode (2X)

* Setting the sprite pattern generator table

Sprite patterns are defined in the sprite pattern generator table in VRAM. Up
to 256 sprites can be defined in the case of 8 x 8 dots, and up to 64 for 16
X 16 dots. Each pattern is numbered from O to 255 and is allocated in VRAM as
shown in Figure 4.60. For 16 x 16 dots, four 8 x 8 patterns are used from the
top of the table. In this case, using any number of these four patterns
causes the same sprite to be specified. R#6 is used to set the address in the
sprite pattern generator table as shown in Figure 4.60.

Figure 4.60 Structure of the sprite pattern generator table
(sprite mode 1)

VRAM

|I<-- 1 byte -->|
- e + <--- R#6
~ o | |/l -
| | | | | O] O] Al6] Al15] A14] A13] Al2] A11]
1 | | |l -
8 | | Pattern

bytes | | #0

[| |
1 | | |
v | |
- |----————-————- | ——-+

| | |

| | |

| | |

| | Pattern

| | #1

| | |

| | |

| | |

|- | ——-+

[

* Setting the sprite attribute table

Each sprite is displayed in one of 32 "sprite planes”™ exclusively, and the
sprite status for each sprite plane is recorded using 4 bytes. The area
having the information for each sprite plane is called the sprite attribute
table. The starting address in VRAM for this table is set in R#5 and R#11 as
shown in Figure 4.61.

The four bytes in the attribute table ocntain the following information:

|

| Y-coordinate: specifies Y-coordinate of the sprite. Note that |

| the top line of the screen is not 0 but 255. |

| Setting this value in 208 (DOH) causes sprites |

| after this plane not to be displayed. |

| X-coordinate: specifies X-coordinate of the sprite. |

| pattern number: specifies the character in the sprite pattern |
| generator table to be displayed. |

| colour code: specifies the colour (palette number) of the |

| portion where the bit of the sprite pattern |

| is "1". |

| EC: Setting "1" to this bit causes the sprite to be |
| shifted for 32 bits to the left. Using this |

| function enables the dot of the sprite to be |

| displayed one by one from the left edge of the |

| screen. |

|

Figure 4.61 Structure of the sprite attribute table (sprite mode 1)

MSB 7 6 5 4 3 2 1 0 LSB
e - + <= (™
~ : Y coordinate (0 to 255) | |
| |-+t]| |
[| : X coordinate (0 to 255) |
4 bytes |----+--——-+--——-+——---+——--—+————+-———+-———|] Sprite #0 attribute area
1 1 : Pattern number (0 to 255) : | |
|l 1--———-+--—-—+———+——t] |
V]EC]O JO J]O0o | Colour code | |
- |----+----+----+----+----+----+----+----| "

| | Sprite #1 attrib. area

| | | Sprite #31 attrib. area

R#1IL | O J] O | O JO | O | O | A16] Al5]

|

|

| 1 | |

1 | HiHE : |

1 1 | | |

1 1 | #H D |

I | | | | EC bit = "0"
I I V #I::: I

| |##HH | |

1 1 » | |

: ity |

The sprite will display from here (X coordinate = 0)

|

|

|

|

|

| :-:I## | |

| 1 | | | EC bit = "1"
| - |1### V | |

| | |

| |### H#HHH# | |

1 1 ~ |

|l - +-—- |

| | |
__________________________________ .

The sprite will display until here (X coordinate = 255)

5.2.3 Judging the sprite conflicts

When two sprites conflict, bit 5 of S#0 becomes "1" to inform of the
conflict. A "conflict" means that bits "1" in the sprite pattern whose colour
is not "transparent" occupy the same coordinate (see Figure 4.62)

Figure 4.62 Conflict of sprites (sprite mode 1)

MSB 7 6 5 4 3 2 1 0 LSB

| O: Normal
+—=>

1: A sprite conflict exists

e e e
I 1T \\\\\N\N\ | [IANNNNNN | |
I 1T NN\ | <--- Sprite 1 —-=-> | \\ ————- Fmm +o———
8 or 16 | \\\\\\\ | | I \\ | xx | 77 | | |
dots |-----———- Fom - e |-——-+--——- /7 | | |
| 1 | 7777777 | | | | 7777777 | | |
I 1 | 7777717 | | I I
(I | 7777777 | | | | | |
o e o —— I o |
| | <- Sprite 2 -> | |
| I
| |
These two sprites do not conflict These two sprites conflict
I \\ | | 7/ | --> This pattern bit has one part

When more than 5 sprites are placed on the same line, bit 6 of S#0 becomes
"1" and the identifying number of the 5th sprite (the portion which cannot be
displayed) is set in the 5 low order bits of S#0.

Figure 4.63 Judging the conflict (sprite mode 1)

MSB 7 6 5 4 3 2 1 0 LSB

Identification number of fifth sprite on a single line

0: Normal
-——>
1: More than 4 sprites are occupying a single line

5.3 Sprite Mode 2

Sprite mode 2 is the newly added mode for MSX-VIDEO. It is not compatible
with TMS9918 and cannot be used with MSX1 machines.

5.3.1 Number of sprites to be displayed

The number of sprites which can be displayed on one screen is also 32, but up
to eight sprites can be displayed on a given horizontal line of the screen.
The priorities are the same as in mode 1 with the lower numbers having
highest priority.

Figure 4.64 Number of sprites to be displayed (sprite mode 2)

5.3.2 Sprite display settings

* Sprite SEZe .. eeaaa same as sprite mode 1

* Expanding sprite same as sprite mode 1

* Sprite display ON/OFF

In sprite mode 2, the sprite display can be turned ON/OFF by bit 1 of R#8.

When this bit is set to 1, no sprites will appear on the screen.

Figure 4.65 Sprite display specification

MSB 7 6 5 4 3 2 1 0 LSB
R#8 | - I - 1 - | - 1 - | I X 1 |
| 0: Sprite mode on
+—=>

1: Sprite mode off

* Setting the pattern generator table same as sprite mode 1

* Sprite attribute table

In sprite mode 2, since different colours can be set for each horizontal line
of the sprite, the colour information is stored in a sprite colour table as
described below, which is independent of the sprite attribute table. Three
kinds of information are stored in the sprite attribute table (see Figure
4.66) .

I

| Y-coordinate: setting this value to 216 (D8H) causes sprites |
| after this sprite plane not to be displayed. |
| Except for this, it is the same as the sprite |
| mode 1. |

| X-coordinate: same as sprite mode 1. |

| pattern number: same as sprite mode 1. |
|

Figure 4.66 Structure of the sprite attribute table (sprite mode 2)

MSB 7 6 5 4 3 2 1 0 LSB
S ——— + <—— (™
~M : Y coordinate (0 to 255) o |
| |----+----+----+----+----+----+----+----| |
[| : X coordinate (0 to 255) |
4 pytes |----+----+--——+-———+-———+-———+--——+-————] Sprite #0 attribute area
[| : Pattern number (0 to 255) : | |
| |-+t]| |
V] : : : unused : | |
-J----+—-—t+-———t——t -] -+
| 11]
| | | Sprite #1 attrib. area
| | | Sprite #31 attrib. area
| 1
___ +
(*) R#5 | Al4] A13] Al2] Al11] A10] 2 11 | 1 |

R#11 O | O J]O JO JO |O | Al6] A15]

* Sprite colour table
The colour table is automatically set at the address 512 bytes before the
starting address of the sprite attribute table. 16 bytes are allocated for

each sprite plane and the following settings are made for each line of the
sprite.

|

| colour code: colour can be specified for each line. |

| EC: the same as EC bit of the attribute table of |
| sprite mode one. When "1", the sprite display |

| location is shifted 32 bits to the left. |

| This also can be specified for each line. |

| CcC: when CC bit is "1", it can have the same |
| priority as the sprite "that has the higher |

| priority than this sprite and whose CC bit is |

| 0" and that is nearest to this sprite plane™. |

| When sprites having the same priority are |

| overlapped, the colour for which OR (logical |

| or) of both colour codes are displayed. In this |

| case, the overlapping does not cause a conflict |

| (see Figure 4.68).

| IC: (one line of) the sprite with this bit "1" |
| does not conflict with other sprites. |

| |

Figure 4.67 Structure of the sprite colour table (sprite mode 2)

MSB 7 6 5 4 3 2 1 0 LSB
——— --+ <-- starting
O JEC|JCC]lIC] O] Color code | 1st line | address
|---——-+-——-+———t] | of the
1 JEC]JCClIC] O | Color code | 2nd line | sprite
|----+----+----+----+----+----+----+----| | colour

table

|
|

. | Sprite #0
| colour table

|----+----+----+----+----+----+----+----| |
15 J EC|JCC|] IC] O | Color code | 16th line |
|--——-+-———-t+————t]| ——+
| . |
| |
|---—-+-———-t+————t]| ——+
496 | EC | CC]lIC] O] Color code | 1th line |
|--—+-———F———tF] |
497 | EC | CC]l IC] O] Color code | 2nd line | Sprite #31
|-+ttt] | colour table
| - | |
. | starting
. | address
| | | of the
|----+----+----+----+----+----+----+----| | sprite
511 | EC|J CC] IC] O | Color code | 16th line | attribute
——— --+ <-- table
| | | | |
I I —— +
| | | Specify the colour code (0 to 15)
| | | for the sprite by each line
| | | 1 =no
| | Fom > detect conflict: 0 = yed
| |
| R e e E e et > priority: 0 = yes
| 1=no
|

o > 32 dot left shifted display: 1 = yes

Figure 4.68 CC bit detection

Sprite 1 Sprite 2 Sprite 1,2 (overlapped)

| 7777777777 | | I \\ | | | xx | 77777 | |

| 7777777777 | | I \\ | | | xx | 77777 | |

| 7777777777 | | | \\ -——— | | xx ——————-—- +-———]

| 7777777777 | | [IANNNNNNNRRRRNNNG | +——] xx0oooxxxxx | \\]

| 7777777777 | | [IANNNNNNRRANRNNN | | >ooxxxxxxxx | \\ |

______________________________________ v R
cC=0 cC =1 Color code = 8 or 4 = 12

| 7/ | Color code = 8 | \\ | Color code = 4 | xx | Color code=12

Note: 1) Conflicts are not detected when the pattern of the sprite whose
CC is "1" is piled on the portion CC=0 of the sprite which has
a smaller number and is nearest to it.
2) To display the sprite whose CC is "1', CC bit of the sprite which
has smaller number should be set to O.

5.3.3 Judging sprite conflicts

A "conflict" in sprite mode 2 occurs when the display colour of a sprite is
not transparent and "1" bits on the line whose CC bit is 0 overlap each
other. When two sprites conflict, bit 5 of S#0 becomes "1" and the conflict
can be detected (see Figure 4.69). In this case, different from the sprite
mode 1, the coordinate where the conflict occurred can be detected by S#3 to
S#6 as shown in Figure 4.70. Note that the coordinate which can be obtained
by these registers is not the coordinate where the conflict actually
occurred. To get this, use Expression 4.5. S#3 to S#6 are reset when S#5 is
read out.

Figure 4.69 Conflict of the sprite (sprite mode 2)

MSB 7 6 5 4 3 2 1 0 LSB

+——>

|
IRNSASSSSANNANNNR I
TRNSASSSSANNANNNN I
TR\ \ | \—— R
I NN |\ I

I NN AN BRNNNNN | |
I BANNNNNN G BR NN |
I NN AN BR NN\ | | the attribute of this line
= NN\ N Fomm e - e
+—— 1 T \\\\\\\ [\ I xx 1727777777] | -->1 1 0] 0] -
|l - -————-—- tom—t————— /7 /777) -
I 1 | | 7777777 | 77777 | | | |
| --—-—————-—- Fommtbo - /7777 | | +o—m - +
| | | 7777777777/7/7777 | | CC and IC bits are both 0"
| the attribute | ---—-------"-""-"-"--— |
| of this line | |
I I I
I __________________________
\Y
I 10] 0] |
(.
I +

CC and IC bits are both "0"

Figure 4.70 Readout of the conflict coordinate
MSB 7 6 5 4 3 2 1 0 LSB

S#3 | X7] X6 | X5 | X4] X3 | X2] X1 | X0 | |
——— | X-coordinate where the
| conflict occurred

|
S#4 |1 11 11 11 12 12 12 |x81 |

S#5 l Y71 Y6] Y5] Y4] Y3]Y2] Y1L] YO | |
——— | Y-coordinate where the
| conflict occurred

|
s#6 |1 |1 |11 11 11 11 1Y91VY81] |

|

| (X-coordinate where the conflict occurred) = |
| (X-coordinate of S#3 and S#4) - 12 |

|

| (Y-coordinate where the conflict occurred) = |
| (Y-coordinate of S#5 and S#6) - 8 |

|

When more than nine sprites are placed on the same horizontal line, bit 6 of
S#0 becomes "1" and the number of the sprite plane whose order of priority is

9 i

s entered to the 5 low order bits of S#0 (see Figure 4.71).

Figure 4.71 Conflict of the sprite (sprite mode 2)

MSB 7 6 5 4 3 2 1 0 LSB

contains the 9th sprite number

0: normal

1: more than 9 sprites are occupying the same line

